ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / scsi / isci / host.c
blobef46d8323377b44f799b4c56a351e84afaa000b8
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
73 #define smu_max_ports(dcc_value) \
75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
79 #define smu_max_task_contexts(dcc_value) \
81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
85 #define smu_max_rncs(dcc_value) \
87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
93 /**
96 * The number of milliseconds to wait while a given phy is consuming power
97 * before allowing another set of phys to consume power. Ultimately, this will
98 * be specified by OEM parameter.
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
103 * NORMALIZE_PUT_POINTER() -
105 * This macro will normalize the completion queue put pointer so its value can
106 * be used as an array inde
108 #define NORMALIZE_PUT_POINTER(x) \
109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
113 * NORMALIZE_EVENT_POINTER() -
115 * This macro will normalize the completion queue event entry so its value can
116 * be used as an index.
118 #define NORMALIZE_EVENT_POINTER(x) \
120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
125 * NORMALIZE_GET_POINTER() -
127 * This macro will normalize the completion queue get pointer so its value can
128 * be used as an index into an array
130 #define NORMALIZE_GET_POINTER(x) \
131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
134 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
136 * This macro will normalize the completion queue cycle pointer so it matches
137 * the completion queue cycle bit
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
143 * COMPLETION_QUEUE_CYCLE_BIT() -
145 * This macro will return the cycle bit of the completion queue entry
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151 const struct sci_base_state *state_table, u32 initial_state)
153 sci_state_transition_t handler;
155 sm->initial_state_id = initial_state;
156 sm->previous_state_id = initial_state;
157 sm->current_state_id = initial_state;
158 sm->state_table = state_table;
160 handler = sm->state_table[initial_state].enter_state;
161 if (handler)
162 handler(sm);
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
168 sci_state_transition_t handler;
170 handler = sm->state_table[sm->current_state_id].exit_state;
171 if (handler)
172 handler(sm);
174 sm->previous_state_id = sm->current_state_id;
175 sm->current_state_id = next_state;
177 handler = sm->state_table[sm->current_state_id].enter_state;
178 if (handler)
179 handler(sm);
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
184 u32 get_value = ihost->completion_queue_get;
185 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189 return true;
191 return false;
194 static bool sci_controller_isr(struct isci_host *ihost)
196 if (sci_controller_completion_queue_has_entries(ihost)) {
197 return true;
198 } else {
200 * we have a spurious interrupt it could be that we have already
201 * emptied the completion queue from a previous interrupt */
202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
205 * There is a race in the hardware that could cause us not to be notified
206 * of an interrupt completion if we do not take this step. We will mask
207 * then unmask the interrupts so if there is another interrupt pending
208 * the clearing of the interrupt source we get the next interrupt message. */
209 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210 writel(0, &ihost->smu_registers->interrupt_mask);
213 return false;
216 irqreturn_t isci_msix_isr(int vec, void *data)
218 struct isci_host *ihost = data;
220 if (sci_controller_isr(ihost))
221 tasklet_schedule(&ihost->completion_tasklet);
223 return IRQ_HANDLED;
226 static bool sci_controller_error_isr(struct isci_host *ihost)
228 u32 interrupt_status;
230 interrupt_status =
231 readl(&ihost->smu_registers->interrupt_status);
232 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
234 if (interrupt_status != 0) {
236 * There is an error interrupt pending so let it through and handle
237 * in the callback */
238 return true;
242 * There is a race in the hardware that could cause us not to be notified
243 * of an interrupt completion if we do not take this step. We will mask
244 * then unmask the error interrupts so if there was another interrupt
245 * pending we will be notified.
246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 writel(0xff, &ihost->smu_registers->interrupt_mask);
248 writel(0, &ihost->smu_registers->interrupt_mask);
250 return false;
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
255 u32 index = SCU_GET_COMPLETION_INDEX(ent);
256 struct isci_request *ireq = ihost->reqs[index];
258 /* Make sure that we really want to process this IO request */
259 if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262 /* Yep this is a valid io request pass it along to the
263 * io request handler
265 sci_io_request_tc_completion(ireq, ent);
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
270 u32 index;
271 struct isci_request *ireq;
272 struct isci_remote_device *idev;
274 index = SCU_GET_COMPLETION_INDEX(ent);
276 switch (scu_get_command_request_type(ent)) {
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279 ireq = ihost->reqs[index];
280 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281 __func__, ent, ireq);
282 /* @todo For a post TC operation we need to fail the IO
283 * request
285 break;
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289 idev = ihost->device_table[index];
290 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291 __func__, ent, idev);
292 /* @todo For a port RNC operation we need to fail the
293 * device
295 break;
296 default:
297 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298 __func__, ent);
299 break;
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
305 u32 index;
306 u32 frame_index;
308 struct scu_unsolicited_frame_header *frame_header;
309 struct isci_phy *iphy;
310 struct isci_remote_device *idev;
312 enum sci_status result = SCI_FAILURE;
314 frame_index = SCU_GET_FRAME_INDEX(ent);
316 frame_header = ihost->uf_control.buffers.array[frame_index].header;
317 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
319 if (SCU_GET_FRAME_ERROR(ent)) {
321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 * / this cause a problem? We expect the phy initialization will
323 * / fail if there is an error in the frame. */
324 sci_controller_release_frame(ihost, frame_index);
325 return;
328 if (frame_header->is_address_frame) {
329 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330 iphy = &ihost->phys[index];
331 result = sci_phy_frame_handler(iphy, frame_index);
332 } else {
334 index = SCU_GET_COMPLETION_INDEX(ent);
336 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
338 * This is a signature fis or a frame from a direct attached SATA
339 * device that has not yet been created. In either case forwared
340 * the frame to the PE and let it take care of the frame data. */
341 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342 iphy = &ihost->phys[index];
343 result = sci_phy_frame_handler(iphy, frame_index);
344 } else {
345 if (index < ihost->remote_node_entries)
346 idev = ihost->device_table[index];
347 else
348 idev = NULL;
350 if (idev != NULL)
351 result = sci_remote_device_frame_handler(idev, frame_index);
352 else
353 sci_controller_release_frame(ihost, frame_index);
357 if (result != SCI_SUCCESS) {
359 * / @todo Is there any reason to report some additional error message
360 * / when we get this failure notifiction? */
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
366 struct isci_remote_device *idev;
367 struct isci_request *ireq;
368 struct isci_phy *iphy;
369 u32 index;
371 index = SCU_GET_COMPLETION_INDEX(ent);
373 switch (scu_get_event_type(ent)) {
374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375 /* / @todo The driver did something wrong and we need to fix the condtion. */
376 dev_err(&ihost->pdev->dev,
377 "%s: SCIC Controller 0x%p received SMU command error "
378 "0x%x\n",
379 __func__,
380 ihost,
381 ent);
382 break;
384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385 case SCU_EVENT_TYPE_SMU_ERROR:
386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
388 * / @todo This is a hardware failure and its likely that we want to
389 * / reset the controller. */
390 dev_err(&ihost->pdev->dev,
391 "%s: SCIC Controller 0x%p received fatal controller "
392 "event 0x%x\n",
393 __func__,
394 ihost,
395 ent);
396 break;
398 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399 ireq = ihost->reqs[index];
400 sci_io_request_event_handler(ireq, ent);
401 break;
403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404 switch (scu_get_event_specifier(ent)) {
405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407 ireq = ihost->reqs[index];
408 if (ireq != NULL)
409 sci_io_request_event_handler(ireq, ent);
410 else
411 dev_warn(&ihost->pdev->dev,
412 "%s: SCIC Controller 0x%p received "
413 "event 0x%x for io request object "
414 "that doesnt exist.\n",
415 __func__,
416 ihost,
417 ent);
419 break;
421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422 idev = ihost->device_table[index];
423 if (idev != NULL)
424 sci_remote_device_event_handler(idev, ent);
425 else
426 dev_warn(&ihost->pdev->dev,
427 "%s: SCIC Controller 0x%p received "
428 "event 0x%x for remote device object "
429 "that doesnt exist.\n",
430 __func__,
431 ihost,
432 ent);
434 break;
436 break;
438 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
440 * direct the broadcast change event to the phy first and then let
441 * the phy redirect the broadcast change to the port object */
442 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
444 * direct error counter event to the phy object since that is where
445 * we get the event notification. This is a type 4 event. */
446 case SCU_EVENT_TYPE_OSSP_EVENT:
447 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448 iphy = &ihost->phys[index];
449 sci_phy_event_handler(iphy, ent);
450 break;
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454 case SCU_EVENT_TYPE_RNC_OPS_MISC:
455 if (index < ihost->remote_node_entries) {
456 idev = ihost->device_table[index];
458 if (idev != NULL)
459 sci_remote_device_event_handler(idev, ent);
460 } else
461 dev_err(&ihost->pdev->dev,
462 "%s: SCIC Controller 0x%p received event 0x%x "
463 "for remote device object 0x%0x that doesnt "
464 "exist.\n",
465 __func__,
466 ihost,
467 ent,
468 index);
470 break;
472 default:
473 dev_warn(&ihost->pdev->dev,
474 "%s: SCIC Controller received unknown event code %x\n",
475 __func__,
476 ent);
477 break;
481 static void sci_controller_process_completions(struct isci_host *ihost)
483 u32 completion_count = 0;
484 u32 ent;
485 u32 get_index;
486 u32 get_cycle;
487 u32 event_get;
488 u32 event_cycle;
490 dev_dbg(&ihost->pdev->dev,
491 "%s: completion queue begining get:0x%08x\n",
492 __func__,
493 ihost->completion_queue_get);
495 /* Get the component parts of the completion queue */
496 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
499 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
502 while (
503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
506 completion_count++;
508 ent = ihost->completion_queue[get_index];
510 /* increment the get pointer and check for rollover to toggle the cycle bit */
511 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
515 dev_dbg(&ihost->pdev->dev,
516 "%s: completion queue entry:0x%08x\n",
517 __func__,
518 ent);
520 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521 case SCU_COMPLETION_TYPE_TASK:
522 sci_controller_task_completion(ihost, ent);
523 break;
525 case SCU_COMPLETION_TYPE_SDMA:
526 sci_controller_sdma_completion(ihost, ent);
527 break;
529 case SCU_COMPLETION_TYPE_UFI:
530 sci_controller_unsolicited_frame(ihost, ent);
531 break;
533 case SCU_COMPLETION_TYPE_EVENT:
534 sci_controller_event_completion(ihost, ent);
535 break;
537 case SCU_COMPLETION_TYPE_NOTIFY: {
538 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540 event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
542 sci_controller_event_completion(ihost, ent);
543 break;
545 default:
546 dev_warn(&ihost->pdev->dev,
547 "%s: SCIC Controller received unknown "
548 "completion type %x\n",
549 __func__,
550 ent);
551 break;
555 /* Update the get register if we completed one or more entries */
556 if (completion_count > 0) {
557 ihost->completion_queue_get =
558 SMU_CQGR_GEN_BIT(ENABLE) |
559 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560 event_cycle |
561 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562 get_cycle |
563 SMU_CQGR_GEN_VAL(POINTER, get_index);
565 writel(ihost->completion_queue_get,
566 &ihost->smu_registers->completion_queue_get);
570 dev_dbg(&ihost->pdev->dev,
571 "%s: completion queue ending get:0x%08x\n",
572 __func__,
573 ihost->completion_queue_get);
577 static void sci_controller_error_handler(struct isci_host *ihost)
579 u32 interrupt_status;
581 interrupt_status =
582 readl(&ihost->smu_registers->interrupt_status);
584 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585 sci_controller_completion_queue_has_entries(ihost)) {
587 sci_controller_process_completions(ihost);
588 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589 } else {
590 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591 interrupt_status);
593 sci_change_state(&ihost->sm, SCIC_FAILED);
595 return;
598 /* If we dont process any completions I am not sure that we want to do this.
599 * We are in the middle of a hardware fault and should probably be reset.
601 writel(0, &ihost->smu_registers->interrupt_mask);
604 irqreturn_t isci_intx_isr(int vec, void *data)
606 irqreturn_t ret = IRQ_NONE;
607 struct isci_host *ihost = data;
609 if (sci_controller_isr(ihost)) {
610 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611 tasklet_schedule(&ihost->completion_tasklet);
612 ret = IRQ_HANDLED;
613 } else if (sci_controller_error_isr(ihost)) {
614 spin_lock(&ihost->scic_lock);
615 sci_controller_error_handler(ihost);
616 spin_unlock(&ihost->scic_lock);
617 ret = IRQ_HANDLED;
620 return ret;
623 irqreturn_t isci_error_isr(int vec, void *data)
625 struct isci_host *ihost = data;
627 if (sci_controller_error_isr(ihost))
628 sci_controller_error_handler(ihost);
630 return IRQ_HANDLED;
634 * isci_host_start_complete() - This function is called by the core library,
635 * through the ISCI Module, to indicate controller start status.
636 * @isci_host: This parameter specifies the ISCI host object
637 * @completion_status: This parameter specifies the completion status from the
638 * core library.
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
643 if (completion_status != SCI_SUCCESS)
644 dev_info(&ihost->pdev->dev,
645 "controller start timed out, continuing...\n");
646 isci_host_change_state(ihost, isci_ready);
647 clear_bit(IHOST_START_PENDING, &ihost->flags);
648 wake_up(&ihost->eventq);
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
653 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
655 if (test_bit(IHOST_START_PENDING, &ihost->flags))
656 return 0;
658 /* todo: use sas_flush_discovery once it is upstream */
659 scsi_flush_work(shost);
661 scsi_flush_work(shost);
663 dev_dbg(&ihost->pdev->dev,
664 "%s: ihost->status = %d, time = %ld\n",
665 __func__, isci_host_get_state(ihost), time);
667 return 1;
672 * sci_controller_get_suggested_start_timeout() - This method returns the
673 * suggested sci_controller_start() timeout amount. The user is free to
674 * use any timeout value, but this method provides the suggested minimum
675 * start timeout value. The returned value is based upon empirical
676 * information determined as a result of interoperability testing.
677 * @controller: the handle to the controller object for which to return the
678 * suggested start timeout.
680 * This method returns the number of milliseconds for the suggested start
681 * operation timeout.
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
685 /* Validate the user supplied parameters. */
686 if (!ihost)
687 return 0;
690 * The suggested minimum timeout value for a controller start operation:
692 * Signature FIS Timeout
693 * + Phy Start Timeout
694 * + Number of Phy Spin Up Intervals
695 * ---------------------------------
696 * Number of milliseconds for the controller start operation.
698 * NOTE: The number of phy spin up intervals will be equivalent
699 * to the number of phys divided by the number phys allowed
700 * per interval - 1 (once OEM parameters are supported).
701 * Currently we assume only 1 phy per interval. */
703 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
710 BUG_ON(ihost->smu_registers == NULL);
711 writel(0, &ihost->smu_registers->interrupt_mask);
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
716 BUG_ON(ihost->smu_registers == NULL);
717 writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
722 u32 port_task_scheduler_value;
724 port_task_scheduler_value =
725 readl(&ihost->scu_registers->peg0.ptsg.control);
726 port_task_scheduler_value |=
727 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729 writel(port_task_scheduler_value,
730 &ihost->scu_registers->peg0.ptsg.control);
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
735 u32 task_assignment;
738 * Assign all the TCs to function 0
739 * TODO: Do we actually need to read this register to write it back?
742 task_assignment =
743 readl(&ihost->smu_registers->task_context_assignment[0]);
745 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
747 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
749 writel(task_assignment,
750 &ihost->smu_registers->task_context_assignment[0]);
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
756 u32 index;
757 u32 completion_queue_control_value;
758 u32 completion_queue_get_value;
759 u32 completion_queue_put_value;
761 ihost->completion_queue_get = 0;
763 completion_queue_control_value =
764 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
767 writel(completion_queue_control_value,
768 &ihost->smu_registers->completion_queue_control);
771 /* Set the completion queue get pointer and enable the queue */
772 completion_queue_get_value = (
773 (SMU_CQGR_GEN_VAL(POINTER, 0))
774 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775 | (SMU_CQGR_GEN_BIT(ENABLE))
776 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
779 writel(completion_queue_get_value,
780 &ihost->smu_registers->completion_queue_get);
782 /* Set the completion queue put pointer */
783 completion_queue_put_value = (
784 (SMU_CQPR_GEN_VAL(POINTER, 0))
785 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
788 writel(completion_queue_put_value,
789 &ihost->smu_registers->completion_queue_put);
791 /* Initialize the cycle bit of the completion queue entries */
792 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
794 * If get.cycle_bit != completion_queue.cycle_bit
795 * its not a valid completion queue entry
796 * so at system start all entries are invalid */
797 ihost->completion_queue[index] = 0x80000000;
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
803 u32 frame_queue_control_value;
804 u32 frame_queue_get_value;
805 u32 frame_queue_put_value;
807 /* Write the queue size */
808 frame_queue_control_value =
809 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
811 writel(frame_queue_control_value,
812 &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
814 /* Setup the get pointer for the unsolicited frame queue */
815 frame_queue_get_value = (
816 SCU_UFQGP_GEN_VAL(POINTER, 0)
817 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
820 writel(frame_queue_get_value,
821 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822 /* Setup the put pointer for the unsolicited frame queue */
823 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824 writel(frame_queue_put_value,
825 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
830 if (ihost->sm.current_state_id == SCIC_STARTING) {
832 * We move into the ready state, because some of the phys/ports
833 * may be up and operational.
835 sci_change_state(&ihost->sm, SCIC_READY);
837 isci_host_start_complete(ihost, status);
841 static bool is_phy_starting(struct isci_phy *iphy)
843 enum sci_phy_states state;
845 state = iphy->sm.current_state_id;
846 switch (state) {
847 case SCI_PHY_STARTING:
848 case SCI_PHY_SUB_INITIAL:
849 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850 case SCI_PHY_SUB_AWAIT_IAF_UF:
851 case SCI_PHY_SUB_AWAIT_SAS_POWER:
852 case SCI_PHY_SUB_AWAIT_SATA_POWER:
853 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856 case SCI_PHY_SUB_FINAL:
857 return true;
858 default:
859 return false;
864 * sci_controller_start_next_phy - start phy
865 * @scic: controller
867 * If all the phys have been started, then attempt to transition the
868 * controller to the READY state and inform the user
869 * (sci_cb_controller_start_complete()).
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
873 struct sci_oem_params *oem = &ihost->oem_parameters;
874 struct isci_phy *iphy;
875 enum sci_status status;
877 status = SCI_SUCCESS;
879 if (ihost->phy_startup_timer_pending)
880 return status;
882 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883 bool is_controller_start_complete = true;
884 u32 state;
885 u8 index;
887 for (index = 0; index < SCI_MAX_PHYS; index++) {
888 iphy = &ihost->phys[index];
889 state = iphy->sm.current_state_id;
891 if (!phy_get_non_dummy_port(iphy))
892 continue;
894 /* The controller start operation is complete iff:
895 * - all links have been given an opportunity to start
896 * - have no indication of a connected device
897 * - have an indication of a connected device and it has
898 * finished the link training process.
900 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902 (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
903 is_controller_start_complete = false;
904 break;
909 * The controller has successfully finished the start process.
910 * Inform the SCI Core user and transition to the READY state. */
911 if (is_controller_start_complete == true) {
912 sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
913 sci_del_timer(&ihost->phy_timer);
914 ihost->phy_startup_timer_pending = false;
916 } else {
917 iphy = &ihost->phys[ihost->next_phy_to_start];
919 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
920 if (phy_get_non_dummy_port(iphy) == NULL) {
921 ihost->next_phy_to_start++;
923 /* Caution recursion ahead be forwarned
925 * The PHY was never added to a PORT in MPC mode
926 * so start the next phy in sequence This phy
927 * will never go link up and will not draw power
928 * the OEM parameters either configured the phy
929 * incorrectly for the PORT or it was never
930 * assigned to a PORT
932 return sci_controller_start_next_phy(ihost);
936 status = sci_phy_start(iphy);
938 if (status == SCI_SUCCESS) {
939 sci_mod_timer(&ihost->phy_timer,
940 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
941 ihost->phy_startup_timer_pending = true;
942 } else {
943 dev_warn(&ihost->pdev->dev,
944 "%s: Controller stop operation failed "
945 "to stop phy %d because of status "
946 "%d.\n",
947 __func__,
948 ihost->phys[ihost->next_phy_to_start].phy_index,
949 status);
952 ihost->next_phy_to_start++;
955 return status;
958 static void phy_startup_timeout(unsigned long data)
960 struct sci_timer *tmr = (struct sci_timer *)data;
961 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
962 unsigned long flags;
963 enum sci_status status;
965 spin_lock_irqsave(&ihost->scic_lock, flags);
967 if (tmr->cancel)
968 goto done;
970 ihost->phy_startup_timer_pending = false;
972 do {
973 status = sci_controller_start_next_phy(ihost);
974 } while (status != SCI_SUCCESS);
976 done:
977 spin_unlock_irqrestore(&ihost->scic_lock, flags);
980 static u16 isci_tci_active(struct isci_host *ihost)
982 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
985 static enum sci_status sci_controller_start(struct isci_host *ihost,
986 u32 timeout)
988 enum sci_status result;
989 u16 index;
991 if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
992 dev_warn(&ihost->pdev->dev,
993 "SCIC Controller start operation requested in "
994 "invalid state\n");
995 return SCI_FAILURE_INVALID_STATE;
998 /* Build the TCi free pool */
999 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000 ihost->tci_head = 0;
1001 ihost->tci_tail = 0;
1002 for (index = 0; index < ihost->task_context_entries; index++)
1003 isci_tci_free(ihost, index);
1005 /* Build the RNi free pool */
1006 sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007 ihost->remote_node_entries);
1010 * Before anything else lets make sure we will not be
1011 * interrupted by the hardware.
1013 sci_controller_disable_interrupts(ihost);
1015 /* Enable the port task scheduler */
1016 sci_controller_enable_port_task_scheduler(ihost);
1018 /* Assign all the task entries to ihost physical function */
1019 sci_controller_assign_task_entries(ihost);
1021 /* Now initialize the completion queue */
1022 sci_controller_initialize_completion_queue(ihost);
1024 /* Initialize the unsolicited frame queue for use */
1025 sci_controller_initialize_unsolicited_frame_queue(ihost);
1027 /* Start all of the ports on this controller */
1028 for (index = 0; index < ihost->logical_port_entries; index++) {
1029 struct isci_port *iport = &ihost->ports[index];
1031 result = sci_port_start(iport);
1032 if (result)
1033 return result;
1036 sci_controller_start_next_phy(ihost);
1038 sci_mod_timer(&ihost->timer, timeout);
1040 sci_change_state(&ihost->sm, SCIC_STARTING);
1042 return SCI_SUCCESS;
1045 void isci_host_scan_start(struct Scsi_Host *shost)
1047 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1050 set_bit(IHOST_START_PENDING, &ihost->flags);
1052 spin_lock_irq(&ihost->scic_lock);
1053 sci_controller_start(ihost, tmo);
1054 sci_controller_enable_interrupts(ihost);
1055 spin_unlock_irq(&ihost->scic_lock);
1058 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1060 isci_host_change_state(ihost, isci_stopped);
1061 sci_controller_disable_interrupts(ihost);
1062 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1063 wake_up(&ihost->eventq);
1066 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 /* Empty out the completion queue */
1069 if (sci_controller_completion_queue_has_entries(ihost))
1070 sci_controller_process_completions(ihost);
1072 /* Clear the interrupt and enable all interrupts again */
1073 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1074 /* Could we write the value of SMU_ISR_COMPLETION? */
1075 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1076 writel(0, &ihost->smu_registers->interrupt_mask);
1080 * isci_host_completion_routine() - This function is the delayed service
1081 * routine that calls the sci core library's completion handler. It's
1082 * scheduled as a tasklet from the interrupt service routine when interrupts
1083 * in use, or set as the timeout function in polled mode.
1084 * @data: This parameter specifies the ISCI host object
1087 static void isci_host_completion_routine(unsigned long data)
1089 struct isci_host *ihost = (struct isci_host *)data;
1090 struct list_head completed_request_list;
1091 struct list_head errored_request_list;
1092 struct list_head *current_position;
1093 struct list_head *next_position;
1094 struct isci_request *request;
1095 struct isci_request *next_request;
1096 struct sas_task *task;
1098 INIT_LIST_HEAD(&completed_request_list);
1099 INIT_LIST_HEAD(&errored_request_list);
1101 spin_lock_irq(&ihost->scic_lock);
1103 sci_controller_completion_handler(ihost);
1105 /* Take the lists of completed I/Os from the host. */
1107 list_splice_init(&ihost->requests_to_complete,
1108 &completed_request_list);
1110 /* Take the list of errored I/Os from the host. */
1111 list_splice_init(&ihost->requests_to_errorback,
1112 &errored_request_list);
1114 spin_unlock_irq(&ihost->scic_lock);
1116 /* Process any completions in the lists. */
1117 list_for_each_safe(current_position, next_position,
1118 &completed_request_list) {
1120 request = list_entry(current_position, struct isci_request,
1121 completed_node);
1122 task = isci_request_access_task(request);
1124 /* Normal notification (task_done) */
1125 dev_dbg(&ihost->pdev->dev,
1126 "%s: Normal - request/task = %p/%p\n",
1127 __func__,
1128 request,
1129 task);
1131 /* Return the task to libsas */
1132 if (task != NULL) {
1134 task->lldd_task = NULL;
1135 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1137 /* If the task is already in the abort path,
1138 * the task_done callback cannot be called.
1140 task->task_done(task);
1144 spin_lock_irq(&ihost->scic_lock);
1145 isci_free_tag(ihost, request->io_tag);
1146 spin_unlock_irq(&ihost->scic_lock);
1148 list_for_each_entry_safe(request, next_request, &errored_request_list,
1149 completed_node) {
1151 task = isci_request_access_task(request);
1153 /* Use sas_task_abort */
1154 dev_warn(&ihost->pdev->dev,
1155 "%s: Error - request/task = %p/%p\n",
1156 __func__,
1157 request,
1158 task);
1160 if (task != NULL) {
1162 /* Put the task into the abort path if it's not there
1163 * already.
1165 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1166 sas_task_abort(task);
1168 } else {
1169 /* This is a case where the request has completed with a
1170 * status such that it needed further target servicing,
1171 * but the sas_task reference has already been removed
1172 * from the request. Since it was errored, it was not
1173 * being aborted, so there is nothing to do except free
1174 * it.
1177 spin_lock_irq(&ihost->scic_lock);
1178 /* Remove the request from the remote device's list
1179 * of pending requests.
1181 list_del_init(&request->dev_node);
1182 isci_free_tag(ihost, request->io_tag);
1183 spin_unlock_irq(&ihost->scic_lock);
1190 * sci_controller_stop() - This method will stop an individual controller
1191 * object.This method will invoke the associated user callback upon
1192 * completion. The completion callback is called when the following
1193 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1194 * controller has been quiesced. This method will ensure that all IO
1195 * requests are quiesced, phys are stopped, and all additional operation by
1196 * the hardware is halted.
1197 * @controller: the handle to the controller object to stop.
1198 * @timeout: This parameter specifies the number of milliseconds in which the
1199 * stop operation should complete.
1201 * The controller must be in the STARTED or STOPPED state. Indicate if the
1202 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1203 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1204 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1205 * controller is not either in the STARTED or STOPPED states.
1207 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1209 if (ihost->sm.current_state_id != SCIC_READY) {
1210 dev_warn(&ihost->pdev->dev,
1211 "SCIC Controller stop operation requested in "
1212 "invalid state\n");
1213 return SCI_FAILURE_INVALID_STATE;
1216 sci_mod_timer(&ihost->timer, timeout);
1217 sci_change_state(&ihost->sm, SCIC_STOPPING);
1218 return SCI_SUCCESS;
1222 * sci_controller_reset() - This method will reset the supplied core
1223 * controller regardless of the state of said controller. This operation is
1224 * considered destructive. In other words, all current operations are wiped
1225 * out. No IO completions for outstanding devices occur. Outstanding IO
1226 * requests are not aborted or completed at the actual remote device.
1227 * @controller: the handle to the controller object to reset.
1229 * Indicate if the controller reset method succeeded or failed in some way.
1230 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1231 * the controller reset operation is unable to complete.
1233 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1235 switch (ihost->sm.current_state_id) {
1236 case SCIC_RESET:
1237 case SCIC_READY:
1238 case SCIC_STOPPED:
1239 case SCIC_FAILED:
1241 * The reset operation is not a graceful cleanup, just
1242 * perform the state transition.
1244 sci_change_state(&ihost->sm, SCIC_RESETTING);
1245 return SCI_SUCCESS;
1246 default:
1247 dev_warn(&ihost->pdev->dev,
1248 "SCIC Controller reset operation requested in "
1249 "invalid state\n");
1250 return SCI_FAILURE_INVALID_STATE;
1254 void isci_host_deinit(struct isci_host *ihost)
1256 int i;
1258 isci_host_change_state(ihost, isci_stopping);
1259 for (i = 0; i < SCI_MAX_PORTS; i++) {
1260 struct isci_port *iport = &ihost->ports[i];
1261 struct isci_remote_device *idev, *d;
1263 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1264 if (test_bit(IDEV_ALLOCATED, &idev->flags))
1265 isci_remote_device_stop(ihost, idev);
1269 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1271 spin_lock_irq(&ihost->scic_lock);
1272 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1273 spin_unlock_irq(&ihost->scic_lock);
1275 wait_for_stop(ihost);
1276 sci_controller_reset(ihost);
1278 /* Cancel any/all outstanding port timers */
1279 for (i = 0; i < ihost->logical_port_entries; i++) {
1280 struct isci_port *iport = &ihost->ports[i];
1281 del_timer_sync(&iport->timer.timer);
1284 /* Cancel any/all outstanding phy timers */
1285 for (i = 0; i < SCI_MAX_PHYS; i++) {
1286 struct isci_phy *iphy = &ihost->phys[i];
1287 del_timer_sync(&iphy->sata_timer.timer);
1290 del_timer_sync(&ihost->port_agent.timer.timer);
1292 del_timer_sync(&ihost->power_control.timer.timer);
1294 del_timer_sync(&ihost->timer.timer);
1296 del_timer_sync(&ihost->phy_timer.timer);
1299 static void __iomem *scu_base(struct isci_host *isci_host)
1301 struct pci_dev *pdev = isci_host->pdev;
1302 int id = isci_host->id;
1304 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1307 static void __iomem *smu_base(struct isci_host *isci_host)
1309 struct pci_dev *pdev = isci_host->pdev;
1310 int id = isci_host->id;
1312 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1315 static void isci_user_parameters_get(struct sci_user_parameters *u)
1317 int i;
1319 for (i = 0; i < SCI_MAX_PHYS; i++) {
1320 struct sci_phy_user_params *u_phy = &u->phys[i];
1322 u_phy->max_speed_generation = phy_gen;
1324 /* we are not exporting these for now */
1325 u_phy->align_insertion_frequency = 0x7f;
1326 u_phy->in_connection_align_insertion_frequency = 0xff;
1327 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1330 u->stp_inactivity_timeout = stp_inactive_to;
1331 u->ssp_inactivity_timeout = ssp_inactive_to;
1332 u->stp_max_occupancy_timeout = stp_max_occ_to;
1333 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1334 u->no_outbound_task_timeout = no_outbound_task_to;
1335 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1338 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1340 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1342 sci_change_state(&ihost->sm, SCIC_RESET);
1345 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1347 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1349 sci_del_timer(&ihost->timer);
1352 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1353 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1354 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1355 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1356 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1357 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1360 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1361 * configure the interrupt coalescence.
1362 * @controller: This parameter represents the handle to the controller object
1363 * for which its interrupt coalesce register is overridden.
1364 * @coalesce_number: Used to control the number of entries in the Completion
1365 * Queue before an interrupt is generated. If the number of entries exceed
1366 * this number, an interrupt will be generated. The valid range of the input
1367 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1368 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1369 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1370 * interrupt coalescing timeout.
1372 * Indicate if the user successfully set the interrupt coalesce parameters.
1373 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1374 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1376 static enum sci_status
1377 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1378 u32 coalesce_number,
1379 u32 coalesce_timeout)
1381 u8 timeout_encode = 0;
1382 u32 min = 0;
1383 u32 max = 0;
1385 /* Check if the input parameters fall in the range. */
1386 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1387 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1390 * Defined encoding for interrupt coalescing timeout:
1391 * Value Min Max Units
1392 * ----- --- --- -----
1393 * 0 - - Disabled
1394 * 1 13.3 20.0 ns
1395 * 2 26.7 40.0
1396 * 3 53.3 80.0
1397 * 4 106.7 160.0
1398 * 5 213.3 320.0
1399 * 6 426.7 640.0
1400 * 7 853.3 1280.0
1401 * 8 1.7 2.6 us
1402 * 9 3.4 5.1
1403 * 10 6.8 10.2
1404 * 11 13.7 20.5
1405 * 12 27.3 41.0
1406 * 13 54.6 81.9
1407 * 14 109.2 163.8
1408 * 15 218.5 327.7
1409 * 16 436.9 655.4
1410 * 17 873.8 1310.7
1411 * 18 1.7 2.6 ms
1412 * 19 3.5 5.2
1413 * 20 7.0 10.5
1414 * 21 14.0 21.0
1415 * 22 28.0 41.9
1416 * 23 55.9 83.9
1417 * 24 111.8 167.8
1418 * 25 223.7 335.5
1419 * 26 447.4 671.1
1420 * 27 894.8 1342.2
1421 * 28 1.8 2.7 s
1422 * Others Undefined */
1425 * Use the table above to decide the encode of interrupt coalescing timeout
1426 * value for register writing. */
1427 if (coalesce_timeout == 0)
1428 timeout_encode = 0;
1429 else{
1430 /* make the timeout value in unit of (10 ns). */
1431 coalesce_timeout = coalesce_timeout * 100;
1432 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1433 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1435 /* get the encode of timeout for register writing. */
1436 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1437 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1438 timeout_encode++) {
1439 if (min <= coalesce_timeout && max > coalesce_timeout)
1440 break;
1441 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1442 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1443 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1444 break;
1445 else{
1446 timeout_encode++;
1447 break;
1449 } else {
1450 max = max * 2;
1451 min = min * 2;
1455 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1456 /* the value is out of range. */
1457 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1460 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1461 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1462 &ihost->smu_registers->interrupt_coalesce_control);
1465 ihost->interrupt_coalesce_number = (u16)coalesce_number;
1466 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1468 return SCI_SUCCESS;
1472 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1474 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1476 /* set the default interrupt coalescence number and timeout value. */
1477 sci_controller_set_interrupt_coalescence(ihost, 0x10, 250);
1480 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1482 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1484 /* disable interrupt coalescence. */
1485 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1488 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1490 u32 index;
1491 enum sci_status status;
1492 enum sci_status phy_status;
1494 status = SCI_SUCCESS;
1496 for (index = 0; index < SCI_MAX_PHYS; index++) {
1497 phy_status = sci_phy_stop(&ihost->phys[index]);
1499 if (phy_status != SCI_SUCCESS &&
1500 phy_status != SCI_FAILURE_INVALID_STATE) {
1501 status = SCI_FAILURE;
1503 dev_warn(&ihost->pdev->dev,
1504 "%s: Controller stop operation failed to stop "
1505 "phy %d because of status %d.\n",
1506 __func__,
1507 ihost->phys[index].phy_index, phy_status);
1511 return status;
1514 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1516 u32 index;
1517 enum sci_status port_status;
1518 enum sci_status status = SCI_SUCCESS;
1520 for (index = 0; index < ihost->logical_port_entries; index++) {
1521 struct isci_port *iport = &ihost->ports[index];
1523 port_status = sci_port_stop(iport);
1525 if ((port_status != SCI_SUCCESS) &&
1526 (port_status != SCI_FAILURE_INVALID_STATE)) {
1527 status = SCI_FAILURE;
1529 dev_warn(&ihost->pdev->dev,
1530 "%s: Controller stop operation failed to "
1531 "stop port %d because of status %d.\n",
1532 __func__,
1533 iport->logical_port_index,
1534 port_status);
1538 return status;
1541 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1543 u32 index;
1544 enum sci_status status;
1545 enum sci_status device_status;
1547 status = SCI_SUCCESS;
1549 for (index = 0; index < ihost->remote_node_entries; index++) {
1550 if (ihost->device_table[index] != NULL) {
1551 /* / @todo What timeout value do we want to provide to this request? */
1552 device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1554 if ((device_status != SCI_SUCCESS) &&
1555 (device_status != SCI_FAILURE_INVALID_STATE)) {
1556 dev_warn(&ihost->pdev->dev,
1557 "%s: Controller stop operation failed "
1558 "to stop device 0x%p because of "
1559 "status %d.\n",
1560 __func__,
1561 ihost->device_table[index], device_status);
1566 return status;
1569 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1571 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1573 /* Stop all of the components for this controller */
1574 sci_controller_stop_phys(ihost);
1575 sci_controller_stop_ports(ihost);
1576 sci_controller_stop_devices(ihost);
1579 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1581 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1583 sci_del_timer(&ihost->timer);
1586 static void sci_controller_reset_hardware(struct isci_host *ihost)
1588 /* Disable interrupts so we dont take any spurious interrupts */
1589 sci_controller_disable_interrupts(ihost);
1591 /* Reset the SCU */
1592 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1594 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1595 udelay(1000);
1597 /* The write to the CQGR clears the CQP */
1598 writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1600 /* The write to the UFQGP clears the UFQPR */
1601 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1604 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1606 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1608 sci_controller_reset_hardware(ihost);
1609 sci_change_state(&ihost->sm, SCIC_RESET);
1612 static const struct sci_base_state sci_controller_state_table[] = {
1613 [SCIC_INITIAL] = {
1614 .enter_state = sci_controller_initial_state_enter,
1616 [SCIC_RESET] = {},
1617 [SCIC_INITIALIZING] = {},
1618 [SCIC_INITIALIZED] = {},
1619 [SCIC_STARTING] = {
1620 .exit_state = sci_controller_starting_state_exit,
1622 [SCIC_READY] = {
1623 .enter_state = sci_controller_ready_state_enter,
1624 .exit_state = sci_controller_ready_state_exit,
1626 [SCIC_RESETTING] = {
1627 .enter_state = sci_controller_resetting_state_enter,
1629 [SCIC_STOPPING] = {
1630 .enter_state = sci_controller_stopping_state_enter,
1631 .exit_state = sci_controller_stopping_state_exit,
1633 [SCIC_STOPPED] = {},
1634 [SCIC_FAILED] = {}
1637 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1639 /* these defaults are overridden by the platform / firmware */
1640 u16 index;
1642 /* Default to APC mode. */
1643 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1645 /* Default to APC mode. */
1646 ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
1648 /* Default to no SSC operation. */
1649 ihost->oem_parameters.controller.do_enable_ssc = false;
1651 /* Initialize all of the port parameter information to narrow ports. */
1652 for (index = 0; index < SCI_MAX_PORTS; index++) {
1653 ihost->oem_parameters.ports[index].phy_mask = 0;
1656 /* Initialize all of the phy parameter information. */
1657 for (index = 0; index < SCI_MAX_PHYS; index++) {
1658 /* Default to 6G (i.e. Gen 3) for now. */
1659 ihost->user_parameters.phys[index].max_speed_generation = 3;
1661 /* the frequencies cannot be 0 */
1662 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1663 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1664 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1667 * Previous Vitesse based expanders had a arbitration issue that
1668 * is worked around by having the upper 32-bits of SAS address
1669 * with a value greater then the Vitesse company identifier.
1670 * Hence, usage of 0x5FCFFFFF. */
1671 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1672 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1675 ihost->user_parameters.stp_inactivity_timeout = 5;
1676 ihost->user_parameters.ssp_inactivity_timeout = 5;
1677 ihost->user_parameters.stp_max_occupancy_timeout = 5;
1678 ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1679 ihost->user_parameters.no_outbound_task_timeout = 20;
1682 static void controller_timeout(unsigned long data)
1684 struct sci_timer *tmr = (struct sci_timer *)data;
1685 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1686 struct sci_base_state_machine *sm = &ihost->sm;
1687 unsigned long flags;
1689 spin_lock_irqsave(&ihost->scic_lock, flags);
1691 if (tmr->cancel)
1692 goto done;
1694 if (sm->current_state_id == SCIC_STARTING)
1695 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1696 else if (sm->current_state_id == SCIC_STOPPING) {
1697 sci_change_state(sm, SCIC_FAILED);
1698 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1699 } else /* / @todo Now what do we want to do in this case? */
1700 dev_err(&ihost->pdev->dev,
1701 "%s: Controller timer fired when controller was not "
1702 "in a state being timed.\n",
1703 __func__);
1705 done:
1706 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1709 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1710 void __iomem *scu_base,
1711 void __iomem *smu_base)
1713 u8 i;
1715 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1717 ihost->scu_registers = scu_base;
1718 ihost->smu_registers = smu_base;
1720 sci_port_configuration_agent_construct(&ihost->port_agent);
1722 /* Construct the ports for this controller */
1723 for (i = 0; i < SCI_MAX_PORTS; i++)
1724 sci_port_construct(&ihost->ports[i], i, ihost);
1725 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1727 /* Construct the phys for this controller */
1728 for (i = 0; i < SCI_MAX_PHYS; i++) {
1729 /* Add all the PHYs to the dummy port */
1730 sci_phy_construct(&ihost->phys[i],
1731 &ihost->ports[SCI_MAX_PORTS], i);
1734 ihost->invalid_phy_mask = 0;
1736 sci_init_timer(&ihost->timer, controller_timeout);
1738 /* Initialize the User and OEM parameters to default values. */
1739 sci_controller_set_default_config_parameters(ihost);
1741 return sci_controller_reset(ihost);
1744 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1746 int i;
1748 for (i = 0; i < SCI_MAX_PORTS; i++)
1749 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1750 return -EINVAL;
1752 for (i = 0; i < SCI_MAX_PHYS; i++)
1753 if (oem->phys[i].sas_address.high == 0 &&
1754 oem->phys[i].sas_address.low == 0)
1755 return -EINVAL;
1757 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1758 for (i = 0; i < SCI_MAX_PHYS; i++)
1759 if (oem->ports[i].phy_mask != 0)
1760 return -EINVAL;
1761 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1762 u8 phy_mask = 0;
1764 for (i = 0; i < SCI_MAX_PHYS; i++)
1765 phy_mask |= oem->ports[i].phy_mask;
1767 if (phy_mask == 0)
1768 return -EINVAL;
1769 } else
1770 return -EINVAL;
1772 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1773 return -EINVAL;
1775 return 0;
1778 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1780 u32 state = ihost->sm.current_state_id;
1782 if (state == SCIC_RESET ||
1783 state == SCIC_INITIALIZING ||
1784 state == SCIC_INITIALIZED) {
1786 if (sci_oem_parameters_validate(&ihost->oem_parameters))
1787 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1789 return SCI_SUCCESS;
1792 return SCI_FAILURE_INVALID_STATE;
1795 static void power_control_timeout(unsigned long data)
1797 struct sci_timer *tmr = (struct sci_timer *)data;
1798 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1799 struct isci_phy *iphy;
1800 unsigned long flags;
1801 u8 i;
1803 spin_lock_irqsave(&ihost->scic_lock, flags);
1805 if (tmr->cancel)
1806 goto done;
1808 ihost->power_control.phys_granted_power = 0;
1810 if (ihost->power_control.phys_waiting == 0) {
1811 ihost->power_control.timer_started = false;
1812 goto done;
1815 for (i = 0; i < SCI_MAX_PHYS; i++) {
1817 if (ihost->power_control.phys_waiting == 0)
1818 break;
1820 iphy = ihost->power_control.requesters[i];
1821 if (iphy == NULL)
1822 continue;
1824 if (ihost->power_control.phys_granted_power >=
1825 ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
1826 break;
1828 ihost->power_control.requesters[i] = NULL;
1829 ihost->power_control.phys_waiting--;
1830 ihost->power_control.phys_granted_power++;
1831 sci_phy_consume_power_handler(iphy);
1835 * It doesn't matter if the power list is empty, we need to start the
1836 * timer in case another phy becomes ready.
1838 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1839 ihost->power_control.timer_started = true;
1841 done:
1842 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1845 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1846 struct isci_phy *iphy)
1848 BUG_ON(iphy == NULL);
1850 if (ihost->power_control.phys_granted_power <
1851 ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
1852 ihost->power_control.phys_granted_power++;
1853 sci_phy_consume_power_handler(iphy);
1856 * stop and start the power_control timer. When the timer fires, the
1857 * no_of_phys_granted_power will be set to 0
1859 if (ihost->power_control.timer_started)
1860 sci_del_timer(&ihost->power_control.timer);
1862 sci_mod_timer(&ihost->power_control.timer,
1863 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1864 ihost->power_control.timer_started = true;
1866 } else {
1867 /* Add the phy in the waiting list */
1868 ihost->power_control.requesters[iphy->phy_index] = iphy;
1869 ihost->power_control.phys_waiting++;
1873 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1874 struct isci_phy *iphy)
1876 BUG_ON(iphy == NULL);
1878 if (ihost->power_control.requesters[iphy->phy_index])
1879 ihost->power_control.phys_waiting--;
1881 ihost->power_control.requesters[iphy->phy_index] = NULL;
1884 #define AFE_REGISTER_WRITE_DELAY 10
1886 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1887 * the OEM parameters
1889 static void sci_controller_afe_initialization(struct isci_host *ihost)
1891 const struct sci_oem_params *oem = &ihost->oem_parameters;
1892 struct pci_dev *pdev = ihost->pdev;
1893 u32 afe_status;
1894 u32 phy_id;
1896 /* Clear DFX Status registers */
1897 writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1898 udelay(AFE_REGISTER_WRITE_DELAY);
1900 if (is_b0(pdev)) {
1901 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1902 * Timer, PM Stagger Timer */
1903 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1904 udelay(AFE_REGISTER_WRITE_DELAY);
1907 /* Configure bias currents to normal */
1908 if (is_a2(pdev))
1909 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1910 else if (is_b0(pdev) || is_c0(pdev))
1911 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1913 udelay(AFE_REGISTER_WRITE_DELAY);
1915 /* Enable PLL */
1916 if (is_b0(pdev) || is_c0(pdev))
1917 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1918 else
1919 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1921 udelay(AFE_REGISTER_WRITE_DELAY);
1923 /* Wait for the PLL to lock */
1924 do {
1925 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1926 udelay(AFE_REGISTER_WRITE_DELAY);
1927 } while ((afe_status & 0x00001000) == 0);
1929 if (is_a2(pdev)) {
1930 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1931 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1932 udelay(AFE_REGISTER_WRITE_DELAY);
1935 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1936 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1938 if (is_b0(pdev)) {
1939 /* Configure transmitter SSC parameters */
1940 writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1941 udelay(AFE_REGISTER_WRITE_DELAY);
1942 } else if (is_c0(pdev)) {
1943 /* Configure transmitter SSC parameters */
1944 writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1945 udelay(AFE_REGISTER_WRITE_DELAY);
1948 * All defaults, except the Receive Word Alignament/Comma Detect
1949 * Enable....(0xe800) */
1950 writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1951 udelay(AFE_REGISTER_WRITE_DELAY);
1952 } else {
1954 * All defaults, except the Receive Word Alignament/Comma Detect
1955 * Enable....(0xe800) */
1956 writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1957 udelay(AFE_REGISTER_WRITE_DELAY);
1959 writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1960 udelay(AFE_REGISTER_WRITE_DELAY);
1964 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1965 * & increase TX int & ext bias 20%....(0xe85c) */
1966 if (is_a2(pdev))
1967 writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1968 else if (is_b0(pdev)) {
1969 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1970 writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1971 udelay(AFE_REGISTER_WRITE_DELAY);
1974 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1975 * & increase TX int & ext bias 20%....(0xe85c) */
1976 writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1977 } else {
1978 writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1979 udelay(AFE_REGISTER_WRITE_DELAY);
1982 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1983 * & increase TX int & ext bias 20%....(0xe85c) */
1984 writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1986 udelay(AFE_REGISTER_WRITE_DELAY);
1988 if (is_a2(pdev)) {
1989 /* Enable TX equalization (0xe824) */
1990 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
1991 udelay(AFE_REGISTER_WRITE_DELAY);
1995 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
1996 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
1997 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1998 udelay(AFE_REGISTER_WRITE_DELAY);
2000 /* Leave DFE/FFE on */
2001 if (is_a2(pdev))
2002 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2003 else if (is_b0(pdev)) {
2004 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2005 udelay(AFE_REGISTER_WRITE_DELAY);
2006 /* Enable TX equalization (0xe824) */
2007 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2008 } else {
2009 writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2010 udelay(AFE_REGISTER_WRITE_DELAY);
2012 writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2013 udelay(AFE_REGISTER_WRITE_DELAY);
2015 /* Enable TX equalization (0xe824) */
2016 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2019 udelay(AFE_REGISTER_WRITE_DELAY);
2021 writel(oem_phy->afe_tx_amp_control0,
2022 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2023 udelay(AFE_REGISTER_WRITE_DELAY);
2025 writel(oem_phy->afe_tx_amp_control1,
2026 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2027 udelay(AFE_REGISTER_WRITE_DELAY);
2029 writel(oem_phy->afe_tx_amp_control2,
2030 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2031 udelay(AFE_REGISTER_WRITE_DELAY);
2033 writel(oem_phy->afe_tx_amp_control3,
2034 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2035 udelay(AFE_REGISTER_WRITE_DELAY);
2038 /* Transfer control to the PEs */
2039 writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2040 udelay(AFE_REGISTER_WRITE_DELAY);
2043 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2045 sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2047 memset(ihost->power_control.requesters, 0,
2048 sizeof(ihost->power_control.requesters));
2050 ihost->power_control.phys_waiting = 0;
2051 ihost->power_control.phys_granted_power = 0;
2054 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2056 struct sci_base_state_machine *sm = &ihost->sm;
2057 enum sci_status result = SCI_FAILURE;
2058 unsigned long i, state, val;
2060 if (ihost->sm.current_state_id != SCIC_RESET) {
2061 dev_warn(&ihost->pdev->dev,
2062 "SCIC Controller initialize operation requested "
2063 "in invalid state\n");
2064 return SCI_FAILURE_INVALID_STATE;
2067 sci_change_state(sm, SCIC_INITIALIZING);
2069 sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2071 ihost->next_phy_to_start = 0;
2072 ihost->phy_startup_timer_pending = false;
2074 sci_controller_initialize_power_control(ihost);
2077 * There is nothing to do here for B0 since we do not have to
2078 * program the AFE registers.
2079 * / @todo The AFE settings are supposed to be correct for the B0 but
2080 * / presently they seem to be wrong. */
2081 sci_controller_afe_initialization(ihost);
2084 /* Take the hardware out of reset */
2085 writel(0, &ihost->smu_registers->soft_reset_control);
2088 * / @todo Provide meaningfull error code for hardware failure
2089 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2090 for (i = 100; i >= 1; i--) {
2091 u32 status;
2093 /* Loop until the hardware reports success */
2094 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2095 status = readl(&ihost->smu_registers->control_status);
2097 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2098 break;
2100 if (i == 0)
2101 goto out;
2104 * Determine what are the actaul device capacities that the
2105 * hardware will support */
2106 val = readl(&ihost->smu_registers->device_context_capacity);
2108 /* Record the smaller of the two capacity values */
2109 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2110 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2111 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2114 * Make all PEs that are unassigned match up with the
2115 * logical ports
2117 for (i = 0; i < ihost->logical_port_entries; i++) {
2118 struct scu_port_task_scheduler_group_registers __iomem
2119 *ptsg = &ihost->scu_registers->peg0.ptsg;
2121 writel(i, &ptsg->protocol_engine[i]);
2124 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2125 val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2126 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2127 writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2129 val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2130 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2131 writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2134 * Initialize the PHYs before the PORTs because the PHY registers
2135 * are accessed during the port initialization.
2137 for (i = 0; i < SCI_MAX_PHYS; i++) {
2138 result = sci_phy_initialize(&ihost->phys[i],
2139 &ihost->scu_registers->peg0.pe[i].tl,
2140 &ihost->scu_registers->peg0.pe[i].ll);
2141 if (result != SCI_SUCCESS)
2142 goto out;
2145 for (i = 0; i < ihost->logical_port_entries; i++) {
2146 struct isci_port *iport = &ihost->ports[i];
2148 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2149 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2150 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2153 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2155 out:
2156 /* Advance the controller state machine */
2157 if (result == SCI_SUCCESS)
2158 state = SCIC_INITIALIZED;
2159 else
2160 state = SCIC_FAILED;
2161 sci_change_state(sm, state);
2163 return result;
2166 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2167 struct sci_user_parameters *sci_parms)
2169 u32 state = ihost->sm.current_state_id;
2171 if (state == SCIC_RESET ||
2172 state == SCIC_INITIALIZING ||
2173 state == SCIC_INITIALIZED) {
2174 u16 index;
2177 * Validate the user parameters. If they are not legal, then
2178 * return a failure.
2180 for (index = 0; index < SCI_MAX_PHYS; index++) {
2181 struct sci_phy_user_params *user_phy;
2183 user_phy = &sci_parms->phys[index];
2185 if (!((user_phy->max_speed_generation <=
2186 SCIC_SDS_PARM_MAX_SPEED) &&
2187 (user_phy->max_speed_generation >
2188 SCIC_SDS_PARM_NO_SPEED)))
2189 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2191 if (user_phy->in_connection_align_insertion_frequency <
2193 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2195 if ((user_phy->in_connection_align_insertion_frequency <
2196 3) ||
2197 (user_phy->align_insertion_frequency == 0) ||
2198 (user_phy->
2199 notify_enable_spin_up_insertion_frequency ==
2201 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2204 if ((sci_parms->stp_inactivity_timeout == 0) ||
2205 (sci_parms->ssp_inactivity_timeout == 0) ||
2206 (sci_parms->stp_max_occupancy_timeout == 0) ||
2207 (sci_parms->ssp_max_occupancy_timeout == 0) ||
2208 (sci_parms->no_outbound_task_timeout == 0))
2209 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2211 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2213 return SCI_SUCCESS;
2216 return SCI_FAILURE_INVALID_STATE;
2219 static int sci_controller_mem_init(struct isci_host *ihost)
2221 struct device *dev = &ihost->pdev->dev;
2222 dma_addr_t dma;
2223 size_t size;
2224 int err;
2226 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2227 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2228 if (!ihost->completion_queue)
2229 return -ENOMEM;
2231 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2232 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2234 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2235 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2236 GFP_KERNEL);
2237 if (!ihost->remote_node_context_table)
2238 return -ENOMEM;
2240 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2241 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2243 size = ihost->task_context_entries * sizeof(struct scu_task_context),
2244 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2245 if (!ihost->task_context_table)
2246 return -ENOMEM;
2248 ihost->task_context_dma = dma;
2249 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2250 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2252 err = sci_unsolicited_frame_control_construct(ihost);
2253 if (err)
2254 return err;
2257 * Inform the silicon as to the location of the UF headers and
2258 * address table.
2260 writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2261 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2262 writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2263 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2265 writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2266 &ihost->scu_registers->sdma.uf_address_table_lower);
2267 writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2268 &ihost->scu_registers->sdma.uf_address_table_upper);
2270 return 0;
2273 int isci_host_init(struct isci_host *ihost)
2275 int err = 0, i;
2276 enum sci_status status;
2277 struct sci_user_parameters sci_user_params;
2278 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2280 spin_lock_init(&ihost->state_lock);
2281 spin_lock_init(&ihost->scic_lock);
2282 init_waitqueue_head(&ihost->eventq);
2284 isci_host_change_state(ihost, isci_starting);
2286 status = sci_controller_construct(ihost, scu_base(ihost),
2287 smu_base(ihost));
2289 if (status != SCI_SUCCESS) {
2290 dev_err(&ihost->pdev->dev,
2291 "%s: sci_controller_construct failed - status = %x\n",
2292 __func__,
2293 status);
2294 return -ENODEV;
2297 ihost->sas_ha.dev = &ihost->pdev->dev;
2298 ihost->sas_ha.lldd_ha = ihost;
2301 * grab initial values stored in the controller object for OEM and USER
2302 * parameters
2304 isci_user_parameters_get(&sci_user_params);
2305 status = sci_user_parameters_set(ihost, &sci_user_params);
2306 if (status != SCI_SUCCESS) {
2307 dev_warn(&ihost->pdev->dev,
2308 "%s: sci_user_parameters_set failed\n",
2309 __func__);
2310 return -ENODEV;
2313 /* grab any OEM parameters specified in orom */
2314 if (pci_info->orom) {
2315 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2316 pci_info->orom,
2317 ihost->id);
2318 if (status != SCI_SUCCESS) {
2319 dev_warn(&ihost->pdev->dev,
2320 "parsing firmware oem parameters failed\n");
2321 return -EINVAL;
2325 status = sci_oem_parameters_set(ihost);
2326 if (status != SCI_SUCCESS) {
2327 dev_warn(&ihost->pdev->dev,
2328 "%s: sci_oem_parameters_set failed\n",
2329 __func__);
2330 return -ENODEV;
2333 tasklet_init(&ihost->completion_tasklet,
2334 isci_host_completion_routine, (unsigned long)ihost);
2336 INIT_LIST_HEAD(&ihost->requests_to_complete);
2337 INIT_LIST_HEAD(&ihost->requests_to_errorback);
2339 spin_lock_irq(&ihost->scic_lock);
2340 status = sci_controller_initialize(ihost);
2341 spin_unlock_irq(&ihost->scic_lock);
2342 if (status != SCI_SUCCESS) {
2343 dev_warn(&ihost->pdev->dev,
2344 "%s: sci_controller_initialize failed -"
2345 " status = 0x%x\n",
2346 __func__, status);
2347 return -ENODEV;
2350 err = sci_controller_mem_init(ihost);
2351 if (err)
2352 return err;
2354 for (i = 0; i < SCI_MAX_PORTS; i++)
2355 isci_port_init(&ihost->ports[i], ihost, i);
2357 for (i = 0; i < SCI_MAX_PHYS; i++)
2358 isci_phy_init(&ihost->phys[i], ihost, i);
2360 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2361 struct isci_remote_device *idev = &ihost->devices[i];
2363 INIT_LIST_HEAD(&idev->reqs_in_process);
2364 INIT_LIST_HEAD(&idev->node);
2367 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2368 struct isci_request *ireq;
2369 dma_addr_t dma;
2371 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2372 sizeof(struct isci_request), &dma,
2373 GFP_KERNEL);
2374 if (!ireq)
2375 return -ENOMEM;
2377 ireq->tc = &ihost->task_context_table[i];
2378 ireq->owning_controller = ihost;
2379 spin_lock_init(&ireq->state_lock);
2380 ireq->request_daddr = dma;
2381 ireq->isci_host = ihost;
2382 ihost->reqs[i] = ireq;
2385 return 0;
2388 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2389 struct isci_phy *iphy)
2391 switch (ihost->sm.current_state_id) {
2392 case SCIC_STARTING:
2393 sci_del_timer(&ihost->phy_timer);
2394 ihost->phy_startup_timer_pending = false;
2395 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2396 iport, iphy);
2397 sci_controller_start_next_phy(ihost);
2398 break;
2399 case SCIC_READY:
2400 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2401 iport, iphy);
2402 break;
2403 default:
2404 dev_dbg(&ihost->pdev->dev,
2405 "%s: SCIC Controller linkup event from phy %d in "
2406 "unexpected state %d\n", __func__, iphy->phy_index,
2407 ihost->sm.current_state_id);
2411 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2412 struct isci_phy *iphy)
2414 switch (ihost->sm.current_state_id) {
2415 case SCIC_STARTING:
2416 case SCIC_READY:
2417 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2418 iport, iphy);
2419 break;
2420 default:
2421 dev_dbg(&ihost->pdev->dev,
2422 "%s: SCIC Controller linkdown event from phy %d in "
2423 "unexpected state %d\n",
2424 __func__,
2425 iphy->phy_index,
2426 ihost->sm.current_state_id);
2430 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2432 u32 index;
2434 for (index = 0; index < ihost->remote_node_entries; index++) {
2435 if ((ihost->device_table[index] != NULL) &&
2436 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2437 return true;
2440 return false;
2443 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2444 struct isci_remote_device *idev)
2446 if (ihost->sm.current_state_id != SCIC_STOPPING) {
2447 dev_dbg(&ihost->pdev->dev,
2448 "SCIC Controller 0x%p remote device stopped event "
2449 "from device 0x%p in unexpected state %d\n",
2450 ihost, idev,
2451 ihost->sm.current_state_id);
2452 return;
2455 if (!sci_controller_has_remote_devices_stopping(ihost))
2456 sci_change_state(&ihost->sm, SCIC_STOPPED);
2459 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2461 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2462 __func__, ihost->id, request);
2464 writel(request, &ihost->smu_registers->post_context_port);
2467 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2469 u16 task_index;
2470 u16 task_sequence;
2472 task_index = ISCI_TAG_TCI(io_tag);
2474 if (task_index < ihost->task_context_entries) {
2475 struct isci_request *ireq = ihost->reqs[task_index];
2477 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2478 task_sequence = ISCI_TAG_SEQ(io_tag);
2480 if (task_sequence == ihost->io_request_sequence[task_index])
2481 return ireq;
2485 return NULL;
2489 * This method allocates remote node index and the reserves the remote node
2490 * context space for use. This method can fail if there are no more remote
2491 * node index available.
2492 * @scic: This is the controller object which contains the set of
2493 * free remote node ids
2494 * @sci_dev: This is the device object which is requesting the a remote node
2495 * id
2496 * @node_id: This is the remote node id that is assinged to the device if one
2497 * is available
2499 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2500 * node index available.
2502 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2503 struct isci_remote_device *idev,
2504 u16 *node_id)
2506 u16 node_index;
2507 u32 remote_node_count = sci_remote_device_node_count(idev);
2509 node_index = sci_remote_node_table_allocate_remote_node(
2510 &ihost->available_remote_nodes, remote_node_count
2513 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2514 ihost->device_table[node_index] = idev;
2516 *node_id = node_index;
2518 return SCI_SUCCESS;
2521 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2524 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2525 struct isci_remote_device *idev,
2526 u16 node_id)
2528 u32 remote_node_count = sci_remote_device_node_count(idev);
2530 if (ihost->device_table[node_id] == idev) {
2531 ihost->device_table[node_id] = NULL;
2533 sci_remote_node_table_release_remote_node_index(
2534 &ihost->available_remote_nodes, remote_node_count, node_id
2539 void sci_controller_copy_sata_response(void *response_buffer,
2540 void *frame_header,
2541 void *frame_buffer)
2543 /* XXX type safety? */
2544 memcpy(response_buffer, frame_header, sizeof(u32));
2546 memcpy(response_buffer + sizeof(u32),
2547 frame_buffer,
2548 sizeof(struct dev_to_host_fis) - sizeof(u32));
2551 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2553 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2554 writel(ihost->uf_control.get,
2555 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2558 void isci_tci_free(struct isci_host *ihost, u16 tci)
2560 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2562 ihost->tci_pool[tail] = tci;
2563 ihost->tci_tail = tail + 1;
2566 static u16 isci_tci_alloc(struct isci_host *ihost)
2568 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2569 u16 tci = ihost->tci_pool[head];
2571 ihost->tci_head = head + 1;
2572 return tci;
2575 static u16 isci_tci_space(struct isci_host *ihost)
2577 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2580 u16 isci_alloc_tag(struct isci_host *ihost)
2582 if (isci_tci_space(ihost)) {
2583 u16 tci = isci_tci_alloc(ihost);
2584 u8 seq = ihost->io_request_sequence[tci];
2586 return ISCI_TAG(seq, tci);
2589 return SCI_CONTROLLER_INVALID_IO_TAG;
2592 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2594 u16 tci = ISCI_TAG_TCI(io_tag);
2595 u16 seq = ISCI_TAG_SEQ(io_tag);
2597 /* prevent tail from passing head */
2598 if (isci_tci_active(ihost) == 0)
2599 return SCI_FAILURE_INVALID_IO_TAG;
2601 if (seq == ihost->io_request_sequence[tci]) {
2602 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2604 isci_tci_free(ihost, tci);
2606 return SCI_SUCCESS;
2608 return SCI_FAILURE_INVALID_IO_TAG;
2611 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2612 struct isci_remote_device *idev,
2613 struct isci_request *ireq)
2615 enum sci_status status;
2617 if (ihost->sm.current_state_id != SCIC_READY) {
2618 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2619 return SCI_FAILURE_INVALID_STATE;
2622 status = sci_remote_device_start_io(ihost, idev, ireq);
2623 if (status != SCI_SUCCESS)
2624 return status;
2626 set_bit(IREQ_ACTIVE, &ireq->flags);
2627 sci_controller_post_request(ihost, ireq->post_context);
2628 return SCI_SUCCESS;
2631 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2632 struct isci_remote_device *idev,
2633 struct isci_request *ireq)
2635 /* terminate an ongoing (i.e. started) core IO request. This does not
2636 * abort the IO request at the target, but rather removes the IO
2637 * request from the host controller.
2639 enum sci_status status;
2641 if (ihost->sm.current_state_id != SCIC_READY) {
2642 dev_warn(&ihost->pdev->dev,
2643 "invalid state to terminate request\n");
2644 return SCI_FAILURE_INVALID_STATE;
2647 status = sci_io_request_terminate(ireq);
2648 if (status != SCI_SUCCESS)
2649 return status;
2652 * Utilize the original post context command and or in the POST_TC_ABORT
2653 * request sub-type.
2655 sci_controller_post_request(ihost,
2656 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2657 return SCI_SUCCESS;
2661 * sci_controller_complete_io() - This method will perform core specific
2662 * completion operations for an IO request. After this method is invoked,
2663 * the user should consider the IO request as invalid until it is properly
2664 * reused (i.e. re-constructed).
2665 * @ihost: The handle to the controller object for which to complete the
2666 * IO request.
2667 * @idev: The handle to the remote device object for which to complete
2668 * the IO request.
2669 * @ireq: the handle to the io request object to complete.
2671 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2672 struct isci_remote_device *idev,
2673 struct isci_request *ireq)
2675 enum sci_status status;
2676 u16 index;
2678 switch (ihost->sm.current_state_id) {
2679 case SCIC_STOPPING:
2680 /* XXX: Implement this function */
2681 return SCI_FAILURE;
2682 case SCIC_READY:
2683 status = sci_remote_device_complete_io(ihost, idev, ireq);
2684 if (status != SCI_SUCCESS)
2685 return status;
2687 index = ISCI_TAG_TCI(ireq->io_tag);
2688 clear_bit(IREQ_ACTIVE, &ireq->flags);
2689 return SCI_SUCCESS;
2690 default:
2691 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2692 return SCI_FAILURE_INVALID_STATE;
2697 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2699 struct isci_host *ihost = ireq->owning_controller;
2701 if (ihost->sm.current_state_id != SCIC_READY) {
2702 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2703 return SCI_FAILURE_INVALID_STATE;
2706 set_bit(IREQ_ACTIVE, &ireq->flags);
2707 sci_controller_post_request(ihost, ireq->post_context);
2708 return SCI_SUCCESS;
2712 * sci_controller_start_task() - This method is called by the SCIC user to
2713 * send/start a framework task management request.
2714 * @controller: the handle to the controller object for which to start the task
2715 * management request.
2716 * @remote_device: the handle to the remote device object for which to start
2717 * the task management request.
2718 * @task_request: the handle to the task request object to start.
2720 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2721 struct isci_remote_device *idev,
2722 struct isci_request *ireq)
2724 enum sci_status status;
2726 if (ihost->sm.current_state_id != SCIC_READY) {
2727 dev_warn(&ihost->pdev->dev,
2728 "%s: SCIC Controller starting task from invalid "
2729 "state\n",
2730 __func__);
2731 return SCI_TASK_FAILURE_INVALID_STATE;
2734 status = sci_remote_device_start_task(ihost, idev, ireq);
2735 switch (status) {
2736 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2737 set_bit(IREQ_ACTIVE, &ireq->flags);
2740 * We will let framework know this task request started successfully,
2741 * although core is still woring on starting the request (to post tc when
2742 * RNC is resumed.)
2744 return SCI_SUCCESS;
2745 case SCI_SUCCESS:
2746 set_bit(IREQ_ACTIVE, &ireq->flags);
2747 sci_controller_post_request(ihost, ireq->post_context);
2748 break;
2749 default:
2750 break;
2753 return status;