2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
62 #include "probe_roms.h"
63 #include "remote_device.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
73 #define smu_max_ports(dcc_value) \
75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
79 #define smu_max_task_contexts(dcc_value) \
81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
85 #define smu_max_rncs(dcc_value) \
87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
96 * The number of milliseconds to wait while a given phy is consuming power
97 * before allowing another set of phys to consume power. Ultimately, this will
98 * be specified by OEM parameter.
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
103 * NORMALIZE_PUT_POINTER() -
105 * This macro will normalize the completion queue put pointer so its value can
106 * be used as an array inde
108 #define NORMALIZE_PUT_POINTER(x) \
109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
113 * NORMALIZE_EVENT_POINTER() -
115 * This macro will normalize the completion queue event entry so its value can
116 * be used as an index.
118 #define NORMALIZE_EVENT_POINTER(x) \
120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
125 * NORMALIZE_GET_POINTER() -
127 * This macro will normalize the completion queue get pointer so its value can
128 * be used as an index into an array
130 #define NORMALIZE_GET_POINTER(x) \
131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
134 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
136 * This macro will normalize the completion queue cycle pointer so it matches
137 * the completion queue cycle bit
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
143 * COMPLETION_QUEUE_CYCLE_BIT() -
145 * This macro will return the cycle bit of the completion queue entry
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine
*sm
,
151 const struct sci_base_state
*state_table
, u32 initial_state
)
153 sci_state_transition_t handler
;
155 sm
->initial_state_id
= initial_state
;
156 sm
->previous_state_id
= initial_state
;
157 sm
->current_state_id
= initial_state
;
158 sm
->state_table
= state_table
;
160 handler
= sm
->state_table
[initial_state
].enter_state
;
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine
*sm
, u32 next_state
)
168 sci_state_transition_t handler
;
170 handler
= sm
->state_table
[sm
->current_state_id
].exit_state
;
174 sm
->previous_state_id
= sm
->current_state_id
;
175 sm
->current_state_id
= next_state
;
177 handler
= sm
->state_table
[sm
->current_state_id
].enter_state
;
182 static bool sci_controller_completion_queue_has_entries(struct isci_host
*ihost
)
184 u32 get_value
= ihost
->completion_queue_get
;
185 u32 get_index
= get_value
& SMU_COMPLETION_QUEUE_GET_POINTER_MASK
;
187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value
) ==
188 COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
]))
194 static bool sci_controller_isr(struct isci_host
*ihost
)
196 if (sci_controller_completion_queue_has_entries(ihost
)) {
200 * we have a spurious interrupt it could be that we have already
201 * emptied the completion queue from a previous interrupt */
202 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
205 * There is a race in the hardware that could cause us not to be notified
206 * of an interrupt completion if we do not take this step. We will mask
207 * then unmask the interrupts so if there is another interrupt pending
208 * the clearing of the interrupt source we get the next interrupt message. */
209 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
210 writel(0, &ihost
->smu_registers
->interrupt_mask
);
216 irqreturn_t
isci_msix_isr(int vec
, void *data
)
218 struct isci_host
*ihost
= data
;
220 if (sci_controller_isr(ihost
))
221 tasklet_schedule(&ihost
->completion_tasklet
);
226 static bool sci_controller_error_isr(struct isci_host
*ihost
)
228 u32 interrupt_status
;
231 readl(&ihost
->smu_registers
->interrupt_status
);
232 interrupt_status
&= (SMU_ISR_QUEUE_ERROR
| SMU_ISR_QUEUE_SUSPEND
);
234 if (interrupt_status
!= 0) {
236 * There is an error interrupt pending so let it through and handle
242 * There is a race in the hardware that could cause us not to be notified
243 * of an interrupt completion if we do not take this step. We will mask
244 * then unmask the error interrupts so if there was another interrupt
245 * pending we will be notified.
246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 writel(0xff, &ihost
->smu_registers
->interrupt_mask
);
248 writel(0, &ihost
->smu_registers
->interrupt_mask
);
253 static void sci_controller_task_completion(struct isci_host
*ihost
, u32 ent
)
255 u32 index
= SCU_GET_COMPLETION_INDEX(ent
);
256 struct isci_request
*ireq
= ihost
->reqs
[index
];
258 /* Make sure that we really want to process this IO request */
259 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
) &&
260 ireq
->io_tag
!= SCI_CONTROLLER_INVALID_IO_TAG
&&
261 ISCI_TAG_SEQ(ireq
->io_tag
) == ihost
->io_request_sequence
[index
])
262 /* Yep this is a valid io request pass it along to the
265 sci_io_request_tc_completion(ireq
, ent
);
268 static void sci_controller_sdma_completion(struct isci_host
*ihost
, u32 ent
)
271 struct isci_request
*ireq
;
272 struct isci_remote_device
*idev
;
274 index
= SCU_GET_COMPLETION_INDEX(ent
);
276 switch (scu_get_command_request_type(ent
)) {
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
:
278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC
:
279 ireq
= ihost
->reqs
[index
];
280 dev_warn(&ihost
->pdev
->dev
, "%s: %x for io request %p\n",
281 __func__
, ent
, ireq
);
282 /* @todo For a post TC operation we need to fail the IO
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC
:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC
:
288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC
:
289 idev
= ihost
->device_table
[index
];
290 dev_warn(&ihost
->pdev
->dev
, "%s: %x for device %p\n",
291 __func__
, ent
, idev
);
292 /* @todo For a port RNC operation we need to fail the
297 dev_warn(&ihost
->pdev
->dev
, "%s: unknown completion type %x\n",
303 static void sci_controller_unsolicited_frame(struct isci_host
*ihost
, u32 ent
)
308 struct scu_unsolicited_frame_header
*frame_header
;
309 struct isci_phy
*iphy
;
310 struct isci_remote_device
*idev
;
312 enum sci_status result
= SCI_FAILURE
;
314 frame_index
= SCU_GET_FRAME_INDEX(ent
);
316 frame_header
= ihost
->uf_control
.buffers
.array
[frame_index
].header
;
317 ihost
->uf_control
.buffers
.array
[frame_index
].state
= UNSOLICITED_FRAME_IN_USE
;
319 if (SCU_GET_FRAME_ERROR(ent
)) {
321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 * / this cause a problem? We expect the phy initialization will
323 * / fail if there is an error in the frame. */
324 sci_controller_release_frame(ihost
, frame_index
);
328 if (frame_header
->is_address_frame
) {
329 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
330 iphy
= &ihost
->phys
[index
];
331 result
= sci_phy_frame_handler(iphy
, frame_index
);
334 index
= SCU_GET_COMPLETION_INDEX(ent
);
336 if (index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
338 * This is a signature fis or a frame from a direct attached SATA
339 * device that has not yet been created. In either case forwared
340 * the frame to the PE and let it take care of the frame data. */
341 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
342 iphy
= &ihost
->phys
[index
];
343 result
= sci_phy_frame_handler(iphy
, frame_index
);
345 if (index
< ihost
->remote_node_entries
)
346 idev
= ihost
->device_table
[index
];
351 result
= sci_remote_device_frame_handler(idev
, frame_index
);
353 sci_controller_release_frame(ihost
, frame_index
);
357 if (result
!= SCI_SUCCESS
) {
359 * / @todo Is there any reason to report some additional error message
360 * / when we get this failure notifiction? */
364 static void sci_controller_event_completion(struct isci_host
*ihost
, u32 ent
)
366 struct isci_remote_device
*idev
;
367 struct isci_request
*ireq
;
368 struct isci_phy
*iphy
;
371 index
= SCU_GET_COMPLETION_INDEX(ent
);
373 switch (scu_get_event_type(ent
)) {
374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR
:
375 /* / @todo The driver did something wrong and we need to fix the condtion. */
376 dev_err(&ihost
->pdev
->dev
,
377 "%s: SCIC Controller 0x%p received SMU command error "
384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR
:
385 case SCU_EVENT_TYPE_SMU_ERROR
:
386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR
:
388 * / @todo This is a hardware failure and its likely that we want to
389 * / reset the controller. */
390 dev_err(&ihost
->pdev
->dev
,
391 "%s: SCIC Controller 0x%p received fatal controller "
398 case SCU_EVENT_TYPE_TRANSPORT_ERROR
:
399 ireq
= ihost
->reqs
[index
];
400 sci_io_request_event_handler(ireq
, ent
);
403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT
:
404 switch (scu_get_event_specifier(ent
)) {
405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE
:
406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT
:
407 ireq
= ihost
->reqs
[index
];
409 sci_io_request_event_handler(ireq
, ent
);
411 dev_warn(&ihost
->pdev
->dev
,
412 "%s: SCIC Controller 0x%p received "
413 "event 0x%x for io request object "
414 "that doesnt exist.\n",
421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT
:
422 idev
= ihost
->device_table
[index
];
424 sci_remote_device_event_handler(idev
, ent
);
426 dev_warn(&ihost
->pdev
->dev
,
427 "%s: SCIC Controller 0x%p received "
428 "event 0x%x for remote device object "
429 "that doesnt exist.\n",
438 case SCU_EVENT_TYPE_BROADCAST_CHANGE
:
440 * direct the broadcast change event to the phy first and then let
441 * the phy redirect the broadcast change to the port object */
442 case SCU_EVENT_TYPE_ERR_CNT_EVENT
:
444 * direct error counter event to the phy object since that is where
445 * we get the event notification. This is a type 4 event. */
446 case SCU_EVENT_TYPE_OSSP_EVENT
:
447 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
448 iphy
= &ihost
->phys
[index
];
449 sci_phy_event_handler(iphy
, ent
);
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX
:
453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX
:
454 case SCU_EVENT_TYPE_RNC_OPS_MISC
:
455 if (index
< ihost
->remote_node_entries
) {
456 idev
= ihost
->device_table
[index
];
459 sci_remote_device_event_handler(idev
, ent
);
461 dev_err(&ihost
->pdev
->dev
,
462 "%s: SCIC Controller 0x%p received event 0x%x "
463 "for remote device object 0x%0x that doesnt "
473 dev_warn(&ihost
->pdev
->dev
,
474 "%s: SCIC Controller received unknown event code %x\n",
481 static void sci_controller_process_completions(struct isci_host
*ihost
)
483 u32 completion_count
= 0;
490 dev_dbg(&ihost
->pdev
->dev
,
491 "%s: completion queue begining get:0x%08x\n",
493 ihost
->completion_queue_get
);
495 /* Get the component parts of the completion queue */
496 get_index
= NORMALIZE_GET_POINTER(ihost
->completion_queue_get
);
497 get_cycle
= SMU_CQGR_CYCLE_BIT
& ihost
->completion_queue_get
;
499 event_get
= NORMALIZE_EVENT_POINTER(ihost
->completion_queue_get
);
500 event_cycle
= SMU_CQGR_EVENT_CYCLE_BIT
& ihost
->completion_queue_get
;
503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle
)
504 == COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
])
508 ent
= ihost
->completion_queue
[get_index
];
510 /* increment the get pointer and check for rollover to toggle the cycle bit */
511 get_cycle
^= ((get_index
+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES
) <<
512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT
- SCU_MAX_COMPLETION_QUEUE_SHIFT
);
513 get_index
= (get_index
+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES
-1);
515 dev_dbg(&ihost
->pdev
->dev
,
516 "%s: completion queue entry:0x%08x\n",
520 switch (SCU_GET_COMPLETION_TYPE(ent
)) {
521 case SCU_COMPLETION_TYPE_TASK
:
522 sci_controller_task_completion(ihost
, ent
);
525 case SCU_COMPLETION_TYPE_SDMA
:
526 sci_controller_sdma_completion(ihost
, ent
);
529 case SCU_COMPLETION_TYPE_UFI
:
530 sci_controller_unsolicited_frame(ihost
, ent
);
533 case SCU_COMPLETION_TYPE_EVENT
:
534 sci_controller_event_completion(ihost
, ent
);
537 case SCU_COMPLETION_TYPE_NOTIFY
: {
538 event_cycle
^= ((event_get
+1) & SCU_MAX_EVENTS
) <<
539 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT
- SCU_MAX_EVENTS_SHIFT
);
540 event_get
= (event_get
+1) & (SCU_MAX_EVENTS
-1);
542 sci_controller_event_completion(ihost
, ent
);
546 dev_warn(&ihost
->pdev
->dev
,
547 "%s: SCIC Controller received unknown "
548 "completion type %x\n",
555 /* Update the get register if we completed one or more entries */
556 if (completion_count
> 0) {
557 ihost
->completion_queue_get
=
558 SMU_CQGR_GEN_BIT(ENABLE
) |
559 SMU_CQGR_GEN_BIT(EVENT_ENABLE
) |
561 SMU_CQGR_GEN_VAL(EVENT_POINTER
, event_get
) |
563 SMU_CQGR_GEN_VAL(POINTER
, get_index
);
565 writel(ihost
->completion_queue_get
,
566 &ihost
->smu_registers
->completion_queue_get
);
570 dev_dbg(&ihost
->pdev
->dev
,
571 "%s: completion queue ending get:0x%08x\n",
573 ihost
->completion_queue_get
);
577 static void sci_controller_error_handler(struct isci_host
*ihost
)
579 u32 interrupt_status
;
582 readl(&ihost
->smu_registers
->interrupt_status
);
584 if ((interrupt_status
& SMU_ISR_QUEUE_SUSPEND
) &&
585 sci_controller_completion_queue_has_entries(ihost
)) {
587 sci_controller_process_completions(ihost
);
588 writel(SMU_ISR_QUEUE_SUSPEND
, &ihost
->smu_registers
->interrupt_status
);
590 dev_err(&ihost
->pdev
->dev
, "%s: status: %#x\n", __func__
,
593 sci_change_state(&ihost
->sm
, SCIC_FAILED
);
598 /* If we dont process any completions I am not sure that we want to do this.
599 * We are in the middle of a hardware fault and should probably be reset.
601 writel(0, &ihost
->smu_registers
->interrupt_mask
);
604 irqreturn_t
isci_intx_isr(int vec
, void *data
)
606 irqreturn_t ret
= IRQ_NONE
;
607 struct isci_host
*ihost
= data
;
609 if (sci_controller_isr(ihost
)) {
610 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
611 tasklet_schedule(&ihost
->completion_tasklet
);
613 } else if (sci_controller_error_isr(ihost
)) {
614 spin_lock(&ihost
->scic_lock
);
615 sci_controller_error_handler(ihost
);
616 spin_unlock(&ihost
->scic_lock
);
623 irqreturn_t
isci_error_isr(int vec
, void *data
)
625 struct isci_host
*ihost
= data
;
627 if (sci_controller_error_isr(ihost
))
628 sci_controller_error_handler(ihost
);
634 * isci_host_start_complete() - This function is called by the core library,
635 * through the ISCI Module, to indicate controller start status.
636 * @isci_host: This parameter specifies the ISCI host object
637 * @completion_status: This parameter specifies the completion status from the
641 static void isci_host_start_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
643 if (completion_status
!= SCI_SUCCESS
)
644 dev_info(&ihost
->pdev
->dev
,
645 "controller start timed out, continuing...\n");
646 isci_host_change_state(ihost
, isci_ready
);
647 clear_bit(IHOST_START_PENDING
, &ihost
->flags
);
648 wake_up(&ihost
->eventq
);
651 int isci_host_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
653 struct isci_host
*ihost
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
655 if (test_bit(IHOST_START_PENDING
, &ihost
->flags
))
658 /* todo: use sas_flush_discovery once it is upstream */
659 scsi_flush_work(shost
);
661 scsi_flush_work(shost
);
663 dev_dbg(&ihost
->pdev
->dev
,
664 "%s: ihost->status = %d, time = %ld\n",
665 __func__
, isci_host_get_state(ihost
), time
);
672 * sci_controller_get_suggested_start_timeout() - This method returns the
673 * suggested sci_controller_start() timeout amount. The user is free to
674 * use any timeout value, but this method provides the suggested minimum
675 * start timeout value. The returned value is based upon empirical
676 * information determined as a result of interoperability testing.
677 * @controller: the handle to the controller object for which to return the
678 * suggested start timeout.
680 * This method returns the number of milliseconds for the suggested start
683 static u32
sci_controller_get_suggested_start_timeout(struct isci_host
*ihost
)
685 /* Validate the user supplied parameters. */
690 * The suggested minimum timeout value for a controller start operation:
692 * Signature FIS Timeout
693 * + Phy Start Timeout
694 * + Number of Phy Spin Up Intervals
695 * ---------------------------------
696 * Number of milliseconds for the controller start operation.
698 * NOTE: The number of phy spin up intervals will be equivalent
699 * to the number of phys divided by the number phys allowed
700 * per interval - 1 (once OEM parameters are supported).
701 * Currently we assume only 1 phy per interval. */
703 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705 + ((SCI_MAX_PHYS
- 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
708 static void sci_controller_enable_interrupts(struct isci_host
*ihost
)
710 BUG_ON(ihost
->smu_registers
== NULL
);
711 writel(0, &ihost
->smu_registers
->interrupt_mask
);
714 void sci_controller_disable_interrupts(struct isci_host
*ihost
)
716 BUG_ON(ihost
->smu_registers
== NULL
);
717 writel(0xffffffff, &ihost
->smu_registers
->interrupt_mask
);
720 static void sci_controller_enable_port_task_scheduler(struct isci_host
*ihost
)
722 u32 port_task_scheduler_value
;
724 port_task_scheduler_value
=
725 readl(&ihost
->scu_registers
->peg0
.ptsg
.control
);
726 port_task_scheduler_value
|=
727 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE
) |
728 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE
));
729 writel(port_task_scheduler_value
,
730 &ihost
->scu_registers
->peg0
.ptsg
.control
);
733 static void sci_controller_assign_task_entries(struct isci_host
*ihost
)
738 * Assign all the TCs to function 0
739 * TODO: Do we actually need to read this register to write it back?
743 readl(&ihost
->smu_registers
->task_context_assignment
[0]);
745 task_assignment
|= (SMU_TCA_GEN_VAL(STARTING
, 0)) |
746 (SMU_TCA_GEN_VAL(ENDING
, ihost
->task_context_entries
- 1)) |
747 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE
));
749 writel(task_assignment
,
750 &ihost
->smu_registers
->task_context_assignment
[0]);
754 static void sci_controller_initialize_completion_queue(struct isci_host
*ihost
)
757 u32 completion_queue_control_value
;
758 u32 completion_queue_get_value
;
759 u32 completion_queue_put_value
;
761 ihost
->completion_queue_get
= 0;
763 completion_queue_control_value
=
764 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES
- 1) |
765 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS
- 1));
767 writel(completion_queue_control_value
,
768 &ihost
->smu_registers
->completion_queue_control
);
771 /* Set the completion queue get pointer and enable the queue */
772 completion_queue_get_value
= (
773 (SMU_CQGR_GEN_VAL(POINTER
, 0))
774 | (SMU_CQGR_GEN_VAL(EVENT_POINTER
, 0))
775 | (SMU_CQGR_GEN_BIT(ENABLE
))
776 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE
))
779 writel(completion_queue_get_value
,
780 &ihost
->smu_registers
->completion_queue_get
);
782 /* Set the completion queue put pointer */
783 completion_queue_put_value
= (
784 (SMU_CQPR_GEN_VAL(POINTER
, 0))
785 | (SMU_CQPR_GEN_VAL(EVENT_POINTER
, 0))
788 writel(completion_queue_put_value
,
789 &ihost
->smu_registers
->completion_queue_put
);
791 /* Initialize the cycle bit of the completion queue entries */
792 for (index
= 0; index
< SCU_MAX_COMPLETION_QUEUE_ENTRIES
; index
++) {
794 * If get.cycle_bit != completion_queue.cycle_bit
795 * its not a valid completion queue entry
796 * so at system start all entries are invalid */
797 ihost
->completion_queue
[index
] = 0x80000000;
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host
*ihost
)
803 u32 frame_queue_control_value
;
804 u32 frame_queue_get_value
;
805 u32 frame_queue_put_value
;
807 /* Write the queue size */
808 frame_queue_control_value
=
809 SCU_UFQC_GEN_VAL(QUEUE_SIZE
, SCU_MAX_UNSOLICITED_FRAMES
);
811 writel(frame_queue_control_value
,
812 &ihost
->scu_registers
->sdma
.unsolicited_frame_queue_control
);
814 /* Setup the get pointer for the unsolicited frame queue */
815 frame_queue_get_value
= (
816 SCU_UFQGP_GEN_VAL(POINTER
, 0)
817 | SCU_UFQGP_GEN_BIT(ENABLE_BIT
)
820 writel(frame_queue_get_value
,
821 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
822 /* Setup the put pointer for the unsolicited frame queue */
823 frame_queue_put_value
= SCU_UFQPP_GEN_VAL(POINTER
, 0);
824 writel(frame_queue_put_value
,
825 &ihost
->scu_registers
->sdma
.unsolicited_frame_put_pointer
);
828 static void sci_controller_transition_to_ready(struct isci_host
*ihost
, enum sci_status status
)
830 if (ihost
->sm
.current_state_id
== SCIC_STARTING
) {
832 * We move into the ready state, because some of the phys/ports
833 * may be up and operational.
835 sci_change_state(&ihost
->sm
, SCIC_READY
);
837 isci_host_start_complete(ihost
, status
);
841 static bool is_phy_starting(struct isci_phy
*iphy
)
843 enum sci_phy_states state
;
845 state
= iphy
->sm
.current_state_id
;
847 case SCI_PHY_STARTING
:
848 case SCI_PHY_SUB_INITIAL
:
849 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN
:
850 case SCI_PHY_SUB_AWAIT_IAF_UF
:
851 case SCI_PHY_SUB_AWAIT_SAS_POWER
:
852 case SCI_PHY_SUB_AWAIT_SATA_POWER
:
853 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN
:
854 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN
:
855 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF
:
856 case SCI_PHY_SUB_FINAL
:
864 * sci_controller_start_next_phy - start phy
867 * If all the phys have been started, then attempt to transition the
868 * controller to the READY state and inform the user
869 * (sci_cb_controller_start_complete()).
871 static enum sci_status
sci_controller_start_next_phy(struct isci_host
*ihost
)
873 struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
874 struct isci_phy
*iphy
;
875 enum sci_status status
;
877 status
= SCI_SUCCESS
;
879 if (ihost
->phy_startup_timer_pending
)
882 if (ihost
->next_phy_to_start
>= SCI_MAX_PHYS
) {
883 bool is_controller_start_complete
= true;
887 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
888 iphy
= &ihost
->phys
[index
];
889 state
= iphy
->sm
.current_state_id
;
891 if (!phy_get_non_dummy_port(iphy
))
894 /* The controller start operation is complete iff:
895 * - all links have been given an opportunity to start
896 * - have no indication of a connected device
897 * - have an indication of a connected device and it has
898 * finished the link training process.
900 if ((iphy
->is_in_link_training
== false && state
== SCI_PHY_INITIAL
) ||
901 (iphy
->is_in_link_training
== false && state
== SCI_PHY_STOPPED
) ||
902 (iphy
->is_in_link_training
== true && is_phy_starting(iphy
))) {
903 is_controller_start_complete
= false;
909 * The controller has successfully finished the start process.
910 * Inform the SCI Core user and transition to the READY state. */
911 if (is_controller_start_complete
== true) {
912 sci_controller_transition_to_ready(ihost
, SCI_SUCCESS
);
913 sci_del_timer(&ihost
->phy_timer
);
914 ihost
->phy_startup_timer_pending
= false;
917 iphy
= &ihost
->phys
[ihost
->next_phy_to_start
];
919 if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
920 if (phy_get_non_dummy_port(iphy
) == NULL
) {
921 ihost
->next_phy_to_start
++;
923 /* Caution recursion ahead be forwarned
925 * The PHY was never added to a PORT in MPC mode
926 * so start the next phy in sequence This phy
927 * will never go link up and will not draw power
928 * the OEM parameters either configured the phy
929 * incorrectly for the PORT or it was never
932 return sci_controller_start_next_phy(ihost
);
936 status
= sci_phy_start(iphy
);
938 if (status
== SCI_SUCCESS
) {
939 sci_mod_timer(&ihost
->phy_timer
,
940 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
);
941 ihost
->phy_startup_timer_pending
= true;
943 dev_warn(&ihost
->pdev
->dev
,
944 "%s: Controller stop operation failed "
945 "to stop phy %d because of status "
948 ihost
->phys
[ihost
->next_phy_to_start
].phy_index
,
952 ihost
->next_phy_to_start
++;
958 static void phy_startup_timeout(unsigned long data
)
960 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
961 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), phy_timer
);
963 enum sci_status status
;
965 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
970 ihost
->phy_startup_timer_pending
= false;
973 status
= sci_controller_start_next_phy(ihost
);
974 } while (status
!= SCI_SUCCESS
);
977 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
980 static u16
isci_tci_active(struct isci_host
*ihost
)
982 return CIRC_CNT(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
985 static enum sci_status
sci_controller_start(struct isci_host
*ihost
,
988 enum sci_status result
;
991 if (ihost
->sm
.current_state_id
!= SCIC_INITIALIZED
) {
992 dev_warn(&ihost
->pdev
->dev
,
993 "SCIC Controller start operation requested in "
995 return SCI_FAILURE_INVALID_STATE
;
998 /* Build the TCi free pool */
999 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS
> 1 << sizeof(ihost
->tci_pool
[0]) * 8);
1000 ihost
->tci_head
= 0;
1001 ihost
->tci_tail
= 0;
1002 for (index
= 0; index
< ihost
->task_context_entries
; index
++)
1003 isci_tci_free(ihost
, index
);
1005 /* Build the RNi free pool */
1006 sci_remote_node_table_initialize(&ihost
->available_remote_nodes
,
1007 ihost
->remote_node_entries
);
1010 * Before anything else lets make sure we will not be
1011 * interrupted by the hardware.
1013 sci_controller_disable_interrupts(ihost
);
1015 /* Enable the port task scheduler */
1016 sci_controller_enable_port_task_scheduler(ihost
);
1018 /* Assign all the task entries to ihost physical function */
1019 sci_controller_assign_task_entries(ihost
);
1021 /* Now initialize the completion queue */
1022 sci_controller_initialize_completion_queue(ihost
);
1024 /* Initialize the unsolicited frame queue for use */
1025 sci_controller_initialize_unsolicited_frame_queue(ihost
);
1027 /* Start all of the ports on this controller */
1028 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1029 struct isci_port
*iport
= &ihost
->ports
[index
];
1031 result
= sci_port_start(iport
);
1036 sci_controller_start_next_phy(ihost
);
1038 sci_mod_timer(&ihost
->timer
, timeout
);
1040 sci_change_state(&ihost
->sm
, SCIC_STARTING
);
1045 void isci_host_scan_start(struct Scsi_Host
*shost
)
1047 struct isci_host
*ihost
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
1048 unsigned long tmo
= sci_controller_get_suggested_start_timeout(ihost
);
1050 set_bit(IHOST_START_PENDING
, &ihost
->flags
);
1052 spin_lock_irq(&ihost
->scic_lock
);
1053 sci_controller_start(ihost
, tmo
);
1054 sci_controller_enable_interrupts(ihost
);
1055 spin_unlock_irq(&ihost
->scic_lock
);
1058 static void isci_host_stop_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
1060 isci_host_change_state(ihost
, isci_stopped
);
1061 sci_controller_disable_interrupts(ihost
);
1062 clear_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1063 wake_up(&ihost
->eventq
);
1066 static void sci_controller_completion_handler(struct isci_host
*ihost
)
1068 /* Empty out the completion queue */
1069 if (sci_controller_completion_queue_has_entries(ihost
))
1070 sci_controller_process_completions(ihost
);
1072 /* Clear the interrupt and enable all interrupts again */
1073 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
1074 /* Could we write the value of SMU_ISR_COMPLETION? */
1075 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
1076 writel(0, &ihost
->smu_registers
->interrupt_mask
);
1080 * isci_host_completion_routine() - This function is the delayed service
1081 * routine that calls the sci core library's completion handler. It's
1082 * scheduled as a tasklet from the interrupt service routine when interrupts
1083 * in use, or set as the timeout function in polled mode.
1084 * @data: This parameter specifies the ISCI host object
1087 static void isci_host_completion_routine(unsigned long data
)
1089 struct isci_host
*ihost
= (struct isci_host
*)data
;
1090 struct list_head completed_request_list
;
1091 struct list_head errored_request_list
;
1092 struct list_head
*current_position
;
1093 struct list_head
*next_position
;
1094 struct isci_request
*request
;
1095 struct isci_request
*next_request
;
1096 struct sas_task
*task
;
1098 INIT_LIST_HEAD(&completed_request_list
);
1099 INIT_LIST_HEAD(&errored_request_list
);
1101 spin_lock_irq(&ihost
->scic_lock
);
1103 sci_controller_completion_handler(ihost
);
1105 /* Take the lists of completed I/Os from the host. */
1107 list_splice_init(&ihost
->requests_to_complete
,
1108 &completed_request_list
);
1110 /* Take the list of errored I/Os from the host. */
1111 list_splice_init(&ihost
->requests_to_errorback
,
1112 &errored_request_list
);
1114 spin_unlock_irq(&ihost
->scic_lock
);
1116 /* Process any completions in the lists. */
1117 list_for_each_safe(current_position
, next_position
,
1118 &completed_request_list
) {
1120 request
= list_entry(current_position
, struct isci_request
,
1122 task
= isci_request_access_task(request
);
1124 /* Normal notification (task_done) */
1125 dev_dbg(&ihost
->pdev
->dev
,
1126 "%s: Normal - request/task = %p/%p\n",
1131 /* Return the task to libsas */
1134 task
->lldd_task
= NULL
;
1135 if (!(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1137 /* If the task is already in the abort path,
1138 * the task_done callback cannot be called.
1140 task
->task_done(task
);
1144 spin_lock_irq(&ihost
->scic_lock
);
1145 isci_free_tag(ihost
, request
->io_tag
);
1146 spin_unlock_irq(&ihost
->scic_lock
);
1148 list_for_each_entry_safe(request
, next_request
, &errored_request_list
,
1151 task
= isci_request_access_task(request
);
1153 /* Use sas_task_abort */
1154 dev_warn(&ihost
->pdev
->dev
,
1155 "%s: Error - request/task = %p/%p\n",
1162 /* Put the task into the abort path if it's not there
1165 if (!(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
))
1166 sas_task_abort(task
);
1169 /* This is a case where the request has completed with a
1170 * status such that it needed further target servicing,
1171 * but the sas_task reference has already been removed
1172 * from the request. Since it was errored, it was not
1173 * being aborted, so there is nothing to do except free
1177 spin_lock_irq(&ihost
->scic_lock
);
1178 /* Remove the request from the remote device's list
1179 * of pending requests.
1181 list_del_init(&request
->dev_node
);
1182 isci_free_tag(ihost
, request
->io_tag
);
1183 spin_unlock_irq(&ihost
->scic_lock
);
1190 * sci_controller_stop() - This method will stop an individual controller
1191 * object.This method will invoke the associated user callback upon
1192 * completion. The completion callback is called when the following
1193 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1194 * controller has been quiesced. This method will ensure that all IO
1195 * requests are quiesced, phys are stopped, and all additional operation by
1196 * the hardware is halted.
1197 * @controller: the handle to the controller object to stop.
1198 * @timeout: This parameter specifies the number of milliseconds in which the
1199 * stop operation should complete.
1201 * The controller must be in the STARTED or STOPPED state. Indicate if the
1202 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1203 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1204 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1205 * controller is not either in the STARTED or STOPPED states.
1207 static enum sci_status
sci_controller_stop(struct isci_host
*ihost
, u32 timeout
)
1209 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
1210 dev_warn(&ihost
->pdev
->dev
,
1211 "SCIC Controller stop operation requested in "
1213 return SCI_FAILURE_INVALID_STATE
;
1216 sci_mod_timer(&ihost
->timer
, timeout
);
1217 sci_change_state(&ihost
->sm
, SCIC_STOPPING
);
1222 * sci_controller_reset() - This method will reset the supplied core
1223 * controller regardless of the state of said controller. This operation is
1224 * considered destructive. In other words, all current operations are wiped
1225 * out. No IO completions for outstanding devices occur. Outstanding IO
1226 * requests are not aborted or completed at the actual remote device.
1227 * @controller: the handle to the controller object to reset.
1229 * Indicate if the controller reset method succeeded or failed in some way.
1230 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1231 * the controller reset operation is unable to complete.
1233 static enum sci_status
sci_controller_reset(struct isci_host
*ihost
)
1235 switch (ihost
->sm
.current_state_id
) {
1241 * The reset operation is not a graceful cleanup, just
1242 * perform the state transition.
1244 sci_change_state(&ihost
->sm
, SCIC_RESETTING
);
1247 dev_warn(&ihost
->pdev
->dev
,
1248 "SCIC Controller reset operation requested in "
1250 return SCI_FAILURE_INVALID_STATE
;
1254 void isci_host_deinit(struct isci_host
*ihost
)
1258 isci_host_change_state(ihost
, isci_stopping
);
1259 for (i
= 0; i
< SCI_MAX_PORTS
; i
++) {
1260 struct isci_port
*iport
= &ihost
->ports
[i
];
1261 struct isci_remote_device
*idev
, *d
;
1263 list_for_each_entry_safe(idev
, d
, &iport
->remote_dev_list
, node
) {
1264 if (test_bit(IDEV_ALLOCATED
, &idev
->flags
))
1265 isci_remote_device_stop(ihost
, idev
);
1269 set_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1271 spin_lock_irq(&ihost
->scic_lock
);
1272 sci_controller_stop(ihost
, SCIC_CONTROLLER_STOP_TIMEOUT
);
1273 spin_unlock_irq(&ihost
->scic_lock
);
1275 wait_for_stop(ihost
);
1276 sci_controller_reset(ihost
);
1278 /* Cancel any/all outstanding port timers */
1279 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
1280 struct isci_port
*iport
= &ihost
->ports
[i
];
1281 del_timer_sync(&iport
->timer
.timer
);
1284 /* Cancel any/all outstanding phy timers */
1285 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1286 struct isci_phy
*iphy
= &ihost
->phys
[i
];
1287 del_timer_sync(&iphy
->sata_timer
.timer
);
1290 del_timer_sync(&ihost
->port_agent
.timer
.timer
);
1292 del_timer_sync(&ihost
->power_control
.timer
.timer
);
1294 del_timer_sync(&ihost
->timer
.timer
);
1296 del_timer_sync(&ihost
->phy_timer
.timer
);
1299 static void __iomem
*scu_base(struct isci_host
*isci_host
)
1301 struct pci_dev
*pdev
= isci_host
->pdev
;
1302 int id
= isci_host
->id
;
1304 return pcim_iomap_table(pdev
)[SCI_SCU_BAR
* 2] + SCI_SCU_BAR_SIZE
* id
;
1307 static void __iomem
*smu_base(struct isci_host
*isci_host
)
1309 struct pci_dev
*pdev
= isci_host
->pdev
;
1310 int id
= isci_host
->id
;
1312 return pcim_iomap_table(pdev
)[SCI_SMU_BAR
* 2] + SCI_SMU_BAR_SIZE
* id
;
1315 static void isci_user_parameters_get(struct sci_user_parameters
*u
)
1319 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1320 struct sci_phy_user_params
*u_phy
= &u
->phys
[i
];
1322 u_phy
->max_speed_generation
= phy_gen
;
1324 /* we are not exporting these for now */
1325 u_phy
->align_insertion_frequency
= 0x7f;
1326 u_phy
->in_connection_align_insertion_frequency
= 0xff;
1327 u_phy
->notify_enable_spin_up_insertion_frequency
= 0x33;
1330 u
->stp_inactivity_timeout
= stp_inactive_to
;
1331 u
->ssp_inactivity_timeout
= ssp_inactive_to
;
1332 u
->stp_max_occupancy_timeout
= stp_max_occ_to
;
1333 u
->ssp_max_occupancy_timeout
= ssp_max_occ_to
;
1334 u
->no_outbound_task_timeout
= no_outbound_task_to
;
1335 u
->max_number_concurrent_device_spin_up
= max_concurr_spinup
;
1338 static void sci_controller_initial_state_enter(struct sci_base_state_machine
*sm
)
1340 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1342 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1345 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine
*sm
)
1347 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1349 sci_del_timer(&ihost
->timer
);
1352 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1353 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1354 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1355 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1356 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1357 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1360 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1361 * configure the interrupt coalescence.
1362 * @controller: This parameter represents the handle to the controller object
1363 * for which its interrupt coalesce register is overridden.
1364 * @coalesce_number: Used to control the number of entries in the Completion
1365 * Queue before an interrupt is generated. If the number of entries exceed
1366 * this number, an interrupt will be generated. The valid range of the input
1367 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1368 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1369 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1370 * interrupt coalescing timeout.
1372 * Indicate if the user successfully set the interrupt coalesce parameters.
1373 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1374 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1376 static enum sci_status
1377 sci_controller_set_interrupt_coalescence(struct isci_host
*ihost
,
1378 u32 coalesce_number
,
1379 u32 coalesce_timeout
)
1381 u8 timeout_encode
= 0;
1385 /* Check if the input parameters fall in the range. */
1386 if (coalesce_number
> INTERRUPT_COALESCE_NUMBER_MAX
)
1387 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1390 * Defined encoding for interrupt coalescing timeout:
1391 * Value Min Max Units
1392 * ----- --- --- -----
1422 * Others Undefined */
1425 * Use the table above to decide the encode of interrupt coalescing timeout
1426 * value for register writing. */
1427 if (coalesce_timeout
== 0)
1430 /* make the timeout value in unit of (10 ns). */
1431 coalesce_timeout
= coalesce_timeout
* 100;
1432 min
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS
/ 10;
1433 max
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS
/ 10;
1435 /* get the encode of timeout for register writing. */
1436 for (timeout_encode
= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN
;
1437 timeout_encode
<= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
;
1439 if (min
<= coalesce_timeout
&& max
> coalesce_timeout
)
1441 else if (coalesce_timeout
>= max
&& coalesce_timeout
< min
* 2
1442 && coalesce_timeout
<= INTERRUPT_COALESCE_TIMEOUT_MAX_US
* 100) {
1443 if ((coalesce_timeout
- max
) < (2 * min
- coalesce_timeout
))
1455 if (timeout_encode
== INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
+ 1)
1456 /* the value is out of range. */
1457 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1460 writel(SMU_ICC_GEN_VAL(NUMBER
, coalesce_number
) |
1461 SMU_ICC_GEN_VAL(TIMER
, timeout_encode
),
1462 &ihost
->smu_registers
->interrupt_coalesce_control
);
1465 ihost
->interrupt_coalesce_number
= (u16
)coalesce_number
;
1466 ihost
->interrupt_coalesce_timeout
= coalesce_timeout
/ 100;
1472 static void sci_controller_ready_state_enter(struct sci_base_state_machine
*sm
)
1474 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1476 /* set the default interrupt coalescence number and timeout value. */
1477 sci_controller_set_interrupt_coalescence(ihost
, 0x10, 250);
1480 static void sci_controller_ready_state_exit(struct sci_base_state_machine
*sm
)
1482 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1484 /* disable interrupt coalescence. */
1485 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1488 static enum sci_status
sci_controller_stop_phys(struct isci_host
*ihost
)
1491 enum sci_status status
;
1492 enum sci_status phy_status
;
1494 status
= SCI_SUCCESS
;
1496 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1497 phy_status
= sci_phy_stop(&ihost
->phys
[index
]);
1499 if (phy_status
!= SCI_SUCCESS
&&
1500 phy_status
!= SCI_FAILURE_INVALID_STATE
) {
1501 status
= SCI_FAILURE
;
1503 dev_warn(&ihost
->pdev
->dev
,
1504 "%s: Controller stop operation failed to stop "
1505 "phy %d because of status %d.\n",
1507 ihost
->phys
[index
].phy_index
, phy_status
);
1514 static enum sci_status
sci_controller_stop_ports(struct isci_host
*ihost
)
1517 enum sci_status port_status
;
1518 enum sci_status status
= SCI_SUCCESS
;
1520 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1521 struct isci_port
*iport
= &ihost
->ports
[index
];
1523 port_status
= sci_port_stop(iport
);
1525 if ((port_status
!= SCI_SUCCESS
) &&
1526 (port_status
!= SCI_FAILURE_INVALID_STATE
)) {
1527 status
= SCI_FAILURE
;
1529 dev_warn(&ihost
->pdev
->dev
,
1530 "%s: Controller stop operation failed to "
1531 "stop port %d because of status %d.\n",
1533 iport
->logical_port_index
,
1541 static enum sci_status
sci_controller_stop_devices(struct isci_host
*ihost
)
1544 enum sci_status status
;
1545 enum sci_status device_status
;
1547 status
= SCI_SUCCESS
;
1549 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
1550 if (ihost
->device_table
[index
] != NULL
) {
1551 /* / @todo What timeout value do we want to provide to this request? */
1552 device_status
= sci_remote_device_stop(ihost
->device_table
[index
], 0);
1554 if ((device_status
!= SCI_SUCCESS
) &&
1555 (device_status
!= SCI_FAILURE_INVALID_STATE
)) {
1556 dev_warn(&ihost
->pdev
->dev
,
1557 "%s: Controller stop operation failed "
1558 "to stop device 0x%p because of "
1561 ihost
->device_table
[index
], device_status
);
1569 static void sci_controller_stopping_state_enter(struct sci_base_state_machine
*sm
)
1571 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1573 /* Stop all of the components for this controller */
1574 sci_controller_stop_phys(ihost
);
1575 sci_controller_stop_ports(ihost
);
1576 sci_controller_stop_devices(ihost
);
1579 static void sci_controller_stopping_state_exit(struct sci_base_state_machine
*sm
)
1581 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1583 sci_del_timer(&ihost
->timer
);
1586 static void sci_controller_reset_hardware(struct isci_host
*ihost
)
1588 /* Disable interrupts so we dont take any spurious interrupts */
1589 sci_controller_disable_interrupts(ihost
);
1592 writel(0xFFFFFFFF, &ihost
->smu_registers
->soft_reset_control
);
1594 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1597 /* The write to the CQGR clears the CQP */
1598 writel(0x00000000, &ihost
->smu_registers
->completion_queue_get
);
1600 /* The write to the UFQGP clears the UFQPR */
1601 writel(0, &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
1604 static void sci_controller_resetting_state_enter(struct sci_base_state_machine
*sm
)
1606 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1608 sci_controller_reset_hardware(ihost
);
1609 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1612 static const struct sci_base_state sci_controller_state_table
[] = {
1614 .enter_state
= sci_controller_initial_state_enter
,
1617 [SCIC_INITIALIZING
] = {},
1618 [SCIC_INITIALIZED
] = {},
1620 .exit_state
= sci_controller_starting_state_exit
,
1623 .enter_state
= sci_controller_ready_state_enter
,
1624 .exit_state
= sci_controller_ready_state_exit
,
1626 [SCIC_RESETTING
] = {
1627 .enter_state
= sci_controller_resetting_state_enter
,
1630 .enter_state
= sci_controller_stopping_state_enter
,
1631 .exit_state
= sci_controller_stopping_state_exit
,
1633 [SCIC_STOPPED
] = {},
1637 static void sci_controller_set_default_config_parameters(struct isci_host
*ihost
)
1639 /* these defaults are overridden by the platform / firmware */
1642 /* Default to APC mode. */
1643 ihost
->oem_parameters
.controller
.mode_type
= SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
;
1645 /* Default to APC mode. */
1646 ihost
->oem_parameters
.controller
.max_concurrent_dev_spin_up
= 1;
1648 /* Default to no SSC operation. */
1649 ihost
->oem_parameters
.controller
.do_enable_ssc
= false;
1651 /* Initialize all of the port parameter information to narrow ports. */
1652 for (index
= 0; index
< SCI_MAX_PORTS
; index
++) {
1653 ihost
->oem_parameters
.ports
[index
].phy_mask
= 0;
1656 /* Initialize all of the phy parameter information. */
1657 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1658 /* Default to 6G (i.e. Gen 3) for now. */
1659 ihost
->user_parameters
.phys
[index
].max_speed_generation
= 3;
1661 /* the frequencies cannot be 0 */
1662 ihost
->user_parameters
.phys
[index
].align_insertion_frequency
= 0x7f;
1663 ihost
->user_parameters
.phys
[index
].in_connection_align_insertion_frequency
= 0xff;
1664 ihost
->user_parameters
.phys
[index
].notify_enable_spin_up_insertion_frequency
= 0x33;
1667 * Previous Vitesse based expanders had a arbitration issue that
1668 * is worked around by having the upper 32-bits of SAS address
1669 * with a value greater then the Vitesse company identifier.
1670 * Hence, usage of 0x5FCFFFFF. */
1671 ihost
->oem_parameters
.phys
[index
].sas_address
.low
= 0x1 + ihost
->id
;
1672 ihost
->oem_parameters
.phys
[index
].sas_address
.high
= 0x5FCFFFFF;
1675 ihost
->user_parameters
.stp_inactivity_timeout
= 5;
1676 ihost
->user_parameters
.ssp_inactivity_timeout
= 5;
1677 ihost
->user_parameters
.stp_max_occupancy_timeout
= 5;
1678 ihost
->user_parameters
.ssp_max_occupancy_timeout
= 20;
1679 ihost
->user_parameters
.no_outbound_task_timeout
= 20;
1682 static void controller_timeout(unsigned long data
)
1684 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
1685 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), timer
);
1686 struct sci_base_state_machine
*sm
= &ihost
->sm
;
1687 unsigned long flags
;
1689 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1694 if (sm
->current_state_id
== SCIC_STARTING
)
1695 sci_controller_transition_to_ready(ihost
, SCI_FAILURE_TIMEOUT
);
1696 else if (sm
->current_state_id
== SCIC_STOPPING
) {
1697 sci_change_state(sm
, SCIC_FAILED
);
1698 isci_host_stop_complete(ihost
, SCI_FAILURE_TIMEOUT
);
1699 } else /* / @todo Now what do we want to do in this case? */
1700 dev_err(&ihost
->pdev
->dev
,
1701 "%s: Controller timer fired when controller was not "
1702 "in a state being timed.\n",
1706 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1709 static enum sci_status
sci_controller_construct(struct isci_host
*ihost
,
1710 void __iomem
*scu_base
,
1711 void __iomem
*smu_base
)
1715 sci_init_sm(&ihost
->sm
, sci_controller_state_table
, SCIC_INITIAL
);
1717 ihost
->scu_registers
= scu_base
;
1718 ihost
->smu_registers
= smu_base
;
1720 sci_port_configuration_agent_construct(&ihost
->port_agent
);
1722 /* Construct the ports for this controller */
1723 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1724 sci_port_construct(&ihost
->ports
[i
], i
, ihost
);
1725 sci_port_construct(&ihost
->ports
[i
], SCIC_SDS_DUMMY_PORT
, ihost
);
1727 /* Construct the phys for this controller */
1728 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1729 /* Add all the PHYs to the dummy port */
1730 sci_phy_construct(&ihost
->phys
[i
],
1731 &ihost
->ports
[SCI_MAX_PORTS
], i
);
1734 ihost
->invalid_phy_mask
= 0;
1736 sci_init_timer(&ihost
->timer
, controller_timeout
);
1738 /* Initialize the User and OEM parameters to default values. */
1739 sci_controller_set_default_config_parameters(ihost
);
1741 return sci_controller_reset(ihost
);
1744 int sci_oem_parameters_validate(struct sci_oem_params
*oem
)
1748 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1749 if (oem
->ports
[i
].phy_mask
> SCIC_SDS_PARM_PHY_MASK_MAX
)
1752 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1753 if (oem
->phys
[i
].sas_address
.high
== 0 &&
1754 oem
->phys
[i
].sas_address
.low
== 0)
1757 if (oem
->controller
.mode_type
== SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
) {
1758 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1759 if (oem
->ports
[i
].phy_mask
!= 0)
1761 } else if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
1764 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1765 phy_mask
|= oem
->ports
[i
].phy_mask
;
1772 if (oem
->controller
.max_concurrent_dev_spin_up
> MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
)
1778 static enum sci_status
sci_oem_parameters_set(struct isci_host
*ihost
)
1780 u32 state
= ihost
->sm
.current_state_id
;
1782 if (state
== SCIC_RESET
||
1783 state
== SCIC_INITIALIZING
||
1784 state
== SCIC_INITIALIZED
) {
1786 if (sci_oem_parameters_validate(&ihost
->oem_parameters
))
1787 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1792 return SCI_FAILURE_INVALID_STATE
;
1795 static void power_control_timeout(unsigned long data
)
1797 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
1798 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), power_control
.timer
);
1799 struct isci_phy
*iphy
;
1800 unsigned long flags
;
1803 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1808 ihost
->power_control
.phys_granted_power
= 0;
1810 if (ihost
->power_control
.phys_waiting
== 0) {
1811 ihost
->power_control
.timer_started
= false;
1815 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1817 if (ihost
->power_control
.phys_waiting
== 0)
1820 iphy
= ihost
->power_control
.requesters
[i
];
1824 if (ihost
->power_control
.phys_granted_power
>=
1825 ihost
->oem_parameters
.controller
.max_concurrent_dev_spin_up
)
1828 ihost
->power_control
.requesters
[i
] = NULL
;
1829 ihost
->power_control
.phys_waiting
--;
1830 ihost
->power_control
.phys_granted_power
++;
1831 sci_phy_consume_power_handler(iphy
);
1835 * It doesn't matter if the power list is empty, we need to start the
1836 * timer in case another phy becomes ready.
1838 sci_mod_timer(tmr
, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1839 ihost
->power_control
.timer_started
= true;
1842 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1845 void sci_controller_power_control_queue_insert(struct isci_host
*ihost
,
1846 struct isci_phy
*iphy
)
1848 BUG_ON(iphy
== NULL
);
1850 if (ihost
->power_control
.phys_granted_power
<
1851 ihost
->oem_parameters
.controller
.max_concurrent_dev_spin_up
) {
1852 ihost
->power_control
.phys_granted_power
++;
1853 sci_phy_consume_power_handler(iphy
);
1856 * stop and start the power_control timer. When the timer fires, the
1857 * no_of_phys_granted_power will be set to 0
1859 if (ihost
->power_control
.timer_started
)
1860 sci_del_timer(&ihost
->power_control
.timer
);
1862 sci_mod_timer(&ihost
->power_control
.timer
,
1863 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1864 ihost
->power_control
.timer_started
= true;
1867 /* Add the phy in the waiting list */
1868 ihost
->power_control
.requesters
[iphy
->phy_index
] = iphy
;
1869 ihost
->power_control
.phys_waiting
++;
1873 void sci_controller_power_control_queue_remove(struct isci_host
*ihost
,
1874 struct isci_phy
*iphy
)
1876 BUG_ON(iphy
== NULL
);
1878 if (ihost
->power_control
.requesters
[iphy
->phy_index
])
1879 ihost
->power_control
.phys_waiting
--;
1881 ihost
->power_control
.requesters
[iphy
->phy_index
] = NULL
;
1884 #define AFE_REGISTER_WRITE_DELAY 10
1886 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1887 * the OEM parameters
1889 static void sci_controller_afe_initialization(struct isci_host
*ihost
)
1891 const struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
1892 struct pci_dev
*pdev
= ihost
->pdev
;
1896 /* Clear DFX Status registers */
1897 writel(0x0081000f, &ihost
->scu_registers
->afe
.afe_dfx_master_control0
);
1898 udelay(AFE_REGISTER_WRITE_DELAY
);
1901 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1902 * Timer, PM Stagger Timer */
1903 writel(0x0007BFFF, &ihost
->scu_registers
->afe
.afe_pmsn_master_control2
);
1904 udelay(AFE_REGISTER_WRITE_DELAY
);
1907 /* Configure bias currents to normal */
1909 writel(0x00005A00, &ihost
->scu_registers
->afe
.afe_bias_control
);
1910 else if (is_b0(pdev
) || is_c0(pdev
))
1911 writel(0x00005F00, &ihost
->scu_registers
->afe
.afe_bias_control
);
1913 udelay(AFE_REGISTER_WRITE_DELAY
);
1916 if (is_b0(pdev
) || is_c0(pdev
))
1917 writel(0x80040A08, &ihost
->scu_registers
->afe
.afe_pll_control0
);
1919 writel(0x80040908, &ihost
->scu_registers
->afe
.afe_pll_control0
);
1921 udelay(AFE_REGISTER_WRITE_DELAY
);
1923 /* Wait for the PLL to lock */
1925 afe_status
= readl(&ihost
->scu_registers
->afe
.afe_common_block_status
);
1926 udelay(AFE_REGISTER_WRITE_DELAY
);
1927 } while ((afe_status
& 0x00001000) == 0);
1930 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1931 writel(0x7bcc96ad, &ihost
->scu_registers
->afe
.afe_pmsn_master_control0
);
1932 udelay(AFE_REGISTER_WRITE_DELAY
);
1935 for (phy_id
= 0; phy_id
< SCI_MAX_PHYS
; phy_id
++) {
1936 const struct sci_phy_oem_params
*oem_phy
= &oem
->phys
[phy_id
];
1939 /* Configure transmitter SSC parameters */
1940 writel(0x00030000, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_ssc_control
);
1941 udelay(AFE_REGISTER_WRITE_DELAY
);
1942 } else if (is_c0(pdev
)) {
1943 /* Configure transmitter SSC parameters */
1944 writel(0x0003000, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_ssc_control
);
1945 udelay(AFE_REGISTER_WRITE_DELAY
);
1948 * All defaults, except the Receive Word Alignament/Comma Detect
1949 * Enable....(0xe800) */
1950 writel(0x00004500, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_xcvr_control0
);
1951 udelay(AFE_REGISTER_WRITE_DELAY
);
1954 * All defaults, except the Receive Word Alignament/Comma Detect
1955 * Enable....(0xe800) */
1956 writel(0x00004512, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_xcvr_control0
);
1957 udelay(AFE_REGISTER_WRITE_DELAY
);
1959 writel(0x0050100F, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_xcvr_control1
);
1960 udelay(AFE_REGISTER_WRITE_DELAY
);
1964 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1965 * & increase TX int & ext bias 20%....(0xe85c) */
1967 writel(0x000003F0, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_channel_control
);
1968 else if (is_b0(pdev
)) {
1969 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1970 writel(0x000003D7, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_channel_control
);
1971 udelay(AFE_REGISTER_WRITE_DELAY
);
1974 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1975 * & increase TX int & ext bias 20%....(0xe85c) */
1976 writel(0x000003D4, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_channel_control
);
1978 writel(0x000001E7, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_channel_control
);
1979 udelay(AFE_REGISTER_WRITE_DELAY
);
1982 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1983 * & increase TX int & ext bias 20%....(0xe85c) */
1984 writel(0x000001E4, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_channel_control
);
1986 udelay(AFE_REGISTER_WRITE_DELAY
);
1989 /* Enable TX equalization (0xe824) */
1990 writel(0x00040000, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_control
);
1991 udelay(AFE_REGISTER_WRITE_DELAY
);
1995 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
1996 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
1997 writel(0x00004100, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_xcvr_control0
);
1998 udelay(AFE_REGISTER_WRITE_DELAY
);
2000 /* Leave DFE/FFE on */
2002 writel(0x3F11103F, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_rx_ssc_control0
);
2003 else if (is_b0(pdev
)) {
2004 writel(0x3F11103F, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_rx_ssc_control0
);
2005 udelay(AFE_REGISTER_WRITE_DELAY
);
2006 /* Enable TX equalization (0xe824) */
2007 writel(0x00040000, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_control
);
2009 writel(0x0140DF0F, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_rx_ssc_control1
);
2010 udelay(AFE_REGISTER_WRITE_DELAY
);
2012 writel(0x3F6F103F, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_rx_ssc_control0
);
2013 udelay(AFE_REGISTER_WRITE_DELAY
);
2015 /* Enable TX equalization (0xe824) */
2016 writel(0x00040000, &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_control
);
2019 udelay(AFE_REGISTER_WRITE_DELAY
);
2021 writel(oem_phy
->afe_tx_amp_control0
,
2022 &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_amp_control0
);
2023 udelay(AFE_REGISTER_WRITE_DELAY
);
2025 writel(oem_phy
->afe_tx_amp_control1
,
2026 &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_amp_control1
);
2027 udelay(AFE_REGISTER_WRITE_DELAY
);
2029 writel(oem_phy
->afe_tx_amp_control2
,
2030 &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_amp_control2
);
2031 udelay(AFE_REGISTER_WRITE_DELAY
);
2033 writel(oem_phy
->afe_tx_amp_control3
,
2034 &ihost
->scu_registers
->afe
.scu_afe_xcvr
[phy_id
].afe_tx_amp_control3
);
2035 udelay(AFE_REGISTER_WRITE_DELAY
);
2038 /* Transfer control to the PEs */
2039 writel(0x00010f00, &ihost
->scu_registers
->afe
.afe_dfx_master_control0
);
2040 udelay(AFE_REGISTER_WRITE_DELAY
);
2043 static void sci_controller_initialize_power_control(struct isci_host
*ihost
)
2045 sci_init_timer(&ihost
->power_control
.timer
, power_control_timeout
);
2047 memset(ihost
->power_control
.requesters
, 0,
2048 sizeof(ihost
->power_control
.requesters
));
2050 ihost
->power_control
.phys_waiting
= 0;
2051 ihost
->power_control
.phys_granted_power
= 0;
2054 static enum sci_status
sci_controller_initialize(struct isci_host
*ihost
)
2056 struct sci_base_state_machine
*sm
= &ihost
->sm
;
2057 enum sci_status result
= SCI_FAILURE
;
2058 unsigned long i
, state
, val
;
2060 if (ihost
->sm
.current_state_id
!= SCIC_RESET
) {
2061 dev_warn(&ihost
->pdev
->dev
,
2062 "SCIC Controller initialize operation requested "
2063 "in invalid state\n");
2064 return SCI_FAILURE_INVALID_STATE
;
2067 sci_change_state(sm
, SCIC_INITIALIZING
);
2069 sci_init_timer(&ihost
->phy_timer
, phy_startup_timeout
);
2071 ihost
->next_phy_to_start
= 0;
2072 ihost
->phy_startup_timer_pending
= false;
2074 sci_controller_initialize_power_control(ihost
);
2077 * There is nothing to do here for B0 since we do not have to
2078 * program the AFE registers.
2079 * / @todo The AFE settings are supposed to be correct for the B0 but
2080 * / presently they seem to be wrong. */
2081 sci_controller_afe_initialization(ihost
);
2084 /* Take the hardware out of reset */
2085 writel(0, &ihost
->smu_registers
->soft_reset_control
);
2088 * / @todo Provide meaningfull error code for hardware failure
2089 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2090 for (i
= 100; i
>= 1; i
--) {
2093 /* Loop until the hardware reports success */
2094 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME
);
2095 status
= readl(&ihost
->smu_registers
->control_status
);
2097 if ((status
& SCU_RAM_INIT_COMPLETED
) == SCU_RAM_INIT_COMPLETED
)
2104 * Determine what are the actaul device capacities that the
2105 * hardware will support */
2106 val
= readl(&ihost
->smu_registers
->device_context_capacity
);
2108 /* Record the smaller of the two capacity values */
2109 ihost
->logical_port_entries
= min(smu_max_ports(val
), SCI_MAX_PORTS
);
2110 ihost
->task_context_entries
= min(smu_max_task_contexts(val
), SCI_MAX_IO_REQUESTS
);
2111 ihost
->remote_node_entries
= min(smu_max_rncs(val
), SCI_MAX_REMOTE_DEVICES
);
2114 * Make all PEs that are unassigned match up with the
2117 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2118 struct scu_port_task_scheduler_group_registers __iomem
2119 *ptsg
= &ihost
->scu_registers
->peg0
.ptsg
;
2121 writel(i
, &ptsg
->protocol_engine
[i
]);
2124 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2125 val
= readl(&ihost
->scu_registers
->sdma
.pdma_configuration
);
2126 val
|= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2127 writel(val
, &ihost
->scu_registers
->sdma
.pdma_configuration
);
2129 val
= readl(&ihost
->scu_registers
->sdma
.cdma_configuration
);
2130 val
|= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2131 writel(val
, &ihost
->scu_registers
->sdma
.cdma_configuration
);
2134 * Initialize the PHYs before the PORTs because the PHY registers
2135 * are accessed during the port initialization.
2137 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
2138 result
= sci_phy_initialize(&ihost
->phys
[i
],
2139 &ihost
->scu_registers
->peg0
.pe
[i
].tl
,
2140 &ihost
->scu_registers
->peg0
.pe
[i
].ll
);
2141 if (result
!= SCI_SUCCESS
)
2145 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2146 struct isci_port
*iport
= &ihost
->ports
[i
];
2148 iport
->port_task_scheduler_registers
= &ihost
->scu_registers
->peg0
.ptsg
.port
[i
];
2149 iport
->port_pe_configuration_register
= &ihost
->scu_registers
->peg0
.ptsg
.protocol_engine
[0];
2150 iport
->viit_registers
= &ihost
->scu_registers
->peg0
.viit
[i
];
2153 result
= sci_port_configuration_agent_initialize(ihost
, &ihost
->port_agent
);
2156 /* Advance the controller state machine */
2157 if (result
== SCI_SUCCESS
)
2158 state
= SCIC_INITIALIZED
;
2160 state
= SCIC_FAILED
;
2161 sci_change_state(sm
, state
);
2166 static enum sci_status
sci_user_parameters_set(struct isci_host
*ihost
,
2167 struct sci_user_parameters
*sci_parms
)
2169 u32 state
= ihost
->sm
.current_state_id
;
2171 if (state
== SCIC_RESET
||
2172 state
== SCIC_INITIALIZING
||
2173 state
== SCIC_INITIALIZED
) {
2177 * Validate the user parameters. If they are not legal, then
2180 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
2181 struct sci_phy_user_params
*user_phy
;
2183 user_phy
= &sci_parms
->phys
[index
];
2185 if (!((user_phy
->max_speed_generation
<=
2186 SCIC_SDS_PARM_MAX_SPEED
) &&
2187 (user_phy
->max_speed_generation
>
2188 SCIC_SDS_PARM_NO_SPEED
)))
2189 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2191 if (user_phy
->in_connection_align_insertion_frequency
<
2193 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2195 if ((user_phy
->in_connection_align_insertion_frequency
<
2197 (user_phy
->align_insertion_frequency
== 0) ||
2199 notify_enable_spin_up_insertion_frequency
==
2201 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2204 if ((sci_parms
->stp_inactivity_timeout
== 0) ||
2205 (sci_parms
->ssp_inactivity_timeout
== 0) ||
2206 (sci_parms
->stp_max_occupancy_timeout
== 0) ||
2207 (sci_parms
->ssp_max_occupancy_timeout
== 0) ||
2208 (sci_parms
->no_outbound_task_timeout
== 0))
2209 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2211 memcpy(&ihost
->user_parameters
, sci_parms
, sizeof(*sci_parms
));
2216 return SCI_FAILURE_INVALID_STATE
;
2219 static int sci_controller_mem_init(struct isci_host
*ihost
)
2221 struct device
*dev
= &ihost
->pdev
->dev
;
2226 size
= SCU_MAX_COMPLETION_QUEUE_ENTRIES
* sizeof(u32
);
2227 ihost
->completion_queue
= dmam_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
2228 if (!ihost
->completion_queue
)
2231 writel(lower_32_bits(dma
), &ihost
->smu_registers
->completion_queue_lower
);
2232 writel(upper_32_bits(dma
), &ihost
->smu_registers
->completion_queue_upper
);
2234 size
= ihost
->remote_node_entries
* sizeof(union scu_remote_node_context
);
2235 ihost
->remote_node_context_table
= dmam_alloc_coherent(dev
, size
, &dma
,
2237 if (!ihost
->remote_node_context_table
)
2240 writel(lower_32_bits(dma
), &ihost
->smu_registers
->remote_node_context_lower
);
2241 writel(upper_32_bits(dma
), &ihost
->smu_registers
->remote_node_context_upper
);
2243 size
= ihost
->task_context_entries
* sizeof(struct scu_task_context
),
2244 ihost
->task_context_table
= dmam_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
2245 if (!ihost
->task_context_table
)
2248 ihost
->task_context_dma
= dma
;
2249 writel(lower_32_bits(dma
), &ihost
->smu_registers
->host_task_table_lower
);
2250 writel(upper_32_bits(dma
), &ihost
->smu_registers
->host_task_table_upper
);
2252 err
= sci_unsolicited_frame_control_construct(ihost
);
2257 * Inform the silicon as to the location of the UF headers and
2260 writel(lower_32_bits(ihost
->uf_control
.headers
.physical_address
),
2261 &ihost
->scu_registers
->sdma
.uf_header_base_address_lower
);
2262 writel(upper_32_bits(ihost
->uf_control
.headers
.physical_address
),
2263 &ihost
->scu_registers
->sdma
.uf_header_base_address_upper
);
2265 writel(lower_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2266 &ihost
->scu_registers
->sdma
.uf_address_table_lower
);
2267 writel(upper_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2268 &ihost
->scu_registers
->sdma
.uf_address_table_upper
);
2273 int isci_host_init(struct isci_host
*ihost
)
2276 enum sci_status status
;
2277 struct sci_user_parameters sci_user_params
;
2278 struct isci_pci_info
*pci_info
= to_pci_info(ihost
->pdev
);
2280 spin_lock_init(&ihost
->state_lock
);
2281 spin_lock_init(&ihost
->scic_lock
);
2282 init_waitqueue_head(&ihost
->eventq
);
2284 isci_host_change_state(ihost
, isci_starting
);
2286 status
= sci_controller_construct(ihost
, scu_base(ihost
),
2289 if (status
!= SCI_SUCCESS
) {
2290 dev_err(&ihost
->pdev
->dev
,
2291 "%s: sci_controller_construct failed - status = %x\n",
2297 ihost
->sas_ha
.dev
= &ihost
->pdev
->dev
;
2298 ihost
->sas_ha
.lldd_ha
= ihost
;
2301 * grab initial values stored in the controller object for OEM and USER
2304 isci_user_parameters_get(&sci_user_params
);
2305 status
= sci_user_parameters_set(ihost
, &sci_user_params
);
2306 if (status
!= SCI_SUCCESS
) {
2307 dev_warn(&ihost
->pdev
->dev
,
2308 "%s: sci_user_parameters_set failed\n",
2313 /* grab any OEM parameters specified in orom */
2314 if (pci_info
->orom
) {
2315 status
= isci_parse_oem_parameters(&ihost
->oem_parameters
,
2318 if (status
!= SCI_SUCCESS
) {
2319 dev_warn(&ihost
->pdev
->dev
,
2320 "parsing firmware oem parameters failed\n");
2325 status
= sci_oem_parameters_set(ihost
);
2326 if (status
!= SCI_SUCCESS
) {
2327 dev_warn(&ihost
->pdev
->dev
,
2328 "%s: sci_oem_parameters_set failed\n",
2333 tasklet_init(&ihost
->completion_tasklet
,
2334 isci_host_completion_routine
, (unsigned long)ihost
);
2336 INIT_LIST_HEAD(&ihost
->requests_to_complete
);
2337 INIT_LIST_HEAD(&ihost
->requests_to_errorback
);
2339 spin_lock_irq(&ihost
->scic_lock
);
2340 status
= sci_controller_initialize(ihost
);
2341 spin_unlock_irq(&ihost
->scic_lock
);
2342 if (status
!= SCI_SUCCESS
) {
2343 dev_warn(&ihost
->pdev
->dev
,
2344 "%s: sci_controller_initialize failed -"
2350 err
= sci_controller_mem_init(ihost
);
2354 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
2355 isci_port_init(&ihost
->ports
[i
], ihost
, i
);
2357 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
2358 isci_phy_init(&ihost
->phys
[i
], ihost
, i
);
2360 for (i
= 0; i
< SCI_MAX_REMOTE_DEVICES
; i
++) {
2361 struct isci_remote_device
*idev
= &ihost
->devices
[i
];
2363 INIT_LIST_HEAD(&idev
->reqs_in_process
);
2364 INIT_LIST_HEAD(&idev
->node
);
2367 for (i
= 0; i
< SCI_MAX_IO_REQUESTS
; i
++) {
2368 struct isci_request
*ireq
;
2371 ireq
= dmam_alloc_coherent(&ihost
->pdev
->dev
,
2372 sizeof(struct isci_request
), &dma
,
2377 ireq
->tc
= &ihost
->task_context_table
[i
];
2378 ireq
->owning_controller
= ihost
;
2379 spin_lock_init(&ireq
->state_lock
);
2380 ireq
->request_daddr
= dma
;
2381 ireq
->isci_host
= ihost
;
2382 ihost
->reqs
[i
] = ireq
;
2388 void sci_controller_link_up(struct isci_host
*ihost
, struct isci_port
*iport
,
2389 struct isci_phy
*iphy
)
2391 switch (ihost
->sm
.current_state_id
) {
2393 sci_del_timer(&ihost
->phy_timer
);
2394 ihost
->phy_startup_timer_pending
= false;
2395 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2397 sci_controller_start_next_phy(ihost
);
2400 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2404 dev_dbg(&ihost
->pdev
->dev
,
2405 "%s: SCIC Controller linkup event from phy %d in "
2406 "unexpected state %d\n", __func__
, iphy
->phy_index
,
2407 ihost
->sm
.current_state_id
);
2411 void sci_controller_link_down(struct isci_host
*ihost
, struct isci_port
*iport
,
2412 struct isci_phy
*iphy
)
2414 switch (ihost
->sm
.current_state_id
) {
2417 ihost
->port_agent
.link_down_handler(ihost
, &ihost
->port_agent
,
2421 dev_dbg(&ihost
->pdev
->dev
,
2422 "%s: SCIC Controller linkdown event from phy %d in "
2423 "unexpected state %d\n",
2426 ihost
->sm
.current_state_id
);
2430 static bool sci_controller_has_remote_devices_stopping(struct isci_host
*ihost
)
2434 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
2435 if ((ihost
->device_table
[index
] != NULL
) &&
2436 (ihost
->device_table
[index
]->sm
.current_state_id
== SCI_DEV_STOPPING
))
2443 void sci_controller_remote_device_stopped(struct isci_host
*ihost
,
2444 struct isci_remote_device
*idev
)
2446 if (ihost
->sm
.current_state_id
!= SCIC_STOPPING
) {
2447 dev_dbg(&ihost
->pdev
->dev
,
2448 "SCIC Controller 0x%p remote device stopped event "
2449 "from device 0x%p in unexpected state %d\n",
2451 ihost
->sm
.current_state_id
);
2455 if (!sci_controller_has_remote_devices_stopping(ihost
))
2456 sci_change_state(&ihost
->sm
, SCIC_STOPPED
);
2459 void sci_controller_post_request(struct isci_host
*ihost
, u32 request
)
2461 dev_dbg(&ihost
->pdev
->dev
, "%s[%d]: %#x\n",
2462 __func__
, ihost
->id
, request
);
2464 writel(request
, &ihost
->smu_registers
->post_context_port
);
2467 struct isci_request
*sci_request_by_tag(struct isci_host
*ihost
, u16 io_tag
)
2472 task_index
= ISCI_TAG_TCI(io_tag
);
2474 if (task_index
< ihost
->task_context_entries
) {
2475 struct isci_request
*ireq
= ihost
->reqs
[task_index
];
2477 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
)) {
2478 task_sequence
= ISCI_TAG_SEQ(io_tag
);
2480 if (task_sequence
== ihost
->io_request_sequence
[task_index
])
2489 * This method allocates remote node index and the reserves the remote node
2490 * context space for use. This method can fail if there are no more remote
2491 * node index available.
2492 * @scic: This is the controller object which contains the set of
2493 * free remote node ids
2494 * @sci_dev: This is the device object which is requesting the a remote node
2496 * @node_id: This is the remote node id that is assinged to the device if one
2499 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2500 * node index available.
2502 enum sci_status
sci_controller_allocate_remote_node_context(struct isci_host
*ihost
,
2503 struct isci_remote_device
*idev
,
2507 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2509 node_index
= sci_remote_node_table_allocate_remote_node(
2510 &ihost
->available_remote_nodes
, remote_node_count
2513 if (node_index
!= SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
2514 ihost
->device_table
[node_index
] = idev
;
2516 *node_id
= node_index
;
2521 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
2524 void sci_controller_free_remote_node_context(struct isci_host
*ihost
,
2525 struct isci_remote_device
*idev
,
2528 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2530 if (ihost
->device_table
[node_id
] == idev
) {
2531 ihost
->device_table
[node_id
] = NULL
;
2533 sci_remote_node_table_release_remote_node_index(
2534 &ihost
->available_remote_nodes
, remote_node_count
, node_id
2539 void sci_controller_copy_sata_response(void *response_buffer
,
2543 /* XXX type safety? */
2544 memcpy(response_buffer
, frame_header
, sizeof(u32
));
2546 memcpy(response_buffer
+ sizeof(u32
),
2548 sizeof(struct dev_to_host_fis
) - sizeof(u32
));
2551 void sci_controller_release_frame(struct isci_host
*ihost
, u32 frame_index
)
2553 if (sci_unsolicited_frame_control_release_frame(&ihost
->uf_control
, frame_index
))
2554 writel(ihost
->uf_control
.get
,
2555 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
2558 void isci_tci_free(struct isci_host
*ihost
, u16 tci
)
2560 u16 tail
= ihost
->tci_tail
& (SCI_MAX_IO_REQUESTS
-1);
2562 ihost
->tci_pool
[tail
] = tci
;
2563 ihost
->tci_tail
= tail
+ 1;
2566 static u16
isci_tci_alloc(struct isci_host
*ihost
)
2568 u16 head
= ihost
->tci_head
& (SCI_MAX_IO_REQUESTS
-1);
2569 u16 tci
= ihost
->tci_pool
[head
];
2571 ihost
->tci_head
= head
+ 1;
2575 static u16
isci_tci_space(struct isci_host
*ihost
)
2577 return CIRC_SPACE(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
2580 u16
isci_alloc_tag(struct isci_host
*ihost
)
2582 if (isci_tci_space(ihost
)) {
2583 u16 tci
= isci_tci_alloc(ihost
);
2584 u8 seq
= ihost
->io_request_sequence
[tci
];
2586 return ISCI_TAG(seq
, tci
);
2589 return SCI_CONTROLLER_INVALID_IO_TAG
;
2592 enum sci_status
isci_free_tag(struct isci_host
*ihost
, u16 io_tag
)
2594 u16 tci
= ISCI_TAG_TCI(io_tag
);
2595 u16 seq
= ISCI_TAG_SEQ(io_tag
);
2597 /* prevent tail from passing head */
2598 if (isci_tci_active(ihost
) == 0)
2599 return SCI_FAILURE_INVALID_IO_TAG
;
2601 if (seq
== ihost
->io_request_sequence
[tci
]) {
2602 ihost
->io_request_sequence
[tci
] = (seq
+1) & (SCI_MAX_SEQ
-1);
2604 isci_tci_free(ihost
, tci
);
2608 return SCI_FAILURE_INVALID_IO_TAG
;
2611 enum sci_status
sci_controller_start_io(struct isci_host
*ihost
,
2612 struct isci_remote_device
*idev
,
2613 struct isci_request
*ireq
)
2615 enum sci_status status
;
2617 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2618 dev_warn(&ihost
->pdev
->dev
, "invalid state to start I/O");
2619 return SCI_FAILURE_INVALID_STATE
;
2622 status
= sci_remote_device_start_io(ihost
, idev
, ireq
);
2623 if (status
!= SCI_SUCCESS
)
2626 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2627 sci_controller_post_request(ihost
, ireq
->post_context
);
2631 enum sci_status
sci_controller_terminate_request(struct isci_host
*ihost
,
2632 struct isci_remote_device
*idev
,
2633 struct isci_request
*ireq
)
2635 /* terminate an ongoing (i.e. started) core IO request. This does not
2636 * abort the IO request at the target, but rather removes the IO
2637 * request from the host controller.
2639 enum sci_status status
;
2641 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2642 dev_warn(&ihost
->pdev
->dev
,
2643 "invalid state to terminate request\n");
2644 return SCI_FAILURE_INVALID_STATE
;
2647 status
= sci_io_request_terminate(ireq
);
2648 if (status
!= SCI_SUCCESS
)
2652 * Utilize the original post context command and or in the POST_TC_ABORT
2655 sci_controller_post_request(ihost
,
2656 ireq
->post_context
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT
);
2661 * sci_controller_complete_io() - This method will perform core specific
2662 * completion operations for an IO request. After this method is invoked,
2663 * the user should consider the IO request as invalid until it is properly
2664 * reused (i.e. re-constructed).
2665 * @ihost: The handle to the controller object for which to complete the
2667 * @idev: The handle to the remote device object for which to complete
2669 * @ireq: the handle to the io request object to complete.
2671 enum sci_status
sci_controller_complete_io(struct isci_host
*ihost
,
2672 struct isci_remote_device
*idev
,
2673 struct isci_request
*ireq
)
2675 enum sci_status status
;
2678 switch (ihost
->sm
.current_state_id
) {
2680 /* XXX: Implement this function */
2683 status
= sci_remote_device_complete_io(ihost
, idev
, ireq
);
2684 if (status
!= SCI_SUCCESS
)
2687 index
= ISCI_TAG_TCI(ireq
->io_tag
);
2688 clear_bit(IREQ_ACTIVE
, &ireq
->flags
);
2691 dev_warn(&ihost
->pdev
->dev
, "invalid state to complete I/O");
2692 return SCI_FAILURE_INVALID_STATE
;
2697 enum sci_status
sci_controller_continue_io(struct isci_request
*ireq
)
2699 struct isci_host
*ihost
= ireq
->owning_controller
;
2701 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2702 dev_warn(&ihost
->pdev
->dev
, "invalid state to continue I/O");
2703 return SCI_FAILURE_INVALID_STATE
;
2706 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2707 sci_controller_post_request(ihost
, ireq
->post_context
);
2712 * sci_controller_start_task() - This method is called by the SCIC user to
2713 * send/start a framework task management request.
2714 * @controller: the handle to the controller object for which to start the task
2715 * management request.
2716 * @remote_device: the handle to the remote device object for which to start
2717 * the task management request.
2718 * @task_request: the handle to the task request object to start.
2720 enum sci_task_status
sci_controller_start_task(struct isci_host
*ihost
,
2721 struct isci_remote_device
*idev
,
2722 struct isci_request
*ireq
)
2724 enum sci_status status
;
2726 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2727 dev_warn(&ihost
->pdev
->dev
,
2728 "%s: SCIC Controller starting task from invalid "
2731 return SCI_TASK_FAILURE_INVALID_STATE
;
2734 status
= sci_remote_device_start_task(ihost
, idev
, ireq
);
2736 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS
:
2737 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2740 * We will let framework know this task request started successfully,
2741 * although core is still woring on starting the request (to post tc when
2746 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2747 sci_controller_post_request(ihost
, ireq
->post_context
);