2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
24 #include "free-space-cache.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
30 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
34 struct btrfs_free_space
*info
);
36 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
37 struct btrfs_path
*path
,
41 struct btrfs_key location
;
42 struct btrfs_disk_key disk_key
;
43 struct btrfs_free_space_header
*header
;
44 struct extent_buffer
*leaf
;
45 struct inode
*inode
= NULL
;
48 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
52 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
56 btrfs_release_path(path
);
57 return ERR_PTR(-ENOENT
);
60 leaf
= path
->nodes
[0];
61 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
62 struct btrfs_free_space_header
);
63 btrfs_free_space_key(leaf
, header
, &disk_key
);
64 btrfs_disk_key_to_cpu(&location
, &disk_key
);
65 btrfs_release_path(path
);
67 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
69 return ERR_PTR(-ENOENT
);
72 if (is_bad_inode(inode
)) {
74 return ERR_PTR(-ENOENT
);
77 inode
->i_mapping
->flags
&= ~__GFP_FS
;
82 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
83 struct btrfs_block_group_cache
84 *block_group
, struct btrfs_path
*path
)
86 struct inode
*inode
= NULL
;
88 spin_lock(&block_group
->lock
);
89 if (block_group
->inode
)
90 inode
= igrab(block_group
->inode
);
91 spin_unlock(&block_group
->lock
);
95 inode
= __lookup_free_space_inode(root
, path
,
96 block_group
->key
.objectid
);
100 spin_lock(&block_group
->lock
);
101 if (!btrfs_fs_closing(root
->fs_info
)) {
102 block_group
->inode
= igrab(inode
);
103 block_group
->iref
= 1;
105 spin_unlock(&block_group
->lock
);
110 int __create_free_space_inode(struct btrfs_root
*root
,
111 struct btrfs_trans_handle
*trans
,
112 struct btrfs_path
*path
, u64 ino
, u64 offset
)
114 struct btrfs_key key
;
115 struct btrfs_disk_key disk_key
;
116 struct btrfs_free_space_header
*header
;
117 struct btrfs_inode_item
*inode_item
;
118 struct extent_buffer
*leaf
;
121 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
125 leaf
= path
->nodes
[0];
126 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
127 struct btrfs_inode_item
);
128 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
129 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
130 sizeof(*inode_item
));
131 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
132 btrfs_set_inode_size(leaf
, inode_item
, 0);
133 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
134 btrfs_set_inode_uid(leaf
, inode_item
, 0);
135 btrfs_set_inode_gid(leaf
, inode_item
, 0);
136 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
137 btrfs_set_inode_flags(leaf
, inode_item
, BTRFS_INODE_NOCOMPRESS
|
138 BTRFS_INODE_PREALLOC
| BTRFS_INODE_NODATASUM
);
139 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
140 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
141 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
142 btrfs_mark_buffer_dirty(leaf
);
143 btrfs_release_path(path
);
145 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
149 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
150 sizeof(struct btrfs_free_space_header
));
152 btrfs_release_path(path
);
155 leaf
= path
->nodes
[0];
156 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_free_space_header
);
158 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
159 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
160 btrfs_mark_buffer_dirty(leaf
);
161 btrfs_release_path(path
);
166 int create_free_space_inode(struct btrfs_root
*root
,
167 struct btrfs_trans_handle
*trans
,
168 struct btrfs_block_group_cache
*block_group
,
169 struct btrfs_path
*path
)
174 ret
= btrfs_find_free_objectid(root
, &ino
);
178 return __create_free_space_inode(root
, trans
, path
, ino
,
179 block_group
->key
.objectid
);
182 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
183 struct btrfs_trans_handle
*trans
,
184 struct btrfs_path
*path
,
190 trans
->block_rsv
= root
->orphan_block_rsv
;
191 ret
= btrfs_block_rsv_check(trans
, root
,
192 root
->orphan_block_rsv
,
197 oldsize
= i_size_read(inode
);
198 btrfs_i_size_write(inode
, 0);
199 truncate_pagecache(inode
, oldsize
, 0);
202 * We don't need an orphan item because truncating the free space cache
203 * will never be split across transactions.
205 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
206 0, BTRFS_EXTENT_DATA_KEY
);
212 ret
= btrfs_update_inode(trans
, root
, inode
);
216 static int readahead_cache(struct inode
*inode
)
218 struct file_ra_state
*ra
;
219 unsigned long last_index
;
221 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
225 file_ra_state_init(ra
, inode
->i_mapping
);
226 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
228 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
235 int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
236 struct btrfs_free_space_ctl
*ctl
,
237 struct btrfs_path
*path
, u64 offset
)
239 struct btrfs_free_space_header
*header
;
240 struct extent_buffer
*leaf
;
242 u32
*checksums
= NULL
, *crc
;
243 char *disk_crcs
= NULL
;
244 struct btrfs_key key
;
245 struct list_head bitmaps
;
249 u32 cur_crc
= ~(u32
)0;
251 unsigned long first_page_offset
;
255 INIT_LIST_HEAD(&bitmaps
);
257 /* Nothing in the space cache, goodbye */
258 if (!i_size_read(inode
))
261 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
265 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
269 btrfs_release_path(path
);
276 leaf
= path
->nodes
[0];
277 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
278 struct btrfs_free_space_header
);
279 num_entries
= btrfs_free_space_entries(leaf
, header
);
280 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
281 generation
= btrfs_free_space_generation(leaf
, header
);
282 btrfs_release_path(path
);
284 if (BTRFS_I(inode
)->generation
!= generation
) {
285 printk(KERN_ERR
"btrfs: free space inode generation (%llu) did"
286 " not match free space cache generation (%llu)\n",
287 (unsigned long long)BTRFS_I(inode
)->generation
,
288 (unsigned long long)generation
);
295 /* Setup everything for doing checksumming */
296 num_checksums
= i_size_read(inode
) / PAGE_CACHE_SIZE
;
297 checksums
= crc
= kzalloc(sizeof(u32
) * num_checksums
, GFP_NOFS
);
300 first_page_offset
= (sizeof(u32
) * num_checksums
) + sizeof(u64
);
301 disk_crcs
= kzalloc(first_page_offset
, GFP_NOFS
);
305 ret
= readahead_cache(inode
);
310 struct btrfs_free_space_entry
*entry
;
311 struct btrfs_free_space
*e
;
313 unsigned long offset
= 0;
314 unsigned long start_offset
= 0;
317 if (!num_entries
&& !num_bitmaps
)
321 start_offset
= first_page_offset
;
322 offset
= start_offset
;
325 page
= grab_cache_page(inode
->i_mapping
, index
);
329 if (!PageUptodate(page
)) {
330 btrfs_readpage(NULL
, page
);
332 if (!PageUptodate(page
)) {
334 page_cache_release(page
);
335 printk(KERN_ERR
"btrfs: error reading free "
345 memcpy(disk_crcs
, addr
, first_page_offset
);
346 gen
= addr
+ (sizeof(u32
) * num_checksums
);
347 if (*gen
!= BTRFS_I(inode
)->generation
) {
348 printk(KERN_ERR
"btrfs: space cache generation"
349 " (%llu) does not match inode (%llu)\n",
350 (unsigned long long)*gen
,
352 BTRFS_I(inode
)->generation
);
355 page_cache_release(page
);
358 crc
= (u32
*)disk_crcs
;
360 entry
= addr
+ start_offset
;
362 /* First lets check our crc before we do anything fun */
364 cur_crc
= btrfs_csum_data(root
, addr
+ start_offset
, cur_crc
,
365 PAGE_CACHE_SIZE
- start_offset
);
366 btrfs_csum_final(cur_crc
, (char *)&cur_crc
);
367 if (cur_crc
!= *crc
) {
368 printk(KERN_ERR
"btrfs: crc mismatch for page %lu\n",
372 page_cache_release(page
);
382 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
387 page_cache_release(page
);
391 e
->offset
= le64_to_cpu(entry
->offset
);
392 e
->bytes
= le64_to_cpu(entry
->bytes
);
395 kmem_cache_free(btrfs_free_space_cachep
, e
);
397 page_cache_release(page
);
401 if (entry
->type
== BTRFS_FREE_SPACE_EXTENT
) {
402 spin_lock(&ctl
->tree_lock
);
403 ret
= link_free_space(ctl
, e
);
404 spin_unlock(&ctl
->tree_lock
);
406 printk(KERN_ERR
"Duplicate entries in "
407 "free space cache, dumping\n");
410 page_cache_release(page
);
414 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
418 btrfs_free_space_cachep
, e
);
420 page_cache_release(page
);
423 spin_lock(&ctl
->tree_lock
);
424 ret
= link_free_space(ctl
, e
);
425 ctl
->total_bitmaps
++;
426 ctl
->op
->recalc_thresholds(ctl
);
427 spin_unlock(&ctl
->tree_lock
);
429 printk(KERN_ERR
"Duplicate entries in "
430 "free space cache, dumping\n");
433 page_cache_release(page
);
436 list_add_tail(&e
->list
, &bitmaps
);
440 offset
+= sizeof(struct btrfs_free_space_entry
);
441 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
448 * We read an entry out of this page, we need to move on to the
457 * We add the bitmaps at the end of the entries in order that
458 * the bitmap entries are added to the cache.
460 e
= list_entry(bitmaps
.next
, struct btrfs_free_space
, list
);
461 list_del_init(&e
->list
);
462 memcpy(e
->bitmap
, addr
, PAGE_CACHE_SIZE
);
467 page_cache_release(page
);
477 __btrfs_remove_free_space_cache(ctl
);
481 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
482 struct btrfs_block_group_cache
*block_group
)
484 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
485 struct btrfs_root
*root
= fs_info
->tree_root
;
487 struct btrfs_path
*path
;
490 u64 used
= btrfs_block_group_used(&block_group
->item
);
493 * If we're unmounting then just return, since this does a search on the
494 * normal root and not the commit root and we could deadlock.
496 if (btrfs_fs_closing(fs_info
))
500 * If this block group has been marked to be cleared for one reason or
501 * another then we can't trust the on disk cache, so just return.
503 spin_lock(&block_group
->lock
);
504 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
505 spin_unlock(&block_group
->lock
);
508 spin_unlock(&block_group
->lock
);
510 path
= btrfs_alloc_path();
514 inode
= lookup_free_space_inode(root
, block_group
, path
);
516 btrfs_free_path(path
);
520 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
521 path
, block_group
->key
.objectid
);
522 btrfs_free_path(path
);
526 spin_lock(&ctl
->tree_lock
);
527 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
528 block_group
->bytes_super
));
529 spin_unlock(&ctl
->tree_lock
);
532 __btrfs_remove_free_space_cache(ctl
);
533 printk(KERN_ERR
"block group %llu has an wrong amount of free "
534 "space\n", block_group
->key
.objectid
);
539 /* This cache is bogus, make sure it gets cleared */
540 spin_lock(&block_group
->lock
);
541 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
542 spin_unlock(&block_group
->lock
);
545 printk(KERN_ERR
"btrfs: failed to load free space cache "
546 "for block group %llu\n", block_group
->key
.objectid
);
553 int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
554 struct btrfs_free_space_ctl
*ctl
,
555 struct btrfs_block_group_cache
*block_group
,
556 struct btrfs_trans_handle
*trans
,
557 struct btrfs_path
*path
, u64 offset
)
559 struct btrfs_free_space_header
*header
;
560 struct extent_buffer
*leaf
;
561 struct rb_node
*node
;
562 struct list_head
*pos
, *n
;
565 struct extent_state
*cached_state
= NULL
;
566 struct btrfs_free_cluster
*cluster
= NULL
;
567 struct extent_io_tree
*unpin
= NULL
;
568 struct list_head bitmap_list
;
569 struct btrfs_key key
;
572 u32
*crc
, *checksums
;
573 unsigned long first_page_offset
;
574 int index
= 0, num_pages
= 0;
578 bool next_page
= false;
579 bool out_of_space
= false;
581 INIT_LIST_HEAD(&bitmap_list
);
583 node
= rb_first(&ctl
->free_space_offset
);
587 if (!i_size_read(inode
))
590 num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
593 /* Since the first page has all of our checksums and our generation we
594 * need to calculate the offset into the page that we can start writing
597 first_page_offset
= (sizeof(u32
) * num_pages
) + sizeof(u64
);
599 filemap_write_and_wait(inode
->i_mapping
);
600 btrfs_wait_ordered_range(inode
, inode
->i_size
&
601 ~(root
->sectorsize
- 1), (u64
)-1);
603 /* make sure we don't overflow that first page */
604 if (first_page_offset
+ sizeof(struct btrfs_free_space_entry
) >= PAGE_CACHE_SIZE
) {
605 /* this is really the same as running out of space, where we also return 0 */
606 printk(KERN_CRIT
"Btrfs: free space cache was too big for the crc page\n");
611 /* We need a checksum per page. */
612 crc
= checksums
= kzalloc(sizeof(u32
) * num_pages
, GFP_NOFS
);
616 pages
= kzalloc(sizeof(struct page
*) * num_pages
, GFP_NOFS
);
622 /* Get the cluster for this block_group if it exists */
623 if (block_group
&& !list_empty(&block_group
->cluster_list
))
624 cluster
= list_entry(block_group
->cluster_list
.next
,
625 struct btrfs_free_cluster
,
629 * We shouldn't have switched the pinned extents yet so this is the
632 unpin
= root
->fs_info
->pinned_extents
;
635 * Lock all pages first so we can lock the extent safely.
637 * NOTE: Because we hold the ref the entire time we're going to write to
638 * the page find_get_page should never fail, so we don't do a check
639 * after find_get_page at this point. Just putting this here so people
640 * know and don't freak out.
642 while (index
< num_pages
) {
643 page
= grab_cache_page(inode
->i_mapping
, index
);
647 for (i
= 0; i
< num_pages
; i
++) {
648 unlock_page(pages
[i
]);
649 page_cache_release(pages
[i
]);
658 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
659 0, &cached_state
, GFP_NOFS
);
662 * When searching for pinned extents, we need to start at our start
666 start
= block_group
->key
.objectid
;
668 /* Write out the extent entries */
670 struct btrfs_free_space_entry
*entry
;
672 unsigned long offset
= 0;
673 unsigned long start_offset
= 0;
678 start_offset
= first_page_offset
;
679 offset
= start_offset
;
682 if (index
>= num_pages
) {
690 entry
= addr
+ start_offset
;
692 memset(addr
, 0, PAGE_CACHE_SIZE
);
693 while (node
&& !next_page
) {
694 struct btrfs_free_space
*e
;
696 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
699 entry
->offset
= cpu_to_le64(e
->offset
);
700 entry
->bytes
= cpu_to_le64(e
->bytes
);
702 entry
->type
= BTRFS_FREE_SPACE_BITMAP
;
703 list_add_tail(&e
->list
, &bitmap_list
);
706 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
708 node
= rb_next(node
);
709 if (!node
&& cluster
) {
710 node
= rb_first(&cluster
->root
);
713 offset
+= sizeof(struct btrfs_free_space_entry
);
714 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
721 * We want to add any pinned extents to our free space cache
722 * so we don't leak the space
724 while (block_group
&& !next_page
&&
725 (start
< block_group
->key
.objectid
+
726 block_group
->key
.offset
)) {
727 ret
= find_first_extent_bit(unpin
, start
, &start
, &end
,
734 /* This pinned extent is out of our range */
735 if (start
>= block_group
->key
.objectid
+
736 block_group
->key
.offset
)
739 len
= block_group
->key
.objectid
+
740 block_group
->key
.offset
- start
;
741 len
= min(len
, end
+ 1 - start
);
744 entry
->offset
= cpu_to_le64(start
);
745 entry
->bytes
= cpu_to_le64(len
);
746 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
749 offset
+= sizeof(struct btrfs_free_space_entry
);
750 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
756 *crc
= btrfs_csum_data(root
, addr
+ start_offset
, *crc
,
757 PAGE_CACHE_SIZE
- start_offset
);
760 btrfs_csum_final(*crc
, (char *)crc
);
763 bytes
+= PAGE_CACHE_SIZE
;
766 } while (node
|| next_page
);
768 /* Write out the bitmaps */
769 list_for_each_safe(pos
, n
, &bitmap_list
) {
771 struct btrfs_free_space
*entry
=
772 list_entry(pos
, struct btrfs_free_space
, list
);
774 if (index
>= num_pages
) {
781 memcpy(addr
, entry
->bitmap
, PAGE_CACHE_SIZE
);
783 *crc
= btrfs_csum_data(root
, addr
, *crc
, PAGE_CACHE_SIZE
);
785 btrfs_csum_final(*crc
, (char *)crc
);
787 bytes
+= PAGE_CACHE_SIZE
;
789 list_del_init(&entry
->list
);
794 btrfs_drop_pages(pages
, num_pages
);
795 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
796 i_size_read(inode
) - 1, &cached_state
,
802 /* Zero out the rest of the pages just to make sure */
803 while (index
< num_pages
) {
808 memset(addr
, 0, PAGE_CACHE_SIZE
);
810 bytes
+= PAGE_CACHE_SIZE
;
814 /* Write the checksums and trans id to the first page */
822 memcpy(addr
, checksums
, sizeof(u32
) * num_pages
);
823 gen
= addr
+ (sizeof(u32
) * num_pages
);
824 *gen
= trans
->transid
;
828 ret
= btrfs_dirty_pages(root
, inode
, pages
, num_pages
, 0,
829 bytes
, &cached_state
);
830 btrfs_drop_pages(pages
, num_pages
);
831 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
832 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
839 BTRFS_I(inode
)->generation
= trans
->transid
;
841 filemap_write_and_wait(inode
->i_mapping
);
843 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
847 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 1, 1);
850 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
851 EXTENT_DIRTY
| EXTENT_DELALLOC
|
852 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, GFP_NOFS
);
855 leaf
= path
->nodes
[0];
857 struct btrfs_key found_key
;
858 BUG_ON(!path
->slots
[0]);
860 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
861 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
862 found_key
.offset
!= offset
) {
864 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
865 EXTENT_DIRTY
| EXTENT_DELALLOC
|
866 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
,
868 btrfs_release_path(path
);
872 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
873 struct btrfs_free_space_header
);
874 btrfs_set_free_space_entries(leaf
, header
, entries
);
875 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
876 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
877 btrfs_mark_buffer_dirty(leaf
);
878 btrfs_release_path(path
);
888 invalidate_inode_pages2_range(inode
->i_mapping
, 0, index
);
889 BTRFS_I(inode
)->generation
= 0;
891 btrfs_update_inode(trans
, root
, inode
);
895 int btrfs_write_out_cache(struct btrfs_root
*root
,
896 struct btrfs_trans_handle
*trans
,
897 struct btrfs_block_group_cache
*block_group
,
898 struct btrfs_path
*path
)
900 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
904 root
= root
->fs_info
->tree_root
;
906 spin_lock(&block_group
->lock
);
907 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
908 spin_unlock(&block_group
->lock
);
911 spin_unlock(&block_group
->lock
);
913 inode
= lookup_free_space_inode(root
, block_group
, path
);
917 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
918 path
, block_group
->key
.objectid
);
920 spin_lock(&block_group
->lock
);
921 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
922 spin_unlock(&block_group
->lock
);
925 printk(KERN_ERR
"btrfs: failed to write free space cace "
926 "for block group %llu\n", block_group
->key
.objectid
);
933 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
936 BUG_ON(offset
< bitmap_start
);
937 offset
-= bitmap_start
;
938 return (unsigned long)(div_u64(offset
, unit
));
941 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
943 return (unsigned long)(div_u64(bytes
, unit
));
946 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
950 u64 bytes_per_bitmap
;
952 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
953 bitmap_start
= offset
- ctl
->start
;
954 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
955 bitmap_start
*= bytes_per_bitmap
;
956 bitmap_start
+= ctl
->start
;
961 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
962 struct rb_node
*node
, int bitmap
)
964 struct rb_node
**p
= &root
->rb_node
;
965 struct rb_node
*parent
= NULL
;
966 struct btrfs_free_space
*info
;
970 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
972 if (offset
< info
->offset
) {
974 } else if (offset
> info
->offset
) {
978 * we could have a bitmap entry and an extent entry
979 * share the same offset. If this is the case, we want
980 * the extent entry to always be found first if we do a
981 * linear search through the tree, since we want to have
982 * the quickest allocation time, and allocating from an
983 * extent is faster than allocating from a bitmap. So
984 * if we're inserting a bitmap and we find an entry at
985 * this offset, we want to go right, or after this entry
986 * logically. If we are inserting an extent and we've
987 * found a bitmap, we want to go left, or before
1006 rb_link_node(node
, parent
, p
);
1007 rb_insert_color(node
, root
);
1013 * searches the tree for the given offset.
1015 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1016 * want a section that has at least bytes size and comes at or after the given
1019 static struct btrfs_free_space
*
1020 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1021 u64 offset
, int bitmap_only
, int fuzzy
)
1023 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1024 struct btrfs_free_space
*entry
, *prev
= NULL
;
1026 /* find entry that is closest to the 'offset' */
1033 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1036 if (offset
< entry
->offset
)
1038 else if (offset
> entry
->offset
)
1051 * bitmap entry and extent entry may share same offset,
1052 * in that case, bitmap entry comes after extent entry.
1057 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1058 if (entry
->offset
!= offset
)
1061 WARN_ON(!entry
->bitmap
);
1064 if (entry
->bitmap
) {
1066 * if previous extent entry covers the offset,
1067 * we should return it instead of the bitmap entry
1069 n
= &entry
->offset_index
;
1074 prev
= rb_entry(n
, struct btrfs_free_space
,
1076 if (!prev
->bitmap
) {
1077 if (prev
->offset
+ prev
->bytes
> offset
)
1089 /* find last entry before the 'offset' */
1091 if (entry
->offset
> offset
) {
1092 n
= rb_prev(&entry
->offset_index
);
1094 entry
= rb_entry(n
, struct btrfs_free_space
,
1096 BUG_ON(entry
->offset
> offset
);
1105 if (entry
->bitmap
) {
1106 n
= &entry
->offset_index
;
1111 prev
= rb_entry(n
, struct btrfs_free_space
,
1113 if (!prev
->bitmap
) {
1114 if (prev
->offset
+ prev
->bytes
> offset
)
1119 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1121 } else if (entry
->offset
+ entry
->bytes
> offset
)
1128 if (entry
->bitmap
) {
1129 if (entry
->offset
+ BITS_PER_BITMAP
*
1133 if (entry
->offset
+ entry
->bytes
> offset
)
1137 n
= rb_next(&entry
->offset_index
);
1140 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1146 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1147 struct btrfs_free_space
*info
)
1149 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1150 ctl
->free_extents
--;
1153 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1154 struct btrfs_free_space
*info
)
1156 __unlink_free_space(ctl
, info
);
1157 ctl
->free_space
-= info
->bytes
;
1160 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1161 struct btrfs_free_space
*info
)
1165 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1166 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1167 &info
->offset_index
, (info
->bitmap
!= NULL
));
1171 ctl
->free_space
+= info
->bytes
;
1172 ctl
->free_extents
++;
1176 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1178 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1182 u64 size
= block_group
->key
.offset
;
1183 u64 bytes_per_bg
= BITS_PER_BITMAP
* block_group
->sectorsize
;
1184 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1186 BUG_ON(ctl
->total_bitmaps
> max_bitmaps
);
1189 * The goal is to keep the total amount of memory used per 1gb of space
1190 * at or below 32k, so we need to adjust how much memory we allow to be
1191 * used by extent based free space tracking
1193 if (size
< 1024 * 1024 * 1024)
1194 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1196 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1197 div64_u64(size
, 1024 * 1024 * 1024);
1200 * we want to account for 1 more bitmap than what we have so we can make
1201 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1202 * we add more bitmaps.
1204 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1206 if (bitmap_bytes
>= max_bytes
) {
1207 ctl
->extents_thresh
= 0;
1212 * we want the extent entry threshold to always be at most 1/2 the maxw
1213 * bytes we can have, or whatever is less than that.
1215 extent_bytes
= max_bytes
- bitmap_bytes
;
1216 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1218 ctl
->extents_thresh
=
1219 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1222 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1223 struct btrfs_free_space
*info
, u64 offset
,
1226 unsigned long start
, count
;
1228 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1229 count
= bytes_to_bits(bytes
, ctl
->unit
);
1230 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1232 bitmap_clear(info
->bitmap
, start
, count
);
1234 info
->bytes
-= bytes
;
1235 ctl
->free_space
-= bytes
;
1238 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1239 struct btrfs_free_space
*info
, u64 offset
,
1242 unsigned long start
, count
;
1244 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1245 count
= bytes_to_bits(bytes
, ctl
->unit
);
1246 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1248 bitmap_set(info
->bitmap
, start
, count
);
1250 info
->bytes
+= bytes
;
1251 ctl
->free_space
+= bytes
;
1254 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1255 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1258 unsigned long found_bits
= 0;
1259 unsigned long bits
, i
;
1260 unsigned long next_zero
;
1262 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1263 max_t(u64
, *offset
, bitmap_info
->offset
));
1264 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1266 for (i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
);
1267 i
< BITS_PER_BITMAP
;
1268 i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1269 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1270 BITS_PER_BITMAP
, i
);
1271 if ((next_zero
- i
) >= bits
) {
1272 found_bits
= next_zero
- i
;
1279 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1280 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1287 static struct btrfs_free_space
*
1288 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
)
1290 struct btrfs_free_space
*entry
;
1291 struct rb_node
*node
;
1294 if (!ctl
->free_space_offset
.rb_node
)
1297 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1301 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1302 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1303 if (entry
->bytes
< *bytes
)
1306 if (entry
->bitmap
) {
1307 ret
= search_bitmap(ctl
, entry
, offset
, bytes
);
1313 *offset
= entry
->offset
;
1314 *bytes
= entry
->bytes
;
1321 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1322 struct btrfs_free_space
*info
, u64 offset
)
1324 info
->offset
= offset_to_bitmap(ctl
, offset
);
1326 link_free_space(ctl
, info
);
1327 ctl
->total_bitmaps
++;
1329 ctl
->op
->recalc_thresholds(ctl
);
1332 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1333 struct btrfs_free_space
*bitmap_info
)
1335 unlink_free_space(ctl
, bitmap_info
);
1336 kfree(bitmap_info
->bitmap
);
1337 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1338 ctl
->total_bitmaps
--;
1339 ctl
->op
->recalc_thresholds(ctl
);
1342 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1343 struct btrfs_free_space
*bitmap_info
,
1344 u64
*offset
, u64
*bytes
)
1347 u64 search_start
, search_bytes
;
1351 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1354 * XXX - this can go away after a few releases.
1356 * since the only user of btrfs_remove_free_space is the tree logging
1357 * stuff, and the only way to test that is under crash conditions, we
1358 * want to have this debug stuff here just in case somethings not
1359 * working. Search the bitmap for the space we are trying to use to
1360 * make sure its actually there. If its not there then we need to stop
1361 * because something has gone wrong.
1363 search_start
= *offset
;
1364 search_bytes
= *bytes
;
1365 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1366 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1367 BUG_ON(ret
< 0 || search_start
!= *offset
);
1369 if (*offset
> bitmap_info
->offset
&& *offset
+ *bytes
> end
) {
1370 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, end
- *offset
+ 1);
1371 *bytes
-= end
- *offset
+ 1;
1373 } else if (*offset
>= bitmap_info
->offset
&& *offset
+ *bytes
<= end
) {
1374 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, *bytes
);
1379 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1380 if (!bitmap_info
->bytes
)
1381 free_bitmap(ctl
, bitmap_info
);
1384 * no entry after this bitmap, but we still have bytes to
1385 * remove, so something has gone wrong.
1390 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1394 * if the next entry isn't a bitmap we need to return to let the
1395 * extent stuff do its work.
1397 if (!bitmap_info
->bitmap
)
1401 * Ok the next item is a bitmap, but it may not actually hold
1402 * the information for the rest of this free space stuff, so
1403 * look for it, and if we don't find it return so we can try
1404 * everything over again.
1406 search_start
= *offset
;
1407 search_bytes
= *bytes
;
1408 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1410 if (ret
< 0 || search_start
!= *offset
)
1414 } else if (!bitmap_info
->bytes
)
1415 free_bitmap(ctl
, bitmap_info
);
1420 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1421 struct btrfs_free_space
*info
, u64 offset
,
1424 u64 bytes_to_set
= 0;
1427 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1429 bytes_to_set
= min(end
- offset
, bytes
);
1431 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1433 return bytes_to_set
;
1437 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1438 struct btrfs_free_space
*info
)
1440 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1443 * If we are below the extents threshold then we can add this as an
1444 * extent, and don't have to deal with the bitmap
1446 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1448 * If this block group has some small extents we don't want to
1449 * use up all of our free slots in the cache with them, we want
1450 * to reserve them to larger extents, however if we have plent
1451 * of cache left then go ahead an dadd them, no sense in adding
1452 * the overhead of a bitmap if we don't have to.
1454 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1455 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1463 * some block groups are so tiny they can't be enveloped by a bitmap, so
1464 * don't even bother to create a bitmap for this
1466 if (BITS_PER_BITMAP
* block_group
->sectorsize
>
1467 block_group
->key
.offset
)
1473 static struct btrfs_free_space_op free_space_op
= {
1474 .recalc_thresholds
= recalculate_thresholds
,
1475 .use_bitmap
= use_bitmap
,
1478 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1479 struct btrfs_free_space
*info
)
1481 struct btrfs_free_space
*bitmap_info
;
1482 struct btrfs_block_group_cache
*block_group
= NULL
;
1484 u64 bytes
, offset
, bytes_added
;
1487 bytes
= info
->bytes
;
1488 offset
= info
->offset
;
1490 if (!ctl
->op
->use_bitmap(ctl
, info
))
1493 if (ctl
->op
== &free_space_op
)
1494 block_group
= ctl
->private;
1497 * Since we link bitmaps right into the cluster we need to see if we
1498 * have a cluster here, and if so and it has our bitmap we need to add
1499 * the free space to that bitmap.
1501 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
1502 struct btrfs_free_cluster
*cluster
;
1503 struct rb_node
*node
;
1504 struct btrfs_free_space
*entry
;
1506 cluster
= list_entry(block_group
->cluster_list
.next
,
1507 struct btrfs_free_cluster
,
1509 spin_lock(&cluster
->lock
);
1510 node
= rb_first(&cluster
->root
);
1512 spin_unlock(&cluster
->lock
);
1513 goto no_cluster_bitmap
;
1516 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1517 if (!entry
->bitmap
) {
1518 spin_unlock(&cluster
->lock
);
1519 goto no_cluster_bitmap
;
1522 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
1523 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
1525 bytes
-= bytes_added
;
1526 offset
+= bytes_added
;
1528 spin_unlock(&cluster
->lock
);
1536 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1543 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
1544 bytes
-= bytes_added
;
1545 offset
+= bytes_added
;
1555 if (info
&& info
->bitmap
) {
1556 add_new_bitmap(ctl
, info
, offset
);
1561 spin_unlock(&ctl
->tree_lock
);
1563 /* no pre-allocated info, allocate a new one */
1565 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1568 spin_lock(&ctl
->tree_lock
);
1574 /* allocate the bitmap */
1575 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1576 spin_lock(&ctl
->tree_lock
);
1577 if (!info
->bitmap
) {
1587 kfree(info
->bitmap
);
1588 kmem_cache_free(btrfs_free_space_cachep
, info
);
1594 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1595 struct btrfs_free_space
*info
, bool update_stat
)
1597 struct btrfs_free_space
*left_info
;
1598 struct btrfs_free_space
*right_info
;
1599 bool merged
= false;
1600 u64 offset
= info
->offset
;
1601 u64 bytes
= info
->bytes
;
1604 * first we want to see if there is free space adjacent to the range we
1605 * are adding, if there is remove that struct and add a new one to
1606 * cover the entire range
1608 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1609 if (right_info
&& rb_prev(&right_info
->offset_index
))
1610 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1611 struct btrfs_free_space
, offset_index
);
1613 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1615 if (right_info
&& !right_info
->bitmap
) {
1617 unlink_free_space(ctl
, right_info
);
1619 __unlink_free_space(ctl
, right_info
);
1620 info
->bytes
+= right_info
->bytes
;
1621 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1625 if (left_info
&& !left_info
->bitmap
&&
1626 left_info
->offset
+ left_info
->bytes
== offset
) {
1628 unlink_free_space(ctl
, left_info
);
1630 __unlink_free_space(ctl
, left_info
);
1631 info
->offset
= left_info
->offset
;
1632 info
->bytes
+= left_info
->bytes
;
1633 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1640 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1641 u64 offset
, u64 bytes
)
1643 struct btrfs_free_space
*info
;
1646 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1650 info
->offset
= offset
;
1651 info
->bytes
= bytes
;
1653 spin_lock(&ctl
->tree_lock
);
1655 if (try_merge_free_space(ctl
, info
, true))
1659 * There was no extent directly to the left or right of this new
1660 * extent then we know we're going to have to allocate a new extent, so
1661 * before we do that see if we need to drop this into a bitmap
1663 ret
= insert_into_bitmap(ctl
, info
);
1671 ret
= link_free_space(ctl
, info
);
1673 kmem_cache_free(btrfs_free_space_cachep
, info
);
1675 spin_unlock(&ctl
->tree_lock
);
1678 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1679 BUG_ON(ret
== -EEXIST
);
1685 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1686 u64 offset
, u64 bytes
)
1688 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1689 struct btrfs_free_space
*info
;
1690 struct btrfs_free_space
*next_info
= NULL
;
1693 spin_lock(&ctl
->tree_lock
);
1696 info
= tree_search_offset(ctl
, offset
, 0, 0);
1699 * oops didn't find an extent that matched the space we wanted
1700 * to remove, look for a bitmap instead
1702 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1710 if (info
->bytes
< bytes
&& rb_next(&info
->offset_index
)) {
1712 next_info
= rb_entry(rb_next(&info
->offset_index
),
1713 struct btrfs_free_space
,
1716 if (next_info
->bitmap
)
1717 end
= next_info
->offset
+
1718 BITS_PER_BITMAP
* ctl
->unit
- 1;
1720 end
= next_info
->offset
+ next_info
->bytes
;
1722 if (next_info
->bytes
< bytes
||
1723 next_info
->offset
> offset
|| offset
> end
) {
1724 printk(KERN_CRIT
"Found free space at %llu, size %llu,"
1725 " trying to use %llu\n",
1726 (unsigned long long)info
->offset
,
1727 (unsigned long long)info
->bytes
,
1728 (unsigned long long)bytes
);
1737 if (info
->bytes
== bytes
) {
1738 unlink_free_space(ctl
, info
);
1740 kfree(info
->bitmap
);
1741 ctl
->total_bitmaps
--;
1743 kmem_cache_free(btrfs_free_space_cachep
, info
);
1747 if (!info
->bitmap
&& info
->offset
== offset
) {
1748 unlink_free_space(ctl
, info
);
1749 info
->offset
+= bytes
;
1750 info
->bytes
-= bytes
;
1751 link_free_space(ctl
, info
);
1755 if (!info
->bitmap
&& info
->offset
<= offset
&&
1756 info
->offset
+ info
->bytes
>= offset
+ bytes
) {
1757 u64 old_start
= info
->offset
;
1759 * we're freeing space in the middle of the info,
1760 * this can happen during tree log replay
1762 * first unlink the old info and then
1763 * insert it again after the hole we're creating
1765 unlink_free_space(ctl
, info
);
1766 if (offset
+ bytes
< info
->offset
+ info
->bytes
) {
1767 u64 old_end
= info
->offset
+ info
->bytes
;
1769 info
->offset
= offset
+ bytes
;
1770 info
->bytes
= old_end
- info
->offset
;
1771 ret
= link_free_space(ctl
, info
);
1776 /* the hole we're creating ends at the end
1777 * of the info struct, just free the info
1779 kmem_cache_free(btrfs_free_space_cachep
, info
);
1781 spin_unlock(&ctl
->tree_lock
);
1783 /* step two, insert a new info struct to cover
1784 * anything before the hole
1786 ret
= btrfs_add_free_space(block_group
, old_start
,
1787 offset
- old_start
);
1792 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1797 spin_unlock(&ctl
->tree_lock
);
1802 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1805 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1806 struct btrfs_free_space
*info
;
1810 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
1811 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1812 if (info
->bytes
>= bytes
)
1814 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1815 (unsigned long long)info
->offset
,
1816 (unsigned long long)info
->bytes
,
1817 (info
->bitmap
) ? "yes" : "no");
1819 printk(KERN_INFO
"block group has cluster?: %s\n",
1820 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
1821 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
1825 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
1827 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1829 spin_lock_init(&ctl
->tree_lock
);
1830 ctl
->unit
= block_group
->sectorsize
;
1831 ctl
->start
= block_group
->key
.objectid
;
1832 ctl
->private = block_group
;
1833 ctl
->op
= &free_space_op
;
1836 * we only want to have 32k of ram per block group for keeping
1837 * track of free space, and if we pass 1/2 of that we want to
1838 * start converting things over to using bitmaps
1840 ctl
->extents_thresh
= ((1024 * 32) / 2) /
1841 sizeof(struct btrfs_free_space
);
1845 * for a given cluster, put all of its extents back into the free
1846 * space cache. If the block group passed doesn't match the block group
1847 * pointed to by the cluster, someone else raced in and freed the
1848 * cluster already. In that case, we just return without changing anything
1851 __btrfs_return_cluster_to_free_space(
1852 struct btrfs_block_group_cache
*block_group
,
1853 struct btrfs_free_cluster
*cluster
)
1855 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1856 struct btrfs_free_space
*entry
;
1857 struct rb_node
*node
;
1859 spin_lock(&cluster
->lock
);
1860 if (cluster
->block_group
!= block_group
)
1863 cluster
->block_group
= NULL
;
1864 cluster
->window_start
= 0;
1865 list_del_init(&cluster
->block_group_list
);
1867 node
= rb_first(&cluster
->root
);
1871 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1872 node
= rb_next(&entry
->offset_index
);
1873 rb_erase(&entry
->offset_index
, &cluster
->root
);
1875 bitmap
= (entry
->bitmap
!= NULL
);
1877 try_merge_free_space(ctl
, entry
, false);
1878 tree_insert_offset(&ctl
->free_space_offset
,
1879 entry
->offset
, &entry
->offset_index
, bitmap
);
1881 cluster
->root
= RB_ROOT
;
1884 spin_unlock(&cluster
->lock
);
1885 btrfs_put_block_group(block_group
);
1889 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl
*ctl
)
1891 struct btrfs_free_space
*info
;
1892 struct rb_node
*node
;
1894 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
1895 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1896 if (!info
->bitmap
) {
1897 unlink_free_space(ctl
, info
);
1898 kmem_cache_free(btrfs_free_space_cachep
, info
);
1900 free_bitmap(ctl
, info
);
1902 if (need_resched()) {
1903 spin_unlock(&ctl
->tree_lock
);
1905 spin_lock(&ctl
->tree_lock
);
1910 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
1912 spin_lock(&ctl
->tree_lock
);
1913 __btrfs_remove_free_space_cache_locked(ctl
);
1914 spin_unlock(&ctl
->tree_lock
);
1917 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
1919 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1920 struct btrfs_free_cluster
*cluster
;
1921 struct list_head
*head
;
1923 spin_lock(&ctl
->tree_lock
);
1924 while ((head
= block_group
->cluster_list
.next
) !=
1925 &block_group
->cluster_list
) {
1926 cluster
= list_entry(head
, struct btrfs_free_cluster
,
1929 WARN_ON(cluster
->block_group
!= block_group
);
1930 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1931 if (need_resched()) {
1932 spin_unlock(&ctl
->tree_lock
);
1934 spin_lock(&ctl
->tree_lock
);
1937 __btrfs_remove_free_space_cache_locked(ctl
);
1938 spin_unlock(&ctl
->tree_lock
);
1942 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
1943 u64 offset
, u64 bytes
, u64 empty_size
)
1945 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1946 struct btrfs_free_space
*entry
= NULL
;
1947 u64 bytes_search
= bytes
+ empty_size
;
1950 spin_lock(&ctl
->tree_lock
);
1951 entry
= find_free_space(ctl
, &offset
, &bytes_search
);
1956 if (entry
->bitmap
) {
1957 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
1959 free_bitmap(ctl
, entry
);
1961 unlink_free_space(ctl
, entry
);
1962 entry
->offset
+= bytes
;
1963 entry
->bytes
-= bytes
;
1965 kmem_cache_free(btrfs_free_space_cachep
, entry
);
1967 link_free_space(ctl
, entry
);
1971 spin_unlock(&ctl
->tree_lock
);
1977 * given a cluster, put all of its extents back into the free space
1978 * cache. If a block group is passed, this function will only free
1979 * a cluster that belongs to the passed block group.
1981 * Otherwise, it'll get a reference on the block group pointed to by the
1982 * cluster and remove the cluster from it.
1984 int btrfs_return_cluster_to_free_space(
1985 struct btrfs_block_group_cache
*block_group
,
1986 struct btrfs_free_cluster
*cluster
)
1988 struct btrfs_free_space_ctl
*ctl
;
1991 /* first, get a safe pointer to the block group */
1992 spin_lock(&cluster
->lock
);
1994 block_group
= cluster
->block_group
;
1996 spin_unlock(&cluster
->lock
);
1999 } else if (cluster
->block_group
!= block_group
) {
2000 /* someone else has already freed it don't redo their work */
2001 spin_unlock(&cluster
->lock
);
2004 atomic_inc(&block_group
->count
);
2005 spin_unlock(&cluster
->lock
);
2007 ctl
= block_group
->free_space_ctl
;
2009 /* now return any extents the cluster had on it */
2010 spin_lock(&ctl
->tree_lock
);
2011 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2012 spin_unlock(&ctl
->tree_lock
);
2014 /* finally drop our ref */
2015 btrfs_put_block_group(block_group
);
2019 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2020 struct btrfs_free_cluster
*cluster
,
2021 struct btrfs_free_space
*entry
,
2022 u64 bytes
, u64 min_start
)
2024 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2026 u64 search_start
= cluster
->window_start
;
2027 u64 search_bytes
= bytes
;
2030 search_start
= min_start
;
2031 search_bytes
= bytes
;
2033 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
2038 bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2044 * given a cluster, try to allocate 'bytes' from it, returns 0
2045 * if it couldn't find anything suitably large, or a logical disk offset
2046 * if things worked out
2048 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2049 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2052 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2053 struct btrfs_free_space
*entry
= NULL
;
2054 struct rb_node
*node
;
2057 spin_lock(&cluster
->lock
);
2058 if (bytes
> cluster
->max_size
)
2061 if (cluster
->block_group
!= block_group
)
2064 node
= rb_first(&cluster
->root
);
2068 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2070 if (entry
->bytes
< bytes
||
2071 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2072 node
= rb_next(&entry
->offset_index
);
2075 entry
= rb_entry(node
, struct btrfs_free_space
,
2080 if (entry
->bitmap
) {
2081 ret
= btrfs_alloc_from_bitmap(block_group
,
2082 cluster
, entry
, bytes
,
2085 node
= rb_next(&entry
->offset_index
);
2088 entry
= rb_entry(node
, struct btrfs_free_space
,
2094 ret
= entry
->offset
;
2096 entry
->offset
+= bytes
;
2097 entry
->bytes
-= bytes
;
2100 if (entry
->bytes
== 0)
2101 rb_erase(&entry
->offset_index
, &cluster
->root
);
2105 spin_unlock(&cluster
->lock
);
2110 spin_lock(&ctl
->tree_lock
);
2112 ctl
->free_space
-= bytes
;
2113 if (entry
->bytes
== 0) {
2114 ctl
->free_extents
--;
2115 if (entry
->bitmap
) {
2116 kfree(entry
->bitmap
);
2117 ctl
->total_bitmaps
--;
2118 ctl
->op
->recalc_thresholds(ctl
);
2120 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2123 spin_unlock(&ctl
->tree_lock
);
2128 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2129 struct btrfs_free_space
*entry
,
2130 struct btrfs_free_cluster
*cluster
,
2131 u64 offset
, u64 bytes
, u64 min_bytes
)
2133 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2134 unsigned long next_zero
;
2136 unsigned long search_bits
;
2137 unsigned long total_bits
;
2138 unsigned long found_bits
;
2139 unsigned long start
= 0;
2140 unsigned long total_found
= 0;
2144 i
= offset_to_bit(entry
->offset
, block_group
->sectorsize
,
2145 max_t(u64
, offset
, entry
->offset
));
2146 search_bits
= bytes_to_bits(bytes
, block_group
->sectorsize
);
2147 total_bits
= bytes_to_bits(min_bytes
, block_group
->sectorsize
);
2151 for (i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
);
2152 i
< BITS_PER_BITMAP
;
2153 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
2154 next_zero
= find_next_zero_bit(entry
->bitmap
,
2155 BITS_PER_BITMAP
, i
);
2156 if (next_zero
- i
>= search_bits
) {
2157 found_bits
= next_zero
- i
;
2171 total_found
+= found_bits
;
2173 if (cluster
->max_size
< found_bits
* block_group
->sectorsize
)
2174 cluster
->max_size
= found_bits
* block_group
->sectorsize
;
2176 if (total_found
< total_bits
) {
2177 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, next_zero
);
2178 if (i
- start
> total_bits
* 2) {
2180 cluster
->max_size
= 0;
2186 cluster
->window_start
= start
* block_group
->sectorsize
+
2188 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2189 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2190 &entry
->offset_index
, 1);
2197 * This searches the block group for just extents to fill the cluster with.
2200 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2201 struct btrfs_free_cluster
*cluster
,
2202 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2205 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2206 struct btrfs_free_space
*first
= NULL
;
2207 struct btrfs_free_space
*entry
= NULL
;
2208 struct btrfs_free_space
*prev
= NULL
;
2209 struct btrfs_free_space
*last
;
2210 struct rb_node
*node
;
2214 u64 max_gap
= 128 * 1024;
2216 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2221 * We don't want bitmaps, so just move along until we find a normal
2224 while (entry
->bitmap
) {
2225 if (list_empty(&entry
->list
))
2226 list_add_tail(&entry
->list
, bitmaps
);
2227 node
= rb_next(&entry
->offset_index
);
2230 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2233 window_start
= entry
->offset
;
2234 window_free
= entry
->bytes
;
2235 max_extent
= entry
->bytes
;
2240 while (window_free
<= min_bytes
) {
2241 node
= rb_next(&entry
->offset_index
);
2244 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2246 if (entry
->bitmap
) {
2247 if (list_empty(&entry
->list
))
2248 list_add_tail(&entry
->list
, bitmaps
);
2253 * we haven't filled the empty size and the window is
2254 * very large. reset and try again
2256 if (entry
->offset
- (prev
->offset
+ prev
->bytes
) > max_gap
||
2257 entry
->offset
- window_start
> (min_bytes
* 2)) {
2259 window_start
= entry
->offset
;
2260 window_free
= entry
->bytes
;
2262 max_extent
= entry
->bytes
;
2265 window_free
+= entry
->bytes
;
2266 if (entry
->bytes
> max_extent
)
2267 max_extent
= entry
->bytes
;
2272 cluster
->window_start
= first
->offset
;
2274 node
= &first
->offset_index
;
2277 * now we've found our entries, pull them out of the free space
2278 * cache and put them into the cluster rbtree
2283 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2284 node
= rb_next(&entry
->offset_index
);
2288 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2289 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2290 &entry
->offset_index
, 0);
2292 } while (node
&& entry
!= last
);
2294 cluster
->max_size
= max_extent
;
2300 * This specifically looks for bitmaps that may work in the cluster, we assume
2301 * that we have already failed to find extents that will work.
2304 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2305 struct btrfs_free_cluster
*cluster
,
2306 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2309 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2310 struct btrfs_free_space
*entry
;
2311 struct rb_node
*node
;
2314 if (ctl
->total_bitmaps
== 0)
2318 * First check our cached list of bitmaps and see if there is an entry
2319 * here that will work.
2321 list_for_each_entry(entry
, bitmaps
, list
) {
2322 if (entry
->bytes
< min_bytes
)
2324 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2331 * If we do have entries on our list and we are here then we didn't find
2332 * anything, so go ahead and get the next entry after the last entry in
2333 * this list and start the search from there.
2335 if (!list_empty(bitmaps
)) {
2336 entry
= list_entry(bitmaps
->prev
, struct btrfs_free_space
,
2338 node
= rb_next(&entry
->offset_index
);
2341 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2345 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
), 0, 1);
2350 node
= &entry
->offset_index
;
2352 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2353 node
= rb_next(&entry
->offset_index
);
2356 if (entry
->bytes
< min_bytes
)
2358 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2360 } while (ret
&& node
);
2366 * here we try to find a cluster of blocks in a block group. The goal
2367 * is to find at least bytes free and up to empty_size + bytes free.
2368 * We might not find them all in one contiguous area.
2370 * returns zero and sets up cluster if things worked out, otherwise
2371 * it returns -enospc
2373 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2374 struct btrfs_root
*root
,
2375 struct btrfs_block_group_cache
*block_group
,
2376 struct btrfs_free_cluster
*cluster
,
2377 u64 offset
, u64 bytes
, u64 empty_size
)
2379 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2380 struct list_head bitmaps
;
2381 struct btrfs_free_space
*entry
, *tmp
;
2385 /* for metadata, allow allocates with more holes */
2386 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2387 min_bytes
= bytes
+ empty_size
;
2388 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2390 * we want to do larger allocations when we are
2391 * flushing out the delayed refs, it helps prevent
2392 * making more work as we go along.
2394 if (trans
->transaction
->delayed_refs
.flushing
)
2395 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 1);
2397 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 4);
2399 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2401 spin_lock(&ctl
->tree_lock
);
2404 * If we know we don't have enough space to make a cluster don't even
2405 * bother doing all the work to try and find one.
2407 if (ctl
->free_space
< min_bytes
) {
2408 spin_unlock(&ctl
->tree_lock
);
2412 spin_lock(&cluster
->lock
);
2414 /* someone already found a cluster, hooray */
2415 if (cluster
->block_group
) {
2420 INIT_LIST_HEAD(&bitmaps
);
2421 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
2424 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
2425 offset
, bytes
, min_bytes
);
2427 /* Clear our temporary list */
2428 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
2429 list_del_init(&entry
->list
);
2432 atomic_inc(&block_group
->count
);
2433 list_add_tail(&cluster
->block_group_list
,
2434 &block_group
->cluster_list
);
2435 cluster
->block_group
= block_group
;
2438 spin_unlock(&cluster
->lock
);
2439 spin_unlock(&ctl
->tree_lock
);
2445 * simple code to zero out a cluster
2447 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2449 spin_lock_init(&cluster
->lock
);
2450 spin_lock_init(&cluster
->refill_lock
);
2451 cluster
->root
= RB_ROOT
;
2452 cluster
->max_size
= 0;
2453 INIT_LIST_HEAD(&cluster
->block_group_list
);
2454 cluster
->block_group
= NULL
;
2457 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2458 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2460 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2461 struct btrfs_free_space
*entry
= NULL
;
2462 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2464 u64 actually_trimmed
;
2469 while (start
< end
) {
2470 spin_lock(&ctl
->tree_lock
);
2472 if (ctl
->free_space
< minlen
) {
2473 spin_unlock(&ctl
->tree_lock
);
2477 entry
= tree_search_offset(ctl
, start
, 0, 1);
2479 entry
= tree_search_offset(ctl
,
2480 offset_to_bitmap(ctl
, start
),
2483 if (!entry
|| entry
->offset
>= end
) {
2484 spin_unlock(&ctl
->tree_lock
);
2488 if (entry
->bitmap
) {
2489 ret
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2492 spin_unlock(&ctl
->tree_lock
);
2495 bytes
= min(bytes
, end
- start
);
2496 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2497 if (entry
->bytes
== 0)
2498 free_bitmap(ctl
, entry
);
2500 start
= entry
->offset
+ BITS_PER_BITMAP
*
2501 block_group
->sectorsize
;
2502 spin_unlock(&ctl
->tree_lock
);
2507 start
= entry
->offset
;
2508 bytes
= min(entry
->bytes
, end
- start
);
2509 unlink_free_space(ctl
, entry
);
2510 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2513 spin_unlock(&ctl
->tree_lock
);
2515 if (bytes
>= minlen
) {
2517 update_ret
= btrfs_update_reserved_bytes(block_group
,
2520 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2525 btrfs_add_free_space(block_group
, start
, bytes
);
2527 btrfs_update_reserved_bytes(block_group
,
2532 *trimmed
+= actually_trimmed
;
2537 if (fatal_signal_pending(current
)) {
2549 * Find the left-most item in the cache tree, and then return the
2550 * smallest inode number in the item.
2552 * Note: the returned inode number may not be the smallest one in
2553 * the tree, if the left-most item is a bitmap.
2555 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2557 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2558 struct btrfs_free_space
*entry
= NULL
;
2561 spin_lock(&ctl
->tree_lock
);
2563 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2566 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2567 struct btrfs_free_space
, offset_index
);
2569 if (!entry
->bitmap
) {
2570 ino
= entry
->offset
;
2572 unlink_free_space(ctl
, entry
);
2576 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2578 link_free_space(ctl
, entry
);
2584 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2588 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2589 if (entry
->bytes
== 0)
2590 free_bitmap(ctl
, entry
);
2593 spin_unlock(&ctl
->tree_lock
);
2598 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2599 struct btrfs_path
*path
)
2601 struct inode
*inode
= NULL
;
2603 spin_lock(&root
->cache_lock
);
2604 if (root
->cache_inode
)
2605 inode
= igrab(root
->cache_inode
);
2606 spin_unlock(&root
->cache_lock
);
2610 inode
= __lookup_free_space_inode(root
, path
, 0);
2614 spin_lock(&root
->cache_lock
);
2615 if (!btrfs_fs_closing(root
->fs_info
))
2616 root
->cache_inode
= igrab(inode
);
2617 spin_unlock(&root
->cache_lock
);
2622 int create_free_ino_inode(struct btrfs_root
*root
,
2623 struct btrfs_trans_handle
*trans
,
2624 struct btrfs_path
*path
)
2626 return __create_free_space_inode(root
, trans
, path
,
2627 BTRFS_FREE_INO_OBJECTID
, 0);
2630 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2632 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2633 struct btrfs_path
*path
;
2634 struct inode
*inode
;
2636 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2638 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2642 * If we're unmounting then just return, since this does a search on the
2643 * normal root and not the commit root and we could deadlock.
2645 if (btrfs_fs_closing(fs_info
))
2648 path
= btrfs_alloc_path();
2652 inode
= lookup_free_ino_inode(root
, path
);
2656 if (root_gen
!= BTRFS_I(inode
)->generation
)
2659 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2662 printk(KERN_ERR
"btrfs: failed to load free ino cache for "
2663 "root %llu\n", root
->root_key
.objectid
);
2667 btrfs_free_path(path
);
2671 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2672 struct btrfs_trans_handle
*trans
,
2673 struct btrfs_path
*path
)
2675 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2676 struct inode
*inode
;
2679 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2682 inode
= lookup_free_ino_inode(root
, path
);
2686 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2688 printk(KERN_ERR
"btrfs: failed to write free ino cache "
2689 "for root %llu\n", root
->root_key
.objectid
);