ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / aio.c
blob278ed7dc71bbc11cbadb4603fe40507e75d20741
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
21 #define DEBUG 0
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
42 #if DEBUG > 1
43 #define dprintk printk
44 #else
45 #define dprintk(x...) do { ; } while (0)
46 #endif
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr; /* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
54 static struct kmem_cache *kiocb_cachep;
55 static struct kmem_cache *kioctx_cachep;
57 static struct workqueue_struct *aio_wq;
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
69 /* aio_setup
70 * Creates the slab caches used by the aio routines, panic on
71 * failure as this is done early during the boot sequence.
73 static int __init aio_setup(void)
75 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
78 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
79 BUG_ON(!aio_wq);
81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
83 return 0;
85 __initcall(aio_setup);
87 static void aio_free_ring(struct kioctx *ctx)
89 struct aio_ring_info *info = &ctx->ring_info;
90 long i;
92 for (i=0; i<info->nr_pages; i++)
93 put_page(info->ring_pages[i]);
95 if (info->mmap_size) {
96 down_write(&ctx->mm->mmap_sem);
97 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98 up_write(&ctx->mm->mmap_sem);
101 if (info->ring_pages && info->ring_pages != info->internal_pages)
102 kfree(info->ring_pages);
103 info->ring_pages = NULL;
104 info->nr = 0;
107 static int aio_setup_ring(struct kioctx *ctx)
109 struct aio_ring *ring;
110 struct aio_ring_info *info = &ctx->ring_info;
111 unsigned nr_events = ctx->max_reqs;
112 unsigned long size;
113 int nr_pages;
115 /* Compensate for the ring buffer's head/tail overlap entry */
116 nr_events += 2; /* 1 is required, 2 for good luck */
118 size = sizeof(struct aio_ring);
119 size += sizeof(struct io_event) * nr_events;
120 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
122 if (nr_pages < 0)
123 return -EINVAL;
125 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
127 info->nr = 0;
128 info->ring_pages = info->internal_pages;
129 if (nr_pages > AIO_RING_PAGES) {
130 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131 if (!info->ring_pages)
132 return -ENOMEM;
135 info->mmap_size = nr_pages * PAGE_SIZE;
136 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137 down_write(&ctx->mm->mmap_sem);
138 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
141 if (IS_ERR((void *)info->mmap_base)) {
142 up_write(&ctx->mm->mmap_sem);
143 info->mmap_size = 0;
144 aio_free_ring(ctx);
145 return -EAGAIN;
148 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149 info->nr_pages = get_user_pages(current, ctx->mm,
150 info->mmap_base, nr_pages,
151 1, 0, info->ring_pages, NULL);
152 up_write(&ctx->mm->mmap_sem);
154 if (unlikely(info->nr_pages != nr_pages)) {
155 aio_free_ring(ctx);
156 return -EAGAIN;
159 ctx->user_id = info->mmap_base;
161 info->nr = nr_events; /* trusted copy */
163 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
164 ring->nr = nr_events; /* user copy */
165 ring->id = ctx->user_id;
166 ring->head = ring->tail = 0;
167 ring->magic = AIO_RING_MAGIC;
168 ring->compat_features = AIO_RING_COMPAT_FEATURES;
169 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170 ring->header_length = sizeof(struct aio_ring);
171 kunmap_atomic(ring, KM_USER0);
173 return 0;
177 /* aio_ring_event: returns a pointer to the event at the given index from
178 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
184 #define aio_ring_event(info, nr, km) ({ \
185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
186 struct io_event *__event; \
187 __event = kmap_atomic( \
188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189 __event += pos % AIO_EVENTS_PER_PAGE; \
190 __event; \
193 #define put_aio_ring_event(event, km) do { \
194 struct io_event *__event = (event); \
195 (void)__event; \
196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 } while(0)
199 static void ctx_rcu_free(struct rcu_head *head)
201 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202 unsigned nr_events = ctx->max_reqs;
204 kmem_cache_free(kioctx_cachep, ctx);
206 if (nr_events) {
207 spin_lock(&aio_nr_lock);
208 BUG_ON(aio_nr - nr_events > aio_nr);
209 aio_nr -= nr_events;
210 spin_unlock(&aio_nr_lock);
214 /* __put_ioctx
215 * Called when the last user of an aio context has gone away,
216 * and the struct needs to be freed.
218 static void __put_ioctx(struct kioctx *ctx)
220 BUG_ON(ctx->reqs_active);
222 cancel_delayed_work(&ctx->wq);
223 cancel_work_sync(&ctx->wq.work);
224 aio_free_ring(ctx);
225 mmdrop(ctx->mm);
226 ctx->mm = NULL;
227 pr_debug("__put_ioctx: freeing %p\n", ctx);
228 call_rcu(&ctx->rcu_head, ctx_rcu_free);
231 static inline int try_get_ioctx(struct kioctx *kioctx)
233 return atomic_inc_not_zero(&kioctx->users);
236 static inline void put_ioctx(struct kioctx *kioctx)
238 BUG_ON(atomic_read(&kioctx->users) <= 0);
239 if (unlikely(atomic_dec_and_test(&kioctx->users)))
240 __put_ioctx(kioctx);
243 /* ioctx_alloc
244 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
246 static struct kioctx *ioctx_alloc(unsigned nr_events)
248 struct mm_struct *mm;
249 struct kioctx *ctx;
250 int did_sync = 0;
252 /* Prevent overflows */
253 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
254 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
255 pr_debug("ENOMEM: nr_events too high\n");
256 return ERR_PTR(-EINVAL);
259 if ((unsigned long)nr_events > aio_max_nr)
260 return ERR_PTR(-EAGAIN);
262 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
263 if (!ctx)
264 return ERR_PTR(-ENOMEM);
266 ctx->max_reqs = nr_events;
267 mm = ctx->mm = current->mm;
268 atomic_inc(&mm->mm_count);
270 atomic_set(&ctx->users, 2);
271 spin_lock_init(&ctx->ctx_lock);
272 spin_lock_init(&ctx->ring_info.ring_lock);
273 init_waitqueue_head(&ctx->wait);
275 INIT_LIST_HEAD(&ctx->active_reqs);
276 INIT_LIST_HEAD(&ctx->run_list);
277 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
279 if (aio_setup_ring(ctx) < 0)
280 goto out_freectx;
282 /* limit the number of system wide aios */
283 do {
284 spin_lock_bh(&aio_nr_lock);
285 if (aio_nr + nr_events > aio_max_nr ||
286 aio_nr + nr_events < aio_nr)
287 ctx->max_reqs = 0;
288 else
289 aio_nr += ctx->max_reqs;
290 spin_unlock_bh(&aio_nr_lock);
291 if (ctx->max_reqs || did_sync)
292 break;
294 /* wait for rcu callbacks to have completed before giving up */
295 synchronize_rcu();
296 did_sync = 1;
297 ctx->max_reqs = nr_events;
298 } while (1);
300 if (ctx->max_reqs == 0)
301 goto out_cleanup;
303 /* now link into global list. */
304 spin_lock(&mm->ioctx_lock);
305 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
306 spin_unlock(&mm->ioctx_lock);
308 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
309 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
310 return ctx;
312 out_cleanup:
313 __put_ioctx(ctx);
314 return ERR_PTR(-EAGAIN);
316 out_freectx:
317 mmdrop(mm);
318 kmem_cache_free(kioctx_cachep, ctx);
319 ctx = ERR_PTR(-ENOMEM);
321 dprintk("aio: error allocating ioctx %p\n", ctx);
322 return ctx;
325 /* aio_cancel_all
326 * Cancels all outstanding aio requests on an aio context. Used
327 * when the processes owning a context have all exited to encourage
328 * the rapid destruction of the kioctx.
330 static void aio_cancel_all(struct kioctx *ctx)
332 int (*cancel)(struct kiocb *, struct io_event *);
333 struct io_event res;
334 spin_lock_irq(&ctx->ctx_lock);
335 ctx->dead = 1;
336 while (!list_empty(&ctx->active_reqs)) {
337 struct list_head *pos = ctx->active_reqs.next;
338 struct kiocb *iocb = list_kiocb(pos);
339 list_del_init(&iocb->ki_list);
340 cancel = iocb->ki_cancel;
341 kiocbSetCancelled(iocb);
342 if (cancel) {
343 iocb->ki_users++;
344 spin_unlock_irq(&ctx->ctx_lock);
345 cancel(iocb, &res);
346 spin_lock_irq(&ctx->ctx_lock);
349 spin_unlock_irq(&ctx->ctx_lock);
352 static void wait_for_all_aios(struct kioctx *ctx)
354 struct task_struct *tsk = current;
355 DECLARE_WAITQUEUE(wait, tsk);
357 spin_lock_irq(&ctx->ctx_lock);
358 if (!ctx->reqs_active)
359 goto out;
361 add_wait_queue(&ctx->wait, &wait);
362 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
363 while (ctx->reqs_active) {
364 spin_unlock_irq(&ctx->ctx_lock);
365 io_schedule();
366 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
367 spin_lock_irq(&ctx->ctx_lock);
369 __set_task_state(tsk, TASK_RUNNING);
370 remove_wait_queue(&ctx->wait, &wait);
372 out:
373 spin_unlock_irq(&ctx->ctx_lock);
376 /* wait_on_sync_kiocb:
377 * Waits on the given sync kiocb to complete.
379 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
381 while (iocb->ki_users) {
382 set_current_state(TASK_UNINTERRUPTIBLE);
383 if (!iocb->ki_users)
384 break;
385 io_schedule();
387 __set_current_state(TASK_RUNNING);
388 return iocb->ki_user_data;
390 EXPORT_SYMBOL(wait_on_sync_kiocb);
392 /* exit_aio: called when the last user of mm goes away. At this point,
393 * there is no way for any new requests to be submited or any of the
394 * io_* syscalls to be called on the context. However, there may be
395 * outstanding requests which hold references to the context; as they
396 * go away, they will call put_ioctx and release any pinned memory
397 * associated with the request (held via struct page * references).
399 void exit_aio(struct mm_struct *mm)
401 struct kioctx *ctx;
403 while (!hlist_empty(&mm->ioctx_list)) {
404 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
405 hlist_del_rcu(&ctx->list);
407 aio_cancel_all(ctx);
409 wait_for_all_aios(ctx);
411 * Ensure we don't leave the ctx on the aio_wq
413 cancel_work_sync(&ctx->wq.work);
415 if (1 != atomic_read(&ctx->users))
416 printk(KERN_DEBUG
417 "exit_aio:ioctx still alive: %d %d %d\n",
418 atomic_read(&ctx->users), ctx->dead,
419 ctx->reqs_active);
420 put_ioctx(ctx);
424 /* aio_get_req
425 * Allocate a slot for an aio request. Increments the users count
426 * of the kioctx so that the kioctx stays around until all requests are
427 * complete. Returns NULL if no requests are free.
429 * Returns with kiocb->users set to 2. The io submit code path holds
430 * an extra reference while submitting the i/o.
431 * This prevents races between the aio code path referencing the
432 * req (after submitting it) and aio_complete() freeing the req.
434 static struct kiocb *__aio_get_req(struct kioctx *ctx)
436 struct kiocb *req = NULL;
437 struct aio_ring *ring;
438 int okay = 0;
440 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
441 if (unlikely(!req))
442 return NULL;
444 req->ki_flags = 0;
445 req->ki_users = 2;
446 req->ki_key = 0;
447 req->ki_ctx = ctx;
448 req->ki_cancel = NULL;
449 req->ki_retry = NULL;
450 req->ki_dtor = NULL;
451 req->private = NULL;
452 req->ki_iovec = NULL;
453 INIT_LIST_HEAD(&req->ki_run_list);
454 req->ki_eventfd = NULL;
456 /* Check if the completion queue has enough free space to
457 * accept an event from this io.
459 spin_lock_irq(&ctx->ctx_lock);
460 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
461 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
462 list_add(&req->ki_list, &ctx->active_reqs);
463 ctx->reqs_active++;
464 okay = 1;
466 kunmap_atomic(ring, KM_USER0);
467 spin_unlock_irq(&ctx->ctx_lock);
469 if (!okay) {
470 kmem_cache_free(kiocb_cachep, req);
471 req = NULL;
474 return req;
477 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
479 struct kiocb *req;
480 /* Handle a potential starvation case -- should be exceedingly rare as
481 * requests will be stuck on fput_head only if the aio_fput_routine is
482 * delayed and the requests were the last user of the struct file.
484 req = __aio_get_req(ctx);
485 if (unlikely(NULL == req)) {
486 aio_fput_routine(NULL);
487 req = __aio_get_req(ctx);
489 return req;
492 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
494 assert_spin_locked(&ctx->ctx_lock);
496 if (req->ki_eventfd != NULL)
497 eventfd_ctx_put(req->ki_eventfd);
498 if (req->ki_dtor)
499 req->ki_dtor(req);
500 if (req->ki_iovec != &req->ki_inline_vec)
501 kfree(req->ki_iovec);
502 kmem_cache_free(kiocb_cachep, req);
503 ctx->reqs_active--;
505 if (unlikely(!ctx->reqs_active && ctx->dead))
506 wake_up_all(&ctx->wait);
509 static void aio_fput_routine(struct work_struct *data)
511 spin_lock_irq(&fput_lock);
512 while (likely(!list_empty(&fput_head))) {
513 struct kiocb *req = list_kiocb(fput_head.next);
514 struct kioctx *ctx = req->ki_ctx;
516 list_del(&req->ki_list);
517 spin_unlock_irq(&fput_lock);
519 /* Complete the fput(s) */
520 if (req->ki_filp != NULL)
521 fput(req->ki_filp);
523 /* Link the iocb into the context's free list */
524 rcu_read_lock();
525 spin_lock_irq(&ctx->ctx_lock);
526 really_put_req(ctx, req);
528 * at that point ctx might've been killed, but actual
529 * freeing is RCU'd
531 spin_unlock_irq(&ctx->ctx_lock);
532 rcu_read_unlock();
534 spin_lock_irq(&fput_lock);
536 spin_unlock_irq(&fput_lock);
539 /* __aio_put_req
540 * Returns true if this put was the last user of the request.
542 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
544 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
545 req, atomic_long_read(&req->ki_filp->f_count));
547 assert_spin_locked(&ctx->ctx_lock);
549 req->ki_users--;
550 BUG_ON(req->ki_users < 0);
551 if (likely(req->ki_users))
552 return 0;
553 list_del(&req->ki_list); /* remove from active_reqs */
554 req->ki_cancel = NULL;
555 req->ki_retry = NULL;
558 * Try to optimize the aio and eventfd file* puts, by avoiding to
559 * schedule work in case it is not final fput() time. In normal cases,
560 * we would not be holding the last reference to the file*, so
561 * this function will be executed w/out any aio kthread wakeup.
563 if (unlikely(!fput_atomic(req->ki_filp))) {
564 spin_lock(&fput_lock);
565 list_add(&req->ki_list, &fput_head);
566 spin_unlock(&fput_lock);
567 schedule_work(&fput_work);
568 } else {
569 req->ki_filp = NULL;
570 really_put_req(ctx, req);
572 return 1;
575 /* aio_put_req
576 * Returns true if this put was the last user of the kiocb,
577 * false if the request is still in use.
579 int aio_put_req(struct kiocb *req)
581 struct kioctx *ctx = req->ki_ctx;
582 int ret;
583 spin_lock_irq(&ctx->ctx_lock);
584 ret = __aio_put_req(ctx, req);
585 spin_unlock_irq(&ctx->ctx_lock);
586 return ret;
588 EXPORT_SYMBOL(aio_put_req);
590 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
592 struct mm_struct *mm = current->mm;
593 struct kioctx *ctx, *ret = NULL;
594 struct hlist_node *n;
596 rcu_read_lock();
598 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
600 * RCU protects us against accessing freed memory but
601 * we have to be careful not to get a reference when the
602 * reference count already dropped to 0 (ctx->dead test
603 * is unreliable because of races).
605 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
606 ret = ctx;
607 break;
611 rcu_read_unlock();
612 return ret;
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
622 * already queued.
624 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 struct kioctx *ctx = iocb->ki_ctx;
628 assert_spin_locked(&ctx->ctx_lock);
630 if (list_empty(&iocb->ki_run_list)) {
631 list_add_tail(&iocb->ki_run_list,
632 &ctx->run_list);
633 return 1;
635 return 0;
638 /* aio_run_iocb
639 * This is the core aio execution routine. It is
640 * invoked both for initial i/o submission and
641 * subsequent retries via the aio_kick_handler.
642 * Expects to be invoked with iocb->ki_ctx->lock
643 * already held. The lock is released and reacquired
644 * as needed during processing.
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
660 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 struct kioctx *ctx = iocb->ki_ctx;
663 ssize_t (*retry)(struct kiocb *);
664 ssize_t ret;
666 if (!(retry = iocb->ki_retry)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 return 0;
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
679 * this one.
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
687 * it up afresh.
690 kiocbClearKicked(iocb);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699 spin_unlock_irq(&ctx->ctx_lock);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb)) {
703 ret = -EINTR;
704 aio_complete(iocb, ret, 0);
705 /* must not access the iocb after this */
706 goto out;
710 * Now we are all set to call the retry method in async
711 * context.
713 ret = retry(iocb);
715 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
717 * There's no easy way to restart the syscall since other AIO's
718 * may be already running. Just fail this IO with EINTR.
720 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
721 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
722 ret = -EINTR;
723 aio_complete(iocb, ret, 0);
725 out:
726 spin_lock_irq(&ctx->ctx_lock);
728 if (-EIOCBRETRY == ret) {
730 * OK, now that we are done with this iteration
731 * and know that there is more left to go,
732 * this is where we let go so that a subsequent
733 * "kick" can start the next iteration
736 /* will make __queue_kicked_iocb succeed from here on */
737 INIT_LIST_HEAD(&iocb->ki_run_list);
738 /* we must queue the next iteration ourselves, if it
739 * has already been kicked */
740 if (kiocbIsKicked(iocb)) {
741 __queue_kicked_iocb(iocb);
744 * __queue_kicked_iocb will always return 1 here, because
745 * iocb->ki_run_list is empty at this point so it should
746 * be safe to unconditionally queue the context into the
747 * work queue.
749 aio_queue_work(ctx);
752 return ret;
756 * __aio_run_iocbs:
757 * Process all pending retries queued on the ioctx
758 * run list.
759 * Assumes it is operating within the aio issuer's mm
760 * context.
762 static int __aio_run_iocbs(struct kioctx *ctx)
764 struct kiocb *iocb;
765 struct list_head run_list;
767 assert_spin_locked(&ctx->ctx_lock);
769 list_replace_init(&ctx->run_list, &run_list);
770 while (!list_empty(&run_list)) {
771 iocb = list_entry(run_list.next, struct kiocb,
772 ki_run_list);
773 list_del(&iocb->ki_run_list);
775 * Hold an extra reference while retrying i/o.
777 iocb->ki_users++; /* grab extra reference */
778 aio_run_iocb(iocb);
779 __aio_put_req(ctx, iocb);
781 if (!list_empty(&ctx->run_list))
782 return 1;
783 return 0;
786 static void aio_queue_work(struct kioctx * ctx)
788 unsigned long timeout;
790 * if someone is waiting, get the work started right
791 * away, otherwise, use a longer delay
793 smp_mb();
794 if (waitqueue_active(&ctx->wait))
795 timeout = 1;
796 else
797 timeout = HZ/10;
798 queue_delayed_work(aio_wq, &ctx->wq, timeout);
802 * aio_run_all_iocbs:
803 * Process all pending retries queued on the ioctx
804 * run list, and keep running them until the list
805 * stays empty.
806 * Assumes it is operating within the aio issuer's mm context.
808 static inline void aio_run_all_iocbs(struct kioctx *ctx)
810 spin_lock_irq(&ctx->ctx_lock);
811 while (__aio_run_iocbs(ctx))
813 spin_unlock_irq(&ctx->ctx_lock);
817 * aio_kick_handler:
818 * Work queue handler triggered to process pending
819 * retries on an ioctx. Takes on the aio issuer's
820 * mm context before running the iocbs, so that
821 * copy_xxx_user operates on the issuer's address
822 * space.
823 * Run on aiod's context.
825 static void aio_kick_handler(struct work_struct *work)
827 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
828 mm_segment_t oldfs = get_fs();
829 struct mm_struct *mm;
830 int requeue;
832 set_fs(USER_DS);
833 use_mm(ctx->mm);
834 spin_lock_irq(&ctx->ctx_lock);
835 requeue =__aio_run_iocbs(ctx);
836 mm = ctx->mm;
837 spin_unlock_irq(&ctx->ctx_lock);
838 unuse_mm(mm);
839 set_fs(oldfs);
841 * we're in a worker thread already, don't use queue_delayed_work,
843 if (requeue)
844 queue_delayed_work(aio_wq, &ctx->wq, 0);
849 * Called by kick_iocb to queue the kiocb for retry
850 * and if required activate the aio work queue to process
851 * it
853 static void try_queue_kicked_iocb(struct kiocb *iocb)
855 struct kioctx *ctx = iocb->ki_ctx;
856 unsigned long flags;
857 int run = 0;
859 spin_lock_irqsave(&ctx->ctx_lock, flags);
860 /* set this inside the lock so that we can't race with aio_run_iocb()
861 * testing it and putting the iocb on the run list under the lock */
862 if (!kiocbTryKick(iocb))
863 run = __queue_kicked_iocb(iocb);
864 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
865 if (run)
866 aio_queue_work(ctx);
870 * kick_iocb:
871 * Called typically from a wait queue callback context
872 * to trigger a retry of the iocb.
873 * The retry is usually executed by aio workqueue
874 * threads (See aio_kick_handler).
876 void kick_iocb(struct kiocb *iocb)
878 /* sync iocbs are easy: they can only ever be executing from a
879 * single context. */
880 if (is_sync_kiocb(iocb)) {
881 kiocbSetKicked(iocb);
882 wake_up_process(iocb->ki_obj.tsk);
883 return;
886 try_queue_kicked_iocb(iocb);
888 EXPORT_SYMBOL(kick_iocb);
890 /* aio_complete
891 * Called when the io request on the given iocb is complete.
892 * Returns true if this is the last user of the request. The
893 * only other user of the request can be the cancellation code.
895 int aio_complete(struct kiocb *iocb, long res, long res2)
897 struct kioctx *ctx = iocb->ki_ctx;
898 struct aio_ring_info *info;
899 struct aio_ring *ring;
900 struct io_event *event;
901 unsigned long flags;
902 unsigned long tail;
903 int ret;
906 * Special case handling for sync iocbs:
907 * - events go directly into the iocb for fast handling
908 * - the sync task with the iocb in its stack holds the single iocb
909 * ref, no other paths have a way to get another ref
910 * - the sync task helpfully left a reference to itself in the iocb
912 if (is_sync_kiocb(iocb)) {
913 BUG_ON(iocb->ki_users != 1);
914 iocb->ki_user_data = res;
915 iocb->ki_users = 0;
916 wake_up_process(iocb->ki_obj.tsk);
917 return 1;
920 info = &ctx->ring_info;
922 /* add a completion event to the ring buffer.
923 * must be done holding ctx->ctx_lock to prevent
924 * other code from messing with the tail
925 * pointer since we might be called from irq
926 * context.
928 spin_lock_irqsave(&ctx->ctx_lock, flags);
930 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
931 list_del_init(&iocb->ki_run_list);
934 * cancelled requests don't get events, userland was given one
935 * when the event got cancelled.
937 if (kiocbIsCancelled(iocb))
938 goto put_rq;
940 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
942 tail = info->tail;
943 event = aio_ring_event(info, tail, KM_IRQ0);
944 if (++tail >= info->nr)
945 tail = 0;
947 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
948 event->data = iocb->ki_user_data;
949 event->res = res;
950 event->res2 = res2;
952 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
953 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
954 res, res2);
956 /* after flagging the request as done, we
957 * must never even look at it again
959 smp_wmb(); /* make event visible before updating tail */
961 info->tail = tail;
962 ring->tail = tail;
964 put_aio_ring_event(event, KM_IRQ0);
965 kunmap_atomic(ring, KM_IRQ1);
967 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
970 * Check if the user asked us to deliver the result through an
971 * eventfd. The eventfd_signal() function is safe to be called
972 * from IRQ context.
974 if (iocb->ki_eventfd != NULL)
975 eventfd_signal(iocb->ki_eventfd, 1);
977 put_rq:
978 /* everything turned out well, dispose of the aiocb. */
979 ret = __aio_put_req(ctx, iocb);
982 * We have to order our ring_info tail store above and test
983 * of the wait list below outside the wait lock. This is
984 * like in wake_up_bit() where clearing a bit has to be
985 * ordered with the unlocked test.
987 smp_mb();
989 if (waitqueue_active(&ctx->wait))
990 wake_up(&ctx->wait);
992 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
993 return ret;
995 EXPORT_SYMBOL(aio_complete);
997 /* aio_read_evt
998 * Pull an event off of the ioctx's event ring. Returns the number of
999 * events fetched (0 or 1 ;-)
1000 * FIXME: make this use cmpxchg.
1001 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1003 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1005 struct aio_ring_info *info = &ioctx->ring_info;
1006 struct aio_ring *ring;
1007 unsigned long head;
1008 int ret = 0;
1010 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1011 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1012 (unsigned long)ring->head, (unsigned long)ring->tail,
1013 (unsigned long)ring->nr);
1015 if (ring->head == ring->tail)
1016 goto out;
1018 spin_lock(&info->ring_lock);
1020 head = ring->head % info->nr;
1021 if (head != ring->tail) {
1022 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1023 *ent = *evp;
1024 head = (head + 1) % info->nr;
1025 smp_mb(); /* finish reading the event before updatng the head */
1026 ring->head = head;
1027 ret = 1;
1028 put_aio_ring_event(evp, KM_USER1);
1030 spin_unlock(&info->ring_lock);
1032 out:
1033 kunmap_atomic(ring, KM_USER0);
1034 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1035 (unsigned long)ring->head, (unsigned long)ring->tail);
1036 return ret;
1039 struct aio_timeout {
1040 struct timer_list timer;
1041 int timed_out;
1042 struct task_struct *p;
1045 static void timeout_func(unsigned long data)
1047 struct aio_timeout *to = (struct aio_timeout *)data;
1049 to->timed_out = 1;
1050 wake_up_process(to->p);
1053 static inline void init_timeout(struct aio_timeout *to)
1055 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1056 to->timed_out = 0;
1057 to->p = current;
1060 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1061 const struct timespec *ts)
1063 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1064 if (time_after(to->timer.expires, jiffies))
1065 add_timer(&to->timer);
1066 else
1067 to->timed_out = 1;
1070 static inline void clear_timeout(struct aio_timeout *to)
1072 del_singleshot_timer_sync(&to->timer);
1075 static int read_events(struct kioctx *ctx,
1076 long min_nr, long nr,
1077 struct io_event __user *event,
1078 struct timespec __user *timeout)
1080 long start_jiffies = jiffies;
1081 struct task_struct *tsk = current;
1082 DECLARE_WAITQUEUE(wait, tsk);
1083 int ret;
1084 int i = 0;
1085 struct io_event ent;
1086 struct aio_timeout to;
1087 int retry = 0;
1089 /* needed to zero any padding within an entry (there shouldn't be
1090 * any, but C is fun!
1092 memset(&ent, 0, sizeof(ent));
1093 retry:
1094 ret = 0;
1095 while (likely(i < nr)) {
1096 ret = aio_read_evt(ctx, &ent);
1097 if (unlikely(ret <= 0))
1098 break;
1100 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1101 ent.data, ent.obj, ent.res, ent.res2);
1103 /* Could we split the check in two? */
1104 ret = -EFAULT;
1105 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1106 dprintk("aio: lost an event due to EFAULT.\n");
1107 break;
1109 ret = 0;
1111 /* Good, event copied to userland, update counts. */
1112 event ++;
1113 i ++;
1116 if (min_nr <= i)
1117 return i;
1118 if (ret)
1119 return ret;
1121 /* End fast path */
1123 /* racey check, but it gets redone */
1124 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1125 retry = 1;
1126 aio_run_all_iocbs(ctx);
1127 goto retry;
1130 init_timeout(&to);
1131 if (timeout) {
1132 struct timespec ts;
1133 ret = -EFAULT;
1134 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1135 goto out;
1137 set_timeout(start_jiffies, &to, &ts);
1140 while (likely(i < nr)) {
1141 add_wait_queue_exclusive(&ctx->wait, &wait);
1142 do {
1143 set_task_state(tsk, TASK_INTERRUPTIBLE);
1144 ret = aio_read_evt(ctx, &ent);
1145 if (ret)
1146 break;
1147 if (min_nr <= i)
1148 break;
1149 if (unlikely(ctx->dead)) {
1150 ret = -EINVAL;
1151 break;
1153 if (to.timed_out) /* Only check after read evt */
1154 break;
1155 /* Try to only show up in io wait if there are ops
1156 * in flight */
1157 if (ctx->reqs_active)
1158 io_schedule();
1159 else
1160 schedule();
1161 if (signal_pending(tsk)) {
1162 ret = -EINTR;
1163 break;
1165 /*ret = aio_read_evt(ctx, &ent);*/
1166 } while (1) ;
1168 set_task_state(tsk, TASK_RUNNING);
1169 remove_wait_queue(&ctx->wait, &wait);
1171 if (unlikely(ret <= 0))
1172 break;
1174 ret = -EFAULT;
1175 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1176 dprintk("aio: lost an event due to EFAULT.\n");
1177 break;
1180 /* Good, event copied to userland, update counts. */
1181 event ++;
1182 i ++;
1185 if (timeout)
1186 clear_timeout(&to);
1187 out:
1188 destroy_timer_on_stack(&to.timer);
1189 return i ? i : ret;
1192 /* Take an ioctx and remove it from the list of ioctx's. Protects
1193 * against races with itself via ->dead.
1195 static void io_destroy(struct kioctx *ioctx)
1197 struct mm_struct *mm = current->mm;
1198 int was_dead;
1200 /* delete the entry from the list is someone else hasn't already */
1201 spin_lock(&mm->ioctx_lock);
1202 was_dead = ioctx->dead;
1203 ioctx->dead = 1;
1204 hlist_del_rcu(&ioctx->list);
1205 spin_unlock(&mm->ioctx_lock);
1207 dprintk("aio_release(%p)\n", ioctx);
1208 if (likely(!was_dead))
1209 put_ioctx(ioctx); /* twice for the list */
1211 aio_cancel_all(ioctx);
1212 wait_for_all_aios(ioctx);
1215 * Wake up any waiters. The setting of ctx->dead must be seen
1216 * by other CPUs at this point. Right now, we rely on the
1217 * locking done by the above calls to ensure this consistency.
1219 wake_up_all(&ioctx->wait);
1220 put_ioctx(ioctx); /* once for the lookup */
1223 /* sys_io_setup:
1224 * Create an aio_context capable of receiving at least nr_events.
1225 * ctxp must not point to an aio_context that already exists, and
1226 * must be initialized to 0 prior to the call. On successful
1227 * creation of the aio_context, *ctxp is filled in with the resulting
1228 * handle. May fail with -EINVAL if *ctxp is not initialized,
1229 * if the specified nr_events exceeds internal limits. May fail
1230 * with -EAGAIN if the specified nr_events exceeds the user's limit
1231 * of available events. May fail with -ENOMEM if insufficient kernel
1232 * resources are available. May fail with -EFAULT if an invalid
1233 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1234 * implemented.
1236 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1238 struct kioctx *ioctx = NULL;
1239 unsigned long ctx;
1240 long ret;
1242 ret = get_user(ctx, ctxp);
1243 if (unlikely(ret))
1244 goto out;
1246 ret = -EINVAL;
1247 if (unlikely(ctx || nr_events == 0)) {
1248 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1249 ctx, nr_events);
1250 goto out;
1253 ioctx = ioctx_alloc(nr_events);
1254 ret = PTR_ERR(ioctx);
1255 if (!IS_ERR(ioctx)) {
1256 ret = put_user(ioctx->user_id, ctxp);
1257 if (!ret) {
1258 put_ioctx(ioctx);
1259 return 0;
1261 io_destroy(ioctx);
1264 out:
1265 return ret;
1268 /* sys_io_destroy:
1269 * Destroy the aio_context specified. May cancel any outstanding
1270 * AIOs and block on completion. Will fail with -ENOSYS if not
1271 * implemented. May fail with -EINVAL if the context pointed to
1272 * is invalid.
1274 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1276 struct kioctx *ioctx = lookup_ioctx(ctx);
1277 if (likely(NULL != ioctx)) {
1278 io_destroy(ioctx);
1279 return 0;
1281 pr_debug("EINVAL: io_destroy: invalid context id\n");
1282 return -EINVAL;
1285 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1287 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1289 BUG_ON(ret <= 0);
1291 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1292 ssize_t this = min((ssize_t)iov->iov_len, ret);
1293 iov->iov_base += this;
1294 iov->iov_len -= this;
1295 iocb->ki_left -= this;
1296 ret -= this;
1297 if (iov->iov_len == 0) {
1298 iocb->ki_cur_seg++;
1299 iov++;
1303 /* the caller should not have done more io than what fit in
1304 * the remaining iovecs */
1305 BUG_ON(ret > 0 && iocb->ki_left == 0);
1308 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1310 struct file *file = iocb->ki_filp;
1311 struct address_space *mapping = file->f_mapping;
1312 struct inode *inode = mapping->host;
1313 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1314 unsigned long, loff_t);
1315 ssize_t ret = 0;
1316 unsigned short opcode;
1318 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1319 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1320 rw_op = file->f_op->aio_read;
1321 opcode = IOCB_CMD_PREADV;
1322 } else {
1323 rw_op = file->f_op->aio_write;
1324 opcode = IOCB_CMD_PWRITEV;
1327 /* This matches the pread()/pwrite() logic */
1328 if (iocb->ki_pos < 0)
1329 return -EINVAL;
1331 do {
1332 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1333 iocb->ki_nr_segs - iocb->ki_cur_seg,
1334 iocb->ki_pos);
1335 if (ret > 0)
1336 aio_advance_iovec(iocb, ret);
1338 /* retry all partial writes. retry partial reads as long as its a
1339 * regular file. */
1340 } while (ret > 0 && iocb->ki_left > 0 &&
1341 (opcode == IOCB_CMD_PWRITEV ||
1342 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1344 /* This means we must have transferred all that we could */
1345 /* No need to retry anymore */
1346 if ((ret == 0) || (iocb->ki_left == 0))
1347 ret = iocb->ki_nbytes - iocb->ki_left;
1349 /* If we managed to write some out we return that, rather than
1350 * the eventual error. */
1351 if (opcode == IOCB_CMD_PWRITEV
1352 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1353 && iocb->ki_nbytes - iocb->ki_left)
1354 ret = iocb->ki_nbytes - iocb->ki_left;
1356 return ret;
1359 static ssize_t aio_fdsync(struct kiocb *iocb)
1361 struct file *file = iocb->ki_filp;
1362 ssize_t ret = -EINVAL;
1364 if (file->f_op->aio_fsync)
1365 ret = file->f_op->aio_fsync(iocb, 1);
1366 return ret;
1369 static ssize_t aio_fsync(struct kiocb *iocb)
1371 struct file *file = iocb->ki_filp;
1372 ssize_t ret = -EINVAL;
1374 if (file->f_op->aio_fsync)
1375 ret = file->f_op->aio_fsync(iocb, 0);
1376 return ret;
1379 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1381 ssize_t ret;
1383 #ifdef CONFIG_COMPAT
1384 if (compat)
1385 ret = compat_rw_copy_check_uvector(type,
1386 (struct compat_iovec __user *)kiocb->ki_buf,
1387 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1388 &kiocb->ki_iovec);
1389 else
1390 #endif
1391 ret = rw_copy_check_uvector(type,
1392 (struct iovec __user *)kiocb->ki_buf,
1393 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1394 &kiocb->ki_iovec);
1395 if (ret < 0)
1396 goto out;
1398 ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
1399 if (ret < 0)
1400 goto out;
1402 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1403 kiocb->ki_cur_seg = 0;
1404 /* ki_nbytes/left now reflect bytes instead of segs */
1405 kiocb->ki_nbytes = ret;
1406 kiocb->ki_left = ret;
1408 ret = 0;
1409 out:
1410 return ret;
1413 static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
1415 int bytes;
1417 bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
1418 if (bytes < 0)
1419 return bytes;
1421 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1422 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1423 kiocb->ki_iovec->iov_len = bytes;
1424 kiocb->ki_nr_segs = 1;
1425 kiocb->ki_cur_seg = 0;
1426 return 0;
1430 * aio_setup_iocb:
1431 * Performs the initial checks and aio retry method
1432 * setup for the kiocb at the time of io submission.
1434 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1436 struct file *file = kiocb->ki_filp;
1437 ssize_t ret = 0;
1439 switch (kiocb->ki_opcode) {
1440 case IOCB_CMD_PREAD:
1441 ret = -EBADF;
1442 if (unlikely(!(file->f_mode & FMODE_READ)))
1443 break;
1444 ret = -EFAULT;
1445 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1446 kiocb->ki_left)))
1447 break;
1448 ret = aio_setup_single_vector(READ, file, kiocb);
1449 if (ret)
1450 break;
1451 ret = -EINVAL;
1452 if (file->f_op->aio_read)
1453 kiocb->ki_retry = aio_rw_vect_retry;
1454 break;
1455 case IOCB_CMD_PWRITE:
1456 ret = -EBADF;
1457 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1458 break;
1459 ret = -EFAULT;
1460 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1461 kiocb->ki_left)))
1462 break;
1463 ret = aio_setup_single_vector(WRITE, file, kiocb);
1464 if (ret)
1465 break;
1466 ret = -EINVAL;
1467 if (file->f_op->aio_write)
1468 kiocb->ki_retry = aio_rw_vect_retry;
1469 break;
1470 case IOCB_CMD_PREADV:
1471 ret = -EBADF;
1472 if (unlikely(!(file->f_mode & FMODE_READ)))
1473 break;
1474 ret = aio_setup_vectored_rw(READ, kiocb, compat);
1475 if (ret)
1476 break;
1477 ret = -EINVAL;
1478 if (file->f_op->aio_read)
1479 kiocb->ki_retry = aio_rw_vect_retry;
1480 break;
1481 case IOCB_CMD_PWRITEV:
1482 ret = -EBADF;
1483 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1484 break;
1485 ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1486 if (ret)
1487 break;
1488 ret = -EINVAL;
1489 if (file->f_op->aio_write)
1490 kiocb->ki_retry = aio_rw_vect_retry;
1491 break;
1492 case IOCB_CMD_FDSYNC:
1493 ret = -EINVAL;
1494 if (file->f_op->aio_fsync)
1495 kiocb->ki_retry = aio_fdsync;
1496 break;
1497 case IOCB_CMD_FSYNC:
1498 ret = -EINVAL;
1499 if (file->f_op->aio_fsync)
1500 kiocb->ki_retry = aio_fsync;
1501 break;
1502 default:
1503 dprintk("EINVAL: io_submit: no operation provided\n");
1504 ret = -EINVAL;
1507 if (!kiocb->ki_retry)
1508 return ret;
1510 return 0;
1513 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1514 struct iocb *iocb, bool compat)
1516 struct kiocb *req;
1517 struct file *file;
1518 ssize_t ret;
1520 /* enforce forwards compatibility on users */
1521 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1522 pr_debug("EINVAL: io_submit: reserve field set\n");
1523 return -EINVAL;
1526 /* prevent overflows */
1527 if (unlikely(
1528 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1529 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1530 ((ssize_t)iocb->aio_nbytes < 0)
1531 )) {
1532 pr_debug("EINVAL: io_submit: overflow check\n");
1533 return -EINVAL;
1536 file = fget(iocb->aio_fildes);
1537 if (unlikely(!file))
1538 return -EBADF;
1540 req = aio_get_req(ctx); /* returns with 2 references to req */
1541 if (unlikely(!req)) {
1542 fput(file);
1543 return -EAGAIN;
1545 req->ki_filp = file;
1546 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1548 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1549 * instance of the file* now. The file descriptor must be
1550 * an eventfd() fd, and will be signaled for each completed
1551 * event using the eventfd_signal() function.
1553 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1554 if (IS_ERR(req->ki_eventfd)) {
1555 ret = PTR_ERR(req->ki_eventfd);
1556 req->ki_eventfd = NULL;
1557 goto out_put_req;
1561 ret = put_user(req->ki_key, &user_iocb->aio_key);
1562 if (unlikely(ret)) {
1563 dprintk("EFAULT: aio_key\n");
1564 goto out_put_req;
1567 req->ki_obj.user = user_iocb;
1568 req->ki_user_data = iocb->aio_data;
1569 req->ki_pos = iocb->aio_offset;
1571 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1572 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1573 req->ki_opcode = iocb->aio_lio_opcode;
1575 ret = aio_setup_iocb(req, compat);
1577 if (ret)
1578 goto out_put_req;
1580 spin_lock_irq(&ctx->ctx_lock);
1582 * We could have raced with io_destroy() and are currently holding a
1583 * reference to ctx which should be destroyed. We cannot submit IO
1584 * since ctx gets freed as soon as io_submit() puts its reference. The
1585 * check here is reliable: io_destroy() sets ctx->dead before waiting
1586 * for outstanding IO and the barrier between these two is realized by
1587 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1588 * increment ctx->reqs_active before checking for ctx->dead and the
1589 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1590 * don't see ctx->dead set here, io_destroy() waits for our IO to
1591 * finish.
1593 if (ctx->dead) {
1594 spin_unlock_irq(&ctx->ctx_lock);
1595 ret = -EINVAL;
1596 goto out_put_req;
1598 aio_run_iocb(req);
1599 if (!list_empty(&ctx->run_list)) {
1600 /* drain the run list */
1601 while (__aio_run_iocbs(ctx))
1604 spin_unlock_irq(&ctx->ctx_lock);
1606 aio_put_req(req); /* drop extra ref to req */
1607 return 0;
1609 out_put_req:
1610 aio_put_req(req); /* drop extra ref to req */
1611 aio_put_req(req); /* drop i/o ref to req */
1612 return ret;
1615 long do_io_submit(aio_context_t ctx_id, long nr,
1616 struct iocb __user *__user *iocbpp, bool compat)
1618 struct kioctx *ctx;
1619 long ret = 0;
1620 int i;
1621 struct blk_plug plug;
1623 if (unlikely(nr < 0))
1624 return -EINVAL;
1626 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1627 nr = LONG_MAX/sizeof(*iocbpp);
1629 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1630 return -EFAULT;
1632 ctx = lookup_ioctx(ctx_id);
1633 if (unlikely(!ctx)) {
1634 pr_debug("EINVAL: io_submit: invalid context id\n");
1635 return -EINVAL;
1638 blk_start_plug(&plug);
1641 * AKPM: should this return a partial result if some of the IOs were
1642 * successfully submitted?
1644 for (i=0; i<nr; i++) {
1645 struct iocb __user *user_iocb;
1646 struct iocb tmp;
1648 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1649 ret = -EFAULT;
1650 break;
1653 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1654 ret = -EFAULT;
1655 break;
1658 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1659 if (ret)
1660 break;
1662 blk_finish_plug(&plug);
1664 put_ioctx(ctx);
1665 return i ? i : ret;
1668 /* sys_io_submit:
1669 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1670 * the number of iocbs queued. May return -EINVAL if the aio_context
1671 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1672 * *iocbpp[0] is not properly initialized, if the operation specified
1673 * is invalid for the file descriptor in the iocb. May fail with
1674 * -EFAULT if any of the data structures point to invalid data. May
1675 * fail with -EBADF if the file descriptor specified in the first
1676 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1677 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1678 * fail with -ENOSYS if not implemented.
1680 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1681 struct iocb __user * __user *, iocbpp)
1683 return do_io_submit(ctx_id, nr, iocbpp, 0);
1686 /* lookup_kiocb
1687 * Finds a given iocb for cancellation.
1689 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1690 u32 key)
1692 struct list_head *pos;
1694 assert_spin_locked(&ctx->ctx_lock);
1696 /* TODO: use a hash or array, this sucks. */
1697 list_for_each(pos, &ctx->active_reqs) {
1698 struct kiocb *kiocb = list_kiocb(pos);
1699 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1700 return kiocb;
1702 return NULL;
1705 /* sys_io_cancel:
1706 * Attempts to cancel an iocb previously passed to io_submit. If
1707 * the operation is successfully cancelled, the resulting event is
1708 * copied into the memory pointed to by result without being placed
1709 * into the completion queue and 0 is returned. May fail with
1710 * -EFAULT if any of the data structures pointed to are invalid.
1711 * May fail with -EINVAL if aio_context specified by ctx_id is
1712 * invalid. May fail with -EAGAIN if the iocb specified was not
1713 * cancelled. Will fail with -ENOSYS if not implemented.
1715 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1716 struct io_event __user *, result)
1718 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1719 struct kioctx *ctx;
1720 struct kiocb *kiocb;
1721 u32 key;
1722 int ret;
1724 ret = get_user(key, &iocb->aio_key);
1725 if (unlikely(ret))
1726 return -EFAULT;
1728 ctx = lookup_ioctx(ctx_id);
1729 if (unlikely(!ctx))
1730 return -EINVAL;
1732 spin_lock_irq(&ctx->ctx_lock);
1733 ret = -EAGAIN;
1734 kiocb = lookup_kiocb(ctx, iocb, key);
1735 if (kiocb && kiocb->ki_cancel) {
1736 cancel = kiocb->ki_cancel;
1737 kiocb->ki_users ++;
1738 kiocbSetCancelled(kiocb);
1739 } else
1740 cancel = NULL;
1741 spin_unlock_irq(&ctx->ctx_lock);
1743 if (NULL != cancel) {
1744 struct io_event tmp;
1745 pr_debug("calling cancel\n");
1746 memset(&tmp, 0, sizeof(tmp));
1747 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1748 tmp.data = kiocb->ki_user_data;
1749 ret = cancel(kiocb, &tmp);
1750 if (!ret) {
1751 /* Cancellation succeeded -- copy the result
1752 * into the user's buffer.
1754 if (copy_to_user(result, &tmp, sizeof(tmp)))
1755 ret = -EFAULT;
1757 } else
1758 ret = -EINVAL;
1760 put_ioctx(ctx);
1762 return ret;
1765 /* io_getevents:
1766 * Attempts to read at least min_nr events and up to nr events from
1767 * the completion queue for the aio_context specified by ctx_id. If
1768 * it succeeds, the number of read events is returned. May fail with
1769 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1770 * out of range, if timeout is out of range. May fail with -EFAULT
1771 * if any of the memory specified is invalid. May return 0 or
1772 * < min_nr if the timeout specified by timeout has elapsed
1773 * before sufficient events are available, where timeout == NULL
1774 * specifies an infinite timeout. Note that the timeout pointed to by
1775 * timeout is relative and will be updated if not NULL and the
1776 * operation blocks. Will fail with -ENOSYS if not implemented.
1778 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1779 long, min_nr,
1780 long, nr,
1781 struct io_event __user *, events,
1782 struct timespec __user *, timeout)
1784 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1785 long ret = -EINVAL;
1787 if (likely(ioctx)) {
1788 if (likely(min_nr <= nr && min_nr >= 0))
1789 ret = read_events(ioctx, min_nr, nr, events, timeout);
1790 put_ioctx(ioctx);
1793 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1794 return ret;