ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / drivers / tty / serial / ifx6x60.c
blob5315525220fb24370399e785bf73ad1bf3f150bb
1 /****************************************************************************
3 * Driver for the IFX 6x60 spi modem.
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 * Denis Joseph Barrow <d.barow@option.com>
8 * Jan Dumon <j.dumon@option.com>
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <russ.gorby@intel.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 * USA
27 * Driver modified by Intel from Option gtm501l_spi.c
29 * Notes
30 * o The driver currently assumes a single device only. If you need to
31 * change this then look for saved_ifx_dev and add a device lookup
32 * o The driver is intended to be big-endian safe but has never been
33 * tested that way (no suitable hardware). There are a couple of FIXME
34 * notes by areas that may need addressing
35 * o Some of the GPIO naming/setup assumptions may need revisiting if
36 * you need to use this driver for another platform.
38 *****************************************************************************/
39 #include <linux/module.h>
40 #include <linux/termios.h>
41 #include <linux/tty.h>
42 #include <linux/device.h>
43 #include <linux/spi/spi.h>
44 #include <linux/kfifo.h>
45 #include <linux/tty_flip.h>
46 #include <linux/timer.h>
47 #include <linux/serial.h>
48 #include <linux/interrupt.h>
49 #include <linux/irq.h>
50 #include <linux/rfkill.h>
51 #include <linux/fs.h>
52 #include <linux/ip.h>
53 #include <linux/dmapool.h>
54 #include <linux/gpio.h>
55 #include <linux/sched.h>
56 #include <linux/time.h>
57 #include <linux/wait.h>
58 #include <linux/pm.h>
59 #include <linux/pm_runtime.h>
60 #include <linux/spi/ifx_modem.h>
61 #include <linux/delay.h>
63 #include "ifx6x60.h"
65 #define IFX_SPI_MORE_MASK 0x10
66 #define IFX_SPI_MORE_BIT 12 /* bit position in u16 */
67 #define IFX_SPI_CTS_BIT 13 /* bit position in u16 */
68 #define IFX_SPI_MODE SPI_MODE_1
69 #define IFX_SPI_TTY_ID 0
70 #define IFX_SPI_TIMEOUT_SEC 2
71 #define IFX_SPI_HEADER_0 (-1)
72 #define IFX_SPI_HEADER_F (-2)
74 /* forward reference */
75 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
77 /* local variables */
78 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
79 static struct tty_driver *tty_drv;
80 static struct ifx_spi_device *saved_ifx_dev;
81 static struct lock_class_key ifx_spi_key;
83 /* GPIO/GPE settings */
85 /**
86 * mrdy_set_high - set MRDY GPIO
87 * @ifx: device we are controlling
90 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
92 gpio_set_value(ifx->gpio.mrdy, 1);
95 /**
96 * mrdy_set_low - clear MRDY GPIO
97 * @ifx: device we are controlling
100 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
102 gpio_set_value(ifx->gpio.mrdy, 0);
106 * ifx_spi_power_state_set
107 * @ifx_dev: our SPI device
108 * @val: bits to set
110 * Set bit in power status and signal power system if status becomes non-0
112 static void
113 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
115 unsigned long flags;
117 spin_lock_irqsave(&ifx_dev->power_lock, flags);
120 * if power status is already non-0, just update, else
121 * tell power system
123 if (!ifx_dev->power_status)
124 pm_runtime_get(&ifx_dev->spi_dev->dev);
125 ifx_dev->power_status |= val;
127 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
131 * ifx_spi_power_state_clear - clear power bit
132 * @ifx_dev: our SPI device
133 * @val: bits to clear
135 * clear bit in power status and signal power system if status becomes 0
137 static void
138 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
140 unsigned long flags;
142 spin_lock_irqsave(&ifx_dev->power_lock, flags);
144 if (ifx_dev->power_status) {
145 ifx_dev->power_status &= ~val;
146 if (!ifx_dev->power_status)
147 pm_runtime_put(&ifx_dev->spi_dev->dev);
150 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
154 * swap_buf
155 * @buf: our buffer
156 * @len : number of bytes (not words) in the buffer
157 * @end: end of buffer
159 * Swap the contents of a buffer into big endian format
161 static inline void swap_buf(u16 *buf, int len, void *end)
163 int n;
165 len = ((len + 1) >> 1);
166 if ((void *)&buf[len] > end) {
167 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
168 &buf[len], end);
169 return;
171 for (n = 0; n < len; n++) {
172 *buf = cpu_to_be16(*buf);
173 buf++;
178 * mrdy_assert - assert MRDY line
179 * @ifx_dev: our SPI device
181 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
182 * now.
184 * FIXME: Can SRDY even go high as we are running this code ?
186 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
188 int val = gpio_get_value(ifx_dev->gpio.srdy);
189 if (!val) {
190 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
191 &ifx_dev->flags)) {
192 ifx_dev->spi_timer.expires =
193 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
194 add_timer(&ifx_dev->spi_timer);
198 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
199 mrdy_set_high(ifx_dev);
203 * ifx_spi_hangup - hang up an IFX device
204 * @ifx_dev: our SPI device
206 * Hang up the tty attached to the IFX device if one is currently
207 * open. If not take no action
209 static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
211 struct tty_port *pport = &ifx_dev->tty_port;
212 struct tty_struct *tty = tty_port_tty_get(pport);
213 if (tty) {
214 tty_hangup(tty);
215 tty_kref_put(tty);
220 * ifx_spi_timeout - SPI timeout
221 * @arg: our SPI device
223 * The SPI has timed out: hang up the tty. Users will then see a hangup
224 * and error events.
226 static void ifx_spi_timeout(unsigned long arg)
228 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
230 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
231 ifx_spi_ttyhangup(ifx_dev);
232 mrdy_set_low(ifx_dev);
233 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
236 /* char/tty operations */
239 * ifx_spi_tiocmget - get modem lines
240 * @tty: our tty device
241 * @filp: file handle issuing the request
243 * Map the signal state into Linux modem flags and report the value
244 * in Linux terms
246 static int ifx_spi_tiocmget(struct tty_struct *tty)
248 unsigned int value;
249 struct ifx_spi_device *ifx_dev = tty->driver_data;
251 value =
252 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
253 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
254 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
255 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
256 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
257 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
258 return value;
262 * ifx_spi_tiocmset - set modem bits
263 * @tty: the tty structure
264 * @set: bits to set
265 * @clear: bits to clear
267 * The IFX6x60 only supports DTR and RTS. Set them accordingly
268 * and flag that an update to the modem is needed.
270 * FIXME: do we need to kick the tranfers when we do this ?
272 static int ifx_spi_tiocmset(struct tty_struct *tty,
273 unsigned int set, unsigned int clear)
275 struct ifx_spi_device *ifx_dev = tty->driver_data;
277 if (set & TIOCM_RTS)
278 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
279 if (set & TIOCM_DTR)
280 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
281 if (clear & TIOCM_RTS)
282 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
283 if (clear & TIOCM_DTR)
284 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
286 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
287 return 0;
291 * ifx_spi_open - called on tty open
292 * @tty: our tty device
293 * @filp: file handle being associated with the tty
295 * Open the tty interface. We let the tty_port layer do all the work
296 * for us.
298 * FIXME: Remove single device assumption and saved_ifx_dev
300 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
302 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
306 * ifx_spi_close - called when our tty closes
307 * @tty: the tty being closed
308 * @filp: the file handle being closed
310 * Perform the close of the tty. We use the tty_port layer to do all
311 * our hard work.
313 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
315 struct ifx_spi_device *ifx_dev = tty->driver_data;
316 tty_port_close(&ifx_dev->tty_port, tty, filp);
317 /* FIXME: should we do an ifx_spi_reset here ? */
321 * ifx_decode_spi_header - decode received header
322 * @buffer: the received data
323 * @length: decoded length
324 * @more: decoded more flag
325 * @received_cts: status of cts we received
327 * Note how received_cts is handled -- if header is all F it is left
328 * the same as it was, if header is all 0 it is set to 0 otherwise it is
329 * taken from the incoming header.
331 * FIXME: endianness
333 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
334 unsigned char *more, unsigned char *received_cts)
336 u16 h1;
337 u16 h2;
338 u16 *in_buffer = (u16 *)buffer;
340 h1 = *in_buffer;
341 h2 = *(in_buffer+1);
343 if (h1 == 0 && h2 == 0) {
344 *received_cts = 0;
345 return IFX_SPI_HEADER_0;
346 } else if (h1 == 0xffff && h2 == 0xffff) {
347 /* spi_slave_cts remains as it was */
348 return IFX_SPI_HEADER_F;
351 *length = h1 & 0xfff; /* upper bits of byte are flags */
352 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
353 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
354 return 0;
358 * ifx_setup_spi_header - set header fields
359 * @txbuffer: pointer to start of SPI buffer
360 * @tx_count: bytes
361 * @more: indicate if more to follow
363 * Format up an SPI header for a transfer
365 * FIXME: endianness?
367 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
368 unsigned char more)
370 *(u16 *)(txbuffer) = tx_count;
371 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
372 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
376 * ifx_spi_wakeup_serial - SPI space made
377 * @port_data: our SPI device
379 * We have emptied the FIFO enough that we want to get more data
380 * queued into it. Poke the line discipline via tty_wakeup so that
381 * it will feed us more bits
383 static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
385 struct tty_struct *tty;
387 tty = tty_port_tty_get(&ifx_dev->tty_port);
388 if (!tty)
389 return;
390 tty_wakeup(tty);
391 tty_kref_put(tty);
395 * ifx_spi_prepare_tx_buffer - prepare transmit frame
396 * @ifx_dev: our SPI device
398 * The transmit buffr needs a header and various other bits of
399 * information followed by as much data as we can pull from the FIFO
400 * and transfer. This function formats up a suitable buffer in the
401 * ifx_dev->tx_buffer
403 * FIXME: performance - should we wake the tty when the queue is half
404 * empty ?
406 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
408 int temp_count;
409 int queue_length;
410 int tx_count;
411 unsigned char *tx_buffer;
413 tx_buffer = ifx_dev->tx_buffer;
414 memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
416 /* make room for required SPI header */
417 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
418 tx_count = IFX_SPI_HEADER_OVERHEAD;
420 /* clear to signal no more data if this turns out to be the
421 * last buffer sent in a sequence */
422 ifx_dev->spi_more = 0;
424 /* if modem cts is set, just send empty buffer */
425 if (!ifx_dev->spi_slave_cts) {
426 /* see if there's tx data */
427 queue_length = kfifo_len(&ifx_dev->tx_fifo);
428 if (queue_length != 0) {
429 /* data to mux -- see if there's room for it */
430 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
431 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
432 tx_buffer, temp_count,
433 &ifx_dev->fifo_lock);
435 /* update buffer pointer and data count in message */
436 tx_buffer += temp_count;
437 tx_count += temp_count;
438 if (temp_count == queue_length)
439 /* poke port to get more data */
440 ifx_spi_wakeup_serial(ifx_dev);
441 else /* more data in port, use next SPI message */
442 ifx_dev->spi_more = 1;
445 /* have data and info for header -- set up SPI header in buffer */
446 /* spi header needs payload size, not entire buffer size */
447 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
448 tx_count-IFX_SPI_HEADER_OVERHEAD,
449 ifx_dev->spi_more);
450 /* swap actual data in the buffer */
451 swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
452 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
453 return tx_count;
457 * ifx_spi_write - line discipline write
458 * @tty: our tty device
459 * @buf: pointer to buffer to write (kernel space)
460 * @count: size of buffer
462 * Write the characters we have been given into the FIFO. If the device
463 * is not active then activate it, when the SRDY line is asserted back
464 * this will commence I/O
466 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
467 int count)
469 struct ifx_spi_device *ifx_dev = tty->driver_data;
470 unsigned char *tmp_buf = (unsigned char *)buf;
471 int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
472 &ifx_dev->fifo_lock);
473 mrdy_assert(ifx_dev);
474 return tx_count;
478 * ifx_spi_chars_in_buffer - line discipline helper
479 * @tty: our tty device
481 * Report how much data we can accept before we drop bytes. As we use
482 * a simple FIFO this is nice and easy.
484 static int ifx_spi_write_room(struct tty_struct *tty)
486 struct ifx_spi_device *ifx_dev = tty->driver_data;
487 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
491 * ifx_spi_chars_in_buffer - line discipline helper
492 * @tty: our tty device
494 * Report how many characters we have buffered. In our case this is the
495 * number of bytes sitting in our transmit FIFO.
497 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
499 struct ifx_spi_device *ifx_dev = tty->driver_data;
500 return kfifo_len(&ifx_dev->tx_fifo);
504 * ifx_port_hangup
505 * @port: our tty port
507 * tty port hang up. Called when tty_hangup processing is invoked either
508 * by loss of carrier, or by software (eg vhangup). Serialized against
509 * activate/shutdown by the tty layer.
511 static void ifx_spi_hangup(struct tty_struct *tty)
513 struct ifx_spi_device *ifx_dev = tty->driver_data;
514 tty_port_hangup(&ifx_dev->tty_port);
518 * ifx_port_activate
519 * @port: our tty port
521 * tty port activate method - called for first open. Serialized
522 * with hangup and shutdown by the tty layer.
524 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
526 struct ifx_spi_device *ifx_dev =
527 container_of(port, struct ifx_spi_device, tty_port);
529 /* clear any old data; can't do this in 'close' */
530 kfifo_reset(&ifx_dev->tx_fifo);
532 /* put port data into this tty */
533 tty->driver_data = ifx_dev;
535 /* allows flip string push from int context */
536 tty->low_latency = 1;
538 return 0;
542 * ifx_port_shutdown
543 * @port: our tty port
545 * tty port shutdown method - called for last port close. Serialized
546 * with hangup and activate by the tty layer.
548 static void ifx_port_shutdown(struct tty_port *port)
550 struct ifx_spi_device *ifx_dev =
551 container_of(port, struct ifx_spi_device, tty_port);
553 mrdy_set_low(ifx_dev);
554 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
555 tasklet_kill(&ifx_dev->io_work_tasklet);
558 static const struct tty_port_operations ifx_tty_port_ops = {
559 .activate = ifx_port_activate,
560 .shutdown = ifx_port_shutdown,
563 static const struct tty_operations ifx_spi_serial_ops = {
564 .open = ifx_spi_open,
565 .close = ifx_spi_close,
566 .write = ifx_spi_write,
567 .hangup = ifx_spi_hangup,
568 .write_room = ifx_spi_write_room,
569 .chars_in_buffer = ifx_spi_chars_in_buffer,
570 .tiocmget = ifx_spi_tiocmget,
571 .tiocmset = ifx_spi_tiocmset,
575 * ifx_spi_insert_fip_string - queue received data
576 * @ifx_ser: our SPI device
577 * @chars: buffer we have received
578 * @size: number of chars reeived
580 * Queue bytes to the tty assuming the tty side is currently open. If
581 * not the discard the data.
583 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
584 unsigned char *chars, size_t size)
586 struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
587 if (!tty)
588 return;
589 tty_insert_flip_string(tty, chars, size);
590 tty_flip_buffer_push(tty);
591 tty_kref_put(tty);
595 * ifx_spi_complete - SPI transfer completed
596 * @ctx: our SPI device
598 * An SPI transfer has completed. Process any received data and kick off
599 * any further transmits we can commence.
601 static void ifx_spi_complete(void *ctx)
603 struct ifx_spi_device *ifx_dev = ctx;
604 struct tty_struct *tty;
605 struct tty_ldisc *ldisc = NULL;
606 int length;
607 int actual_length;
608 unsigned char more;
609 unsigned char cts;
610 int local_write_pending = 0;
611 int queue_length;
612 int srdy;
613 int decode_result;
615 mrdy_set_low(ifx_dev);
617 if (!ifx_dev->spi_msg.status) {
618 /* check header validity, get comm flags */
619 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
620 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
621 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
622 &length, &more, &cts);
623 if (decode_result == IFX_SPI_HEADER_0) {
624 dev_dbg(&ifx_dev->spi_dev->dev,
625 "ignore input: invalid header 0");
626 ifx_dev->spi_slave_cts = 0;
627 goto complete_exit;
628 } else if (decode_result == IFX_SPI_HEADER_F) {
629 dev_dbg(&ifx_dev->spi_dev->dev,
630 "ignore input: invalid header F");
631 goto complete_exit;
634 ifx_dev->spi_slave_cts = cts;
636 actual_length = min((unsigned int)length,
637 ifx_dev->spi_msg.actual_length);
638 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
639 actual_length,
640 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
641 ifx_spi_insert_flip_string(
642 ifx_dev,
643 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
644 (size_t)actual_length);
645 } else {
646 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
647 ifx_dev->spi_msg.status);
650 complete_exit:
651 if (ifx_dev->write_pending) {
652 ifx_dev->write_pending = 0;
653 local_write_pending = 1;
656 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
658 queue_length = kfifo_len(&ifx_dev->tx_fifo);
659 srdy = gpio_get_value(ifx_dev->gpio.srdy);
660 if (!srdy)
661 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
663 /* schedule output if there is more to do */
664 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
665 tasklet_schedule(&ifx_dev->io_work_tasklet);
666 else {
667 if (more || ifx_dev->spi_more || queue_length > 0 ||
668 local_write_pending) {
669 if (ifx_dev->spi_slave_cts) {
670 if (more)
671 mrdy_assert(ifx_dev);
672 } else
673 mrdy_assert(ifx_dev);
674 } else {
676 * poke line discipline driver if any for more data
677 * may or may not get more data to write
678 * for now, say not busy
680 ifx_spi_power_state_clear(ifx_dev,
681 IFX_SPI_POWER_DATA_PENDING);
682 tty = tty_port_tty_get(&ifx_dev->tty_port);
683 if (tty) {
684 ldisc = tty_ldisc_ref(tty);
685 if (ldisc) {
686 ldisc->ops->write_wakeup(tty);
687 tty_ldisc_deref(ldisc);
689 tty_kref_put(tty);
696 * ifx_spio_io - I/O tasklet
697 * @data: our SPI device
699 * Queue data for transmission if possible and then kick off the
700 * transfer.
702 static void ifx_spi_io(unsigned long data)
704 int retval;
705 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
707 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
708 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
709 ifx_dev->gpio.unack_srdy_int_nb--;
711 ifx_spi_prepare_tx_buffer(ifx_dev);
713 spi_message_init(&ifx_dev->spi_msg);
714 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
716 ifx_dev->spi_msg.context = ifx_dev;
717 ifx_dev->spi_msg.complete = ifx_spi_complete;
719 /* set up our spi transfer */
720 /* note len is BYTES, not transfers */
721 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
722 ifx_dev->spi_xfer.cs_change = 0;
723 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
724 /* ifx_dev->spi_xfer.speed_hz = 390625; */
725 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
727 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
728 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
731 * setup dma pointers
733 if (ifx_dev->use_dma) {
734 ifx_dev->spi_msg.is_dma_mapped = 1;
735 ifx_dev->tx_dma = ifx_dev->tx_bus;
736 ifx_dev->rx_dma = ifx_dev->rx_bus;
737 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
738 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
739 } else {
740 ifx_dev->spi_msg.is_dma_mapped = 0;
741 ifx_dev->tx_dma = (dma_addr_t)0;
742 ifx_dev->rx_dma = (dma_addr_t)0;
743 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
744 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
747 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
749 /* Assert MRDY. This may have already been done by the write
750 * routine.
752 mrdy_assert(ifx_dev);
754 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
755 if (retval) {
756 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
757 &ifx_dev->flags);
758 tasklet_schedule(&ifx_dev->io_work_tasklet);
759 return;
761 } else
762 ifx_dev->write_pending = 1;
766 * ifx_spi_free_port - free up the tty side
767 * @ifx_dev: IFX device going away
769 * Unregister and free up a port when the device goes away
771 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
773 if (ifx_dev->tty_dev)
774 tty_unregister_device(tty_drv, ifx_dev->minor);
775 kfifo_free(&ifx_dev->tx_fifo);
779 * ifx_spi_create_port - create a new port
780 * @ifx_dev: our spi device
782 * Allocate and initialise the tty port that goes with this interface
783 * and add it to the tty layer so that it can be opened.
785 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
787 int ret = 0;
788 struct tty_port *pport = &ifx_dev->tty_port;
790 spin_lock_init(&ifx_dev->fifo_lock);
791 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
792 &ifx_spi_key, 0);
794 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
795 ret = -ENOMEM;
796 goto error_ret;
799 tty_port_init(pport);
800 pport->ops = &ifx_tty_port_ops;
801 ifx_dev->minor = IFX_SPI_TTY_ID;
802 ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
803 &ifx_dev->spi_dev->dev);
804 if (IS_ERR(ifx_dev->tty_dev)) {
805 dev_dbg(&ifx_dev->spi_dev->dev,
806 "%s: registering tty device failed", __func__);
807 ret = PTR_ERR(ifx_dev->tty_dev);
808 goto error_ret;
810 return 0;
812 error_ret:
813 ifx_spi_free_port(ifx_dev);
814 return ret;
818 * ifx_spi_handle_srdy - handle SRDY
819 * @ifx_dev: device asserting SRDY
821 * Check our device state and see what we need to kick off when SRDY
822 * is asserted. This usually means killing the timer and firing off the
823 * I/O processing.
825 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
827 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
828 del_timer_sync(&ifx_dev->spi_timer);
829 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
832 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
834 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
835 tasklet_schedule(&ifx_dev->io_work_tasklet);
836 else
837 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
841 * ifx_spi_srdy_interrupt - SRDY asserted
842 * @irq: our IRQ number
843 * @dev: our ifx device
845 * The modem asserted SRDY. Handle the srdy event
847 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
849 struct ifx_spi_device *ifx_dev = dev;
850 ifx_dev->gpio.unack_srdy_int_nb++;
851 ifx_spi_handle_srdy(ifx_dev);
852 return IRQ_HANDLED;
856 * ifx_spi_reset_interrupt - Modem has changed reset state
857 * @irq: interrupt number
858 * @dev: our device pointer
860 * The modem has either entered or left reset state. Check the GPIO
861 * line to see which.
863 * FIXME: review locking on MR_INPROGRESS versus
864 * parallel unsolicited reset/solicited reset
866 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
868 struct ifx_spi_device *ifx_dev = dev;
869 int val = gpio_get_value(ifx_dev->gpio.reset_out);
870 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
872 if (val == 0) {
873 /* entered reset */
874 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
875 if (!solreset) {
876 /* unsolicited reset */
877 ifx_spi_ttyhangup(ifx_dev);
879 } else {
880 /* exited reset */
881 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
882 if (solreset) {
883 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
884 wake_up(&ifx_dev->mdm_reset_wait);
887 return IRQ_HANDLED;
891 * ifx_spi_free_device - free device
892 * @ifx_dev: device to free
894 * Free the IFX device
896 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
898 ifx_spi_free_port(ifx_dev);
899 dma_free_coherent(&ifx_dev->spi_dev->dev,
900 IFX_SPI_TRANSFER_SIZE,
901 ifx_dev->tx_buffer,
902 ifx_dev->tx_bus);
903 dma_free_coherent(&ifx_dev->spi_dev->dev,
904 IFX_SPI_TRANSFER_SIZE,
905 ifx_dev->rx_buffer,
906 ifx_dev->rx_bus);
910 * ifx_spi_reset - reset modem
911 * @ifx_dev: modem to reset
913 * Perform a reset on the modem
915 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
917 int ret;
919 * set up modem power, reset
921 * delays are required on some platforms for the modem
922 * to reset properly
924 set_bit(MR_START, &ifx_dev->mdm_reset_state);
925 gpio_set_value(ifx_dev->gpio.po, 0);
926 gpio_set_value(ifx_dev->gpio.reset, 0);
927 msleep(25);
928 gpio_set_value(ifx_dev->gpio.reset, 1);
929 msleep(1);
930 gpio_set_value(ifx_dev->gpio.po, 1);
931 msleep(1);
932 gpio_set_value(ifx_dev->gpio.po, 0);
933 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
934 test_bit(MR_COMPLETE,
935 &ifx_dev->mdm_reset_state),
936 IFX_RESET_TIMEOUT);
937 if (!ret)
938 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
939 ifx_dev->mdm_reset_state);
941 ifx_dev->mdm_reset_state = 0;
942 return ret;
946 * ifx_spi_spi_probe - probe callback
947 * @spi: our possible matching SPI device
949 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
950 * GPIO setup.
952 * FIXME:
953 * - Support for multiple devices
954 * - Split out MID specific GPIO handling eventually
957 static int ifx_spi_spi_probe(struct spi_device *spi)
959 int ret;
960 int srdy;
961 struct ifx_modem_platform_data *pl_data;
962 struct ifx_spi_device *ifx_dev;
964 if (saved_ifx_dev) {
965 dev_dbg(&spi->dev, "ignoring subsequent detection");
966 return -ENODEV;
969 pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
970 if (!pl_data) {
971 dev_err(&spi->dev, "missing platform data!");
972 return -ENODEV;
975 /* initialize structure to hold our device variables */
976 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
977 if (!ifx_dev) {
978 dev_err(&spi->dev, "spi device allocation failed");
979 return -ENOMEM;
981 saved_ifx_dev = ifx_dev;
982 ifx_dev->spi_dev = spi;
983 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
984 spin_lock_init(&ifx_dev->write_lock);
985 spin_lock_init(&ifx_dev->power_lock);
986 ifx_dev->power_status = 0;
987 init_timer(&ifx_dev->spi_timer);
988 ifx_dev->spi_timer.function = ifx_spi_timeout;
989 ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
990 ifx_dev->modem = pl_data->modem_type;
991 ifx_dev->use_dma = pl_data->use_dma;
992 ifx_dev->max_hz = pl_data->max_hz;
993 /* initialize spi mode, etc */
994 spi->max_speed_hz = ifx_dev->max_hz;
995 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
996 spi->bits_per_word = spi_bpw;
997 ret = spi_setup(spi);
998 if (ret) {
999 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1000 return -ENODEV;
1003 /* ensure SPI protocol flags are initialized to enable transfer */
1004 ifx_dev->spi_more = 0;
1005 ifx_dev->spi_slave_cts = 0;
1007 /*initialize transfer and dma buffers */
1008 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1009 IFX_SPI_TRANSFER_SIZE,
1010 &ifx_dev->tx_bus,
1011 GFP_KERNEL);
1012 if (!ifx_dev->tx_buffer) {
1013 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1014 ret = -ENOMEM;
1015 goto error_ret;
1017 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1018 IFX_SPI_TRANSFER_SIZE,
1019 &ifx_dev->rx_bus,
1020 GFP_KERNEL);
1021 if (!ifx_dev->rx_buffer) {
1022 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1023 ret = -ENOMEM;
1024 goto error_ret;
1027 /* initialize waitq for modem reset */
1028 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030 spi_set_drvdata(spi, ifx_dev);
1031 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1032 (unsigned long)ifx_dev);
1034 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036 /* create our tty port */
1037 ret = ifx_spi_create_port(ifx_dev);
1038 if (ret != 0) {
1039 dev_err(&spi->dev, "create default tty port failed");
1040 goto error_ret;
1043 ifx_dev->gpio.reset = pl_data->rst_pmu;
1044 ifx_dev->gpio.po = pl_data->pwr_on;
1045 ifx_dev->gpio.mrdy = pl_data->mrdy;
1046 ifx_dev->gpio.srdy = pl_data->srdy;
1047 ifx_dev->gpio.reset_out = pl_data->rst_out;
1049 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1050 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1051 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053 /* Configure gpios */
1054 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1055 if (ret < 0) {
1056 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1057 ifx_dev->gpio.reset);
1058 goto error_ret;
1060 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1061 ret += gpio_export(ifx_dev->gpio.reset, 1);
1062 if (ret) {
1063 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1064 ifx_dev->gpio.reset);
1065 ret = -EBUSY;
1066 goto error_ret2;
1069 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1070 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1071 ret += gpio_export(ifx_dev->gpio.po, 1);
1072 if (ret) {
1073 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1074 ifx_dev->gpio.po);
1075 ret = -EBUSY;
1076 goto error_ret3;
1079 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1080 if (ret < 0) {
1081 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1082 ifx_dev->gpio.mrdy);
1083 goto error_ret3;
1085 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1086 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1087 if (ret) {
1088 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1089 ifx_dev->gpio.mrdy);
1090 ret = -EBUSY;
1091 goto error_ret4;
1094 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1095 if (ret < 0) {
1096 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1097 ifx_dev->gpio.srdy);
1098 ret = -EBUSY;
1099 goto error_ret4;
1101 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1102 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1103 if (ret) {
1104 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1105 ifx_dev->gpio.srdy);
1106 ret = -EBUSY;
1107 goto error_ret5;
1110 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1111 if (ret < 0) {
1112 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1113 ifx_dev->gpio.reset_out);
1114 goto error_ret5;
1116 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1117 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1118 if (ret) {
1119 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1120 ifx_dev->gpio.reset_out);
1121 ret = -EBUSY;
1122 goto error_ret6;
1125 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1126 ifx_spi_reset_interrupt,
1127 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1128 (void *)ifx_dev);
1129 if (ret) {
1130 dev_err(&spi->dev, "Unable to get irq %x\n",
1131 gpio_to_irq(ifx_dev->gpio.reset_out));
1132 goto error_ret6;
1135 ret = ifx_spi_reset(ifx_dev);
1137 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1138 ifx_spi_srdy_interrupt,
1139 IRQF_TRIGGER_RISING, DRVNAME,
1140 (void *)ifx_dev);
1141 if (ret) {
1142 dev_err(&spi->dev, "Unable to get irq %x",
1143 gpio_to_irq(ifx_dev->gpio.srdy));
1144 goto error_ret7;
1147 /* set pm runtime power state and register with power system */
1148 pm_runtime_set_active(&spi->dev);
1149 pm_runtime_enable(&spi->dev);
1151 /* handle case that modem is already signaling SRDY */
1152 /* no outgoing tty open at this point, this just satisfies the
1153 * modem's read and should reset communication properly
1155 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157 if (srdy) {
1158 mrdy_assert(ifx_dev);
1159 ifx_spi_handle_srdy(ifx_dev);
1160 } else
1161 mrdy_set_low(ifx_dev);
1162 return 0;
1164 error_ret7:
1165 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1166 error_ret6:
1167 gpio_free(ifx_dev->gpio.srdy);
1168 error_ret5:
1169 gpio_free(ifx_dev->gpio.mrdy);
1170 error_ret4:
1171 gpio_free(ifx_dev->gpio.reset);
1172 error_ret3:
1173 gpio_free(ifx_dev->gpio.po);
1174 error_ret2:
1175 gpio_free(ifx_dev->gpio.reset_out);
1176 error_ret:
1177 ifx_spi_free_device(ifx_dev);
1178 saved_ifx_dev = NULL;
1179 return ret;
1183 * ifx_spi_spi_remove - SPI device was removed
1184 * @spi: SPI device
1186 * FIXME: We should be shutting the device down here not in
1187 * the module unload path.
1190 static int ifx_spi_spi_remove(struct spi_device *spi)
1192 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1193 /* stop activity */
1194 tasklet_kill(&ifx_dev->io_work_tasklet);
1195 /* free irq */
1196 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1197 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199 gpio_free(ifx_dev->gpio.srdy);
1200 gpio_free(ifx_dev->gpio.mrdy);
1201 gpio_free(ifx_dev->gpio.reset);
1202 gpio_free(ifx_dev->gpio.po);
1203 gpio_free(ifx_dev->gpio.reset_out);
1205 /* free allocations */
1206 ifx_spi_free_device(ifx_dev);
1208 saved_ifx_dev = NULL;
1209 return 0;
1213 * ifx_spi_spi_shutdown - called on SPI shutdown
1214 * @spi: SPI device
1216 * No action needs to be taken here
1219 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1224 * various suspends and resumes have nothing to do
1225 * no hardware to save state for
1229 * ifx_spi_spi_suspend - suspend SPI on system suspend
1230 * @dev: device being suspended
1232 * Suspend the SPI side. No action needed on Intel MID platforms, may
1233 * need extending for other systems.
1235 static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237 return 0;
1241 * ifx_spi_spi_resume - resume SPI side on system resume
1242 * @dev: device being suspended
1244 * Suspend the SPI side. No action needed on Intel MID platforms, may
1245 * need extending for other systems.
1247 static int ifx_spi_spi_resume(struct spi_device *spi)
1249 return 0;
1253 * ifx_spi_pm_suspend - suspend modem on system suspend
1254 * @dev: device being suspended
1256 * Suspend the modem. No action needed on Intel MID platforms, may
1257 * need extending for other systems.
1259 static int ifx_spi_pm_suspend(struct device *dev)
1261 return 0;
1265 * ifx_spi_pm_resume - resume modem on system resume
1266 * @dev: device being suspended
1268 * Allow the modem to resume. No action needed.
1270 * FIXME: do we need to reset anything here ?
1272 static int ifx_spi_pm_resume(struct device *dev)
1274 return 0;
1278 * ifx_spi_pm_runtime_resume - suspend modem
1279 * @dev: device being suspended
1281 * Allow the modem to resume. No action needed.
1283 static int ifx_spi_pm_runtime_resume(struct device *dev)
1285 return 0;
1289 * ifx_spi_pm_runtime_suspend - suspend modem
1290 * @dev: device being suspended
1292 * Allow the modem to suspend and thus suspend to continue up the
1293 * device tree.
1295 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297 return 0;
1301 * ifx_spi_pm_runtime_idle - check if modem idle
1302 * @dev: our device
1304 * Check conditions and queue runtime suspend if idle.
1306 static int ifx_spi_pm_runtime_idle(struct device *dev)
1308 struct spi_device *spi = to_spi_device(dev);
1309 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311 if (!ifx_dev->power_status)
1312 pm_runtime_suspend(dev);
1314 return 0;
1317 static const struct dev_pm_ops ifx_spi_pm = {
1318 .resume = ifx_spi_pm_resume,
1319 .suspend = ifx_spi_pm_suspend,
1320 .runtime_resume = ifx_spi_pm_runtime_resume,
1321 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1322 .runtime_idle = ifx_spi_pm_runtime_idle
1325 static const struct spi_device_id ifx_id_table[] = {
1326 {"ifx6160", 0},
1327 {"ifx6260", 0},
1330 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332 /* spi operations */
1333 static const struct spi_driver ifx_spi_driver = {
1334 .driver = {
1335 .name = DRVNAME,
1336 .bus = &spi_bus_type,
1337 .pm = &ifx_spi_pm,
1338 .owner = THIS_MODULE},
1339 .probe = ifx_spi_spi_probe,
1340 .shutdown = ifx_spi_spi_shutdown,
1341 .remove = __devexit_p(ifx_spi_spi_remove),
1342 .suspend = ifx_spi_spi_suspend,
1343 .resume = ifx_spi_spi_resume,
1344 .id_table = ifx_id_table
1348 * ifx_spi_exit - module exit
1350 * Unload the module.
1353 static void __exit ifx_spi_exit(void)
1355 /* unregister */
1356 tty_unregister_driver(tty_drv);
1357 spi_unregister_driver((void *)&ifx_spi_driver);
1361 * ifx_spi_init - module entry point
1363 * Initialise the SPI and tty interfaces for the IFX SPI driver
1364 * We need to initialize upper-edge spi driver after the tty
1365 * driver because otherwise the spi probe will race
1368 static int __init ifx_spi_init(void)
1370 int result;
1372 tty_drv = alloc_tty_driver(1);
1373 if (!tty_drv) {
1374 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1375 return -ENOMEM;
1378 tty_drv->magic = TTY_DRIVER_MAGIC;
1379 tty_drv->owner = THIS_MODULE;
1380 tty_drv->driver_name = DRVNAME;
1381 tty_drv->name = TTYNAME;
1382 tty_drv->minor_start = IFX_SPI_TTY_ID;
1383 tty_drv->num = 1;
1384 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1385 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1386 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1387 tty_drv->init_termios = tty_std_termios;
1389 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1391 result = tty_register_driver(tty_drv);
1392 if (result) {
1393 pr_err("%s: tty_register_driver failed(%d)",
1394 DRVNAME, result);
1395 put_tty_driver(tty_drv);
1396 return result;
1399 result = spi_register_driver((void *)&ifx_spi_driver);
1400 if (result) {
1401 pr_err("%s: spi_register_driver failed(%d)",
1402 DRVNAME, result);
1403 tty_unregister_driver(tty_drv);
1405 return result;
1408 module_init(ifx_spi_init);
1409 module_exit(ifx_spi_exit);
1411 MODULE_AUTHOR("Intel");
1412 MODULE_DESCRIPTION("IFX6x60 spi driver");
1413 MODULE_LICENSE("GPL");
1414 MODULE_INFO(Version, "0.1-IFX6x60");