ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / btrfs / compression.c
blobbfe42b03eaf9b3cc0bdf14b3975300e9a30b8584
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
53 /* inode that owns this data */
54 struct inode *inode;
56 /* starting offset in the inode for our pages */
57 u64 start;
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
62 /* number of bytes on disk */
63 unsigned long compressed_len;
65 /* the compression algorithm for this bio */
66 int compress_type;
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
71 /* IO errors */
72 int errors;
73 int mirror_num;
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
79 * the start of a variable length array of checksums only
80 * used by reads
82 u32 sums;
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 unsigned long disk_size)
88 u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89 return sizeof(struct compressed_bio) +
90 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
91 csum_size;
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95 u64 first_byte, gfp_t gfp_flags)
97 int nr_vecs;
99 nr_vecs = bio_get_nr_vecs(bdev);
100 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
103 static int check_compressed_csum(struct inode *inode,
104 struct compressed_bio *cb,
105 u64 disk_start)
107 int ret;
108 struct btrfs_root *root = BTRFS_I(inode)->root;
109 struct page *page;
110 unsigned long i;
111 char *kaddr;
112 u32 csum;
113 u32 *cb_sum = &cb->sums;
115 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116 return 0;
118 for (i = 0; i < cb->nr_pages; i++) {
119 page = cb->compressed_pages[i];
120 csum = ~(u32)0;
122 kaddr = kmap_atomic(page, KM_USER0);
123 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124 btrfs_csum_final(csum, (char *)&csum);
125 kunmap_atomic(kaddr, KM_USER0);
127 if (csum != *cb_sum) {
128 printk(KERN_INFO "btrfs csum failed ino %llu "
129 "extent %llu csum %u "
130 "wanted %u mirror %d\n",
131 (unsigned long long)btrfs_ino(inode),
132 (unsigned long long)disk_start,
133 csum, *cb_sum, cb->mirror_num);
134 ret = -EIO;
135 goto fail;
137 cb_sum++;
140 ret = 0;
141 fail:
142 return ret;
145 /* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
149 * This allows the checksumming and other IO error handling routines
150 * to work normally
152 * The compressed pages are freed here, and it must be run
153 * in process context
155 static void end_compressed_bio_read(struct bio *bio, int err)
157 struct compressed_bio *cb = bio->bi_private;
158 struct inode *inode;
159 struct page *page;
160 unsigned long index;
161 int ret;
163 if (err)
164 cb->errors = 1;
166 /* if there are more bios still pending for this compressed
167 * extent, just exit
169 if (!atomic_dec_and_test(&cb->pending_bios))
170 goto out;
172 inode = cb->inode;
173 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
174 if (ret)
175 goto csum_failed;
177 /* ok, we're the last bio for this extent, lets start
178 * the decompression.
180 ret = btrfs_decompress_biovec(cb->compress_type,
181 cb->compressed_pages,
182 cb->start,
183 cb->orig_bio->bi_io_vec,
184 cb->orig_bio->bi_vcnt,
185 cb->compressed_len);
186 csum_failed:
187 if (ret)
188 cb->errors = 1;
190 /* release the compressed pages */
191 index = 0;
192 for (index = 0; index < cb->nr_pages; index++) {
193 page = cb->compressed_pages[index];
194 page->mapping = NULL;
195 page_cache_release(page);
198 /* do io completion on the original bio */
199 if (cb->errors) {
200 bio_io_error(cb->orig_bio);
201 } else {
202 int bio_index = 0;
203 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
206 * we have verified the checksum already, set page
207 * checked so the end_io handlers know about it
209 while (bio_index < cb->orig_bio->bi_vcnt) {
210 SetPageChecked(bvec->bv_page);
211 bvec++;
212 bio_index++;
214 bio_endio(cb->orig_bio, 0);
217 /* finally free the cb struct */
218 kfree(cb->compressed_pages);
219 kfree(cb);
220 out:
221 bio_put(bio);
225 * Clear the writeback bits on all of the file
226 * pages for a compressed write
228 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
229 unsigned long ram_size)
231 unsigned long index = start >> PAGE_CACHE_SHIFT;
232 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233 struct page *pages[16];
234 unsigned long nr_pages = end_index - index + 1;
235 int i;
236 int ret;
238 while (nr_pages > 0) {
239 ret = find_get_pages_contig(inode->i_mapping, index,
240 min_t(unsigned long,
241 nr_pages, ARRAY_SIZE(pages)), pages);
242 if (ret == 0) {
243 nr_pages -= 1;
244 index += 1;
245 continue;
247 for (i = 0; i < ret; i++) {
248 end_page_writeback(pages[i]);
249 page_cache_release(pages[i]);
251 nr_pages -= ret;
252 index += ret;
254 /* the inode may be gone now */
255 return 0;
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
261 * pages.
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
266 static void end_compressed_bio_write(struct bio *bio, int err)
268 struct extent_io_tree *tree;
269 struct compressed_bio *cb = bio->bi_private;
270 struct inode *inode;
271 struct page *page;
272 unsigned long index;
274 if (err)
275 cb->errors = 1;
277 /* if there are more bios still pending for this compressed
278 * extent, just exit
280 if (!atomic_dec_and_test(&cb->pending_bios))
281 goto out;
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
286 inode = cb->inode;
287 tree = &BTRFS_I(inode)->io_tree;
288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 cb->start,
291 cb->start + cb->len - 1,
292 NULL, 1);
293 cb->compressed_pages[0]->mapping = NULL;
295 end_compressed_writeback(inode, cb->start, cb->len);
296 /* note, our inode could be gone now */
299 * release the compressed pages, these came from alloc_page and
300 * are not attached to the inode at all
302 index = 0;
303 for (index = 0; index < cb->nr_pages; index++) {
304 page = cb->compressed_pages[index];
305 page->mapping = NULL;
306 page_cache_release(page);
309 /* finally free the cb struct */
310 kfree(cb->compressed_pages);
311 kfree(cb);
312 out:
313 bio_put(bio);
317 * worker function to build and submit bios for previously compressed pages.
318 * The corresponding pages in the inode should be marked for writeback
319 * and the compressed pages should have a reference on them for dropping
320 * when the IO is complete.
322 * This also checksums the file bytes and gets things ready for
323 * the end io hooks.
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 unsigned long len, u64 disk_start,
327 unsigned long compressed_len,
328 struct page **compressed_pages,
329 unsigned long nr_pages)
331 struct bio *bio = NULL;
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct compressed_bio *cb;
334 unsigned long bytes_left;
335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336 int pg_index = 0;
337 struct page *page;
338 u64 first_byte = disk_start;
339 struct block_device *bdev;
340 int ret;
342 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
343 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
344 if (!cb)
345 return -ENOMEM;
346 atomic_set(&cb->pending_bios, 0);
347 cb->errors = 0;
348 cb->inode = inode;
349 cb->start = start;
350 cb->len = len;
351 cb->mirror_num = 0;
352 cb->compressed_pages = compressed_pages;
353 cb->compressed_len = compressed_len;
354 cb->orig_bio = NULL;
355 cb->nr_pages = nr_pages;
357 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
360 if(!bio) {
361 kfree(cb);
362 return -ENOMEM;
364 bio->bi_private = cb;
365 bio->bi_end_io = end_compressed_bio_write;
366 atomic_inc(&cb->pending_bios);
368 /* create and submit bios for the compressed pages */
369 bytes_left = compressed_len;
370 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 page = compressed_pages[pg_index];
372 page->mapping = inode->i_mapping;
373 if (bio->bi_size)
374 ret = io_tree->ops->merge_bio_hook(page, 0,
375 PAGE_CACHE_SIZE,
376 bio, 0);
377 else
378 ret = 0;
380 page->mapping = NULL;
381 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
382 PAGE_CACHE_SIZE) {
383 bio_get(bio);
386 * inc the count before we submit the bio so
387 * we know the end IO handler won't happen before
388 * we inc the count. Otherwise, the cb might get
389 * freed before we're done setting it up
391 atomic_inc(&cb->pending_bios);
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 BUG_ON(ret);
395 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
396 BUG_ON(ret);
398 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
399 BUG_ON(ret);
401 bio_put(bio);
403 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
404 bio->bi_private = cb;
405 bio->bi_end_io = end_compressed_bio_write;
406 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
408 if (bytes_left < PAGE_CACHE_SIZE) {
409 printk("bytes left %lu compress len %lu nr %lu\n",
410 bytes_left, cb->compressed_len, cb->nr_pages);
412 bytes_left -= PAGE_CACHE_SIZE;
413 first_byte += PAGE_CACHE_SIZE;
414 cond_resched();
416 bio_get(bio);
418 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
419 BUG_ON(ret);
421 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
422 BUG_ON(ret);
424 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
425 BUG_ON(ret);
427 bio_put(bio);
428 return 0;
431 static noinline int add_ra_bio_pages(struct inode *inode,
432 u64 compressed_end,
433 struct compressed_bio *cb)
435 unsigned long end_index;
436 unsigned long pg_index;
437 u64 last_offset;
438 u64 isize = i_size_read(inode);
439 int ret;
440 struct page *page;
441 unsigned long nr_pages = 0;
442 struct extent_map *em;
443 struct address_space *mapping = inode->i_mapping;
444 struct extent_map_tree *em_tree;
445 struct extent_io_tree *tree;
446 u64 end;
447 int misses = 0;
449 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
450 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
451 em_tree = &BTRFS_I(inode)->extent_tree;
452 tree = &BTRFS_I(inode)->io_tree;
454 if (isize == 0)
455 return 0;
457 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
459 while (last_offset < compressed_end) {
460 pg_index = last_offset >> PAGE_CACHE_SHIFT;
462 if (pg_index > end_index)
463 break;
465 rcu_read_lock();
466 page = radix_tree_lookup(&mapping->page_tree, pg_index);
467 rcu_read_unlock();
468 if (page) {
469 misses++;
470 if (misses > 4)
471 break;
472 goto next;
475 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
476 ~__GFP_FS);
477 if (!page)
478 break;
480 if (add_to_page_cache_lru(page, mapping, pg_index,
481 GFP_NOFS)) {
482 page_cache_release(page);
483 goto next;
486 end = last_offset + PAGE_CACHE_SIZE - 1;
488 * at this point, we have a locked page in the page cache
489 * for these bytes in the file. But, we have to make
490 * sure they map to this compressed extent on disk.
492 set_page_extent_mapped(page);
493 lock_extent(tree, last_offset, end, GFP_NOFS);
494 read_lock(&em_tree->lock);
495 em = lookup_extent_mapping(em_tree, last_offset,
496 PAGE_CACHE_SIZE);
497 read_unlock(&em_tree->lock);
499 if (!em || last_offset < em->start ||
500 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
501 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
502 free_extent_map(em);
503 unlock_extent(tree, last_offset, end, GFP_NOFS);
504 unlock_page(page);
505 page_cache_release(page);
506 break;
508 free_extent_map(em);
510 if (page->index == end_index) {
511 char *userpage;
512 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
514 if (zero_offset) {
515 int zeros;
516 zeros = PAGE_CACHE_SIZE - zero_offset;
517 userpage = kmap_atomic(page, KM_USER0);
518 memset(userpage + zero_offset, 0, zeros);
519 flush_dcache_page(page);
520 kunmap_atomic(userpage, KM_USER0);
524 ret = bio_add_page(cb->orig_bio, page,
525 PAGE_CACHE_SIZE, 0);
527 if (ret == PAGE_CACHE_SIZE) {
528 nr_pages++;
529 page_cache_release(page);
530 } else {
531 unlock_extent(tree, last_offset, end, GFP_NOFS);
532 unlock_page(page);
533 page_cache_release(page);
534 break;
536 next:
537 last_offset += PAGE_CACHE_SIZE;
539 return 0;
543 * for a compressed read, the bio we get passed has all the inode pages
544 * in it. We don't actually do IO on those pages but allocate new ones
545 * to hold the compressed pages on disk.
547 * bio->bi_sector points to the compressed extent on disk
548 * bio->bi_io_vec points to all of the inode pages
549 * bio->bi_vcnt is a count of pages
551 * After the compressed pages are read, we copy the bytes into the
552 * bio we were passed and then call the bio end_io calls
554 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
555 int mirror_num, unsigned long bio_flags)
557 struct extent_io_tree *tree;
558 struct extent_map_tree *em_tree;
559 struct compressed_bio *cb;
560 struct btrfs_root *root = BTRFS_I(inode)->root;
561 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
562 unsigned long compressed_len;
563 unsigned long nr_pages;
564 unsigned long pg_index;
565 struct page *page;
566 struct block_device *bdev;
567 struct bio *comp_bio;
568 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
569 u64 em_len;
570 u64 em_start;
571 struct extent_map *em;
572 int ret = -ENOMEM;
573 u32 *sums;
575 tree = &BTRFS_I(inode)->io_tree;
576 em_tree = &BTRFS_I(inode)->extent_tree;
578 /* we need the actual starting offset of this extent in the file */
579 read_lock(&em_tree->lock);
580 em = lookup_extent_mapping(em_tree,
581 page_offset(bio->bi_io_vec->bv_page),
582 PAGE_CACHE_SIZE);
583 read_unlock(&em_tree->lock);
585 compressed_len = em->block_len;
586 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
587 if (!cb)
588 goto out;
590 atomic_set(&cb->pending_bios, 0);
591 cb->errors = 0;
592 cb->inode = inode;
593 cb->mirror_num = mirror_num;
594 sums = &cb->sums;
596 cb->start = em->orig_start;
597 em_len = em->len;
598 em_start = em->start;
600 free_extent_map(em);
601 em = NULL;
603 cb->len = uncompressed_len;
604 cb->compressed_len = compressed_len;
605 cb->compress_type = extent_compress_type(bio_flags);
606 cb->orig_bio = bio;
608 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
609 PAGE_CACHE_SIZE;
610 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
611 GFP_NOFS);
612 if (!cb->compressed_pages)
613 goto fail1;
615 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
617 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
618 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
619 __GFP_HIGHMEM);
620 if (!cb->compressed_pages[pg_index])
621 goto fail2;
623 cb->nr_pages = nr_pages;
625 add_ra_bio_pages(inode, em_start + em_len, cb);
627 /* include any pages we added in add_ra-bio_pages */
628 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
629 cb->len = uncompressed_len;
631 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
632 if (!comp_bio)
633 goto fail2;
634 comp_bio->bi_private = cb;
635 comp_bio->bi_end_io = end_compressed_bio_read;
636 atomic_inc(&cb->pending_bios);
638 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
639 page = cb->compressed_pages[pg_index];
640 page->mapping = inode->i_mapping;
641 page->index = em_start >> PAGE_CACHE_SHIFT;
643 if (comp_bio->bi_size)
644 ret = tree->ops->merge_bio_hook(page, 0,
645 PAGE_CACHE_SIZE,
646 comp_bio, 0);
647 else
648 ret = 0;
650 page->mapping = NULL;
651 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
652 PAGE_CACHE_SIZE) {
653 bio_get(comp_bio);
655 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
656 BUG_ON(ret);
659 * inc the count before we submit the bio so
660 * we know the end IO handler won't happen before
661 * we inc the count. Otherwise, the cb might get
662 * freed before we're done setting it up
664 atomic_inc(&cb->pending_bios);
666 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
667 ret = btrfs_lookup_bio_sums(root, inode,
668 comp_bio, sums);
669 BUG_ON(ret);
671 sums += (comp_bio->bi_size + root->sectorsize - 1) /
672 root->sectorsize;
674 ret = btrfs_map_bio(root, READ, comp_bio,
675 mirror_num, 0);
676 BUG_ON(ret);
678 bio_put(comp_bio);
680 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
681 GFP_NOFS);
682 comp_bio->bi_private = cb;
683 comp_bio->bi_end_io = end_compressed_bio_read;
685 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
687 cur_disk_byte += PAGE_CACHE_SIZE;
689 bio_get(comp_bio);
691 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
692 BUG_ON(ret);
694 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
695 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
696 BUG_ON(ret);
699 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
700 BUG_ON(ret);
702 bio_put(comp_bio);
703 return 0;
705 fail2:
706 for (pg_index = 0; pg_index < nr_pages; pg_index++)
707 free_page((unsigned long)cb->compressed_pages[pg_index]);
709 kfree(cb->compressed_pages);
710 fail1:
711 kfree(cb);
712 out:
713 free_extent_map(em);
714 return ret;
717 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
718 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
719 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
720 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
721 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
723 struct btrfs_compress_op *btrfs_compress_op[] = {
724 &btrfs_zlib_compress,
725 &btrfs_lzo_compress,
728 int __init btrfs_init_compress(void)
730 int i;
732 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
733 INIT_LIST_HEAD(&comp_idle_workspace[i]);
734 spin_lock_init(&comp_workspace_lock[i]);
735 atomic_set(&comp_alloc_workspace[i], 0);
736 init_waitqueue_head(&comp_workspace_wait[i]);
738 return 0;
742 * this finds an available workspace or allocates a new one
743 * ERR_PTR is returned if things go bad.
745 static struct list_head *find_workspace(int type)
747 struct list_head *workspace;
748 int cpus = num_online_cpus();
749 int idx = type - 1;
751 struct list_head *idle_workspace = &comp_idle_workspace[idx];
752 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
753 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
754 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
755 int *num_workspace = &comp_num_workspace[idx];
756 again:
757 spin_lock(workspace_lock);
758 if (!list_empty(idle_workspace)) {
759 workspace = idle_workspace->next;
760 list_del(workspace);
761 (*num_workspace)--;
762 spin_unlock(workspace_lock);
763 return workspace;
766 if (atomic_read(alloc_workspace) > cpus) {
767 DEFINE_WAIT(wait);
769 spin_unlock(workspace_lock);
770 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
771 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
772 schedule();
773 finish_wait(workspace_wait, &wait);
774 goto again;
776 atomic_inc(alloc_workspace);
777 spin_unlock(workspace_lock);
779 workspace = btrfs_compress_op[idx]->alloc_workspace();
780 if (IS_ERR(workspace)) {
781 atomic_dec(alloc_workspace);
782 wake_up(workspace_wait);
784 return workspace;
788 * put a workspace struct back on the list or free it if we have enough
789 * idle ones sitting around
791 static void free_workspace(int type, struct list_head *workspace)
793 int idx = type - 1;
794 struct list_head *idle_workspace = &comp_idle_workspace[idx];
795 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
796 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
797 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
798 int *num_workspace = &comp_num_workspace[idx];
800 spin_lock(workspace_lock);
801 if (*num_workspace < num_online_cpus()) {
802 list_add_tail(workspace, idle_workspace);
803 (*num_workspace)++;
804 spin_unlock(workspace_lock);
805 goto wake;
807 spin_unlock(workspace_lock);
809 btrfs_compress_op[idx]->free_workspace(workspace);
810 atomic_dec(alloc_workspace);
811 wake:
812 if (waitqueue_active(workspace_wait))
813 wake_up(workspace_wait);
817 * cleanup function for module exit
819 static void free_workspaces(void)
821 struct list_head *workspace;
822 int i;
824 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
825 while (!list_empty(&comp_idle_workspace[i])) {
826 workspace = comp_idle_workspace[i].next;
827 list_del(workspace);
828 btrfs_compress_op[i]->free_workspace(workspace);
829 atomic_dec(&comp_alloc_workspace[i]);
835 * given an address space and start/len, compress the bytes.
837 * pages are allocated to hold the compressed result and stored
838 * in 'pages'
840 * out_pages is used to return the number of pages allocated. There
841 * may be pages allocated even if we return an error
843 * total_in is used to return the number of bytes actually read. It
844 * may be smaller then len if we had to exit early because we
845 * ran out of room in the pages array or because we cross the
846 * max_out threshold.
848 * total_out is used to return the total number of compressed bytes
850 * max_out tells us the max number of bytes that we're allowed to
851 * stuff into pages
853 int btrfs_compress_pages(int type, struct address_space *mapping,
854 u64 start, unsigned long len,
855 struct page **pages,
856 unsigned long nr_dest_pages,
857 unsigned long *out_pages,
858 unsigned long *total_in,
859 unsigned long *total_out,
860 unsigned long max_out)
862 struct list_head *workspace;
863 int ret;
865 workspace = find_workspace(type);
866 if (IS_ERR(workspace))
867 return -1;
869 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
870 start, len, pages,
871 nr_dest_pages, out_pages,
872 total_in, total_out,
873 max_out);
874 free_workspace(type, workspace);
875 return ret;
879 * pages_in is an array of pages with compressed data.
881 * disk_start is the starting logical offset of this array in the file
883 * bvec is a bio_vec of pages from the file that we want to decompress into
885 * vcnt is the count of pages in the biovec
887 * srclen is the number of bytes in pages_in
889 * The basic idea is that we have a bio that was created by readpages.
890 * The pages in the bio are for the uncompressed data, and they may not
891 * be contiguous. They all correspond to the range of bytes covered by
892 * the compressed extent.
894 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
895 struct bio_vec *bvec, int vcnt, size_t srclen)
897 struct list_head *workspace;
898 int ret;
900 workspace = find_workspace(type);
901 if (IS_ERR(workspace))
902 return -ENOMEM;
904 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
905 disk_start,
906 bvec, vcnt, srclen);
907 free_workspace(type, workspace);
908 return ret;
912 * a less complex decompression routine. Our compressed data fits in a
913 * single page, and we want to read a single page out of it.
914 * start_byte tells us the offset into the compressed data we're interested in
916 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
917 unsigned long start_byte, size_t srclen, size_t destlen)
919 struct list_head *workspace;
920 int ret;
922 workspace = find_workspace(type);
923 if (IS_ERR(workspace))
924 return -ENOMEM;
926 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
927 dest_page, start_byte,
928 srclen, destlen);
930 free_workspace(type, workspace);
931 return ret;
934 void btrfs_exit_compress(void)
936 free_workspaces();
940 * Copy uncompressed data from working buffer to pages.
942 * buf_start is the byte offset we're of the start of our workspace buffer.
944 * total_out is the last byte of the buffer
946 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
947 unsigned long total_out, u64 disk_start,
948 struct bio_vec *bvec, int vcnt,
949 unsigned long *pg_index,
950 unsigned long *pg_offset)
952 unsigned long buf_offset;
953 unsigned long current_buf_start;
954 unsigned long start_byte;
955 unsigned long working_bytes = total_out - buf_start;
956 unsigned long bytes;
957 char *kaddr;
958 struct page *page_out = bvec[*pg_index].bv_page;
961 * start byte is the first byte of the page we're currently
962 * copying into relative to the start of the compressed data.
964 start_byte = page_offset(page_out) - disk_start;
966 /* we haven't yet hit data corresponding to this page */
967 if (total_out <= start_byte)
968 return 1;
971 * the start of the data we care about is offset into
972 * the middle of our working buffer
974 if (total_out > start_byte && buf_start < start_byte) {
975 buf_offset = start_byte - buf_start;
976 working_bytes -= buf_offset;
977 } else {
978 buf_offset = 0;
980 current_buf_start = buf_start;
982 /* copy bytes from the working buffer into the pages */
983 while (working_bytes > 0) {
984 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
985 PAGE_CACHE_SIZE - buf_offset);
986 bytes = min(bytes, working_bytes);
987 kaddr = kmap_atomic(page_out, KM_USER0);
988 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
989 kunmap_atomic(kaddr, KM_USER0);
990 flush_dcache_page(page_out);
992 *pg_offset += bytes;
993 buf_offset += bytes;
994 working_bytes -= bytes;
995 current_buf_start += bytes;
997 /* check if we need to pick another page */
998 if (*pg_offset == PAGE_CACHE_SIZE) {
999 (*pg_index)++;
1000 if (*pg_index >= vcnt)
1001 return 0;
1003 page_out = bvec[*pg_index].bv_page;
1004 *pg_offset = 0;
1005 start_byte = page_offset(page_out) - disk_start;
1008 * make sure our new page is covered by this
1009 * working buffer
1011 if (total_out <= start_byte)
1012 return 1;
1015 * the next page in the biovec might not be adjacent
1016 * to the last page, but it might still be found
1017 * inside this working buffer. bump our offset pointer
1019 if (total_out > start_byte &&
1020 current_buf_start < start_byte) {
1021 buf_offset = start_byte - buf_start;
1022 working_bytes = total_out - start_byte;
1023 current_buf_start = buf_start + buf_offset;
1028 return 1;