1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 static struct kmem_cache
*extent_state_cache
;
22 static struct kmem_cache
*extent_buffer_cache
;
24 static LIST_HEAD(buffers
);
25 static LIST_HEAD(states
);
29 static DEFINE_SPINLOCK(leak_lock
);
32 #define BUFFER_LRU_MAX 64
37 struct rb_node rb_node
;
40 struct extent_page_data
{
42 struct extent_io_tree
*tree
;
43 get_extent_t
*get_extent
;
45 /* tells writepage not to lock the state bits for this range
46 * it still does the unlocking
48 unsigned int extent_locked
:1;
50 /* tells the submit_bio code to use a WRITE_SYNC */
51 unsigned int sync_io
:1;
54 int __init
extent_io_init(void)
56 extent_state_cache
= kmem_cache_create("extent_state",
57 sizeof(struct extent_state
), 0,
58 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
59 if (!extent_state_cache
)
62 extent_buffer_cache
= kmem_cache_create("extent_buffers",
63 sizeof(struct extent_buffer
), 0,
64 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
65 if (!extent_buffer_cache
)
66 goto free_state_cache
;
70 kmem_cache_destroy(extent_state_cache
);
74 void extent_io_exit(void)
76 struct extent_state
*state
;
77 struct extent_buffer
*eb
;
79 while (!list_empty(&states
)) {
80 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
81 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
82 "state %lu in tree %p refs %d\n",
83 (unsigned long long)state
->start
,
84 (unsigned long long)state
->end
,
85 state
->state
, state
->tree
, atomic_read(&state
->refs
));
86 list_del(&state
->leak_list
);
87 kmem_cache_free(extent_state_cache
, state
);
91 while (!list_empty(&buffers
)) {
92 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
93 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
94 "refs %d\n", (unsigned long long)eb
->start
,
95 eb
->len
, atomic_read(&eb
->refs
));
96 list_del(&eb
->leak_list
);
97 kmem_cache_free(extent_buffer_cache
, eb
);
99 if (extent_state_cache
)
100 kmem_cache_destroy(extent_state_cache
);
101 if (extent_buffer_cache
)
102 kmem_cache_destroy(extent_buffer_cache
);
105 void extent_io_tree_init(struct extent_io_tree
*tree
,
106 struct address_space
*mapping
)
108 tree
->state
= RB_ROOT
;
109 INIT_RADIX_TREE(&tree
->buffer
, GFP_ATOMIC
);
111 tree
->dirty_bytes
= 0;
112 spin_lock_init(&tree
->lock
);
113 spin_lock_init(&tree
->buffer_lock
);
114 tree
->mapping
= mapping
;
117 static struct extent_state
*alloc_extent_state(gfp_t mask
)
119 struct extent_state
*state
;
124 state
= kmem_cache_alloc(extent_state_cache
, mask
);
131 spin_lock_irqsave(&leak_lock
, flags
);
132 list_add(&state
->leak_list
, &states
);
133 spin_unlock_irqrestore(&leak_lock
, flags
);
135 atomic_set(&state
->refs
, 1);
136 init_waitqueue_head(&state
->wq
);
140 void free_extent_state(struct extent_state
*state
)
144 if (atomic_dec_and_test(&state
->refs
)) {
148 WARN_ON(state
->tree
);
150 spin_lock_irqsave(&leak_lock
, flags
);
151 list_del(&state
->leak_list
);
152 spin_unlock_irqrestore(&leak_lock
, flags
);
154 kmem_cache_free(extent_state_cache
, state
);
158 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
159 struct rb_node
*node
)
161 struct rb_node
**p
= &root
->rb_node
;
162 struct rb_node
*parent
= NULL
;
163 struct tree_entry
*entry
;
167 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
169 if (offset
< entry
->start
)
171 else if (offset
> entry
->end
)
177 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
178 rb_link_node(node
, parent
, p
);
179 rb_insert_color(node
, root
);
183 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
184 struct rb_node
**prev_ret
,
185 struct rb_node
**next_ret
)
187 struct rb_root
*root
= &tree
->state
;
188 struct rb_node
*n
= root
->rb_node
;
189 struct rb_node
*prev
= NULL
;
190 struct rb_node
*orig_prev
= NULL
;
191 struct tree_entry
*entry
;
192 struct tree_entry
*prev_entry
= NULL
;
195 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
199 if (offset
< entry
->start
)
201 else if (offset
> entry
->end
)
209 while (prev
&& offset
> prev_entry
->end
) {
210 prev
= rb_next(prev
);
211 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
218 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
219 while (prev
&& offset
< prev_entry
->start
) {
220 prev
= rb_prev(prev
);
221 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
228 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
231 struct rb_node
*prev
= NULL
;
234 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
240 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
241 struct extent_state
*other
)
243 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
244 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
249 * utility function to look for merge candidates inside a given range.
250 * Any extents with matching state are merged together into a single
251 * extent in the tree. Extents with EXTENT_IO in their state field
252 * are not merged because the end_io handlers need to be able to do
253 * operations on them without sleeping (or doing allocations/splits).
255 * This should be called with the tree lock held.
257 static int merge_state(struct extent_io_tree
*tree
,
258 struct extent_state
*state
)
260 struct extent_state
*other
;
261 struct rb_node
*other_node
;
263 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
266 other_node
= rb_prev(&state
->rb_node
);
268 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
269 if (other
->end
== state
->start
- 1 &&
270 other
->state
== state
->state
) {
271 merge_cb(tree
, state
, other
);
272 state
->start
= other
->start
;
274 rb_erase(&other
->rb_node
, &tree
->state
);
275 free_extent_state(other
);
278 other_node
= rb_next(&state
->rb_node
);
280 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
281 if (other
->start
== state
->end
+ 1 &&
282 other
->state
== state
->state
) {
283 merge_cb(tree
, state
, other
);
284 other
->start
= state
->start
;
286 rb_erase(&state
->rb_node
, &tree
->state
);
287 free_extent_state(state
);
295 static int set_state_cb(struct extent_io_tree
*tree
,
296 struct extent_state
*state
, int *bits
)
298 if (tree
->ops
&& tree
->ops
->set_bit_hook
) {
299 return tree
->ops
->set_bit_hook(tree
->mapping
->host
,
306 static void clear_state_cb(struct extent_io_tree
*tree
,
307 struct extent_state
*state
, int *bits
)
309 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
310 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
314 * insert an extent_state struct into the tree. 'bits' are set on the
315 * struct before it is inserted.
317 * This may return -EEXIST if the extent is already there, in which case the
318 * state struct is freed.
320 * The tree lock is not taken internally. This is a utility function and
321 * probably isn't what you want to call (see set/clear_extent_bit).
323 static int insert_state(struct extent_io_tree
*tree
,
324 struct extent_state
*state
, u64 start
, u64 end
,
327 struct rb_node
*node
;
328 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
332 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
333 (unsigned long long)end
,
334 (unsigned long long)start
);
337 state
->start
= start
;
339 ret
= set_state_cb(tree
, state
, bits
);
343 if (bits_to_set
& EXTENT_DIRTY
)
344 tree
->dirty_bytes
+= end
- start
+ 1;
345 state
->state
|= bits_to_set
;
346 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
348 struct extent_state
*found
;
349 found
= rb_entry(node
, struct extent_state
, rb_node
);
350 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
351 "%llu %llu\n", (unsigned long long)found
->start
,
352 (unsigned long long)found
->end
,
353 (unsigned long long)start
, (unsigned long long)end
);
354 free_extent_state(state
);
358 merge_state(tree
, state
);
362 static int split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
365 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
366 return tree
->ops
->split_extent_hook(tree
->mapping
->host
,
372 * split a given extent state struct in two, inserting the preallocated
373 * struct 'prealloc' as the newly created second half. 'split' indicates an
374 * offset inside 'orig' where it should be split.
377 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
378 * are two extent state structs in the tree:
379 * prealloc: [orig->start, split - 1]
380 * orig: [ split, orig->end ]
382 * The tree locks are not taken by this function. They need to be held
385 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
386 struct extent_state
*prealloc
, u64 split
)
388 struct rb_node
*node
;
390 split_cb(tree
, orig
, split
);
392 prealloc
->start
= orig
->start
;
393 prealloc
->end
= split
- 1;
394 prealloc
->state
= orig
->state
;
397 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
399 free_extent_state(prealloc
);
402 prealloc
->tree
= tree
;
407 * utility function to clear some bits in an extent state struct.
408 * it will optionally wake up any one waiting on this state (wake == 1), or
409 * forcibly remove the state from the tree (delete == 1).
411 * If no bits are set on the state struct after clearing things, the
412 * struct is freed and removed from the tree
414 static int clear_state_bit(struct extent_io_tree
*tree
,
415 struct extent_state
*state
,
418 int bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
419 int ret
= state
->state
& bits_to_clear
;
421 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
422 u64 range
= state
->end
- state
->start
+ 1;
423 WARN_ON(range
> tree
->dirty_bytes
);
424 tree
->dirty_bytes
-= range
;
426 clear_state_cb(tree
, state
, bits
);
427 state
->state
&= ~bits_to_clear
;
430 if (state
->state
== 0) {
432 rb_erase(&state
->rb_node
, &tree
->state
);
434 free_extent_state(state
);
439 merge_state(tree
, state
);
444 static struct extent_state
*
445 alloc_extent_state_atomic(struct extent_state
*prealloc
)
448 prealloc
= alloc_extent_state(GFP_ATOMIC
);
454 * clear some bits on a range in the tree. This may require splitting
455 * or inserting elements in the tree, so the gfp mask is used to
456 * indicate which allocations or sleeping are allowed.
458 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
459 * the given range from the tree regardless of state (ie for truncate).
461 * the range [start, end] is inclusive.
463 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
464 * bits were already set, or zero if none of the bits were already set.
466 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
467 int bits
, int wake
, int delete,
468 struct extent_state
**cached_state
,
471 struct extent_state
*state
;
472 struct extent_state
*cached
;
473 struct extent_state
*prealloc
= NULL
;
474 struct rb_node
*next_node
;
475 struct rb_node
*node
;
482 bits
|= ~EXTENT_CTLBITS
;
483 bits
|= EXTENT_FIRST_DELALLOC
;
485 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
488 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
489 prealloc
= alloc_extent_state(mask
);
494 spin_lock(&tree
->lock
);
496 cached
= *cached_state
;
499 *cached_state
= NULL
;
503 if (cached
&& cached
->tree
&& cached
->start
== start
) {
505 atomic_dec(&cached
->refs
);
510 free_extent_state(cached
);
513 * this search will find the extents that end after
516 node
= tree_search(tree
, start
);
519 state
= rb_entry(node
, struct extent_state
, rb_node
);
521 if (state
->start
> end
)
523 WARN_ON(state
->end
< start
);
524 last_end
= state
->end
;
527 * | ---- desired range ---- |
529 * | ------------- state -------------- |
531 * We need to split the extent we found, and may flip
532 * bits on second half.
534 * If the extent we found extends past our range, we
535 * just split and search again. It'll get split again
536 * the next time though.
538 * If the extent we found is inside our range, we clear
539 * the desired bit on it.
542 if (state
->start
< start
) {
543 prealloc
= alloc_extent_state_atomic(prealloc
);
545 err
= split_state(tree
, state
, prealloc
, start
);
546 BUG_ON(err
== -EEXIST
);
550 if (state
->end
<= end
) {
551 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
552 if (last_end
== (u64
)-1)
554 start
= last_end
+ 1;
559 * | ---- desired range ---- |
561 * We need to split the extent, and clear the bit
564 if (state
->start
<= end
&& state
->end
> end
) {
565 prealloc
= alloc_extent_state_atomic(prealloc
);
567 err
= split_state(tree
, state
, prealloc
, end
+ 1);
568 BUG_ON(err
== -EEXIST
);
572 set
|= clear_state_bit(tree
, prealloc
, &bits
, wake
);
578 if (state
->end
< end
&& prealloc
&& !need_resched())
579 next_node
= rb_next(&state
->rb_node
);
583 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
584 if (last_end
== (u64
)-1)
586 start
= last_end
+ 1;
587 if (start
<= end
&& next_node
) {
588 state
= rb_entry(next_node
, struct extent_state
,
590 if (state
->start
== start
)
596 spin_unlock(&tree
->lock
);
598 free_extent_state(prealloc
);
605 spin_unlock(&tree
->lock
);
606 if (mask
& __GFP_WAIT
)
611 static int wait_on_state(struct extent_io_tree
*tree
,
612 struct extent_state
*state
)
613 __releases(tree
->lock
)
614 __acquires(tree
->lock
)
617 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
618 spin_unlock(&tree
->lock
);
620 spin_lock(&tree
->lock
);
621 finish_wait(&state
->wq
, &wait
);
626 * waits for one or more bits to clear on a range in the state tree.
627 * The range [start, end] is inclusive.
628 * The tree lock is taken by this function
630 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
632 struct extent_state
*state
;
633 struct rb_node
*node
;
635 spin_lock(&tree
->lock
);
639 * this search will find all the extents that end after
642 node
= tree_search(tree
, start
);
646 state
= rb_entry(node
, struct extent_state
, rb_node
);
648 if (state
->start
> end
)
651 if (state
->state
& bits
) {
652 start
= state
->start
;
653 atomic_inc(&state
->refs
);
654 wait_on_state(tree
, state
);
655 free_extent_state(state
);
658 start
= state
->end
+ 1;
663 if (need_resched()) {
664 spin_unlock(&tree
->lock
);
666 spin_lock(&tree
->lock
);
670 spin_unlock(&tree
->lock
);
674 static int set_state_bits(struct extent_io_tree
*tree
,
675 struct extent_state
*state
,
679 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
681 ret
= set_state_cb(tree
, state
, bits
);
684 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
685 u64 range
= state
->end
- state
->start
+ 1;
686 tree
->dirty_bytes
+= range
;
688 state
->state
|= bits_to_set
;
693 static void cache_state(struct extent_state
*state
,
694 struct extent_state
**cached_ptr
)
696 if (cached_ptr
&& !(*cached_ptr
)) {
697 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
699 atomic_inc(&state
->refs
);
704 static void uncache_state(struct extent_state
**cached_ptr
)
706 if (cached_ptr
&& (*cached_ptr
)) {
707 struct extent_state
*state
= *cached_ptr
;
709 free_extent_state(state
);
714 * set some bits on a range in the tree. This may require allocations or
715 * sleeping, so the gfp mask is used to indicate what is allowed.
717 * If any of the exclusive bits are set, this will fail with -EEXIST if some
718 * part of the range already has the desired bits set. The start of the
719 * existing range is returned in failed_start in this case.
721 * [start, end] is inclusive This takes the tree lock.
724 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
725 int bits
, int exclusive_bits
, u64
*failed_start
,
726 struct extent_state
**cached_state
, gfp_t mask
)
728 struct extent_state
*state
;
729 struct extent_state
*prealloc
= NULL
;
730 struct rb_node
*node
;
735 bits
|= EXTENT_FIRST_DELALLOC
;
737 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
738 prealloc
= alloc_extent_state(mask
);
742 spin_lock(&tree
->lock
);
743 if (cached_state
&& *cached_state
) {
744 state
= *cached_state
;
745 if (state
->start
== start
&& state
->tree
) {
746 node
= &state
->rb_node
;
751 * this search will find all the extents that end after
754 node
= tree_search(tree
, start
);
756 prealloc
= alloc_extent_state_atomic(prealloc
);
758 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
760 BUG_ON(err
== -EEXIST
);
763 state
= rb_entry(node
, struct extent_state
, rb_node
);
765 last_start
= state
->start
;
766 last_end
= state
->end
;
769 * | ---- desired range ---- |
772 * Just lock what we found and keep going
774 if (state
->start
== start
&& state
->end
<= end
) {
775 struct rb_node
*next_node
;
776 if (state
->state
& exclusive_bits
) {
777 *failed_start
= state
->start
;
782 err
= set_state_bits(tree
, state
, &bits
);
786 next_node
= rb_next(node
);
787 cache_state(state
, cached_state
);
788 merge_state(tree
, state
);
789 if (last_end
== (u64
)-1)
792 start
= last_end
+ 1;
793 if (next_node
&& start
< end
&& prealloc
&& !need_resched()) {
794 state
= rb_entry(next_node
, struct extent_state
,
796 if (state
->start
== start
)
803 * | ---- desired range ---- |
806 * | ------------- state -------------- |
808 * We need to split the extent we found, and may flip bits on
811 * If the extent we found extends past our
812 * range, we just split and search again. It'll get split
813 * again the next time though.
815 * If the extent we found is inside our range, we set the
818 if (state
->start
< start
) {
819 if (state
->state
& exclusive_bits
) {
820 *failed_start
= start
;
825 prealloc
= alloc_extent_state_atomic(prealloc
);
827 err
= split_state(tree
, state
, prealloc
, start
);
828 BUG_ON(err
== -EEXIST
);
832 if (state
->end
<= end
) {
833 err
= set_state_bits(tree
, state
, &bits
);
836 cache_state(state
, cached_state
);
837 merge_state(tree
, state
);
838 if (last_end
== (u64
)-1)
840 start
= last_end
+ 1;
845 * | ---- desired range ---- |
846 * | state | or | state |
848 * There's a hole, we need to insert something in it and
849 * ignore the extent we found.
851 if (state
->start
> start
) {
853 if (end
< last_start
)
856 this_end
= last_start
- 1;
858 prealloc
= alloc_extent_state_atomic(prealloc
);
862 * Avoid to free 'prealloc' if it can be merged with
865 atomic_inc(&prealloc
->refs
);
866 err
= insert_state(tree
, prealloc
, start
, this_end
,
868 BUG_ON(err
== -EEXIST
);
870 free_extent_state(prealloc
);
874 cache_state(prealloc
, cached_state
);
875 free_extent_state(prealloc
);
877 start
= this_end
+ 1;
881 * | ---- desired range ---- |
883 * We need to split the extent, and set the bit
886 if (state
->start
<= end
&& state
->end
> end
) {
887 if (state
->state
& exclusive_bits
) {
888 *failed_start
= start
;
893 prealloc
= alloc_extent_state_atomic(prealloc
);
895 err
= split_state(tree
, state
, prealloc
, end
+ 1);
896 BUG_ON(err
== -EEXIST
);
898 err
= set_state_bits(tree
, prealloc
, &bits
);
903 cache_state(prealloc
, cached_state
);
904 merge_state(tree
, prealloc
);
912 spin_unlock(&tree
->lock
);
914 free_extent_state(prealloc
);
921 spin_unlock(&tree
->lock
);
922 if (mask
& __GFP_WAIT
)
927 /* wrappers around set/clear extent bit */
928 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
931 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
935 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
936 int bits
, gfp_t mask
)
938 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
942 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
943 int bits
, gfp_t mask
)
945 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
948 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
949 struct extent_state
**cached_state
, gfp_t mask
)
951 return set_extent_bit(tree
, start
, end
,
952 EXTENT_DELALLOC
| EXTENT_DIRTY
| EXTENT_UPTODATE
,
953 0, NULL
, cached_state
, mask
);
956 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
959 return clear_extent_bit(tree
, start
, end
,
960 EXTENT_DIRTY
| EXTENT_DELALLOC
|
961 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
964 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
967 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
971 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
972 struct extent_state
**cached_state
, gfp_t mask
)
974 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0,
975 NULL
, cached_state
, mask
);
978 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
979 u64 end
, struct extent_state
**cached_state
,
982 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
987 * either insert or lock state struct between start and end use mask to tell
988 * us if waiting is desired.
990 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
991 int bits
, struct extent_state
**cached_state
, gfp_t mask
)
996 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
997 EXTENT_LOCKED
, &failed_start
,
999 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
1000 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1001 start
= failed_start
;
1005 WARN_ON(start
> end
);
1010 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1012 return lock_extent_bits(tree
, start
, end
, 0, NULL
, mask
);
1015 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1021 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1022 &failed_start
, NULL
, mask
);
1023 if (err
== -EEXIST
) {
1024 if (failed_start
> start
)
1025 clear_extent_bit(tree
, start
, failed_start
- 1,
1026 EXTENT_LOCKED
, 1, 0, NULL
, mask
);
1032 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1033 struct extent_state
**cached
, gfp_t mask
)
1035 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1039 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1041 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1046 * helper function to set both pages and extents in the tree writeback
1048 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1050 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1051 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1054 while (index
<= end_index
) {
1055 page
= find_get_page(tree
->mapping
, index
);
1057 set_page_writeback(page
);
1058 page_cache_release(page
);
1065 * find the first offset in the io tree with 'bits' set. zero is
1066 * returned if we find something, and *start_ret and *end_ret are
1067 * set to reflect the state struct that was found.
1069 * If nothing was found, 1 is returned, < 0 on error
1071 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1072 u64
*start_ret
, u64
*end_ret
, int bits
)
1074 struct rb_node
*node
;
1075 struct extent_state
*state
;
1078 spin_lock(&tree
->lock
);
1080 * this search will find all the extents that end after
1083 node
= tree_search(tree
, start
);
1088 state
= rb_entry(node
, struct extent_state
, rb_node
);
1089 if (state
->end
>= start
&& (state
->state
& bits
)) {
1090 *start_ret
= state
->start
;
1091 *end_ret
= state
->end
;
1095 node
= rb_next(node
);
1100 spin_unlock(&tree
->lock
);
1104 /* find the first state struct with 'bits' set after 'start', and
1105 * return it. tree->lock must be held. NULL will returned if
1106 * nothing was found after 'start'
1108 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1109 u64 start
, int bits
)
1111 struct rb_node
*node
;
1112 struct extent_state
*state
;
1115 * this search will find all the extents that end after
1118 node
= tree_search(tree
, start
);
1123 state
= rb_entry(node
, struct extent_state
, rb_node
);
1124 if (state
->end
>= start
&& (state
->state
& bits
))
1127 node
= rb_next(node
);
1136 * find a contiguous range of bytes in the file marked as delalloc, not
1137 * more than 'max_bytes'. start and end are used to return the range,
1139 * 1 is returned if we find something, 0 if nothing was in the tree
1141 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1142 u64
*start
, u64
*end
, u64 max_bytes
,
1143 struct extent_state
**cached_state
)
1145 struct rb_node
*node
;
1146 struct extent_state
*state
;
1147 u64 cur_start
= *start
;
1149 u64 total_bytes
= 0;
1151 spin_lock(&tree
->lock
);
1154 * this search will find all the extents that end after
1157 node
= tree_search(tree
, cur_start
);
1165 state
= rb_entry(node
, struct extent_state
, rb_node
);
1166 if (found
&& (state
->start
!= cur_start
||
1167 (state
->state
& EXTENT_BOUNDARY
))) {
1170 if (!(state
->state
& EXTENT_DELALLOC
)) {
1176 *start
= state
->start
;
1177 *cached_state
= state
;
1178 atomic_inc(&state
->refs
);
1182 cur_start
= state
->end
+ 1;
1183 node
= rb_next(node
);
1186 total_bytes
+= state
->end
- state
->start
+ 1;
1187 if (total_bytes
>= max_bytes
)
1191 spin_unlock(&tree
->lock
);
1195 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1196 struct page
*locked_page
,
1200 struct page
*pages
[16];
1201 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1202 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1203 unsigned long nr_pages
= end_index
- index
+ 1;
1206 if (index
== locked_page
->index
&& end_index
== index
)
1209 while (nr_pages
> 0) {
1210 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1211 min_t(unsigned long, nr_pages
,
1212 ARRAY_SIZE(pages
)), pages
);
1213 for (i
= 0; i
< ret
; i
++) {
1214 if (pages
[i
] != locked_page
)
1215 unlock_page(pages
[i
]);
1216 page_cache_release(pages
[i
]);
1225 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1226 struct page
*locked_page
,
1230 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1231 unsigned long start_index
= index
;
1232 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1233 unsigned long pages_locked
= 0;
1234 struct page
*pages
[16];
1235 unsigned long nrpages
;
1239 /* the caller is responsible for locking the start index */
1240 if (index
== locked_page
->index
&& index
== end_index
)
1243 /* skip the page at the start index */
1244 nrpages
= end_index
- index
+ 1;
1245 while (nrpages
> 0) {
1246 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1247 min_t(unsigned long,
1248 nrpages
, ARRAY_SIZE(pages
)), pages
);
1253 /* now we have an array of pages, lock them all */
1254 for (i
= 0; i
< ret
; i
++) {
1256 * the caller is taking responsibility for
1259 if (pages
[i
] != locked_page
) {
1260 lock_page(pages
[i
]);
1261 if (!PageDirty(pages
[i
]) ||
1262 pages
[i
]->mapping
!= inode
->i_mapping
) {
1264 unlock_page(pages
[i
]);
1265 page_cache_release(pages
[i
]);
1269 page_cache_release(pages
[i
]);
1278 if (ret
&& pages_locked
) {
1279 __unlock_for_delalloc(inode
, locked_page
,
1281 ((u64
)(start_index
+ pages_locked
- 1)) <<
1288 * find a contiguous range of bytes in the file marked as delalloc, not
1289 * more than 'max_bytes'. start and end are used to return the range,
1291 * 1 is returned if we find something, 0 if nothing was in the tree
1293 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1294 struct extent_io_tree
*tree
,
1295 struct page
*locked_page
,
1296 u64
*start
, u64
*end
,
1302 struct extent_state
*cached_state
= NULL
;
1307 /* step one, find a bunch of delalloc bytes starting at start */
1308 delalloc_start
= *start
;
1310 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1311 max_bytes
, &cached_state
);
1312 if (!found
|| delalloc_end
<= *start
) {
1313 *start
= delalloc_start
;
1314 *end
= delalloc_end
;
1315 free_extent_state(cached_state
);
1320 * start comes from the offset of locked_page. We have to lock
1321 * pages in order, so we can't process delalloc bytes before
1324 if (delalloc_start
< *start
)
1325 delalloc_start
= *start
;
1328 * make sure to limit the number of pages we try to lock down
1331 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1332 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1334 /* step two, lock all the pages after the page that has start */
1335 ret
= lock_delalloc_pages(inode
, locked_page
,
1336 delalloc_start
, delalloc_end
);
1337 if (ret
== -EAGAIN
) {
1338 /* some of the pages are gone, lets avoid looping by
1339 * shortening the size of the delalloc range we're searching
1341 free_extent_state(cached_state
);
1343 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1344 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1354 /* step three, lock the state bits for the whole range */
1355 lock_extent_bits(tree
, delalloc_start
, delalloc_end
,
1356 0, &cached_state
, GFP_NOFS
);
1358 /* then test to make sure it is all still delalloc */
1359 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1360 EXTENT_DELALLOC
, 1, cached_state
);
1362 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1363 &cached_state
, GFP_NOFS
);
1364 __unlock_for_delalloc(inode
, locked_page
,
1365 delalloc_start
, delalloc_end
);
1369 free_extent_state(cached_state
);
1370 *start
= delalloc_start
;
1371 *end
= delalloc_end
;
1376 int extent_clear_unlock_delalloc(struct inode
*inode
,
1377 struct extent_io_tree
*tree
,
1378 u64 start
, u64 end
, struct page
*locked_page
,
1382 struct page
*pages
[16];
1383 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1384 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1385 unsigned long nr_pages
= end_index
- index
+ 1;
1389 if (op
& EXTENT_CLEAR_UNLOCK
)
1390 clear_bits
|= EXTENT_LOCKED
;
1391 if (op
& EXTENT_CLEAR_DIRTY
)
1392 clear_bits
|= EXTENT_DIRTY
;
1394 if (op
& EXTENT_CLEAR_DELALLOC
)
1395 clear_bits
|= EXTENT_DELALLOC
;
1397 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1398 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1399 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1400 EXTENT_SET_PRIVATE2
)))
1403 while (nr_pages
> 0) {
1404 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1405 min_t(unsigned long,
1406 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1407 for (i
= 0; i
< ret
; i
++) {
1409 if (op
& EXTENT_SET_PRIVATE2
)
1410 SetPagePrivate2(pages
[i
]);
1412 if (pages
[i
] == locked_page
) {
1413 page_cache_release(pages
[i
]);
1416 if (op
& EXTENT_CLEAR_DIRTY
)
1417 clear_page_dirty_for_io(pages
[i
]);
1418 if (op
& EXTENT_SET_WRITEBACK
)
1419 set_page_writeback(pages
[i
]);
1420 if (op
& EXTENT_END_WRITEBACK
)
1421 end_page_writeback(pages
[i
]);
1422 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1423 unlock_page(pages
[i
]);
1424 page_cache_release(pages
[i
]);
1434 * count the number of bytes in the tree that have a given bit(s)
1435 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1436 * cached. The total number found is returned.
1438 u64
count_range_bits(struct extent_io_tree
*tree
,
1439 u64
*start
, u64 search_end
, u64 max_bytes
,
1440 unsigned long bits
, int contig
)
1442 struct rb_node
*node
;
1443 struct extent_state
*state
;
1444 u64 cur_start
= *start
;
1445 u64 total_bytes
= 0;
1449 if (search_end
<= cur_start
) {
1454 spin_lock(&tree
->lock
);
1455 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1456 total_bytes
= tree
->dirty_bytes
;
1460 * this search will find all the extents that end after
1463 node
= tree_search(tree
, cur_start
);
1468 state
= rb_entry(node
, struct extent_state
, rb_node
);
1469 if (state
->start
> search_end
)
1471 if (contig
&& found
&& state
->start
> last
+ 1)
1473 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1474 total_bytes
+= min(search_end
, state
->end
) + 1 -
1475 max(cur_start
, state
->start
);
1476 if (total_bytes
>= max_bytes
)
1479 *start
= max(cur_start
, state
->start
);
1483 } else if (contig
&& found
) {
1486 node
= rb_next(node
);
1491 spin_unlock(&tree
->lock
);
1496 * set the private field for a given byte offset in the tree. If there isn't
1497 * an extent_state there already, this does nothing.
1499 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1501 struct rb_node
*node
;
1502 struct extent_state
*state
;
1505 spin_lock(&tree
->lock
);
1507 * this search will find all the extents that end after
1510 node
= tree_search(tree
, start
);
1515 state
= rb_entry(node
, struct extent_state
, rb_node
);
1516 if (state
->start
!= start
) {
1520 state
->private = private;
1522 spin_unlock(&tree
->lock
);
1526 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1528 struct rb_node
*node
;
1529 struct extent_state
*state
;
1532 spin_lock(&tree
->lock
);
1534 * this search will find all the extents that end after
1537 node
= tree_search(tree
, start
);
1542 state
= rb_entry(node
, struct extent_state
, rb_node
);
1543 if (state
->start
!= start
) {
1547 *private = state
->private;
1549 spin_unlock(&tree
->lock
);
1554 * searches a range in the state tree for a given mask.
1555 * If 'filled' == 1, this returns 1 only if every extent in the tree
1556 * has the bits set. Otherwise, 1 is returned if any bit in the
1557 * range is found set.
1559 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1560 int bits
, int filled
, struct extent_state
*cached
)
1562 struct extent_state
*state
= NULL
;
1563 struct rb_node
*node
;
1566 spin_lock(&tree
->lock
);
1567 if (cached
&& cached
->tree
&& cached
->start
== start
)
1568 node
= &cached
->rb_node
;
1570 node
= tree_search(tree
, start
);
1571 while (node
&& start
<= end
) {
1572 state
= rb_entry(node
, struct extent_state
, rb_node
);
1574 if (filled
&& state
->start
> start
) {
1579 if (state
->start
> end
)
1582 if (state
->state
& bits
) {
1586 } else if (filled
) {
1591 if (state
->end
== (u64
)-1)
1594 start
= state
->end
+ 1;
1597 node
= rb_next(node
);
1604 spin_unlock(&tree
->lock
);
1609 * helper function to set a given page up to date if all the
1610 * extents in the tree for that page are up to date
1612 static int check_page_uptodate(struct extent_io_tree
*tree
,
1615 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1616 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1617 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1618 SetPageUptodate(page
);
1623 * helper function to unlock a page if all the extents in the tree
1624 * for that page are unlocked
1626 static int check_page_locked(struct extent_io_tree
*tree
,
1629 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1630 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1631 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
))
1637 * helper function to end page writeback if all the extents
1638 * in the tree for that page are done with writeback
1640 static int check_page_writeback(struct extent_io_tree
*tree
,
1643 end_page_writeback(page
);
1647 /* lots and lots of room for performance fixes in the end_bio funcs */
1650 * after a writepage IO is done, we need to:
1651 * clear the uptodate bits on error
1652 * clear the writeback bits in the extent tree for this IO
1653 * end_page_writeback if the page has no more pending IO
1655 * Scheduling is not allowed, so the extent state tree is expected
1656 * to have one and only one object corresponding to this IO.
1658 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
1660 int uptodate
= err
== 0;
1661 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1662 struct extent_io_tree
*tree
;
1669 struct page
*page
= bvec
->bv_page
;
1670 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1672 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1674 end
= start
+ bvec
->bv_len
- 1;
1676 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1681 if (--bvec
>= bio
->bi_io_vec
)
1682 prefetchw(&bvec
->bv_page
->flags
);
1683 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
1684 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
1685 end
, NULL
, uptodate
);
1690 if (!uptodate
&& tree
->ops
&&
1691 tree
->ops
->writepage_io_failed_hook
) {
1692 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
1695 uptodate
= (err
== 0);
1701 clear_extent_uptodate(tree
, start
, end
, NULL
, GFP_NOFS
);
1702 ClearPageUptodate(page
);
1707 end_page_writeback(page
);
1709 check_page_writeback(tree
, page
);
1710 } while (bvec
>= bio
->bi_io_vec
);
1716 * after a readpage IO is done, we need to:
1717 * clear the uptodate bits on error
1718 * set the uptodate bits if things worked
1719 * set the page up to date if all extents in the tree are uptodate
1720 * clear the lock bit in the extent tree
1721 * unlock the page if there are no other extents locked for it
1723 * Scheduling is not allowed, so the extent state tree is expected
1724 * to have one and only one object corresponding to this IO.
1726 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
1728 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1729 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1730 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1731 struct extent_io_tree
*tree
;
1741 struct page
*page
= bvec
->bv_page
;
1742 struct extent_state
*cached
= NULL
;
1743 struct extent_state
*state
;
1745 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1747 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1749 end
= start
+ bvec
->bv_len
- 1;
1751 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1756 if (++bvec
<= bvec_end
)
1757 prefetchw(&bvec
->bv_page
->flags
);
1759 spin_lock(&tree
->lock
);
1760 state
= find_first_extent_bit_state(tree
, start
, EXTENT_LOCKED
);
1761 if (state
&& state
->start
== start
) {
1763 * take a reference on the state, unlock will drop
1766 cache_state(state
, &cached
);
1768 spin_unlock(&tree
->lock
);
1770 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
1771 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
1776 if (!uptodate
&& tree
->ops
&&
1777 tree
->ops
->readpage_io_failed_hook
) {
1778 ret
= tree
->ops
->readpage_io_failed_hook(bio
, page
,
1782 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1785 uncache_state(&cached
);
1791 set_extent_uptodate(tree
, start
, end
, &cached
,
1794 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
1798 SetPageUptodate(page
);
1800 ClearPageUptodate(page
);
1806 check_page_uptodate(tree
, page
);
1808 ClearPageUptodate(page
);
1811 check_page_locked(tree
, page
);
1813 } while (bvec
<= bvec_end
);
1819 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
1824 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1826 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
1827 while (!bio
&& (nr_vecs
/= 2))
1828 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1833 bio
->bi_bdev
= bdev
;
1834 bio
->bi_sector
= first_sector
;
1839 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
1840 unsigned long bio_flags
)
1843 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1844 struct page
*page
= bvec
->bv_page
;
1845 struct extent_io_tree
*tree
= bio
->bi_private
;
1848 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
1850 bio
->bi_private
= NULL
;
1854 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
1855 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
1856 mirror_num
, bio_flags
, start
);
1858 submit_bio(rw
, bio
);
1859 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
1865 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
1866 struct page
*page
, sector_t sector
,
1867 size_t size
, unsigned long offset
,
1868 struct block_device
*bdev
,
1869 struct bio
**bio_ret
,
1870 unsigned long max_pages
,
1871 bio_end_io_t end_io_func
,
1873 unsigned long prev_bio_flags
,
1874 unsigned long bio_flags
)
1880 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
1881 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
1882 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
1884 if (bio_ret
&& *bio_ret
) {
1887 contig
= bio
->bi_sector
== sector
;
1889 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
1892 if (prev_bio_flags
!= bio_flags
|| !contig
||
1893 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
1894 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
1896 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
1897 ret
= submit_one_bio(rw
, bio
, mirror_num
,
1904 if (this_compressed
)
1907 nr
= bio_get_nr_vecs(bdev
);
1909 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
1913 bio_add_page(bio
, page
, page_size
, offset
);
1914 bio
->bi_end_io
= end_io_func
;
1915 bio
->bi_private
= tree
;
1920 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
1925 void set_page_extent_mapped(struct page
*page
)
1927 if (!PagePrivate(page
)) {
1928 SetPagePrivate(page
);
1929 page_cache_get(page
);
1930 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
1934 static void set_page_extent_head(struct page
*page
, unsigned long len
)
1936 WARN_ON(!PagePrivate(page
));
1937 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
1941 * basic readpage implementation. Locked extent state structs are inserted
1942 * into the tree that are removed when the IO is done (by the end_io
1945 static int __extent_read_full_page(struct extent_io_tree
*tree
,
1947 get_extent_t
*get_extent
,
1948 struct bio
**bio
, int mirror_num
,
1949 unsigned long *bio_flags
)
1951 struct inode
*inode
= page
->mapping
->host
;
1952 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1953 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
1957 u64 last_byte
= i_size_read(inode
);
1961 struct extent_map
*em
;
1962 struct block_device
*bdev
;
1963 struct btrfs_ordered_extent
*ordered
;
1966 size_t pg_offset
= 0;
1968 size_t disk_io_size
;
1969 size_t blocksize
= inode
->i_sb
->s_blocksize
;
1970 unsigned long this_bio_flag
= 0;
1972 set_page_extent_mapped(page
);
1974 if (!PageUptodate(page
)) {
1975 if (cleancache_get_page(page
) == 0) {
1976 BUG_ON(blocksize
!= PAGE_SIZE
);
1983 lock_extent(tree
, start
, end
, GFP_NOFS
);
1984 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
1987 unlock_extent(tree
, start
, end
, GFP_NOFS
);
1988 btrfs_start_ordered_extent(inode
, ordered
, 1);
1989 btrfs_put_ordered_extent(ordered
);
1992 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
1994 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
1997 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
1998 userpage
= kmap_atomic(page
, KM_USER0
);
1999 memset(userpage
+ zero_offset
, 0, iosize
);
2000 flush_dcache_page(page
);
2001 kunmap_atomic(userpage
, KM_USER0
);
2004 while (cur
<= end
) {
2005 if (cur
>= last_byte
) {
2007 struct extent_state
*cached
= NULL
;
2009 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2010 userpage
= kmap_atomic(page
, KM_USER0
);
2011 memset(userpage
+ pg_offset
, 0, iosize
);
2012 flush_dcache_page(page
);
2013 kunmap_atomic(userpage
, KM_USER0
);
2014 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2016 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2020 em
= get_extent(inode
, page
, pg_offset
, cur
,
2022 if (IS_ERR_OR_NULL(em
)) {
2024 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
2027 extent_offset
= cur
- em
->start
;
2028 BUG_ON(extent_map_end(em
) <= cur
);
2031 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2032 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2033 extent_set_compress_type(&this_bio_flag
,
2037 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2038 cur_end
= min(extent_map_end(em
) - 1, end
);
2039 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2040 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2041 disk_io_size
= em
->block_len
;
2042 sector
= em
->block_start
>> 9;
2044 sector
= (em
->block_start
+ extent_offset
) >> 9;
2045 disk_io_size
= iosize
;
2048 block_start
= em
->block_start
;
2049 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2050 block_start
= EXTENT_MAP_HOLE
;
2051 free_extent_map(em
);
2054 /* we've found a hole, just zero and go on */
2055 if (block_start
== EXTENT_MAP_HOLE
) {
2057 struct extent_state
*cached
= NULL
;
2059 userpage
= kmap_atomic(page
, KM_USER0
);
2060 memset(userpage
+ pg_offset
, 0, iosize
);
2061 flush_dcache_page(page
);
2062 kunmap_atomic(userpage
, KM_USER0
);
2064 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2066 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2069 pg_offset
+= iosize
;
2072 /* the get_extent function already copied into the page */
2073 if (test_range_bit(tree
, cur
, cur_end
,
2074 EXTENT_UPTODATE
, 1, NULL
)) {
2075 check_page_uptodate(tree
, page
);
2076 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2078 pg_offset
+= iosize
;
2081 /* we have an inline extent but it didn't get marked up
2082 * to date. Error out
2084 if (block_start
== EXTENT_MAP_INLINE
) {
2086 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2088 pg_offset
+= iosize
;
2093 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2094 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2098 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2100 ret
= submit_extent_page(READ
, tree
, page
,
2101 sector
, disk_io_size
, pg_offset
,
2103 end_bio_extent_readpage
, mirror_num
,
2107 *bio_flags
= this_bio_flag
;
2112 pg_offset
+= iosize
;
2116 if (!PageError(page
))
2117 SetPageUptodate(page
);
2123 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2124 get_extent_t
*get_extent
)
2126 struct bio
*bio
= NULL
;
2127 unsigned long bio_flags
= 0;
2130 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, 0,
2133 ret
= submit_one_bio(READ
, bio
, 0, bio_flags
);
2137 static noinline
void update_nr_written(struct page
*page
,
2138 struct writeback_control
*wbc
,
2139 unsigned long nr_written
)
2141 wbc
->nr_to_write
-= nr_written
;
2142 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2143 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2144 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2148 * the writepage semantics are similar to regular writepage. extent
2149 * records are inserted to lock ranges in the tree, and as dirty areas
2150 * are found, they are marked writeback. Then the lock bits are removed
2151 * and the end_io handler clears the writeback ranges
2153 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2156 struct inode
*inode
= page
->mapping
->host
;
2157 struct extent_page_data
*epd
= data
;
2158 struct extent_io_tree
*tree
= epd
->tree
;
2159 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2161 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2165 u64 last_byte
= i_size_read(inode
);
2169 struct extent_state
*cached_state
= NULL
;
2170 struct extent_map
*em
;
2171 struct block_device
*bdev
;
2174 size_t pg_offset
= 0;
2176 loff_t i_size
= i_size_read(inode
);
2177 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2183 unsigned long nr_written
= 0;
2185 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2186 write_flags
= WRITE_SYNC
;
2188 write_flags
= WRITE
;
2190 trace___extent_writepage(page
, inode
, wbc
);
2192 WARN_ON(!PageLocked(page
));
2193 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2194 if (page
->index
> end_index
||
2195 (page
->index
== end_index
&& !pg_offset
)) {
2196 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2201 if (page
->index
== end_index
) {
2204 userpage
= kmap_atomic(page
, KM_USER0
);
2205 memset(userpage
+ pg_offset
, 0,
2206 PAGE_CACHE_SIZE
- pg_offset
);
2207 kunmap_atomic(userpage
, KM_USER0
);
2208 flush_dcache_page(page
);
2212 set_page_extent_mapped(page
);
2214 delalloc_start
= start
;
2217 if (!epd
->extent_locked
) {
2218 u64 delalloc_to_write
= 0;
2220 * make sure the wbc mapping index is at least updated
2223 update_nr_written(page
, wbc
, 0);
2225 while (delalloc_end
< page_end
) {
2226 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2231 if (nr_delalloc
== 0) {
2232 delalloc_start
= delalloc_end
+ 1;
2235 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2236 delalloc_end
, &page_started
,
2239 * delalloc_end is already one less than the total
2240 * length, so we don't subtract one from
2243 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
2246 delalloc_start
= delalloc_end
+ 1;
2248 if (wbc
->nr_to_write
< delalloc_to_write
) {
2251 if (delalloc_to_write
< thresh
* 2)
2252 thresh
= delalloc_to_write
;
2253 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
2257 /* did the fill delalloc function already unlock and start
2263 * we've unlocked the page, so we can't update
2264 * the mapping's writeback index, just update
2267 wbc
->nr_to_write
-= nr_written
;
2271 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2272 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2274 if (ret
== -EAGAIN
) {
2275 redirty_page_for_writepage(wbc
, page
);
2276 update_nr_written(page
, wbc
, nr_written
);
2284 * we don't want to touch the inode after unlocking the page,
2285 * so we update the mapping writeback index now
2287 update_nr_written(page
, wbc
, nr_written
+ 1);
2290 if (last_byte
<= start
) {
2291 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2292 tree
->ops
->writepage_end_io_hook(page
, start
,
2297 blocksize
= inode
->i_sb
->s_blocksize
;
2299 while (cur
<= end
) {
2300 if (cur
>= last_byte
) {
2301 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2302 tree
->ops
->writepage_end_io_hook(page
, cur
,
2306 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2308 if (IS_ERR_OR_NULL(em
)) {
2313 extent_offset
= cur
- em
->start
;
2314 BUG_ON(extent_map_end(em
) <= cur
);
2316 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2317 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2318 sector
= (em
->block_start
+ extent_offset
) >> 9;
2320 block_start
= em
->block_start
;
2321 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2322 free_extent_map(em
);
2326 * compressed and inline extents are written through other
2329 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2330 block_start
== EXTENT_MAP_INLINE
) {
2332 * end_io notification does not happen here for
2333 * compressed extents
2335 if (!compressed
&& tree
->ops
&&
2336 tree
->ops
->writepage_end_io_hook
)
2337 tree
->ops
->writepage_end_io_hook(page
, cur
,
2340 else if (compressed
) {
2341 /* we don't want to end_page_writeback on
2342 * a compressed extent. this happens
2349 pg_offset
+= iosize
;
2352 /* leave this out until we have a page_mkwrite call */
2353 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2354 EXTENT_DIRTY
, 0, NULL
)) {
2356 pg_offset
+= iosize
;
2360 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2361 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2369 unsigned long max_nr
= end_index
+ 1;
2371 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2372 if (!PageWriteback(page
)) {
2373 printk(KERN_ERR
"btrfs warning page %lu not "
2374 "writeback, cur %llu end %llu\n",
2375 page
->index
, (unsigned long long)cur
,
2376 (unsigned long long)end
);
2379 ret
= submit_extent_page(write_flags
, tree
, page
,
2380 sector
, iosize
, pg_offset
,
2381 bdev
, &epd
->bio
, max_nr
,
2382 end_bio_extent_writepage
,
2388 pg_offset
+= iosize
;
2393 /* make sure the mapping tag for page dirty gets cleared */
2394 set_page_writeback(page
);
2395 end_page_writeback(page
);
2401 /* drop our reference on any cached states */
2402 free_extent_state(cached_state
);
2407 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2408 * @mapping: address space structure to write
2409 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2410 * @writepage: function called for each page
2411 * @data: data passed to writepage function
2413 * If a page is already under I/O, write_cache_pages() skips it, even
2414 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2415 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2416 * and msync() need to guarantee that all the data which was dirty at the time
2417 * the call was made get new I/O started against them. If wbc->sync_mode is
2418 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2419 * existing IO to complete.
2421 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2422 struct address_space
*mapping
,
2423 struct writeback_control
*wbc
,
2424 writepage_t writepage
, void *data
,
2425 void (*flush_fn
)(void *))
2429 int nr_to_write_done
= 0;
2430 struct pagevec pvec
;
2433 pgoff_t end
; /* Inclusive */
2436 pagevec_init(&pvec
, 0);
2437 if (wbc
->range_cyclic
) {
2438 index
= mapping
->writeback_index
; /* Start from prev offset */
2441 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2442 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2446 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
2447 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
2448 PAGECACHE_TAG_DIRTY
, min(end
- index
,
2449 (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
2453 for (i
= 0; i
< nr_pages
; i
++) {
2454 struct page
*page
= pvec
.pages
[i
];
2457 * At this point we hold neither mapping->tree_lock nor
2458 * lock on the page itself: the page may be truncated or
2459 * invalidated (changing page->mapping to NULL), or even
2460 * swizzled back from swapper_space to tmpfs file
2463 if (tree
->ops
&& tree
->ops
->write_cache_pages_lock_hook
)
2464 tree
->ops
->write_cache_pages_lock_hook(page
);
2468 if (unlikely(page
->mapping
!= mapping
)) {
2473 if (!wbc
->range_cyclic
&& page
->index
> end
) {
2479 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
2480 if (PageWriteback(page
))
2482 wait_on_page_writeback(page
);
2485 if (PageWriteback(page
) ||
2486 !clear_page_dirty_for_io(page
)) {
2491 ret
= (*writepage
)(page
, wbc
, data
);
2493 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
2501 * the filesystem may choose to bump up nr_to_write.
2502 * We have to make sure to honor the new nr_to_write
2505 nr_to_write_done
= wbc
->nr_to_write
<= 0;
2507 pagevec_release(&pvec
);
2510 if (!scanned
&& !done
) {
2512 * We hit the last page and there is more work to be done: wrap
2513 * back to the start of the file
2522 static void flush_epd_write_bio(struct extent_page_data
*epd
)
2526 submit_one_bio(WRITE_SYNC
, epd
->bio
, 0, 0);
2528 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
2533 static noinline
void flush_write_bio(void *data
)
2535 struct extent_page_data
*epd
= data
;
2536 flush_epd_write_bio(epd
);
2539 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2540 get_extent_t
*get_extent
,
2541 struct writeback_control
*wbc
)
2544 struct address_space
*mapping
= page
->mapping
;
2545 struct extent_page_data epd
= {
2548 .get_extent
= get_extent
,
2550 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2552 struct writeback_control wbc_writepages
= {
2553 .sync_mode
= wbc
->sync_mode
,
2554 .older_than_this
= NULL
,
2556 .range_start
= page_offset(page
) + PAGE_CACHE_SIZE
,
2557 .range_end
= (loff_t
)-1,
2560 ret
= __extent_writepage(page
, wbc
, &epd
);
2562 extent_write_cache_pages(tree
, mapping
, &wbc_writepages
,
2563 __extent_writepage
, &epd
, flush_write_bio
);
2564 flush_epd_write_bio(&epd
);
2568 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
2569 u64 start
, u64 end
, get_extent_t
*get_extent
,
2573 struct address_space
*mapping
= inode
->i_mapping
;
2575 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
2578 struct extent_page_data epd
= {
2581 .get_extent
= get_extent
,
2583 .sync_io
= mode
== WB_SYNC_ALL
,
2585 struct writeback_control wbc_writepages
= {
2587 .older_than_this
= NULL
,
2588 .nr_to_write
= nr_pages
* 2,
2589 .range_start
= start
,
2590 .range_end
= end
+ 1,
2593 while (start
<= end
) {
2594 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
2595 if (clear_page_dirty_for_io(page
))
2596 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
2598 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2599 tree
->ops
->writepage_end_io_hook(page
, start
,
2600 start
+ PAGE_CACHE_SIZE
- 1,
2604 page_cache_release(page
);
2605 start
+= PAGE_CACHE_SIZE
;
2608 flush_epd_write_bio(&epd
);
2612 int extent_writepages(struct extent_io_tree
*tree
,
2613 struct address_space
*mapping
,
2614 get_extent_t
*get_extent
,
2615 struct writeback_control
*wbc
)
2618 struct extent_page_data epd
= {
2621 .get_extent
= get_extent
,
2623 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2626 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
2627 __extent_writepage
, &epd
,
2629 flush_epd_write_bio(&epd
);
2633 int extent_readpages(struct extent_io_tree
*tree
,
2634 struct address_space
*mapping
,
2635 struct list_head
*pages
, unsigned nr_pages
,
2636 get_extent_t get_extent
)
2638 struct bio
*bio
= NULL
;
2640 unsigned long bio_flags
= 0;
2642 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
2643 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
2645 prefetchw(&page
->flags
);
2646 list_del(&page
->lru
);
2647 if (!add_to_page_cache_lru(page
, mapping
,
2648 page
->index
, GFP_NOFS
)) {
2649 __extent_read_full_page(tree
, page
, get_extent
,
2650 &bio
, 0, &bio_flags
);
2652 page_cache_release(page
);
2654 BUG_ON(!list_empty(pages
));
2656 submit_one_bio(READ
, bio
, 0, bio_flags
);
2661 * basic invalidatepage code, this waits on any locked or writeback
2662 * ranges corresponding to the page, and then deletes any extent state
2663 * records from the tree
2665 int extent_invalidatepage(struct extent_io_tree
*tree
,
2666 struct page
*page
, unsigned long offset
)
2668 struct extent_state
*cached_state
= NULL
;
2669 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2670 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2671 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
2673 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
2677 lock_extent_bits(tree
, start
, end
, 0, &cached_state
, GFP_NOFS
);
2678 wait_on_page_writeback(page
);
2679 clear_extent_bit(tree
, start
, end
,
2680 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
2681 EXTENT_DO_ACCOUNTING
,
2682 1, 1, &cached_state
, GFP_NOFS
);
2687 * a helper for releasepage, this tests for areas of the page that
2688 * are locked or under IO and drops the related state bits if it is safe
2691 int try_release_extent_state(struct extent_map_tree
*map
,
2692 struct extent_io_tree
*tree
, struct page
*page
,
2695 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2696 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2699 if (test_range_bit(tree
, start
, end
,
2700 EXTENT_IOBITS
, 0, NULL
))
2703 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
2706 * at this point we can safely clear everything except the
2707 * locked bit and the nodatasum bit
2709 ret
= clear_extent_bit(tree
, start
, end
,
2710 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
2713 /* if clear_extent_bit failed for enomem reasons,
2714 * we can't allow the release to continue.
2725 * a helper for releasepage. As long as there are no locked extents
2726 * in the range corresponding to the page, both state records and extent
2727 * map records are removed
2729 int try_release_extent_mapping(struct extent_map_tree
*map
,
2730 struct extent_io_tree
*tree
, struct page
*page
,
2733 struct extent_map
*em
;
2734 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2735 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2737 if ((mask
& __GFP_WAIT
) &&
2738 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
2740 while (start
<= end
) {
2741 len
= end
- start
+ 1;
2742 write_lock(&map
->lock
);
2743 em
= lookup_extent_mapping(map
, start
, len
);
2744 if (IS_ERR_OR_NULL(em
)) {
2745 write_unlock(&map
->lock
);
2748 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
2749 em
->start
!= start
) {
2750 write_unlock(&map
->lock
);
2751 free_extent_map(em
);
2754 if (!test_range_bit(tree
, em
->start
,
2755 extent_map_end(em
) - 1,
2756 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
2758 remove_extent_mapping(map
, em
);
2759 /* once for the rb tree */
2760 free_extent_map(em
);
2762 start
= extent_map_end(em
);
2763 write_unlock(&map
->lock
);
2766 free_extent_map(em
);
2769 return try_release_extent_state(map
, tree
, page
, mask
);
2773 * helper function for fiemap, which doesn't want to see any holes.
2774 * This maps until we find something past 'last'
2776 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
2779 get_extent_t
*get_extent
)
2781 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
2782 struct extent_map
*em
;
2789 len
= last
- offset
;
2792 len
= (len
+ sectorsize
- 1) & ~(sectorsize
- 1);
2793 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
2794 if (IS_ERR_OR_NULL(em
))
2797 /* if this isn't a hole return it */
2798 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
2799 em
->block_start
!= EXTENT_MAP_HOLE
) {
2803 /* this is a hole, advance to the next extent */
2804 offset
= extent_map_end(em
);
2805 free_extent_map(em
);
2812 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
2813 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
2817 u64 max
= start
+ len
;
2821 u64 last_for_get_extent
= 0;
2823 u64 isize
= i_size_read(inode
);
2824 struct btrfs_key found_key
;
2825 struct extent_map
*em
= NULL
;
2826 struct extent_state
*cached_state
= NULL
;
2827 struct btrfs_path
*path
;
2828 struct btrfs_file_extent_item
*item
;
2833 unsigned long emflags
;
2838 path
= btrfs_alloc_path();
2841 path
->leave_spinning
= 1;
2844 * lookup the last file extent. We're not using i_size here
2845 * because there might be preallocation past i_size
2847 ret
= btrfs_lookup_file_extent(NULL
, BTRFS_I(inode
)->root
,
2848 path
, btrfs_ino(inode
), -1, 0);
2850 btrfs_free_path(path
);
2855 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2856 struct btrfs_file_extent_item
);
2857 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
2858 found_type
= btrfs_key_type(&found_key
);
2860 /* No extents, but there might be delalloc bits */
2861 if (found_key
.objectid
!= btrfs_ino(inode
) ||
2862 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
2863 /* have to trust i_size as the end */
2865 last_for_get_extent
= isize
;
2868 * remember the start of the last extent. There are a
2869 * bunch of different factors that go into the length of the
2870 * extent, so its much less complex to remember where it started
2872 last
= found_key
.offset
;
2873 last_for_get_extent
= last
+ 1;
2875 btrfs_free_path(path
);
2878 * we might have some extents allocated but more delalloc past those
2879 * extents. so, we trust isize unless the start of the last extent is
2884 last_for_get_extent
= isize
;
2887 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
, 0,
2888 &cached_state
, GFP_NOFS
);
2890 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
2900 u64 offset_in_extent
;
2902 /* break if the extent we found is outside the range */
2903 if (em
->start
>= max
|| extent_map_end(em
) < off
)
2907 * get_extent may return an extent that starts before our
2908 * requested range. We have to make sure the ranges
2909 * we return to fiemap always move forward and don't
2910 * overlap, so adjust the offsets here
2912 em_start
= max(em
->start
, off
);
2915 * record the offset from the start of the extent
2916 * for adjusting the disk offset below
2918 offset_in_extent
= em_start
- em
->start
;
2919 em_end
= extent_map_end(em
);
2920 em_len
= em_end
- em_start
;
2921 emflags
= em
->flags
;
2926 * bump off for our next call to get_extent
2928 off
= extent_map_end(em
);
2932 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
2934 flags
|= FIEMAP_EXTENT_LAST
;
2935 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
2936 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
2937 FIEMAP_EXTENT_NOT_ALIGNED
);
2938 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
2939 flags
|= (FIEMAP_EXTENT_DELALLOC
|
2940 FIEMAP_EXTENT_UNKNOWN
);
2942 disko
= em
->block_start
+ offset_in_extent
;
2944 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2945 flags
|= FIEMAP_EXTENT_ENCODED
;
2947 free_extent_map(em
);
2949 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
2950 (last
== (u64
)-1 && isize
<= em_end
)) {
2951 flags
|= FIEMAP_EXTENT_LAST
;
2955 /* now scan forward to see if this is really the last extent. */
2956 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
2963 flags
|= FIEMAP_EXTENT_LAST
;
2966 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
2972 free_extent_map(em
);
2974 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
2975 &cached_state
, GFP_NOFS
);
2979 static inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
2983 struct address_space
*mapping
;
2986 return eb
->first_page
;
2987 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
2988 mapping
= eb
->first_page
->mapping
;
2993 * extent_buffer_page is only called after pinning the page
2994 * by increasing the reference count. So we know the page must
2995 * be in the radix tree.
2998 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
3004 static inline unsigned long num_extent_pages(u64 start
, u64 len
)
3006 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
3007 (start
>> PAGE_CACHE_SHIFT
);
3010 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
3015 struct extent_buffer
*eb
= NULL
;
3017 unsigned long flags
;
3020 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
3025 spin_lock_init(&eb
->lock
);
3026 init_waitqueue_head(&eb
->lock_wq
);
3029 spin_lock_irqsave(&leak_lock
, flags
);
3030 list_add(&eb
->leak_list
, &buffers
);
3031 spin_unlock_irqrestore(&leak_lock
, flags
);
3033 atomic_set(&eb
->refs
, 1);
3038 static void __free_extent_buffer(struct extent_buffer
*eb
)
3041 unsigned long flags
;
3042 spin_lock_irqsave(&leak_lock
, flags
);
3043 list_del(&eb
->leak_list
);
3044 spin_unlock_irqrestore(&leak_lock
, flags
);
3046 kmem_cache_free(extent_buffer_cache
, eb
);
3050 * Helper for releasing extent buffer page.
3052 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
,
3053 unsigned long start_idx
)
3055 unsigned long index
;
3058 if (!eb
->first_page
)
3061 index
= num_extent_pages(eb
->start
, eb
->len
);
3062 if (start_idx
>= index
)
3067 page
= extent_buffer_page(eb
, index
);
3069 page_cache_release(page
);
3070 } while (index
!= start_idx
);
3074 * Helper for releasing the extent buffer.
3076 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
3078 btrfs_release_extent_buffer_page(eb
, 0);
3079 __free_extent_buffer(eb
);
3082 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3083 u64 start
, unsigned long len
,
3086 unsigned long num_pages
= num_extent_pages(start
, len
);
3088 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3089 struct extent_buffer
*eb
;
3090 struct extent_buffer
*exists
= NULL
;
3092 struct address_space
*mapping
= tree
->mapping
;
3097 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3098 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3100 mark_page_accessed(eb
->first_page
);
3105 eb
= __alloc_extent_buffer(tree
, start
, len
, GFP_NOFS
);
3110 eb
->first_page
= page0
;
3113 page_cache_get(page0
);
3114 mark_page_accessed(page0
);
3115 set_page_extent_mapped(page0
);
3116 set_page_extent_head(page0
, len
);
3117 uptodate
= PageUptodate(page0
);
3121 for (; i
< num_pages
; i
++, index
++) {
3122 p
= find_or_create_page(mapping
, index
, GFP_NOFS
| __GFP_HIGHMEM
);
3127 set_page_extent_mapped(p
);
3128 mark_page_accessed(p
);
3131 set_page_extent_head(p
, len
);
3133 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3135 if (!PageUptodate(p
))
3139 * see below about how we avoid a nasty race with release page
3140 * and why we unlock later
3146 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3148 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
3152 spin_lock(&tree
->buffer_lock
);
3153 ret
= radix_tree_insert(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
, eb
);
3154 if (ret
== -EEXIST
) {
3155 exists
= radix_tree_lookup(&tree
->buffer
,
3156 start
>> PAGE_CACHE_SHIFT
);
3157 /* add one reference for the caller */
3158 atomic_inc(&exists
->refs
);
3159 spin_unlock(&tree
->buffer_lock
);
3160 radix_tree_preload_end();
3163 /* add one reference for the tree */
3164 atomic_inc(&eb
->refs
);
3165 spin_unlock(&tree
->buffer_lock
);
3166 radix_tree_preload_end();
3169 * there is a race where release page may have
3170 * tried to find this extent buffer in the radix
3171 * but failed. It will tell the VM it is safe to
3172 * reclaim the, and it will clear the page private bit.
3173 * We must make sure to set the page private bit properly
3174 * after the extent buffer is in the radix tree so
3175 * it doesn't get lost
3177 set_page_extent_mapped(eb
->first_page
);
3178 set_page_extent_head(eb
->first_page
, eb
->len
);
3180 unlock_page(eb
->first_page
);
3184 if (eb
->first_page
&& !page0
)
3185 unlock_page(eb
->first_page
);
3187 if (!atomic_dec_and_test(&eb
->refs
))
3189 btrfs_release_extent_buffer(eb
);
3193 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3194 u64 start
, unsigned long len
)
3196 struct extent_buffer
*eb
;
3199 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3200 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3202 mark_page_accessed(eb
->first_page
);
3210 void free_extent_buffer(struct extent_buffer
*eb
)
3215 if (!atomic_dec_and_test(&eb
->refs
))
3221 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3222 struct extent_buffer
*eb
)
3225 unsigned long num_pages
;
3228 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3230 for (i
= 0; i
< num_pages
; i
++) {
3231 page
= extent_buffer_page(eb
, i
);
3232 if (!PageDirty(page
))
3236 WARN_ON(!PagePrivate(page
));
3238 set_page_extent_mapped(page
);
3240 set_page_extent_head(page
, eb
->len
);
3242 clear_page_dirty_for_io(page
);
3243 spin_lock_irq(&page
->mapping
->tree_lock
);
3244 if (!PageDirty(page
)) {
3245 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3247 PAGECACHE_TAG_DIRTY
);
3249 spin_unlock_irq(&page
->mapping
->tree_lock
);
3255 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3256 struct extent_buffer
*eb
)
3259 unsigned long num_pages
;
3262 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3263 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3264 for (i
= 0; i
< num_pages
; i
++)
3265 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3269 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3270 struct extent_buffer
*eb
,
3271 struct extent_state
**cached_state
)
3275 unsigned long num_pages
;
3277 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3278 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3280 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3281 cached_state
, GFP_NOFS
);
3282 for (i
= 0; i
< num_pages
; i
++) {
3283 page
= extent_buffer_page(eb
, i
);
3285 ClearPageUptodate(page
);
3290 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3291 struct extent_buffer
*eb
)
3295 unsigned long num_pages
;
3297 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3299 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3301 for (i
= 0; i
< num_pages
; i
++) {
3302 page
= extent_buffer_page(eb
, i
);
3303 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3304 ((i
== num_pages
- 1) &&
3305 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3306 check_page_uptodate(tree
, page
);
3309 SetPageUptodate(page
);
3314 int extent_range_uptodate(struct extent_io_tree
*tree
,
3319 int pg_uptodate
= 1;
3321 unsigned long index
;
3323 ret
= test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
);
3326 while (start
<= end
) {
3327 index
= start
>> PAGE_CACHE_SHIFT
;
3328 page
= find_get_page(tree
->mapping
, index
);
3329 uptodate
= PageUptodate(page
);
3330 page_cache_release(page
);
3335 start
+= PAGE_CACHE_SIZE
;
3340 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3341 struct extent_buffer
*eb
,
3342 struct extent_state
*cached_state
)
3345 unsigned long num_pages
;
3348 int pg_uptodate
= 1;
3350 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3353 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3354 EXTENT_UPTODATE
, 1, cached_state
);
3358 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3359 for (i
= 0; i
< num_pages
; i
++) {
3360 page
= extent_buffer_page(eb
, i
);
3361 if (!PageUptodate(page
)) {
3369 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3370 struct extent_buffer
*eb
,
3371 u64 start
, int wait
,
3372 get_extent_t
*get_extent
, int mirror_num
)
3375 unsigned long start_i
;
3379 int locked_pages
= 0;
3380 int all_uptodate
= 1;
3381 int inc_all_pages
= 0;
3382 unsigned long num_pages
;
3383 struct bio
*bio
= NULL
;
3384 unsigned long bio_flags
= 0;
3386 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3389 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3390 EXTENT_UPTODATE
, 1, NULL
)) {
3395 WARN_ON(start
< eb
->start
);
3396 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3397 (eb
->start
>> PAGE_CACHE_SHIFT
);
3402 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3403 for (i
= start_i
; i
< num_pages
; i
++) {
3404 page
= extent_buffer_page(eb
, i
);
3406 if (!trylock_page(page
))
3412 if (!PageUptodate(page
))
3417 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3421 for (i
= start_i
; i
< num_pages
; i
++) {
3422 page
= extent_buffer_page(eb
, i
);
3424 WARN_ON(!PagePrivate(page
));
3426 set_page_extent_mapped(page
);
3428 set_page_extent_head(page
, eb
->len
);
3431 page_cache_get(page
);
3432 if (!PageUptodate(page
)) {
3435 ClearPageError(page
);
3436 err
= __extent_read_full_page(tree
, page
,
3438 mirror_num
, &bio_flags
);
3447 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3452 for (i
= start_i
; i
< num_pages
; i
++) {
3453 page
= extent_buffer_page(eb
, i
);
3454 wait_on_page_locked(page
);
3455 if (!PageUptodate(page
))
3460 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3465 while (locked_pages
> 0) {
3466 page
= extent_buffer_page(eb
, i
);
3474 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
3475 unsigned long start
,
3482 char *dst
= (char *)dstv
;
3483 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3484 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3486 WARN_ON(start
> eb
->len
);
3487 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3489 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3492 page
= extent_buffer_page(eb
, i
);
3494 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3495 kaddr
= kmap_atomic(page
, KM_USER1
);
3496 memcpy(dst
, kaddr
+ offset
, cur
);
3497 kunmap_atomic(kaddr
, KM_USER1
);
3506 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3507 unsigned long min_len
, char **token
, char **map
,
3508 unsigned long *map_start
,
3509 unsigned long *map_len
, int km
)
3511 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
3514 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3515 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3516 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
3523 offset
= start_offset
;
3527 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
3530 if (start
+ min_len
> eb
->len
) {
3531 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
3532 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
3533 eb
->len
, start
, min_len
);
3538 p
= extent_buffer_page(eb
, i
);
3539 kaddr
= kmap_atomic(p
, km
);
3541 *map
= kaddr
+ offset
;
3542 *map_len
= PAGE_CACHE_SIZE
- offset
;
3546 int map_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3547 unsigned long min_len
,
3548 char **token
, char **map
,
3549 unsigned long *map_start
,
3550 unsigned long *map_len
, int km
)
3554 if (eb
->map_token
) {
3555 unmap_extent_buffer(eb
, eb
->map_token
, km
);
3556 eb
->map_token
= NULL
;
3559 err
= map_private_extent_buffer(eb
, start
, min_len
, token
, map
,
3560 map_start
, map_len
, km
);
3562 eb
->map_token
= *token
;
3564 eb
->map_start
= *map_start
;
3565 eb
->map_len
= *map_len
;
3570 void unmap_extent_buffer(struct extent_buffer
*eb
, char *token
, int km
)
3572 kunmap_atomic(token
, km
);
3575 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
3576 unsigned long start
,
3583 char *ptr
= (char *)ptrv
;
3584 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3585 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3588 WARN_ON(start
> eb
->len
);
3589 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3591 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3594 page
= extent_buffer_page(eb
, i
);
3596 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3598 kaddr
= kmap_atomic(page
, KM_USER0
);
3599 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
3600 kunmap_atomic(kaddr
, KM_USER0
);
3612 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
3613 unsigned long start
, unsigned long len
)
3619 char *src
= (char *)srcv
;
3620 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3621 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3623 WARN_ON(start
> eb
->len
);
3624 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3626 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3629 page
= extent_buffer_page(eb
, i
);
3630 WARN_ON(!PageUptodate(page
));
3632 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3633 kaddr
= kmap_atomic(page
, KM_USER1
);
3634 memcpy(kaddr
+ offset
, src
, cur
);
3635 kunmap_atomic(kaddr
, KM_USER1
);
3644 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
3645 unsigned long start
, unsigned long len
)
3651 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3652 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3654 WARN_ON(start
> eb
->len
);
3655 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3657 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3660 page
= extent_buffer_page(eb
, i
);
3661 WARN_ON(!PageUptodate(page
));
3663 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3664 kaddr
= kmap_atomic(page
, KM_USER0
);
3665 memset(kaddr
+ offset
, c
, cur
);
3666 kunmap_atomic(kaddr
, KM_USER0
);
3674 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
3675 unsigned long dst_offset
, unsigned long src_offset
,
3678 u64 dst_len
= dst
->len
;
3683 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3684 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3686 WARN_ON(src
->len
!= dst_len
);
3688 offset
= (start_offset
+ dst_offset
) &
3689 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3692 page
= extent_buffer_page(dst
, i
);
3693 WARN_ON(!PageUptodate(page
));
3695 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
3697 kaddr
= kmap_atomic(page
, KM_USER0
);
3698 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
3699 kunmap_atomic(kaddr
, KM_USER0
);
3708 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
3709 unsigned long dst_off
, unsigned long src_off
,
3712 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3713 if (dst_page
== src_page
) {
3714 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
3716 char *src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3717 char *p
= dst_kaddr
+ dst_off
+ len
;
3718 char *s
= src_kaddr
+ src_off
+ len
;
3723 kunmap_atomic(src_kaddr
, KM_USER1
);
3725 kunmap_atomic(dst_kaddr
, KM_USER0
);
3728 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
3730 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
3731 return distance
< len
;
3734 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
3735 unsigned long dst_off
, unsigned long src_off
,
3738 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3741 if (dst_page
!= src_page
) {
3742 src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3744 src_kaddr
= dst_kaddr
;
3745 BUG_ON(areas_overlap(src_off
, dst_off
, len
));
3748 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
3749 kunmap_atomic(dst_kaddr
, KM_USER0
);
3750 if (dst_page
!= src_page
)
3751 kunmap_atomic(src_kaddr
, KM_USER1
);
3754 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3755 unsigned long src_offset
, unsigned long len
)
3758 size_t dst_off_in_page
;
3759 size_t src_off_in_page
;
3760 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3761 unsigned long dst_i
;
3762 unsigned long src_i
;
3764 if (src_offset
+ len
> dst
->len
) {
3765 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3766 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
3769 if (dst_offset
+ len
> dst
->len
) {
3770 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3771 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
3776 dst_off_in_page
= (start_offset
+ dst_offset
) &
3777 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3778 src_off_in_page
= (start_offset
+ src_offset
) &
3779 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3781 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3782 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
3784 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
3786 cur
= min_t(unsigned long, cur
,
3787 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
3789 copy_pages(extent_buffer_page(dst
, dst_i
),
3790 extent_buffer_page(dst
, src_i
),
3791 dst_off_in_page
, src_off_in_page
, cur
);
3799 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3800 unsigned long src_offset
, unsigned long len
)
3803 size_t dst_off_in_page
;
3804 size_t src_off_in_page
;
3805 unsigned long dst_end
= dst_offset
+ len
- 1;
3806 unsigned long src_end
= src_offset
+ len
- 1;
3807 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3808 unsigned long dst_i
;
3809 unsigned long src_i
;
3811 if (src_offset
+ len
> dst
->len
) {
3812 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3813 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
3816 if (dst_offset
+ len
> dst
->len
) {
3817 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3818 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
3821 if (!areas_overlap(src_offset
, dst_offset
, len
)) {
3822 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
3826 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
3827 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
3829 dst_off_in_page
= (start_offset
+ dst_end
) &
3830 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3831 src_off_in_page
= (start_offset
+ src_end
) &
3832 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3834 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
3835 cur
= min(cur
, dst_off_in_page
+ 1);
3836 move_pages(extent_buffer_page(dst
, dst_i
),
3837 extent_buffer_page(dst
, src_i
),
3838 dst_off_in_page
- cur
+ 1,
3839 src_off_in_page
- cur
+ 1, cur
);
3847 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
3849 struct extent_buffer
*eb
=
3850 container_of(head
, struct extent_buffer
, rcu_head
);
3852 btrfs_release_extent_buffer(eb
);
3855 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
3857 u64 start
= page_offset(page
);
3858 struct extent_buffer
*eb
;
3861 spin_lock(&tree
->buffer_lock
);
3862 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3864 spin_unlock(&tree
->buffer_lock
);
3868 if (test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3874 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3877 if (atomic_cmpxchg(&eb
->refs
, 1, 0) != 1) {
3882 radix_tree_delete(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3884 spin_unlock(&tree
->buffer_lock
);
3886 /* at this point we can safely release the extent buffer */
3887 if (atomic_read(&eb
->refs
) == 0)
3888 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);