2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio
{
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios
;
50 /* the pages with the compressed data on them */
51 struct page
**compressed_pages
;
53 /* inode that owns this data */
56 /* starting offset in the inode for our pages */
59 /* number of bytes in the inode we're working on */
62 /* number of bytes on disk */
63 unsigned long compressed_len
;
65 /* the compression algorithm for this bio */
68 /* number of compressed pages in the array */
69 unsigned long nr_pages
;
75 /* for reads, this is the bio we are copying the data into */
79 * the start of a variable length array of checksums only
85 static inline int compressed_bio_size(struct btrfs_root
*root
,
86 unsigned long disk_size
)
88 u16 csum_size
= btrfs_super_csum_size(&root
->fs_info
->super_copy
);
89 return sizeof(struct compressed_bio
) +
90 ((disk_size
+ root
->sectorsize
- 1) / root
->sectorsize
) *
94 static struct bio
*compressed_bio_alloc(struct block_device
*bdev
,
95 u64 first_byte
, gfp_t gfp_flags
)
99 nr_vecs
= bio_get_nr_vecs(bdev
);
100 return btrfs_bio_alloc(bdev
, first_byte
>> 9, nr_vecs
, gfp_flags
);
103 static int check_compressed_csum(struct inode
*inode
,
104 struct compressed_bio
*cb
,
108 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
113 u32
*cb_sum
= &cb
->sums
;
115 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
118 for (i
= 0; i
< cb
->nr_pages
; i
++) {
119 page
= cb
->compressed_pages
[i
];
122 kaddr
= kmap_atomic(page
, KM_USER0
);
123 csum
= btrfs_csum_data(root
, kaddr
, csum
, PAGE_CACHE_SIZE
);
124 btrfs_csum_final(csum
, (char *)&csum
);
125 kunmap_atomic(kaddr
, KM_USER0
);
127 if (csum
!= *cb_sum
) {
128 printk(KERN_INFO
"btrfs csum failed ino %llu "
129 "extent %llu csum %u "
130 "wanted %u mirror %d\n",
131 (unsigned long long)btrfs_ino(inode
),
132 (unsigned long long)disk_start
,
133 csum
, *cb_sum
, cb
->mirror_num
);
145 /* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
149 * This allows the checksumming and other IO error handling routines
152 * The compressed pages are freed here, and it must be run
155 static void end_compressed_bio_read(struct bio
*bio
, int err
)
157 struct compressed_bio
*cb
= bio
->bi_private
;
166 /* if there are more bios still pending for this compressed
169 if (!atomic_dec_and_test(&cb
->pending_bios
))
173 ret
= check_compressed_csum(inode
, cb
, (u64
)bio
->bi_sector
<< 9);
177 /* ok, we're the last bio for this extent, lets start
180 ret
= btrfs_decompress_biovec(cb
->compress_type
,
181 cb
->compressed_pages
,
183 cb
->orig_bio
->bi_io_vec
,
184 cb
->orig_bio
->bi_vcnt
,
190 /* release the compressed pages */
192 for (index
= 0; index
< cb
->nr_pages
; index
++) {
193 page
= cb
->compressed_pages
[index
];
194 page
->mapping
= NULL
;
195 page_cache_release(page
);
198 /* do io completion on the original bio */
200 bio_io_error(cb
->orig_bio
);
203 struct bio_vec
*bvec
= cb
->orig_bio
->bi_io_vec
;
206 * we have verified the checksum already, set page
207 * checked so the end_io handlers know about it
209 while (bio_index
< cb
->orig_bio
->bi_vcnt
) {
210 SetPageChecked(bvec
->bv_page
);
214 bio_endio(cb
->orig_bio
, 0);
217 /* finally free the cb struct */
218 kfree(cb
->compressed_pages
);
225 * Clear the writeback bits on all of the file
226 * pages for a compressed write
228 static noinline
int end_compressed_writeback(struct inode
*inode
, u64 start
,
229 unsigned long ram_size
)
231 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
232 unsigned long end_index
= (start
+ ram_size
- 1) >> PAGE_CACHE_SHIFT
;
233 struct page
*pages
[16];
234 unsigned long nr_pages
= end_index
- index
+ 1;
238 while (nr_pages
> 0) {
239 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
241 nr_pages
, ARRAY_SIZE(pages
)), pages
);
247 for (i
= 0; i
< ret
; i
++) {
248 end_page_writeback(pages
[i
]);
249 page_cache_release(pages
[i
]);
254 /* the inode may be gone now */
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
266 static void end_compressed_bio_write(struct bio
*bio
, int err
)
268 struct extent_io_tree
*tree
;
269 struct compressed_bio
*cb
= bio
->bi_private
;
277 /* if there are more bios still pending for this compressed
280 if (!atomic_dec_and_test(&cb
->pending_bios
))
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
287 tree
= &BTRFS_I(inode
)->io_tree
;
288 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
289 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
291 cb
->start
+ cb
->len
- 1,
293 cb
->compressed_pages
[0]->mapping
= NULL
;
295 end_compressed_writeback(inode
, cb
->start
, cb
->len
);
296 /* note, our inode could be gone now */
299 * release the compressed pages, these came from alloc_page and
300 * are not attached to the inode at all
303 for (index
= 0; index
< cb
->nr_pages
; index
++) {
304 page
= cb
->compressed_pages
[index
];
305 page
->mapping
= NULL
;
306 page_cache_release(page
);
309 /* finally free the cb struct */
310 kfree(cb
->compressed_pages
);
317 * worker function to build and submit bios for previously compressed pages.
318 * The corresponding pages in the inode should be marked for writeback
319 * and the compressed pages should have a reference on them for dropping
320 * when the IO is complete.
322 * This also checksums the file bytes and gets things ready for
325 int btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
326 unsigned long len
, u64 disk_start
,
327 unsigned long compressed_len
,
328 struct page
**compressed_pages
,
329 unsigned long nr_pages
)
331 struct bio
*bio
= NULL
;
332 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
333 struct compressed_bio
*cb
;
334 unsigned long bytes_left
;
335 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
338 u64 first_byte
= disk_start
;
339 struct block_device
*bdev
;
342 WARN_ON(start
& ((u64
)PAGE_CACHE_SIZE
- 1));
343 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
346 atomic_set(&cb
->pending_bios
, 0);
352 cb
->compressed_pages
= compressed_pages
;
353 cb
->compressed_len
= compressed_len
;
355 cb
->nr_pages
= nr_pages
;
357 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
359 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
364 bio
->bi_private
= cb
;
365 bio
->bi_end_io
= end_compressed_bio_write
;
366 atomic_inc(&cb
->pending_bios
);
368 /* create and submit bios for the compressed pages */
369 bytes_left
= compressed_len
;
370 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
371 page
= compressed_pages
[pg_index
];
372 page
->mapping
= inode
->i_mapping
;
374 ret
= io_tree
->ops
->merge_bio_hook(page
, 0,
380 page
->mapping
= NULL
;
381 if (ret
|| bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) <
386 * inc the count before we submit the bio so
387 * we know the end IO handler won't happen before
388 * we inc the count. Otherwise, the cb might get
389 * freed before we're done setting it up
391 atomic_inc(&cb
->pending_bios
);
392 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
395 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
398 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
403 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
404 bio
->bi_private
= cb
;
405 bio
->bi_end_io
= end_compressed_bio_write
;
406 bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
408 if (bytes_left
< PAGE_CACHE_SIZE
) {
409 printk("bytes left %lu compress len %lu nr %lu\n",
410 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
412 bytes_left
-= PAGE_CACHE_SIZE
;
413 first_byte
+= PAGE_CACHE_SIZE
;
418 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
421 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
424 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
431 static noinline
int add_ra_bio_pages(struct inode
*inode
,
433 struct compressed_bio
*cb
)
435 unsigned long end_index
;
436 unsigned long pg_index
;
438 u64 isize
= i_size_read(inode
);
441 unsigned long nr_pages
= 0;
442 struct extent_map
*em
;
443 struct address_space
*mapping
= inode
->i_mapping
;
444 struct extent_map_tree
*em_tree
;
445 struct extent_io_tree
*tree
;
449 page
= cb
->orig_bio
->bi_io_vec
[cb
->orig_bio
->bi_vcnt
- 1].bv_page
;
450 last_offset
= (page_offset(page
) + PAGE_CACHE_SIZE
);
451 em_tree
= &BTRFS_I(inode
)->extent_tree
;
452 tree
= &BTRFS_I(inode
)->io_tree
;
457 end_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
459 while (last_offset
< compressed_end
) {
460 pg_index
= last_offset
>> PAGE_CACHE_SHIFT
;
462 if (pg_index
> end_index
)
466 page
= radix_tree_lookup(&mapping
->page_tree
, pg_index
);
475 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) &
480 if (add_to_page_cache_lru(page
, mapping
, pg_index
,
482 page_cache_release(page
);
486 end
= last_offset
+ PAGE_CACHE_SIZE
- 1;
488 * at this point, we have a locked page in the page cache
489 * for these bytes in the file. But, we have to make
490 * sure they map to this compressed extent on disk.
492 set_page_extent_mapped(page
);
493 lock_extent(tree
, last_offset
, end
, GFP_NOFS
);
494 read_lock(&em_tree
->lock
);
495 em
= lookup_extent_mapping(em_tree
, last_offset
,
497 read_unlock(&em_tree
->lock
);
499 if (!em
|| last_offset
< em
->start
||
500 (last_offset
+ PAGE_CACHE_SIZE
> extent_map_end(em
)) ||
501 (em
->block_start
>> 9) != cb
->orig_bio
->bi_sector
) {
503 unlock_extent(tree
, last_offset
, end
, GFP_NOFS
);
505 page_cache_release(page
);
510 if (page
->index
== end_index
) {
512 size_t zero_offset
= isize
& (PAGE_CACHE_SIZE
- 1);
516 zeros
= PAGE_CACHE_SIZE
- zero_offset
;
517 userpage
= kmap_atomic(page
, KM_USER0
);
518 memset(userpage
+ zero_offset
, 0, zeros
);
519 flush_dcache_page(page
);
520 kunmap_atomic(userpage
, KM_USER0
);
524 ret
= bio_add_page(cb
->orig_bio
, page
,
527 if (ret
== PAGE_CACHE_SIZE
) {
529 page_cache_release(page
);
531 unlock_extent(tree
, last_offset
, end
, GFP_NOFS
);
533 page_cache_release(page
);
537 last_offset
+= PAGE_CACHE_SIZE
;
543 * for a compressed read, the bio we get passed has all the inode pages
544 * in it. We don't actually do IO on those pages but allocate new ones
545 * to hold the compressed pages on disk.
547 * bio->bi_sector points to the compressed extent on disk
548 * bio->bi_io_vec points to all of the inode pages
549 * bio->bi_vcnt is a count of pages
551 * After the compressed pages are read, we copy the bytes into the
552 * bio we were passed and then call the bio end_io calls
554 int btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
555 int mirror_num
, unsigned long bio_flags
)
557 struct extent_io_tree
*tree
;
558 struct extent_map_tree
*em_tree
;
559 struct compressed_bio
*cb
;
560 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
561 unsigned long uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
562 unsigned long compressed_len
;
563 unsigned long nr_pages
;
564 unsigned long pg_index
;
566 struct block_device
*bdev
;
567 struct bio
*comp_bio
;
568 u64 cur_disk_byte
= (u64
)bio
->bi_sector
<< 9;
571 struct extent_map
*em
;
575 tree
= &BTRFS_I(inode
)->io_tree
;
576 em_tree
= &BTRFS_I(inode
)->extent_tree
;
578 /* we need the actual starting offset of this extent in the file */
579 read_lock(&em_tree
->lock
);
580 em
= lookup_extent_mapping(em_tree
,
581 page_offset(bio
->bi_io_vec
->bv_page
),
583 read_unlock(&em_tree
->lock
);
585 compressed_len
= em
->block_len
;
586 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
590 atomic_set(&cb
->pending_bios
, 0);
593 cb
->mirror_num
= mirror_num
;
596 cb
->start
= em
->orig_start
;
598 em_start
= em
->start
;
603 cb
->len
= uncompressed_len
;
604 cb
->compressed_len
= compressed_len
;
605 cb
->compress_type
= extent_compress_type(bio_flags
);
608 nr_pages
= (compressed_len
+ PAGE_CACHE_SIZE
- 1) /
610 cb
->compressed_pages
= kzalloc(sizeof(struct page
*) * nr_pages
,
612 if (!cb
->compressed_pages
)
615 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
617 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
618 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
620 if (!cb
->compressed_pages
[pg_index
])
623 cb
->nr_pages
= nr_pages
;
625 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
627 /* include any pages we added in add_ra-bio_pages */
628 uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
629 cb
->len
= uncompressed_len
;
631 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
, GFP_NOFS
);
634 comp_bio
->bi_private
= cb
;
635 comp_bio
->bi_end_io
= end_compressed_bio_read
;
636 atomic_inc(&cb
->pending_bios
);
638 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
639 page
= cb
->compressed_pages
[pg_index
];
640 page
->mapping
= inode
->i_mapping
;
641 page
->index
= em_start
>> PAGE_CACHE_SHIFT
;
643 if (comp_bio
->bi_size
)
644 ret
= tree
->ops
->merge_bio_hook(page
, 0,
650 page
->mapping
= NULL
;
651 if (ret
|| bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0) <
655 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
659 * inc the count before we submit the bio so
660 * we know the end IO handler won't happen before
661 * we inc the count. Otherwise, the cb might get
662 * freed before we're done setting it up
664 atomic_inc(&cb
->pending_bios
);
666 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
667 ret
= btrfs_lookup_bio_sums(root
, inode
,
671 sums
+= (comp_bio
->bi_size
+ root
->sectorsize
- 1) /
674 ret
= btrfs_map_bio(root
, READ
, comp_bio
,
680 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
,
682 comp_bio
->bi_private
= cb
;
683 comp_bio
->bi_end_io
= end_compressed_bio_read
;
685 bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0);
687 cur_disk_byte
+= PAGE_CACHE_SIZE
;
691 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
694 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
695 ret
= btrfs_lookup_bio_sums(root
, inode
, comp_bio
, sums
);
699 ret
= btrfs_map_bio(root
, READ
, comp_bio
, mirror_num
, 0);
706 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++)
707 free_page((unsigned long)cb
->compressed_pages
[pg_index
]);
709 kfree(cb
->compressed_pages
);
717 static struct list_head comp_idle_workspace
[BTRFS_COMPRESS_TYPES
];
718 static spinlock_t comp_workspace_lock
[BTRFS_COMPRESS_TYPES
];
719 static int comp_num_workspace
[BTRFS_COMPRESS_TYPES
];
720 static atomic_t comp_alloc_workspace
[BTRFS_COMPRESS_TYPES
];
721 static wait_queue_head_t comp_workspace_wait
[BTRFS_COMPRESS_TYPES
];
723 struct btrfs_compress_op
*btrfs_compress_op
[] = {
724 &btrfs_zlib_compress
,
728 int __init
btrfs_init_compress(void)
732 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
733 INIT_LIST_HEAD(&comp_idle_workspace
[i
]);
734 spin_lock_init(&comp_workspace_lock
[i
]);
735 atomic_set(&comp_alloc_workspace
[i
], 0);
736 init_waitqueue_head(&comp_workspace_wait
[i
]);
742 * this finds an available workspace or allocates a new one
743 * ERR_PTR is returned if things go bad.
745 static struct list_head
*find_workspace(int type
)
747 struct list_head
*workspace
;
748 int cpus
= num_online_cpus();
751 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
752 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
753 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
754 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
755 int *num_workspace
= &comp_num_workspace
[idx
];
757 spin_lock(workspace_lock
);
758 if (!list_empty(idle_workspace
)) {
759 workspace
= idle_workspace
->next
;
762 spin_unlock(workspace_lock
);
766 if (atomic_read(alloc_workspace
) > cpus
) {
769 spin_unlock(workspace_lock
);
770 prepare_to_wait(workspace_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
771 if (atomic_read(alloc_workspace
) > cpus
&& !*num_workspace
)
773 finish_wait(workspace_wait
, &wait
);
776 atomic_inc(alloc_workspace
);
777 spin_unlock(workspace_lock
);
779 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
780 if (IS_ERR(workspace
)) {
781 atomic_dec(alloc_workspace
);
782 wake_up(workspace_wait
);
788 * put a workspace struct back on the list or free it if we have enough
789 * idle ones sitting around
791 static void free_workspace(int type
, struct list_head
*workspace
)
794 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
795 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
796 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
797 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
798 int *num_workspace
= &comp_num_workspace
[idx
];
800 spin_lock(workspace_lock
);
801 if (*num_workspace
< num_online_cpus()) {
802 list_add_tail(workspace
, idle_workspace
);
804 spin_unlock(workspace_lock
);
807 spin_unlock(workspace_lock
);
809 btrfs_compress_op
[idx
]->free_workspace(workspace
);
810 atomic_dec(alloc_workspace
);
812 if (waitqueue_active(workspace_wait
))
813 wake_up(workspace_wait
);
817 * cleanup function for module exit
819 static void free_workspaces(void)
821 struct list_head
*workspace
;
824 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
825 while (!list_empty(&comp_idle_workspace
[i
])) {
826 workspace
= comp_idle_workspace
[i
].next
;
828 btrfs_compress_op
[i
]->free_workspace(workspace
);
829 atomic_dec(&comp_alloc_workspace
[i
]);
835 * given an address space and start/len, compress the bytes.
837 * pages are allocated to hold the compressed result and stored
840 * out_pages is used to return the number of pages allocated. There
841 * may be pages allocated even if we return an error
843 * total_in is used to return the number of bytes actually read. It
844 * may be smaller then len if we had to exit early because we
845 * ran out of room in the pages array or because we cross the
848 * total_out is used to return the total number of compressed bytes
850 * max_out tells us the max number of bytes that we're allowed to
853 int btrfs_compress_pages(int type
, struct address_space
*mapping
,
854 u64 start
, unsigned long len
,
856 unsigned long nr_dest_pages
,
857 unsigned long *out_pages
,
858 unsigned long *total_in
,
859 unsigned long *total_out
,
860 unsigned long max_out
)
862 struct list_head
*workspace
;
865 workspace
= find_workspace(type
);
866 if (IS_ERR(workspace
))
869 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
871 nr_dest_pages
, out_pages
,
874 free_workspace(type
, workspace
);
879 * pages_in is an array of pages with compressed data.
881 * disk_start is the starting logical offset of this array in the file
883 * bvec is a bio_vec of pages from the file that we want to decompress into
885 * vcnt is the count of pages in the biovec
887 * srclen is the number of bytes in pages_in
889 * The basic idea is that we have a bio that was created by readpages.
890 * The pages in the bio are for the uncompressed data, and they may not
891 * be contiguous. They all correspond to the range of bytes covered by
892 * the compressed extent.
894 int btrfs_decompress_biovec(int type
, struct page
**pages_in
, u64 disk_start
,
895 struct bio_vec
*bvec
, int vcnt
, size_t srclen
)
897 struct list_head
*workspace
;
900 workspace
= find_workspace(type
);
901 if (IS_ERR(workspace
))
904 ret
= btrfs_compress_op
[type
-1]->decompress_biovec(workspace
, pages_in
,
907 free_workspace(type
, workspace
);
912 * a less complex decompression routine. Our compressed data fits in a
913 * single page, and we want to read a single page out of it.
914 * start_byte tells us the offset into the compressed data we're interested in
916 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
917 unsigned long start_byte
, size_t srclen
, size_t destlen
)
919 struct list_head
*workspace
;
922 workspace
= find_workspace(type
);
923 if (IS_ERR(workspace
))
926 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
927 dest_page
, start_byte
,
930 free_workspace(type
, workspace
);
934 void btrfs_exit_compress(void)
940 * Copy uncompressed data from working buffer to pages.
942 * buf_start is the byte offset we're of the start of our workspace buffer.
944 * total_out is the last byte of the buffer
946 int btrfs_decompress_buf2page(char *buf
, unsigned long buf_start
,
947 unsigned long total_out
, u64 disk_start
,
948 struct bio_vec
*bvec
, int vcnt
,
949 unsigned long *pg_index
,
950 unsigned long *pg_offset
)
952 unsigned long buf_offset
;
953 unsigned long current_buf_start
;
954 unsigned long start_byte
;
955 unsigned long working_bytes
= total_out
- buf_start
;
958 struct page
*page_out
= bvec
[*pg_index
].bv_page
;
961 * start byte is the first byte of the page we're currently
962 * copying into relative to the start of the compressed data.
964 start_byte
= page_offset(page_out
) - disk_start
;
966 /* we haven't yet hit data corresponding to this page */
967 if (total_out
<= start_byte
)
971 * the start of the data we care about is offset into
972 * the middle of our working buffer
974 if (total_out
> start_byte
&& buf_start
< start_byte
) {
975 buf_offset
= start_byte
- buf_start
;
976 working_bytes
-= buf_offset
;
980 current_buf_start
= buf_start
;
982 /* copy bytes from the working buffer into the pages */
983 while (working_bytes
> 0) {
984 bytes
= min(PAGE_CACHE_SIZE
- *pg_offset
,
985 PAGE_CACHE_SIZE
- buf_offset
);
986 bytes
= min(bytes
, working_bytes
);
987 kaddr
= kmap_atomic(page_out
, KM_USER0
);
988 memcpy(kaddr
+ *pg_offset
, buf
+ buf_offset
, bytes
);
989 kunmap_atomic(kaddr
, KM_USER0
);
990 flush_dcache_page(page_out
);
994 working_bytes
-= bytes
;
995 current_buf_start
+= bytes
;
997 /* check if we need to pick another page */
998 if (*pg_offset
== PAGE_CACHE_SIZE
) {
1000 if (*pg_index
>= vcnt
)
1003 page_out
= bvec
[*pg_index
].bv_page
;
1005 start_byte
= page_offset(page_out
) - disk_start
;
1008 * make sure our new page is covered by this
1011 if (total_out
<= start_byte
)
1015 * the next page in the biovec might not be adjacent
1016 * to the last page, but it might still be found
1017 * inside this working buffer. bump our offset pointer
1019 if (total_out
> start_byte
&&
1020 current_buf_start
< start_byte
) {
1021 buf_offset
= start_byte
- buf_start
;
1022 working_bytes
= total_out
- start_byte
;
1023 current_buf_start
= buf_start
+ buf_offset
;