ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / ceph / mds_client.c
blob0c1d91756528969d409b7f4480b1653fc508fd5c
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
10 #include "super.h"
11 #include "mds_client.h"
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
20 * A cluster of MDS (metadata server) daemons is responsible for
21 * managing the file system namespace (the directory hierarchy and
22 * inodes) and for coordinating shared access to storage. Metadata is
23 * partitioning hierarchically across a number of servers, and that
24 * partition varies over time as the cluster adjusts the distribution
25 * in order to balance load.
27 * The MDS client is primarily responsible to managing synchronous
28 * metadata requests for operations like open, unlink, and so forth.
29 * If there is a MDS failure, we find out about it when we (possibly
30 * request and) receive a new MDS map, and can resubmit affected
31 * requests.
33 * For the most part, though, we take advantage of a lossless
34 * communications channel to the MDS, and do not need to worry about
35 * timing out or resubmitting requests.
37 * We maintain a stateful "session" with each MDS we interact with.
38 * Within each session, we sent periodic heartbeat messages to ensure
39 * any capabilities or leases we have been issues remain valid. If
40 * the session times out and goes stale, our leases and capabilities
41 * are no longer valid.
44 struct ceph_reconnect_state {
45 struct ceph_pagelist *pagelist;
46 bool flock;
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 struct list_head *head);
52 static const struct ceph_connection_operations mds_con_ops;
56 * mds reply parsing
60 * parse individual inode info
62 static int parse_reply_info_in(void **p, void *end,
63 struct ceph_mds_reply_info_in *info,
64 int features)
66 int err = -EIO;
68 info->in = *p;
69 *p += sizeof(struct ceph_mds_reply_inode) +
70 sizeof(*info->in->fragtree.splits) *
71 le32_to_cpu(info->in->fragtree.nsplits);
73 ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 ceph_decode_need(p, end, info->symlink_len, bad);
75 info->symlink = *p;
76 *p += info->symlink_len;
78 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 ceph_decode_copy_safe(p, end, &info->dir_layout,
80 sizeof(info->dir_layout), bad);
81 else
82 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 ceph_decode_need(p, end, info->xattr_len, bad);
86 info->xattr_data = *p;
87 *p += info->xattr_len;
88 return 0;
89 bad:
90 return err;
94 * parse a normal reply, which may contain a (dir+)dentry and/or a
95 * target inode.
97 static int parse_reply_info_trace(void **p, void *end,
98 struct ceph_mds_reply_info_parsed *info,
99 int features)
101 int err;
103 if (info->head->is_dentry) {
104 err = parse_reply_info_in(p, end, &info->diri, features);
105 if (err < 0)
106 goto out_bad;
108 if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 goto bad;
110 info->dirfrag = *p;
111 *p += sizeof(*info->dirfrag) +
112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 if (unlikely(*p > end))
114 goto bad;
116 ceph_decode_32_safe(p, end, info->dname_len, bad);
117 ceph_decode_need(p, end, info->dname_len, bad);
118 info->dname = *p;
119 *p += info->dname_len;
120 info->dlease = *p;
121 *p += sizeof(*info->dlease);
124 if (info->head->is_target) {
125 err = parse_reply_info_in(p, end, &info->targeti, features);
126 if (err < 0)
127 goto out_bad;
130 if (unlikely(*p != end))
131 goto bad;
132 return 0;
134 bad:
135 err = -EIO;
136 out_bad:
137 pr_err("problem parsing mds trace %d\n", err);
138 return err;
142 * parse readdir results
144 static int parse_reply_info_dir(void **p, void *end,
145 struct ceph_mds_reply_info_parsed *info,
146 int features)
148 u32 num, i = 0;
149 int err;
151 info->dir_dir = *p;
152 if (*p + sizeof(*info->dir_dir) > end)
153 goto bad;
154 *p += sizeof(*info->dir_dir) +
155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 if (*p > end)
157 goto bad;
159 ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 num = ceph_decode_32(p);
161 info->dir_end = ceph_decode_8(p);
162 info->dir_complete = ceph_decode_8(p);
163 if (num == 0)
164 goto done;
166 /* alloc large array */
167 info->dir_nr = num;
168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 sizeof(*info->dir_dname) +
170 sizeof(*info->dir_dname_len) +
171 sizeof(*info->dir_dlease),
172 GFP_NOFS);
173 if (info->dir_in == NULL) {
174 err = -ENOMEM;
175 goto out_bad;
177 info->dir_dname = (void *)(info->dir_in + num);
178 info->dir_dname_len = (void *)(info->dir_dname + num);
179 info->dir_dlease = (void *)(info->dir_dname_len + num);
181 while (num) {
182 /* dentry */
183 ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 info->dir_dname_len[i] = ceph_decode_32(p);
185 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 info->dir_dname[i] = *p;
187 *p += info->dir_dname_len[i];
188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 info->dir_dname[i]);
190 info->dir_dlease[i] = *p;
191 *p += sizeof(struct ceph_mds_reply_lease);
193 /* inode */
194 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 if (err < 0)
196 goto out_bad;
197 i++;
198 num--;
201 done:
202 if (*p != end)
203 goto bad;
204 return 0;
206 bad:
207 err = -EIO;
208 out_bad:
209 pr_err("problem parsing dir contents %d\n", err);
210 return err;
214 * parse fcntl F_GETLK results
216 static int parse_reply_info_filelock(void **p, void *end,
217 struct ceph_mds_reply_info_parsed *info,
218 int features)
220 if (*p + sizeof(*info->filelock_reply) > end)
221 goto bad;
223 info->filelock_reply = *p;
224 *p += sizeof(*info->filelock_reply);
226 if (unlikely(*p != end))
227 goto bad;
228 return 0;
230 bad:
231 return -EIO;
235 * parse extra results
237 static int parse_reply_info_extra(void **p, void *end,
238 struct ceph_mds_reply_info_parsed *info,
239 int features)
241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 return parse_reply_info_filelock(p, end, info, features);
243 else
244 return parse_reply_info_dir(p, end, info, features);
248 * parse entire mds reply
250 static int parse_reply_info(struct ceph_msg *msg,
251 struct ceph_mds_reply_info_parsed *info,
252 int features)
254 void *p, *end;
255 u32 len;
256 int err;
258 info->head = msg->front.iov_base;
259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
262 /* trace */
263 ceph_decode_32_safe(&p, end, len, bad);
264 if (len > 0) {
265 err = parse_reply_info_trace(&p, p+len, info, features);
266 if (err < 0)
267 goto out_bad;
270 /* extra */
271 ceph_decode_32_safe(&p, end, len, bad);
272 if (len > 0) {
273 err = parse_reply_info_extra(&p, p+len, info, features);
274 if (err < 0)
275 goto out_bad;
278 /* snap blob */
279 ceph_decode_32_safe(&p, end, len, bad);
280 info->snapblob_len = len;
281 info->snapblob = p;
282 p += len;
284 if (p != end)
285 goto bad;
286 return 0;
288 bad:
289 err = -EIO;
290 out_bad:
291 pr_err("mds parse_reply err %d\n", err);
292 return err;
295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
297 kfree(info->dir_in);
302 * sessions
304 static const char *session_state_name(int s)
306 switch (s) {
307 case CEPH_MDS_SESSION_NEW: return "new";
308 case CEPH_MDS_SESSION_OPENING: return "opening";
309 case CEPH_MDS_SESSION_OPEN: return "open";
310 case CEPH_MDS_SESSION_HUNG: return "hung";
311 case CEPH_MDS_SESSION_CLOSING: return "closing";
312 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
313 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
314 default: return "???";
318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
320 if (atomic_inc_not_zero(&s->s_ref)) {
321 dout("mdsc get_session %p %d -> %d\n", s,
322 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
323 return s;
324 } else {
325 dout("mdsc get_session %p 0 -- FAIL", s);
326 return NULL;
330 void ceph_put_mds_session(struct ceph_mds_session *s)
332 dout("mdsc put_session %p %d -> %d\n", s,
333 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
334 if (atomic_dec_and_test(&s->s_ref)) {
335 if (s->s_authorizer)
336 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
337 s->s_mdsc->fsc->client->monc.auth,
338 s->s_authorizer);
339 kfree(s);
344 * called under mdsc->mutex
346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
347 int mds)
349 struct ceph_mds_session *session;
351 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
352 return NULL;
353 session = mdsc->sessions[mds];
354 dout("lookup_mds_session %p %d\n", session,
355 atomic_read(&session->s_ref));
356 get_session(session);
357 return session;
360 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
362 if (mds >= mdsc->max_sessions)
363 return false;
364 return mdsc->sessions[mds];
367 static int __verify_registered_session(struct ceph_mds_client *mdsc,
368 struct ceph_mds_session *s)
370 if (s->s_mds >= mdsc->max_sessions ||
371 mdsc->sessions[s->s_mds] != s)
372 return -ENOENT;
373 return 0;
377 * create+register a new session for given mds.
378 * called under mdsc->mutex.
380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
381 int mds)
383 struct ceph_mds_session *s;
385 s = kzalloc(sizeof(*s), GFP_NOFS);
386 if (!s)
387 return ERR_PTR(-ENOMEM);
388 s->s_mdsc = mdsc;
389 s->s_mds = mds;
390 s->s_state = CEPH_MDS_SESSION_NEW;
391 s->s_ttl = 0;
392 s->s_seq = 0;
393 mutex_init(&s->s_mutex);
395 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
396 s->s_con.private = s;
397 s->s_con.ops = &mds_con_ops;
398 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
399 s->s_con.peer_name.num = cpu_to_le64(mds);
401 spin_lock_init(&s->s_cap_lock);
402 s->s_cap_gen = 0;
403 s->s_cap_ttl = 0;
404 s->s_renew_requested = 0;
405 s->s_renew_seq = 0;
406 INIT_LIST_HEAD(&s->s_caps);
407 s->s_nr_caps = 0;
408 s->s_trim_caps = 0;
409 atomic_set(&s->s_ref, 1);
410 INIT_LIST_HEAD(&s->s_waiting);
411 INIT_LIST_HEAD(&s->s_unsafe);
412 s->s_num_cap_releases = 0;
413 s->s_cap_iterator = NULL;
414 INIT_LIST_HEAD(&s->s_cap_releases);
415 INIT_LIST_HEAD(&s->s_cap_releases_done);
416 INIT_LIST_HEAD(&s->s_cap_flushing);
417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
419 dout("register_session mds%d\n", mds);
420 if (mds >= mdsc->max_sessions) {
421 int newmax = 1 << get_count_order(mds+1);
422 struct ceph_mds_session **sa;
424 dout("register_session realloc to %d\n", newmax);
425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426 if (sa == NULL)
427 goto fail_realloc;
428 if (mdsc->sessions) {
429 memcpy(sa, mdsc->sessions,
430 mdsc->max_sessions * sizeof(void *));
431 kfree(mdsc->sessions);
433 mdsc->sessions = sa;
434 mdsc->max_sessions = newmax;
436 mdsc->sessions[mds] = s;
437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
439 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
441 return s;
443 fail_realloc:
444 kfree(s);
445 return ERR_PTR(-ENOMEM);
449 * called under mdsc->mutex
451 static void __unregister_session(struct ceph_mds_client *mdsc,
452 struct ceph_mds_session *s)
454 dout("__unregister_session mds%d %p\n", s->s_mds, s);
455 BUG_ON(mdsc->sessions[s->s_mds] != s);
456 mdsc->sessions[s->s_mds] = NULL;
457 ceph_con_close(&s->s_con);
458 ceph_put_mds_session(s);
462 * drop session refs in request.
464 * should be last request ref, or hold mdsc->mutex
466 static void put_request_session(struct ceph_mds_request *req)
468 if (req->r_session) {
469 ceph_put_mds_session(req->r_session);
470 req->r_session = NULL;
474 void ceph_mdsc_release_request(struct kref *kref)
476 struct ceph_mds_request *req = container_of(kref,
477 struct ceph_mds_request,
478 r_kref);
479 if (req->r_request)
480 ceph_msg_put(req->r_request);
481 if (req->r_reply) {
482 ceph_msg_put(req->r_reply);
483 destroy_reply_info(&req->r_reply_info);
485 if (req->r_inode) {
486 ceph_put_cap_refs(ceph_inode(req->r_inode),
487 CEPH_CAP_PIN);
488 iput(req->r_inode);
490 if (req->r_locked_dir)
491 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
492 CEPH_CAP_PIN);
493 if (req->r_target_inode)
494 iput(req->r_target_inode);
495 if (req->r_dentry)
496 dput(req->r_dentry);
497 if (req->r_old_dentry) {
498 ceph_put_cap_refs(
499 ceph_inode(req->r_old_dentry->d_parent->d_inode),
500 CEPH_CAP_PIN);
501 dput(req->r_old_dentry);
503 kfree(req->r_path1);
504 kfree(req->r_path2);
505 put_request_session(req);
506 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
507 kfree(req);
511 * lookup session, bump ref if found.
513 * called under mdsc->mutex.
515 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
516 u64 tid)
518 struct ceph_mds_request *req;
519 struct rb_node *n = mdsc->request_tree.rb_node;
521 while (n) {
522 req = rb_entry(n, struct ceph_mds_request, r_node);
523 if (tid < req->r_tid)
524 n = n->rb_left;
525 else if (tid > req->r_tid)
526 n = n->rb_right;
527 else {
528 ceph_mdsc_get_request(req);
529 return req;
532 return NULL;
535 static void __insert_request(struct ceph_mds_client *mdsc,
536 struct ceph_mds_request *new)
538 struct rb_node **p = &mdsc->request_tree.rb_node;
539 struct rb_node *parent = NULL;
540 struct ceph_mds_request *req = NULL;
542 while (*p) {
543 parent = *p;
544 req = rb_entry(parent, struct ceph_mds_request, r_node);
545 if (new->r_tid < req->r_tid)
546 p = &(*p)->rb_left;
547 else if (new->r_tid > req->r_tid)
548 p = &(*p)->rb_right;
549 else
550 BUG();
553 rb_link_node(&new->r_node, parent, p);
554 rb_insert_color(&new->r_node, &mdsc->request_tree);
558 * Register an in-flight request, and assign a tid. Link to directory
559 * are modifying (if any).
561 * Called under mdsc->mutex.
563 static void __register_request(struct ceph_mds_client *mdsc,
564 struct ceph_mds_request *req,
565 struct inode *dir)
567 req->r_tid = ++mdsc->last_tid;
568 if (req->r_num_caps)
569 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
570 req->r_num_caps);
571 dout("__register_request %p tid %lld\n", req, req->r_tid);
572 ceph_mdsc_get_request(req);
573 __insert_request(mdsc, req);
575 req->r_uid = current_fsuid();
576 req->r_gid = current_fsgid();
578 if (dir) {
579 struct ceph_inode_info *ci = ceph_inode(dir);
581 ihold(dir);
582 spin_lock(&ci->i_unsafe_lock);
583 req->r_unsafe_dir = dir;
584 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
585 spin_unlock(&ci->i_unsafe_lock);
589 static void __unregister_request(struct ceph_mds_client *mdsc,
590 struct ceph_mds_request *req)
592 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
593 rb_erase(&req->r_node, &mdsc->request_tree);
594 RB_CLEAR_NODE(&req->r_node);
596 if (req->r_unsafe_dir) {
597 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
599 spin_lock(&ci->i_unsafe_lock);
600 list_del_init(&req->r_unsafe_dir_item);
601 spin_unlock(&ci->i_unsafe_lock);
603 iput(req->r_unsafe_dir);
604 req->r_unsafe_dir = NULL;
607 ceph_mdsc_put_request(req);
611 * Choose mds to send request to next. If there is a hint set in the
612 * request (e.g., due to a prior forward hint from the mds), use that.
613 * Otherwise, consult frag tree and/or caps to identify the
614 * appropriate mds. If all else fails, choose randomly.
616 * Called under mdsc->mutex.
618 struct dentry *get_nonsnap_parent(struct dentry *dentry)
620 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
621 dentry = dentry->d_parent;
622 return dentry;
625 static int __choose_mds(struct ceph_mds_client *mdsc,
626 struct ceph_mds_request *req)
628 struct inode *inode;
629 struct ceph_inode_info *ci;
630 struct ceph_cap *cap;
631 int mode = req->r_direct_mode;
632 int mds = -1;
633 u32 hash = req->r_direct_hash;
634 bool is_hash = req->r_direct_is_hash;
637 * is there a specific mds we should try? ignore hint if we have
638 * no session and the mds is not up (active or recovering).
640 if (req->r_resend_mds >= 0 &&
641 (__have_session(mdsc, req->r_resend_mds) ||
642 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
643 dout("choose_mds using resend_mds mds%d\n",
644 req->r_resend_mds);
645 return req->r_resend_mds;
648 if (mode == USE_RANDOM_MDS)
649 goto random;
651 inode = NULL;
652 if (req->r_inode) {
653 inode = req->r_inode;
654 } else if (req->r_dentry) {
655 struct inode *dir = req->r_dentry->d_parent->d_inode;
657 if (dir->i_sb != mdsc->fsc->sb) {
658 /* not this fs! */
659 inode = req->r_dentry->d_inode;
660 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
661 /* direct snapped/virtual snapdir requests
662 * based on parent dir inode */
663 struct dentry *dn =
664 get_nonsnap_parent(req->r_dentry->d_parent);
665 inode = dn->d_inode;
666 dout("__choose_mds using nonsnap parent %p\n", inode);
667 } else if (req->r_dentry->d_inode) {
668 /* dentry target */
669 inode = req->r_dentry->d_inode;
670 } else {
671 /* dir + name */
672 inode = dir;
673 hash = ceph_dentry_hash(req->r_dentry);
674 is_hash = true;
678 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
679 (int)hash, mode);
680 if (!inode)
681 goto random;
682 ci = ceph_inode(inode);
684 if (is_hash && S_ISDIR(inode->i_mode)) {
685 struct ceph_inode_frag frag;
686 int found;
688 ceph_choose_frag(ci, hash, &frag, &found);
689 if (found) {
690 if (mode == USE_ANY_MDS && frag.ndist > 0) {
691 u8 r;
693 /* choose a random replica */
694 get_random_bytes(&r, 1);
695 r %= frag.ndist;
696 mds = frag.dist[r];
697 dout("choose_mds %p %llx.%llx "
698 "frag %u mds%d (%d/%d)\n",
699 inode, ceph_vinop(inode),
700 frag.frag, mds,
701 (int)r, frag.ndist);
702 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
703 CEPH_MDS_STATE_ACTIVE)
704 return mds;
707 /* since this file/dir wasn't known to be
708 * replicated, then we want to look for the
709 * authoritative mds. */
710 mode = USE_AUTH_MDS;
711 if (frag.mds >= 0) {
712 /* choose auth mds */
713 mds = frag.mds;
714 dout("choose_mds %p %llx.%llx "
715 "frag %u mds%d (auth)\n",
716 inode, ceph_vinop(inode), frag.frag, mds);
717 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
718 CEPH_MDS_STATE_ACTIVE)
719 return mds;
724 spin_lock(&inode->i_lock);
725 cap = NULL;
726 if (mode == USE_AUTH_MDS)
727 cap = ci->i_auth_cap;
728 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
729 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
730 if (!cap) {
731 spin_unlock(&inode->i_lock);
732 goto random;
734 mds = cap->session->s_mds;
735 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
736 inode, ceph_vinop(inode), mds,
737 cap == ci->i_auth_cap ? "auth " : "", cap);
738 spin_unlock(&inode->i_lock);
739 return mds;
741 random:
742 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
743 dout("choose_mds chose random mds%d\n", mds);
744 return mds;
749 * session messages
751 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
753 struct ceph_msg *msg;
754 struct ceph_mds_session_head *h;
756 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
757 if (!msg) {
758 pr_err("create_session_msg ENOMEM creating msg\n");
759 return NULL;
761 h = msg->front.iov_base;
762 h->op = cpu_to_le32(op);
763 h->seq = cpu_to_le64(seq);
764 return msg;
768 * send session open request.
770 * called under mdsc->mutex
772 static int __open_session(struct ceph_mds_client *mdsc,
773 struct ceph_mds_session *session)
775 struct ceph_msg *msg;
776 int mstate;
777 int mds = session->s_mds;
779 /* wait for mds to go active? */
780 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
781 dout("open_session to mds%d (%s)\n", mds,
782 ceph_mds_state_name(mstate));
783 session->s_state = CEPH_MDS_SESSION_OPENING;
784 session->s_renew_requested = jiffies;
786 /* send connect message */
787 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
788 if (!msg)
789 return -ENOMEM;
790 ceph_con_send(&session->s_con, msg);
791 return 0;
795 * open sessions for any export targets for the given mds
797 * called under mdsc->mutex
799 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
800 struct ceph_mds_session *session)
802 struct ceph_mds_info *mi;
803 struct ceph_mds_session *ts;
804 int i, mds = session->s_mds;
805 int target;
807 if (mds >= mdsc->mdsmap->m_max_mds)
808 return;
809 mi = &mdsc->mdsmap->m_info[mds];
810 dout("open_export_target_sessions for mds%d (%d targets)\n",
811 session->s_mds, mi->num_export_targets);
813 for (i = 0; i < mi->num_export_targets; i++) {
814 target = mi->export_targets[i];
815 ts = __ceph_lookup_mds_session(mdsc, target);
816 if (!ts) {
817 ts = register_session(mdsc, target);
818 if (IS_ERR(ts))
819 return;
821 if (session->s_state == CEPH_MDS_SESSION_NEW ||
822 session->s_state == CEPH_MDS_SESSION_CLOSING)
823 __open_session(mdsc, session);
824 else
825 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
826 i, ts, session_state_name(ts->s_state));
827 ceph_put_mds_session(ts);
831 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
832 struct ceph_mds_session *session)
834 mutex_lock(&mdsc->mutex);
835 __open_export_target_sessions(mdsc, session);
836 mutex_unlock(&mdsc->mutex);
840 * session caps
844 * Free preallocated cap messages assigned to this session
846 static void cleanup_cap_releases(struct ceph_mds_session *session)
848 struct ceph_msg *msg;
850 spin_lock(&session->s_cap_lock);
851 while (!list_empty(&session->s_cap_releases)) {
852 msg = list_first_entry(&session->s_cap_releases,
853 struct ceph_msg, list_head);
854 list_del_init(&msg->list_head);
855 ceph_msg_put(msg);
857 while (!list_empty(&session->s_cap_releases_done)) {
858 msg = list_first_entry(&session->s_cap_releases_done,
859 struct ceph_msg, list_head);
860 list_del_init(&msg->list_head);
861 ceph_msg_put(msg);
863 spin_unlock(&session->s_cap_lock);
867 * Helper to safely iterate over all caps associated with a session, with
868 * special care taken to handle a racing __ceph_remove_cap().
870 * Caller must hold session s_mutex.
872 static int iterate_session_caps(struct ceph_mds_session *session,
873 int (*cb)(struct inode *, struct ceph_cap *,
874 void *), void *arg)
876 struct list_head *p;
877 struct ceph_cap *cap;
878 struct inode *inode, *last_inode = NULL;
879 struct ceph_cap *old_cap = NULL;
880 int ret;
882 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
883 spin_lock(&session->s_cap_lock);
884 p = session->s_caps.next;
885 while (p != &session->s_caps) {
886 cap = list_entry(p, struct ceph_cap, session_caps);
887 inode = igrab(&cap->ci->vfs_inode);
888 if (!inode) {
889 p = p->next;
890 continue;
892 session->s_cap_iterator = cap;
893 spin_unlock(&session->s_cap_lock);
895 if (last_inode) {
896 iput(last_inode);
897 last_inode = NULL;
899 if (old_cap) {
900 ceph_put_cap(session->s_mdsc, old_cap);
901 old_cap = NULL;
904 ret = cb(inode, cap, arg);
905 last_inode = inode;
907 spin_lock(&session->s_cap_lock);
908 p = p->next;
909 if (cap->ci == NULL) {
910 dout("iterate_session_caps finishing cap %p removal\n",
911 cap);
912 BUG_ON(cap->session != session);
913 list_del_init(&cap->session_caps);
914 session->s_nr_caps--;
915 cap->session = NULL;
916 old_cap = cap; /* put_cap it w/o locks held */
918 if (ret < 0)
919 goto out;
921 ret = 0;
922 out:
923 session->s_cap_iterator = NULL;
924 spin_unlock(&session->s_cap_lock);
926 if (last_inode)
927 iput(last_inode);
928 if (old_cap)
929 ceph_put_cap(session->s_mdsc, old_cap);
931 return ret;
934 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
935 void *arg)
937 struct ceph_inode_info *ci = ceph_inode(inode);
938 int drop = 0;
940 dout("removing cap %p, ci is %p, inode is %p\n",
941 cap, ci, &ci->vfs_inode);
942 spin_lock(&inode->i_lock);
943 __ceph_remove_cap(cap);
944 if (!__ceph_is_any_real_caps(ci)) {
945 struct ceph_mds_client *mdsc =
946 ceph_sb_to_client(inode->i_sb)->mdsc;
948 spin_lock(&mdsc->cap_dirty_lock);
949 if (!list_empty(&ci->i_dirty_item)) {
950 pr_info(" dropping dirty %s state for %p %lld\n",
951 ceph_cap_string(ci->i_dirty_caps),
952 inode, ceph_ino(inode));
953 ci->i_dirty_caps = 0;
954 list_del_init(&ci->i_dirty_item);
955 drop = 1;
957 if (!list_empty(&ci->i_flushing_item)) {
958 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
959 ceph_cap_string(ci->i_flushing_caps),
960 inode, ceph_ino(inode));
961 ci->i_flushing_caps = 0;
962 list_del_init(&ci->i_flushing_item);
963 mdsc->num_cap_flushing--;
964 drop = 1;
966 if (drop && ci->i_wrbuffer_ref) {
967 pr_info(" dropping dirty data for %p %lld\n",
968 inode, ceph_ino(inode));
969 ci->i_wrbuffer_ref = 0;
970 ci->i_wrbuffer_ref_head = 0;
971 drop++;
973 spin_unlock(&mdsc->cap_dirty_lock);
975 spin_unlock(&inode->i_lock);
976 while (drop--)
977 iput(inode);
978 return 0;
982 * caller must hold session s_mutex
984 static void remove_session_caps(struct ceph_mds_session *session)
986 dout("remove_session_caps on %p\n", session);
987 iterate_session_caps(session, remove_session_caps_cb, NULL);
988 BUG_ON(session->s_nr_caps > 0);
989 BUG_ON(!list_empty(&session->s_cap_flushing));
990 cleanup_cap_releases(session);
994 * wake up any threads waiting on this session's caps. if the cap is
995 * old (didn't get renewed on the client reconnect), remove it now.
997 * caller must hold s_mutex.
999 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1000 void *arg)
1002 struct ceph_inode_info *ci = ceph_inode(inode);
1004 wake_up_all(&ci->i_cap_wq);
1005 if (arg) {
1006 spin_lock(&inode->i_lock);
1007 ci->i_wanted_max_size = 0;
1008 ci->i_requested_max_size = 0;
1009 spin_unlock(&inode->i_lock);
1011 return 0;
1014 static void wake_up_session_caps(struct ceph_mds_session *session,
1015 int reconnect)
1017 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1018 iterate_session_caps(session, wake_up_session_cb,
1019 (void *)(unsigned long)reconnect);
1023 * Send periodic message to MDS renewing all currently held caps. The
1024 * ack will reset the expiration for all caps from this session.
1026 * caller holds s_mutex
1028 static int send_renew_caps(struct ceph_mds_client *mdsc,
1029 struct ceph_mds_session *session)
1031 struct ceph_msg *msg;
1032 int state;
1034 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1035 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1036 pr_info("mds%d caps stale\n", session->s_mds);
1037 session->s_renew_requested = jiffies;
1039 /* do not try to renew caps until a recovering mds has reconnected
1040 * with its clients. */
1041 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1042 if (state < CEPH_MDS_STATE_RECONNECT) {
1043 dout("send_renew_caps ignoring mds%d (%s)\n",
1044 session->s_mds, ceph_mds_state_name(state));
1045 return 0;
1048 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1049 ceph_mds_state_name(state));
1050 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1051 ++session->s_renew_seq);
1052 if (!msg)
1053 return -ENOMEM;
1054 ceph_con_send(&session->s_con, msg);
1055 return 0;
1059 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1061 * Called under session->s_mutex
1063 static void renewed_caps(struct ceph_mds_client *mdsc,
1064 struct ceph_mds_session *session, int is_renew)
1066 int was_stale;
1067 int wake = 0;
1069 spin_lock(&session->s_cap_lock);
1070 was_stale = is_renew && (session->s_cap_ttl == 0 ||
1071 time_after_eq(jiffies, session->s_cap_ttl));
1073 session->s_cap_ttl = session->s_renew_requested +
1074 mdsc->mdsmap->m_session_timeout*HZ;
1076 if (was_stale) {
1077 if (time_before(jiffies, session->s_cap_ttl)) {
1078 pr_info("mds%d caps renewed\n", session->s_mds);
1079 wake = 1;
1080 } else {
1081 pr_info("mds%d caps still stale\n", session->s_mds);
1084 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1085 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1086 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1087 spin_unlock(&session->s_cap_lock);
1089 if (wake)
1090 wake_up_session_caps(session, 0);
1094 * send a session close request
1096 static int request_close_session(struct ceph_mds_client *mdsc,
1097 struct ceph_mds_session *session)
1099 struct ceph_msg *msg;
1101 dout("request_close_session mds%d state %s seq %lld\n",
1102 session->s_mds, session_state_name(session->s_state),
1103 session->s_seq);
1104 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1105 if (!msg)
1106 return -ENOMEM;
1107 ceph_con_send(&session->s_con, msg);
1108 return 0;
1112 * Called with s_mutex held.
1114 static int __close_session(struct ceph_mds_client *mdsc,
1115 struct ceph_mds_session *session)
1117 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1118 return 0;
1119 session->s_state = CEPH_MDS_SESSION_CLOSING;
1120 return request_close_session(mdsc, session);
1124 * Trim old(er) caps.
1126 * Because we can't cache an inode without one or more caps, we do
1127 * this indirectly: if a cap is unused, we prune its aliases, at which
1128 * point the inode will hopefully get dropped to.
1130 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1131 * memory pressure from the MDS, though, so it needn't be perfect.
1133 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1135 struct ceph_mds_session *session = arg;
1136 struct ceph_inode_info *ci = ceph_inode(inode);
1137 int used, oissued, mine;
1139 if (session->s_trim_caps <= 0)
1140 return -1;
1142 spin_lock(&inode->i_lock);
1143 mine = cap->issued | cap->implemented;
1144 used = __ceph_caps_used(ci);
1145 oissued = __ceph_caps_issued_other(ci, cap);
1147 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1148 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1149 ceph_cap_string(used));
1150 if (ci->i_dirty_caps)
1151 goto out; /* dirty caps */
1152 if ((used & ~oissued) & mine)
1153 goto out; /* we need these caps */
1155 session->s_trim_caps--;
1156 if (oissued) {
1157 /* we aren't the only cap.. just remove us */
1158 __ceph_remove_cap(cap);
1159 } else {
1160 /* try to drop referring dentries */
1161 spin_unlock(&inode->i_lock);
1162 d_prune_aliases(inode);
1163 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1164 inode, cap, atomic_read(&inode->i_count));
1165 return 0;
1168 out:
1169 spin_unlock(&inode->i_lock);
1170 return 0;
1174 * Trim session cap count down to some max number.
1176 static int trim_caps(struct ceph_mds_client *mdsc,
1177 struct ceph_mds_session *session,
1178 int max_caps)
1180 int trim_caps = session->s_nr_caps - max_caps;
1182 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1183 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1184 if (trim_caps > 0) {
1185 session->s_trim_caps = trim_caps;
1186 iterate_session_caps(session, trim_caps_cb, session);
1187 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1188 session->s_mds, session->s_nr_caps, max_caps,
1189 trim_caps - session->s_trim_caps);
1190 session->s_trim_caps = 0;
1192 return 0;
1196 * Allocate cap_release messages. If there is a partially full message
1197 * in the queue, try to allocate enough to cover it's remainder, so that
1198 * we can send it immediately.
1200 * Called under s_mutex.
1202 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1203 struct ceph_mds_session *session)
1205 struct ceph_msg *msg, *partial = NULL;
1206 struct ceph_mds_cap_release *head;
1207 int err = -ENOMEM;
1208 int extra = mdsc->fsc->mount_options->cap_release_safety;
1209 int num;
1211 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1212 extra);
1214 spin_lock(&session->s_cap_lock);
1216 if (!list_empty(&session->s_cap_releases)) {
1217 msg = list_first_entry(&session->s_cap_releases,
1218 struct ceph_msg,
1219 list_head);
1220 head = msg->front.iov_base;
1221 num = le32_to_cpu(head->num);
1222 if (num) {
1223 dout(" partial %p with (%d/%d)\n", msg, num,
1224 (int)CEPH_CAPS_PER_RELEASE);
1225 extra += CEPH_CAPS_PER_RELEASE - num;
1226 partial = msg;
1229 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1230 spin_unlock(&session->s_cap_lock);
1231 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1232 GFP_NOFS);
1233 if (!msg)
1234 goto out_unlocked;
1235 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1236 (int)msg->front.iov_len);
1237 head = msg->front.iov_base;
1238 head->num = cpu_to_le32(0);
1239 msg->front.iov_len = sizeof(*head);
1240 spin_lock(&session->s_cap_lock);
1241 list_add(&msg->list_head, &session->s_cap_releases);
1242 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1245 if (partial) {
1246 head = partial->front.iov_base;
1247 num = le32_to_cpu(head->num);
1248 dout(" queueing partial %p with %d/%d\n", partial, num,
1249 (int)CEPH_CAPS_PER_RELEASE);
1250 list_move_tail(&partial->list_head,
1251 &session->s_cap_releases_done);
1252 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1254 err = 0;
1255 spin_unlock(&session->s_cap_lock);
1256 out_unlocked:
1257 return err;
1261 * flush all dirty inode data to disk.
1263 * returns true if we've flushed through want_flush_seq
1265 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1267 int mds, ret = 1;
1269 dout("check_cap_flush want %lld\n", want_flush_seq);
1270 mutex_lock(&mdsc->mutex);
1271 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1272 struct ceph_mds_session *session = mdsc->sessions[mds];
1274 if (!session)
1275 continue;
1276 get_session(session);
1277 mutex_unlock(&mdsc->mutex);
1279 mutex_lock(&session->s_mutex);
1280 if (!list_empty(&session->s_cap_flushing)) {
1281 struct ceph_inode_info *ci =
1282 list_entry(session->s_cap_flushing.next,
1283 struct ceph_inode_info,
1284 i_flushing_item);
1285 struct inode *inode = &ci->vfs_inode;
1287 spin_lock(&inode->i_lock);
1288 if (ci->i_cap_flush_seq <= want_flush_seq) {
1289 dout("check_cap_flush still flushing %p "
1290 "seq %lld <= %lld to mds%d\n", inode,
1291 ci->i_cap_flush_seq, want_flush_seq,
1292 session->s_mds);
1293 ret = 0;
1295 spin_unlock(&inode->i_lock);
1297 mutex_unlock(&session->s_mutex);
1298 ceph_put_mds_session(session);
1300 if (!ret)
1301 return ret;
1302 mutex_lock(&mdsc->mutex);
1305 mutex_unlock(&mdsc->mutex);
1306 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1307 return ret;
1311 * called under s_mutex
1313 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1314 struct ceph_mds_session *session)
1316 struct ceph_msg *msg;
1318 dout("send_cap_releases mds%d\n", session->s_mds);
1319 spin_lock(&session->s_cap_lock);
1320 while (!list_empty(&session->s_cap_releases_done)) {
1321 msg = list_first_entry(&session->s_cap_releases_done,
1322 struct ceph_msg, list_head);
1323 list_del_init(&msg->list_head);
1324 spin_unlock(&session->s_cap_lock);
1325 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1326 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1327 ceph_con_send(&session->s_con, msg);
1328 spin_lock(&session->s_cap_lock);
1330 spin_unlock(&session->s_cap_lock);
1333 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1334 struct ceph_mds_session *session)
1336 struct ceph_msg *msg;
1337 struct ceph_mds_cap_release *head;
1338 unsigned num;
1340 dout("discard_cap_releases mds%d\n", session->s_mds);
1341 spin_lock(&session->s_cap_lock);
1343 /* zero out the in-progress message */
1344 msg = list_first_entry(&session->s_cap_releases,
1345 struct ceph_msg, list_head);
1346 head = msg->front.iov_base;
1347 num = le32_to_cpu(head->num);
1348 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1349 head->num = cpu_to_le32(0);
1350 session->s_num_cap_releases += num;
1352 /* requeue completed messages */
1353 while (!list_empty(&session->s_cap_releases_done)) {
1354 msg = list_first_entry(&session->s_cap_releases_done,
1355 struct ceph_msg, list_head);
1356 list_del_init(&msg->list_head);
1358 head = msg->front.iov_base;
1359 num = le32_to_cpu(head->num);
1360 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1361 num);
1362 session->s_num_cap_releases += num;
1363 head->num = cpu_to_le32(0);
1364 msg->front.iov_len = sizeof(*head);
1365 list_add(&msg->list_head, &session->s_cap_releases);
1368 spin_unlock(&session->s_cap_lock);
1372 * requests
1376 * Create an mds request.
1378 struct ceph_mds_request *
1379 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1381 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1383 if (!req)
1384 return ERR_PTR(-ENOMEM);
1386 mutex_init(&req->r_fill_mutex);
1387 req->r_mdsc = mdsc;
1388 req->r_started = jiffies;
1389 req->r_resend_mds = -1;
1390 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1391 req->r_fmode = -1;
1392 kref_init(&req->r_kref);
1393 INIT_LIST_HEAD(&req->r_wait);
1394 init_completion(&req->r_completion);
1395 init_completion(&req->r_safe_completion);
1396 INIT_LIST_HEAD(&req->r_unsafe_item);
1398 req->r_op = op;
1399 req->r_direct_mode = mode;
1400 return req;
1404 * return oldest (lowest) request, tid in request tree, 0 if none.
1406 * called under mdsc->mutex.
1408 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1410 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1411 return NULL;
1412 return rb_entry(rb_first(&mdsc->request_tree),
1413 struct ceph_mds_request, r_node);
1416 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1418 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1420 if (req)
1421 return req->r_tid;
1422 return 0;
1426 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1427 * on build_path_from_dentry in fs/cifs/dir.c.
1429 * If @stop_on_nosnap, generate path relative to the first non-snapped
1430 * inode.
1432 * Encode hidden .snap dirs as a double /, i.e.
1433 * foo/.snap/bar -> foo//bar
1435 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1436 int stop_on_nosnap)
1438 struct dentry *temp;
1439 char *path;
1440 int len, pos;
1441 unsigned seq;
1443 if (dentry == NULL)
1444 return ERR_PTR(-EINVAL);
1446 retry:
1447 len = 0;
1448 seq = read_seqbegin(&rename_lock);
1449 rcu_read_lock();
1450 for (temp = dentry; !IS_ROOT(temp);) {
1451 struct inode *inode = temp->d_inode;
1452 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1453 len++; /* slash only */
1454 else if (stop_on_nosnap && inode &&
1455 ceph_snap(inode) == CEPH_NOSNAP)
1456 break;
1457 else
1458 len += 1 + temp->d_name.len;
1459 temp = temp->d_parent;
1460 if (temp == NULL) {
1461 rcu_read_unlock();
1462 pr_err("build_path corrupt dentry %p\n", dentry);
1463 return ERR_PTR(-EINVAL);
1466 rcu_read_unlock();
1467 if (len)
1468 len--; /* no leading '/' */
1470 path = kmalloc(len+1, GFP_NOFS);
1471 if (path == NULL)
1472 return ERR_PTR(-ENOMEM);
1473 pos = len;
1474 path[pos] = 0; /* trailing null */
1475 rcu_read_lock();
1476 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1477 struct inode *inode;
1479 spin_lock(&temp->d_lock);
1480 inode = temp->d_inode;
1481 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1482 dout("build_path path+%d: %p SNAPDIR\n",
1483 pos, temp);
1484 } else if (stop_on_nosnap && inode &&
1485 ceph_snap(inode) == CEPH_NOSNAP) {
1486 break;
1487 } else {
1488 pos -= temp->d_name.len;
1489 if (pos < 0) {
1490 spin_unlock(&temp->d_lock);
1491 break;
1493 strncpy(path + pos, temp->d_name.name,
1494 temp->d_name.len);
1496 spin_unlock(&temp->d_lock);
1497 if (pos)
1498 path[--pos] = '/';
1499 temp = temp->d_parent;
1500 if (temp == NULL) {
1501 rcu_read_unlock();
1502 pr_err("build_path corrupt dentry\n");
1503 kfree(path);
1504 return ERR_PTR(-EINVAL);
1507 rcu_read_unlock();
1508 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1509 pr_err("build_path did not end path lookup where "
1510 "expected, namelen is %d, pos is %d\n", len, pos);
1511 /* presumably this is only possible if racing with a
1512 rename of one of the parent directories (we can not
1513 lock the dentries above us to prevent this, but
1514 retrying should be harmless) */
1515 kfree(path);
1516 goto retry;
1519 *base = ceph_ino(temp->d_inode);
1520 *plen = len;
1521 dout("build_path on %p %d built %llx '%.*s'\n",
1522 dentry, dentry->d_count, *base, len, path);
1523 return path;
1526 static int build_dentry_path(struct dentry *dentry,
1527 const char **ppath, int *ppathlen, u64 *pino,
1528 int *pfreepath)
1530 char *path;
1532 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1533 *pino = ceph_ino(dentry->d_parent->d_inode);
1534 *ppath = dentry->d_name.name;
1535 *ppathlen = dentry->d_name.len;
1536 return 0;
1538 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1539 if (IS_ERR(path))
1540 return PTR_ERR(path);
1541 *ppath = path;
1542 *pfreepath = 1;
1543 return 0;
1546 static int build_inode_path(struct inode *inode,
1547 const char **ppath, int *ppathlen, u64 *pino,
1548 int *pfreepath)
1550 struct dentry *dentry;
1551 char *path;
1553 if (ceph_snap(inode) == CEPH_NOSNAP) {
1554 *pino = ceph_ino(inode);
1555 *ppathlen = 0;
1556 return 0;
1558 dentry = d_find_alias(inode);
1559 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1560 dput(dentry);
1561 if (IS_ERR(path))
1562 return PTR_ERR(path);
1563 *ppath = path;
1564 *pfreepath = 1;
1565 return 0;
1569 * request arguments may be specified via an inode *, a dentry *, or
1570 * an explicit ino+path.
1572 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1573 const char *rpath, u64 rino,
1574 const char **ppath, int *pathlen,
1575 u64 *ino, int *freepath)
1577 int r = 0;
1579 if (rinode) {
1580 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1581 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1582 ceph_snap(rinode));
1583 } else if (rdentry) {
1584 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1585 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1586 *ppath);
1587 } else if (rpath) {
1588 *ino = rino;
1589 *ppath = rpath;
1590 *pathlen = strlen(rpath);
1591 dout(" path %.*s\n", *pathlen, rpath);
1594 return r;
1598 * called under mdsc->mutex
1600 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1601 struct ceph_mds_request *req,
1602 int mds)
1604 struct ceph_msg *msg;
1605 struct ceph_mds_request_head *head;
1606 const char *path1 = NULL;
1607 const char *path2 = NULL;
1608 u64 ino1 = 0, ino2 = 0;
1609 int pathlen1 = 0, pathlen2 = 0;
1610 int freepath1 = 0, freepath2 = 0;
1611 int len;
1612 u16 releases;
1613 void *p, *end;
1614 int ret;
1616 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1617 req->r_path1, req->r_ino1.ino,
1618 &path1, &pathlen1, &ino1, &freepath1);
1619 if (ret < 0) {
1620 msg = ERR_PTR(ret);
1621 goto out;
1624 ret = set_request_path_attr(NULL, req->r_old_dentry,
1625 req->r_path2, req->r_ino2.ino,
1626 &path2, &pathlen2, &ino2, &freepath2);
1627 if (ret < 0) {
1628 msg = ERR_PTR(ret);
1629 goto out_free1;
1632 len = sizeof(*head) +
1633 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1635 /* calculate (max) length for cap releases */
1636 len += sizeof(struct ceph_mds_request_release) *
1637 (!!req->r_inode_drop + !!req->r_dentry_drop +
1638 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1639 if (req->r_dentry_drop)
1640 len += req->r_dentry->d_name.len;
1641 if (req->r_old_dentry_drop)
1642 len += req->r_old_dentry->d_name.len;
1644 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1645 if (!msg) {
1646 msg = ERR_PTR(-ENOMEM);
1647 goto out_free2;
1650 msg->hdr.tid = cpu_to_le64(req->r_tid);
1652 head = msg->front.iov_base;
1653 p = msg->front.iov_base + sizeof(*head);
1654 end = msg->front.iov_base + msg->front.iov_len;
1656 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1657 head->op = cpu_to_le32(req->r_op);
1658 head->caller_uid = cpu_to_le32(req->r_uid);
1659 head->caller_gid = cpu_to_le32(req->r_gid);
1660 head->args = req->r_args;
1662 ceph_encode_filepath(&p, end, ino1, path1);
1663 ceph_encode_filepath(&p, end, ino2, path2);
1665 /* make note of release offset, in case we need to replay */
1666 req->r_request_release_offset = p - msg->front.iov_base;
1668 /* cap releases */
1669 releases = 0;
1670 if (req->r_inode_drop)
1671 releases += ceph_encode_inode_release(&p,
1672 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1673 mds, req->r_inode_drop, req->r_inode_unless, 0);
1674 if (req->r_dentry_drop)
1675 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1676 mds, req->r_dentry_drop, req->r_dentry_unless);
1677 if (req->r_old_dentry_drop)
1678 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1679 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1680 if (req->r_old_inode_drop)
1681 releases += ceph_encode_inode_release(&p,
1682 req->r_old_dentry->d_inode,
1683 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1684 head->num_releases = cpu_to_le16(releases);
1686 BUG_ON(p > end);
1687 msg->front.iov_len = p - msg->front.iov_base;
1688 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1690 msg->pages = req->r_pages;
1691 msg->nr_pages = req->r_num_pages;
1692 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1693 msg->hdr.data_off = cpu_to_le16(0);
1695 out_free2:
1696 if (freepath2)
1697 kfree((char *)path2);
1698 out_free1:
1699 if (freepath1)
1700 kfree((char *)path1);
1701 out:
1702 return msg;
1706 * called under mdsc->mutex if error, under no mutex if
1707 * success.
1709 static void complete_request(struct ceph_mds_client *mdsc,
1710 struct ceph_mds_request *req)
1712 if (req->r_callback)
1713 req->r_callback(mdsc, req);
1714 else
1715 complete_all(&req->r_completion);
1719 * called under mdsc->mutex
1721 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1722 struct ceph_mds_request *req,
1723 int mds)
1725 struct ceph_mds_request_head *rhead;
1726 struct ceph_msg *msg;
1727 int flags = 0;
1729 req->r_attempts++;
1730 if (req->r_inode) {
1731 struct ceph_cap *cap =
1732 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1734 if (cap)
1735 req->r_sent_on_mseq = cap->mseq;
1736 else
1737 req->r_sent_on_mseq = -1;
1739 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1740 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1742 if (req->r_got_unsafe) {
1744 * Replay. Do not regenerate message (and rebuild
1745 * paths, etc.); just use the original message.
1746 * Rebuilding paths will break for renames because
1747 * d_move mangles the src name.
1749 msg = req->r_request;
1750 rhead = msg->front.iov_base;
1752 flags = le32_to_cpu(rhead->flags);
1753 flags |= CEPH_MDS_FLAG_REPLAY;
1754 rhead->flags = cpu_to_le32(flags);
1756 if (req->r_target_inode)
1757 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1759 rhead->num_retry = req->r_attempts - 1;
1761 /* remove cap/dentry releases from message */
1762 rhead->num_releases = 0;
1763 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1764 msg->front.iov_len = req->r_request_release_offset;
1765 return 0;
1768 if (req->r_request) {
1769 ceph_msg_put(req->r_request);
1770 req->r_request = NULL;
1772 msg = create_request_message(mdsc, req, mds);
1773 if (IS_ERR(msg)) {
1774 req->r_err = PTR_ERR(msg);
1775 complete_request(mdsc, req);
1776 return PTR_ERR(msg);
1778 req->r_request = msg;
1780 rhead = msg->front.iov_base;
1781 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1782 if (req->r_got_unsafe)
1783 flags |= CEPH_MDS_FLAG_REPLAY;
1784 if (req->r_locked_dir)
1785 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1786 rhead->flags = cpu_to_le32(flags);
1787 rhead->num_fwd = req->r_num_fwd;
1788 rhead->num_retry = req->r_attempts - 1;
1789 rhead->ino = 0;
1791 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1792 return 0;
1796 * send request, or put it on the appropriate wait list.
1798 static int __do_request(struct ceph_mds_client *mdsc,
1799 struct ceph_mds_request *req)
1801 struct ceph_mds_session *session = NULL;
1802 int mds = -1;
1803 int err = -EAGAIN;
1805 if (req->r_err || req->r_got_result)
1806 goto out;
1808 if (req->r_timeout &&
1809 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1810 dout("do_request timed out\n");
1811 err = -EIO;
1812 goto finish;
1815 put_request_session(req);
1817 mds = __choose_mds(mdsc, req);
1818 if (mds < 0 ||
1819 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1820 dout("do_request no mds or not active, waiting for map\n");
1821 list_add(&req->r_wait, &mdsc->waiting_for_map);
1822 goto out;
1825 /* get, open session */
1826 session = __ceph_lookup_mds_session(mdsc, mds);
1827 if (!session) {
1828 session = register_session(mdsc, mds);
1829 if (IS_ERR(session)) {
1830 err = PTR_ERR(session);
1831 goto finish;
1834 req->r_session = get_session(session);
1836 dout("do_request mds%d session %p state %s\n", mds, session,
1837 session_state_name(session->s_state));
1838 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1839 session->s_state != CEPH_MDS_SESSION_HUNG) {
1840 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1841 session->s_state == CEPH_MDS_SESSION_CLOSING)
1842 __open_session(mdsc, session);
1843 list_add(&req->r_wait, &session->s_waiting);
1844 goto out_session;
1847 /* send request */
1848 req->r_resend_mds = -1; /* forget any previous mds hint */
1850 if (req->r_request_started == 0) /* note request start time */
1851 req->r_request_started = jiffies;
1853 err = __prepare_send_request(mdsc, req, mds);
1854 if (!err) {
1855 ceph_msg_get(req->r_request);
1856 ceph_con_send(&session->s_con, req->r_request);
1859 out_session:
1860 ceph_put_mds_session(session);
1861 out:
1862 return err;
1864 finish:
1865 req->r_err = err;
1866 complete_request(mdsc, req);
1867 goto out;
1871 * called under mdsc->mutex
1873 static void __wake_requests(struct ceph_mds_client *mdsc,
1874 struct list_head *head)
1876 struct ceph_mds_request *req, *nreq;
1878 list_for_each_entry_safe(req, nreq, head, r_wait) {
1879 list_del_init(&req->r_wait);
1880 __do_request(mdsc, req);
1885 * Wake up threads with requests pending for @mds, so that they can
1886 * resubmit their requests to a possibly different mds.
1888 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1890 struct ceph_mds_request *req;
1891 struct rb_node *p;
1893 dout("kick_requests mds%d\n", mds);
1894 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1895 req = rb_entry(p, struct ceph_mds_request, r_node);
1896 if (req->r_got_unsafe)
1897 continue;
1898 if (req->r_session &&
1899 req->r_session->s_mds == mds) {
1900 dout(" kicking tid %llu\n", req->r_tid);
1901 __do_request(mdsc, req);
1906 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1907 struct ceph_mds_request *req)
1909 dout("submit_request on %p\n", req);
1910 mutex_lock(&mdsc->mutex);
1911 __register_request(mdsc, req, NULL);
1912 __do_request(mdsc, req);
1913 mutex_unlock(&mdsc->mutex);
1917 * Synchrously perform an mds request. Take care of all of the
1918 * session setup, forwarding, retry details.
1920 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1921 struct inode *dir,
1922 struct ceph_mds_request *req)
1924 int err;
1926 dout("do_request on %p\n", req);
1928 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1929 if (req->r_inode)
1930 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1931 if (req->r_locked_dir)
1932 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1933 if (req->r_old_dentry)
1934 ceph_get_cap_refs(
1935 ceph_inode(req->r_old_dentry->d_parent->d_inode),
1936 CEPH_CAP_PIN);
1938 /* issue */
1939 mutex_lock(&mdsc->mutex);
1940 __register_request(mdsc, req, dir);
1941 __do_request(mdsc, req);
1943 if (req->r_err) {
1944 err = req->r_err;
1945 __unregister_request(mdsc, req);
1946 dout("do_request early error %d\n", err);
1947 goto out;
1950 /* wait */
1951 mutex_unlock(&mdsc->mutex);
1952 dout("do_request waiting\n");
1953 if (req->r_timeout) {
1954 err = (long)wait_for_completion_killable_timeout(
1955 &req->r_completion, req->r_timeout);
1956 if (err == 0)
1957 err = -EIO;
1958 } else {
1959 err = wait_for_completion_killable(&req->r_completion);
1961 dout("do_request waited, got %d\n", err);
1962 mutex_lock(&mdsc->mutex);
1964 /* only abort if we didn't race with a real reply */
1965 if (req->r_got_result) {
1966 err = le32_to_cpu(req->r_reply_info.head->result);
1967 } else if (err < 0) {
1968 dout("aborted request %lld with %d\n", req->r_tid, err);
1971 * ensure we aren't running concurrently with
1972 * ceph_fill_trace or ceph_readdir_prepopulate, which
1973 * rely on locks (dir mutex) held by our caller.
1975 mutex_lock(&req->r_fill_mutex);
1976 req->r_err = err;
1977 req->r_aborted = true;
1978 mutex_unlock(&req->r_fill_mutex);
1980 if (req->r_locked_dir &&
1981 (req->r_op & CEPH_MDS_OP_WRITE))
1982 ceph_invalidate_dir_request(req);
1983 } else {
1984 err = req->r_err;
1987 out:
1988 mutex_unlock(&mdsc->mutex);
1989 dout("do_request %p done, result %d\n", req, err);
1990 return err;
1994 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1995 * namespace request.
1997 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1999 struct inode *inode = req->r_locked_dir;
2000 struct ceph_inode_info *ci = ceph_inode(inode);
2002 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
2003 spin_lock(&inode->i_lock);
2004 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
2005 ci->i_release_count++;
2006 spin_unlock(&inode->i_lock);
2008 if (req->r_dentry)
2009 ceph_invalidate_dentry_lease(req->r_dentry);
2010 if (req->r_old_dentry)
2011 ceph_invalidate_dentry_lease(req->r_old_dentry);
2015 * Handle mds reply.
2017 * We take the session mutex and parse and process the reply immediately.
2018 * This preserves the logical ordering of replies, capabilities, etc., sent
2019 * by the MDS as they are applied to our local cache.
2021 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2023 struct ceph_mds_client *mdsc = session->s_mdsc;
2024 struct ceph_mds_request *req;
2025 struct ceph_mds_reply_head *head = msg->front.iov_base;
2026 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2027 u64 tid;
2028 int err, result;
2029 int mds = session->s_mds;
2031 if (msg->front.iov_len < sizeof(*head)) {
2032 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2033 ceph_msg_dump(msg);
2034 return;
2037 /* get request, session */
2038 tid = le64_to_cpu(msg->hdr.tid);
2039 mutex_lock(&mdsc->mutex);
2040 req = __lookup_request(mdsc, tid);
2041 if (!req) {
2042 dout("handle_reply on unknown tid %llu\n", tid);
2043 mutex_unlock(&mdsc->mutex);
2044 return;
2046 dout("handle_reply %p\n", req);
2048 /* correct session? */
2049 if (req->r_session != session) {
2050 pr_err("mdsc_handle_reply got %llu on session mds%d"
2051 " not mds%d\n", tid, session->s_mds,
2052 req->r_session ? req->r_session->s_mds : -1);
2053 mutex_unlock(&mdsc->mutex);
2054 goto out;
2057 /* dup? */
2058 if ((req->r_got_unsafe && !head->safe) ||
2059 (req->r_got_safe && head->safe)) {
2060 pr_warning("got a dup %s reply on %llu from mds%d\n",
2061 head->safe ? "safe" : "unsafe", tid, mds);
2062 mutex_unlock(&mdsc->mutex);
2063 goto out;
2065 if (req->r_got_safe && !head->safe) {
2066 pr_warning("got unsafe after safe on %llu from mds%d\n",
2067 tid, mds);
2068 mutex_unlock(&mdsc->mutex);
2069 goto out;
2072 result = le32_to_cpu(head->result);
2075 * Handle an ESTALE
2076 * if we're not talking to the authority, send to them
2077 * if the authority has changed while we weren't looking,
2078 * send to new authority
2079 * Otherwise we just have to return an ESTALE
2081 if (result == -ESTALE) {
2082 dout("got ESTALE on request %llu", req->r_tid);
2083 if (!req->r_inode) {
2084 /* do nothing; not an authority problem */
2085 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2086 dout("not using auth, setting for that now");
2087 req->r_direct_mode = USE_AUTH_MDS;
2088 __do_request(mdsc, req);
2089 mutex_unlock(&mdsc->mutex);
2090 goto out;
2091 } else {
2092 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2093 struct ceph_cap *cap = NULL;
2095 if (req->r_session)
2096 cap = ceph_get_cap_for_mds(ci,
2097 req->r_session->s_mds);
2099 dout("already using auth");
2100 if ((!cap || cap != ci->i_auth_cap) ||
2101 (cap->mseq != req->r_sent_on_mseq)) {
2102 dout("but cap changed, so resending");
2103 __do_request(mdsc, req);
2104 mutex_unlock(&mdsc->mutex);
2105 goto out;
2108 dout("have to return ESTALE on request %llu", req->r_tid);
2112 if (head->safe) {
2113 req->r_got_safe = true;
2114 __unregister_request(mdsc, req);
2115 complete_all(&req->r_safe_completion);
2117 if (req->r_got_unsafe) {
2119 * We already handled the unsafe response, now do the
2120 * cleanup. No need to examine the response; the MDS
2121 * doesn't include any result info in the safe
2122 * response. And even if it did, there is nothing
2123 * useful we could do with a revised return value.
2125 dout("got safe reply %llu, mds%d\n", tid, mds);
2126 list_del_init(&req->r_unsafe_item);
2128 /* last unsafe request during umount? */
2129 if (mdsc->stopping && !__get_oldest_req(mdsc))
2130 complete_all(&mdsc->safe_umount_waiters);
2131 mutex_unlock(&mdsc->mutex);
2132 goto out;
2134 } else {
2135 req->r_got_unsafe = true;
2136 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2139 dout("handle_reply tid %lld result %d\n", tid, result);
2140 rinfo = &req->r_reply_info;
2141 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2142 mutex_unlock(&mdsc->mutex);
2144 mutex_lock(&session->s_mutex);
2145 if (err < 0) {
2146 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2147 ceph_msg_dump(msg);
2148 goto out_err;
2151 /* snap trace */
2152 if (rinfo->snapblob_len) {
2153 down_write(&mdsc->snap_rwsem);
2154 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2155 rinfo->snapblob + rinfo->snapblob_len,
2156 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2157 downgrade_write(&mdsc->snap_rwsem);
2158 } else {
2159 down_read(&mdsc->snap_rwsem);
2162 /* insert trace into our cache */
2163 mutex_lock(&req->r_fill_mutex);
2164 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2165 if (err == 0) {
2166 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2167 rinfo->dir_nr)
2168 ceph_readdir_prepopulate(req, req->r_session);
2169 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2171 mutex_unlock(&req->r_fill_mutex);
2173 up_read(&mdsc->snap_rwsem);
2174 out_err:
2175 mutex_lock(&mdsc->mutex);
2176 if (!req->r_aborted) {
2177 if (err) {
2178 req->r_err = err;
2179 } else {
2180 req->r_reply = msg;
2181 ceph_msg_get(msg);
2182 req->r_got_result = true;
2184 } else {
2185 dout("reply arrived after request %lld was aborted\n", tid);
2187 mutex_unlock(&mdsc->mutex);
2189 ceph_add_cap_releases(mdsc, req->r_session);
2190 mutex_unlock(&session->s_mutex);
2192 /* kick calling process */
2193 complete_request(mdsc, req);
2194 out:
2195 ceph_mdsc_put_request(req);
2196 return;
2202 * handle mds notification that our request has been forwarded.
2204 static void handle_forward(struct ceph_mds_client *mdsc,
2205 struct ceph_mds_session *session,
2206 struct ceph_msg *msg)
2208 struct ceph_mds_request *req;
2209 u64 tid = le64_to_cpu(msg->hdr.tid);
2210 u32 next_mds;
2211 u32 fwd_seq;
2212 int err = -EINVAL;
2213 void *p = msg->front.iov_base;
2214 void *end = p + msg->front.iov_len;
2216 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2217 next_mds = ceph_decode_32(&p);
2218 fwd_seq = ceph_decode_32(&p);
2220 mutex_lock(&mdsc->mutex);
2221 req = __lookup_request(mdsc, tid);
2222 if (!req) {
2223 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2224 goto out; /* dup reply? */
2227 if (req->r_aborted) {
2228 dout("forward tid %llu aborted, unregistering\n", tid);
2229 __unregister_request(mdsc, req);
2230 } else if (fwd_seq <= req->r_num_fwd) {
2231 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2232 tid, next_mds, req->r_num_fwd, fwd_seq);
2233 } else {
2234 /* resend. forward race not possible; mds would drop */
2235 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2236 BUG_ON(req->r_err);
2237 BUG_ON(req->r_got_result);
2238 req->r_num_fwd = fwd_seq;
2239 req->r_resend_mds = next_mds;
2240 put_request_session(req);
2241 __do_request(mdsc, req);
2243 ceph_mdsc_put_request(req);
2244 out:
2245 mutex_unlock(&mdsc->mutex);
2246 return;
2248 bad:
2249 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2253 * handle a mds session control message
2255 static void handle_session(struct ceph_mds_session *session,
2256 struct ceph_msg *msg)
2258 struct ceph_mds_client *mdsc = session->s_mdsc;
2259 u32 op;
2260 u64 seq;
2261 int mds = session->s_mds;
2262 struct ceph_mds_session_head *h = msg->front.iov_base;
2263 int wake = 0;
2265 /* decode */
2266 if (msg->front.iov_len != sizeof(*h))
2267 goto bad;
2268 op = le32_to_cpu(h->op);
2269 seq = le64_to_cpu(h->seq);
2271 mutex_lock(&mdsc->mutex);
2272 if (op == CEPH_SESSION_CLOSE)
2273 __unregister_session(mdsc, session);
2274 /* FIXME: this ttl calculation is generous */
2275 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2276 mutex_unlock(&mdsc->mutex);
2278 mutex_lock(&session->s_mutex);
2280 dout("handle_session mds%d %s %p state %s seq %llu\n",
2281 mds, ceph_session_op_name(op), session,
2282 session_state_name(session->s_state), seq);
2284 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2285 session->s_state = CEPH_MDS_SESSION_OPEN;
2286 pr_info("mds%d came back\n", session->s_mds);
2289 switch (op) {
2290 case CEPH_SESSION_OPEN:
2291 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2292 pr_info("mds%d reconnect success\n", session->s_mds);
2293 session->s_state = CEPH_MDS_SESSION_OPEN;
2294 renewed_caps(mdsc, session, 0);
2295 wake = 1;
2296 if (mdsc->stopping)
2297 __close_session(mdsc, session);
2298 break;
2300 case CEPH_SESSION_RENEWCAPS:
2301 if (session->s_renew_seq == seq)
2302 renewed_caps(mdsc, session, 1);
2303 break;
2305 case CEPH_SESSION_CLOSE:
2306 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2307 pr_info("mds%d reconnect denied\n", session->s_mds);
2308 remove_session_caps(session);
2309 wake = 1; /* for good measure */
2310 wake_up_all(&mdsc->session_close_wq);
2311 kick_requests(mdsc, mds);
2312 break;
2314 case CEPH_SESSION_STALE:
2315 pr_info("mds%d caps went stale, renewing\n",
2316 session->s_mds);
2317 spin_lock(&session->s_cap_lock);
2318 session->s_cap_gen++;
2319 session->s_cap_ttl = 0;
2320 spin_unlock(&session->s_cap_lock);
2321 send_renew_caps(mdsc, session);
2322 break;
2324 case CEPH_SESSION_RECALL_STATE:
2325 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2326 break;
2328 default:
2329 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2330 WARN_ON(1);
2333 mutex_unlock(&session->s_mutex);
2334 if (wake) {
2335 mutex_lock(&mdsc->mutex);
2336 __wake_requests(mdsc, &session->s_waiting);
2337 mutex_unlock(&mdsc->mutex);
2339 return;
2341 bad:
2342 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2343 (int)msg->front.iov_len);
2344 ceph_msg_dump(msg);
2345 return;
2350 * called under session->mutex.
2352 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2353 struct ceph_mds_session *session)
2355 struct ceph_mds_request *req, *nreq;
2356 int err;
2358 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2360 mutex_lock(&mdsc->mutex);
2361 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2362 err = __prepare_send_request(mdsc, req, session->s_mds);
2363 if (!err) {
2364 ceph_msg_get(req->r_request);
2365 ceph_con_send(&session->s_con, req->r_request);
2368 mutex_unlock(&mdsc->mutex);
2372 * Encode information about a cap for a reconnect with the MDS.
2374 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2375 void *arg)
2377 union {
2378 struct ceph_mds_cap_reconnect v2;
2379 struct ceph_mds_cap_reconnect_v1 v1;
2380 } rec;
2381 size_t reclen;
2382 struct ceph_inode_info *ci;
2383 struct ceph_reconnect_state *recon_state = arg;
2384 struct ceph_pagelist *pagelist = recon_state->pagelist;
2385 char *path;
2386 int pathlen, err;
2387 u64 pathbase;
2388 struct dentry *dentry;
2390 ci = cap->ci;
2392 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2393 inode, ceph_vinop(inode), cap, cap->cap_id,
2394 ceph_cap_string(cap->issued));
2395 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2396 if (err)
2397 return err;
2399 dentry = d_find_alias(inode);
2400 if (dentry) {
2401 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2402 if (IS_ERR(path)) {
2403 err = PTR_ERR(path);
2404 goto out_dput;
2406 } else {
2407 path = NULL;
2408 pathlen = 0;
2410 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2411 if (err)
2412 goto out_free;
2414 spin_lock(&inode->i_lock);
2415 cap->seq = 0; /* reset cap seq */
2416 cap->issue_seq = 0; /* and issue_seq */
2418 if (recon_state->flock) {
2419 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2420 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2421 rec.v2.issued = cpu_to_le32(cap->issued);
2422 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2423 rec.v2.pathbase = cpu_to_le64(pathbase);
2424 rec.v2.flock_len = 0;
2425 reclen = sizeof(rec.v2);
2426 } else {
2427 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2428 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2429 rec.v1.issued = cpu_to_le32(cap->issued);
2430 rec.v1.size = cpu_to_le64(inode->i_size);
2431 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2432 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2433 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2434 rec.v1.pathbase = cpu_to_le64(pathbase);
2435 reclen = sizeof(rec.v1);
2437 spin_unlock(&inode->i_lock);
2439 if (recon_state->flock) {
2440 int num_fcntl_locks, num_flock_locks;
2441 struct ceph_pagelist_cursor trunc_point;
2443 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2444 do {
2445 lock_flocks();
2446 ceph_count_locks(inode, &num_fcntl_locks,
2447 &num_flock_locks);
2448 rec.v2.flock_len = (2*sizeof(u32) +
2449 (num_fcntl_locks+num_flock_locks) *
2450 sizeof(struct ceph_filelock));
2451 unlock_flocks();
2453 /* pre-alloc pagelist */
2454 ceph_pagelist_truncate(pagelist, &trunc_point);
2455 err = ceph_pagelist_append(pagelist, &rec, reclen);
2456 if (!err)
2457 err = ceph_pagelist_reserve(pagelist,
2458 rec.v2.flock_len);
2460 /* encode locks */
2461 if (!err) {
2462 lock_flocks();
2463 err = ceph_encode_locks(inode,
2464 pagelist,
2465 num_fcntl_locks,
2466 num_flock_locks);
2467 unlock_flocks();
2469 } while (err == -ENOSPC);
2470 } else {
2471 err = ceph_pagelist_append(pagelist, &rec, reclen);
2474 out_free:
2475 kfree(path);
2476 out_dput:
2477 dput(dentry);
2478 return err;
2483 * If an MDS fails and recovers, clients need to reconnect in order to
2484 * reestablish shared state. This includes all caps issued through
2485 * this session _and_ the snap_realm hierarchy. Because it's not
2486 * clear which snap realms the mds cares about, we send everything we
2487 * know about.. that ensures we'll then get any new info the
2488 * recovering MDS might have.
2490 * This is a relatively heavyweight operation, but it's rare.
2492 * called with mdsc->mutex held.
2494 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2495 struct ceph_mds_session *session)
2497 struct ceph_msg *reply;
2498 struct rb_node *p;
2499 int mds = session->s_mds;
2500 int err = -ENOMEM;
2501 struct ceph_pagelist *pagelist;
2502 struct ceph_reconnect_state recon_state;
2504 pr_info("mds%d reconnect start\n", mds);
2506 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2507 if (!pagelist)
2508 goto fail_nopagelist;
2509 ceph_pagelist_init(pagelist);
2511 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2512 if (!reply)
2513 goto fail_nomsg;
2515 mutex_lock(&session->s_mutex);
2516 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2517 session->s_seq = 0;
2519 ceph_con_open(&session->s_con,
2520 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2522 /* replay unsafe requests */
2523 replay_unsafe_requests(mdsc, session);
2525 down_read(&mdsc->snap_rwsem);
2527 dout("session %p state %s\n", session,
2528 session_state_name(session->s_state));
2530 /* drop old cap expires; we're about to reestablish that state */
2531 discard_cap_releases(mdsc, session);
2533 /* traverse this session's caps */
2534 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2535 if (err)
2536 goto fail;
2538 recon_state.pagelist = pagelist;
2539 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2540 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2541 if (err < 0)
2542 goto fail;
2545 * snaprealms. we provide mds with the ino, seq (version), and
2546 * parent for all of our realms. If the mds has any newer info,
2547 * it will tell us.
2549 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2550 struct ceph_snap_realm *realm =
2551 rb_entry(p, struct ceph_snap_realm, node);
2552 struct ceph_mds_snaprealm_reconnect sr_rec;
2554 dout(" adding snap realm %llx seq %lld parent %llx\n",
2555 realm->ino, realm->seq, realm->parent_ino);
2556 sr_rec.ino = cpu_to_le64(realm->ino);
2557 sr_rec.seq = cpu_to_le64(realm->seq);
2558 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2559 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2560 if (err)
2561 goto fail;
2564 reply->pagelist = pagelist;
2565 if (recon_state.flock)
2566 reply->hdr.version = cpu_to_le16(2);
2567 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2568 reply->nr_pages = calc_pages_for(0, pagelist->length);
2569 ceph_con_send(&session->s_con, reply);
2571 mutex_unlock(&session->s_mutex);
2573 mutex_lock(&mdsc->mutex);
2574 __wake_requests(mdsc, &session->s_waiting);
2575 mutex_unlock(&mdsc->mutex);
2577 up_read(&mdsc->snap_rwsem);
2578 return;
2580 fail:
2581 ceph_msg_put(reply);
2582 up_read(&mdsc->snap_rwsem);
2583 mutex_unlock(&session->s_mutex);
2584 fail_nomsg:
2585 ceph_pagelist_release(pagelist);
2586 kfree(pagelist);
2587 fail_nopagelist:
2588 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2589 return;
2594 * compare old and new mdsmaps, kicking requests
2595 * and closing out old connections as necessary
2597 * called under mdsc->mutex.
2599 static void check_new_map(struct ceph_mds_client *mdsc,
2600 struct ceph_mdsmap *newmap,
2601 struct ceph_mdsmap *oldmap)
2603 int i;
2604 int oldstate, newstate;
2605 struct ceph_mds_session *s;
2607 dout("check_new_map new %u old %u\n",
2608 newmap->m_epoch, oldmap->m_epoch);
2610 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2611 if (mdsc->sessions[i] == NULL)
2612 continue;
2613 s = mdsc->sessions[i];
2614 oldstate = ceph_mdsmap_get_state(oldmap, i);
2615 newstate = ceph_mdsmap_get_state(newmap, i);
2617 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2618 i, ceph_mds_state_name(oldstate),
2619 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2620 ceph_mds_state_name(newstate),
2621 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2622 session_state_name(s->s_state));
2624 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2625 ceph_mdsmap_get_addr(newmap, i),
2626 sizeof(struct ceph_entity_addr))) {
2627 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2628 /* the session never opened, just close it
2629 * out now */
2630 __wake_requests(mdsc, &s->s_waiting);
2631 __unregister_session(mdsc, s);
2632 } else {
2633 /* just close it */
2634 mutex_unlock(&mdsc->mutex);
2635 mutex_lock(&s->s_mutex);
2636 mutex_lock(&mdsc->mutex);
2637 ceph_con_close(&s->s_con);
2638 mutex_unlock(&s->s_mutex);
2639 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2642 /* kick any requests waiting on the recovering mds */
2643 kick_requests(mdsc, i);
2644 } else if (oldstate == newstate) {
2645 continue; /* nothing new with this mds */
2649 * send reconnect?
2651 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2652 newstate >= CEPH_MDS_STATE_RECONNECT) {
2653 mutex_unlock(&mdsc->mutex);
2654 send_mds_reconnect(mdsc, s);
2655 mutex_lock(&mdsc->mutex);
2659 * kick request on any mds that has gone active.
2661 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2662 newstate >= CEPH_MDS_STATE_ACTIVE) {
2663 if (oldstate != CEPH_MDS_STATE_CREATING &&
2664 oldstate != CEPH_MDS_STATE_STARTING)
2665 pr_info("mds%d recovery completed\n", s->s_mds);
2666 kick_requests(mdsc, i);
2667 ceph_kick_flushing_caps(mdsc, s);
2668 wake_up_session_caps(s, 1);
2672 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2673 s = mdsc->sessions[i];
2674 if (!s)
2675 continue;
2676 if (!ceph_mdsmap_is_laggy(newmap, i))
2677 continue;
2678 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2679 s->s_state == CEPH_MDS_SESSION_HUNG ||
2680 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2681 dout(" connecting to export targets of laggy mds%d\n",
2683 __open_export_target_sessions(mdsc, s);
2691 * leases
2695 * caller must hold session s_mutex, dentry->d_lock
2697 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2699 struct ceph_dentry_info *di = ceph_dentry(dentry);
2701 ceph_put_mds_session(di->lease_session);
2702 di->lease_session = NULL;
2705 static void handle_lease(struct ceph_mds_client *mdsc,
2706 struct ceph_mds_session *session,
2707 struct ceph_msg *msg)
2709 struct super_block *sb = mdsc->fsc->sb;
2710 struct inode *inode;
2711 struct dentry *parent, *dentry;
2712 struct ceph_dentry_info *di;
2713 int mds = session->s_mds;
2714 struct ceph_mds_lease *h = msg->front.iov_base;
2715 u32 seq;
2716 struct ceph_vino vino;
2717 int mask;
2718 struct qstr dname;
2719 int release = 0;
2721 dout("handle_lease from mds%d\n", mds);
2723 /* decode */
2724 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2725 goto bad;
2726 vino.ino = le64_to_cpu(h->ino);
2727 vino.snap = CEPH_NOSNAP;
2728 mask = le16_to_cpu(h->mask);
2729 seq = le32_to_cpu(h->seq);
2730 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2731 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2732 if (dname.len != get_unaligned_le32(h+1))
2733 goto bad;
2735 mutex_lock(&session->s_mutex);
2736 session->s_seq++;
2738 /* lookup inode */
2739 inode = ceph_find_inode(sb, vino);
2740 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2741 ceph_lease_op_name(h->action), mask, vino.ino, inode,
2742 dname.len, dname.name);
2743 if (inode == NULL) {
2744 dout("handle_lease no inode %llx\n", vino.ino);
2745 goto release;
2748 /* dentry */
2749 parent = d_find_alias(inode);
2750 if (!parent) {
2751 dout("no parent dentry on inode %p\n", inode);
2752 WARN_ON(1);
2753 goto release; /* hrm... */
2755 dname.hash = full_name_hash(dname.name, dname.len);
2756 dentry = d_lookup(parent, &dname);
2757 dput(parent);
2758 if (!dentry)
2759 goto release;
2761 spin_lock(&dentry->d_lock);
2762 di = ceph_dentry(dentry);
2763 switch (h->action) {
2764 case CEPH_MDS_LEASE_REVOKE:
2765 if (di && di->lease_session == session) {
2766 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2767 h->seq = cpu_to_le32(di->lease_seq);
2768 __ceph_mdsc_drop_dentry_lease(dentry);
2770 release = 1;
2771 break;
2773 case CEPH_MDS_LEASE_RENEW:
2774 if (di && di->lease_session == session &&
2775 di->lease_gen == session->s_cap_gen &&
2776 di->lease_renew_from &&
2777 di->lease_renew_after == 0) {
2778 unsigned long duration =
2779 le32_to_cpu(h->duration_ms) * HZ / 1000;
2781 di->lease_seq = seq;
2782 dentry->d_time = di->lease_renew_from + duration;
2783 di->lease_renew_after = di->lease_renew_from +
2784 (duration >> 1);
2785 di->lease_renew_from = 0;
2787 break;
2789 spin_unlock(&dentry->d_lock);
2790 dput(dentry);
2792 if (!release)
2793 goto out;
2795 release:
2796 /* let's just reuse the same message */
2797 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2798 ceph_msg_get(msg);
2799 ceph_con_send(&session->s_con, msg);
2801 out:
2802 iput(inode);
2803 mutex_unlock(&session->s_mutex);
2804 return;
2806 bad:
2807 pr_err("corrupt lease message\n");
2808 ceph_msg_dump(msg);
2811 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2812 struct inode *inode,
2813 struct dentry *dentry, char action,
2814 u32 seq)
2816 struct ceph_msg *msg;
2817 struct ceph_mds_lease *lease;
2818 int len = sizeof(*lease) + sizeof(u32);
2819 int dnamelen = 0;
2821 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2822 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2823 dnamelen = dentry->d_name.len;
2824 len += dnamelen;
2826 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2827 if (!msg)
2828 return;
2829 lease = msg->front.iov_base;
2830 lease->action = action;
2831 lease->mask = cpu_to_le16(1);
2832 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2833 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2834 lease->seq = cpu_to_le32(seq);
2835 put_unaligned_le32(dnamelen, lease + 1);
2836 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2839 * if this is a preemptive lease RELEASE, no need to
2840 * flush request stream, since the actual request will
2841 * soon follow.
2843 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2845 ceph_con_send(&session->s_con, msg);
2849 * Preemptively release a lease we expect to invalidate anyway.
2850 * Pass @inode always, @dentry is optional.
2852 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2853 struct dentry *dentry, int mask)
2855 struct ceph_dentry_info *di;
2856 struct ceph_mds_session *session;
2857 u32 seq;
2859 BUG_ON(inode == NULL);
2860 BUG_ON(dentry == NULL);
2861 BUG_ON(mask == 0);
2863 /* is dentry lease valid? */
2864 spin_lock(&dentry->d_lock);
2865 di = ceph_dentry(dentry);
2866 if (!di || !di->lease_session ||
2867 di->lease_session->s_mds < 0 ||
2868 di->lease_gen != di->lease_session->s_cap_gen ||
2869 !time_before(jiffies, dentry->d_time)) {
2870 dout("lease_release inode %p dentry %p -- "
2871 "no lease on %d\n",
2872 inode, dentry, mask);
2873 spin_unlock(&dentry->d_lock);
2874 return;
2877 /* we do have a lease on this dentry; note mds and seq */
2878 session = ceph_get_mds_session(di->lease_session);
2879 seq = di->lease_seq;
2880 __ceph_mdsc_drop_dentry_lease(dentry);
2881 spin_unlock(&dentry->d_lock);
2883 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2884 inode, dentry, mask, session->s_mds);
2885 ceph_mdsc_lease_send_msg(session, inode, dentry,
2886 CEPH_MDS_LEASE_RELEASE, seq);
2887 ceph_put_mds_session(session);
2891 * drop all leases (and dentry refs) in preparation for umount
2893 static void drop_leases(struct ceph_mds_client *mdsc)
2895 int i;
2897 dout("drop_leases\n");
2898 mutex_lock(&mdsc->mutex);
2899 for (i = 0; i < mdsc->max_sessions; i++) {
2900 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2901 if (!s)
2902 continue;
2903 mutex_unlock(&mdsc->mutex);
2904 mutex_lock(&s->s_mutex);
2905 mutex_unlock(&s->s_mutex);
2906 ceph_put_mds_session(s);
2907 mutex_lock(&mdsc->mutex);
2909 mutex_unlock(&mdsc->mutex);
2915 * delayed work -- periodically trim expired leases, renew caps with mds
2917 static void schedule_delayed(struct ceph_mds_client *mdsc)
2919 int delay = 5;
2920 unsigned hz = round_jiffies_relative(HZ * delay);
2921 schedule_delayed_work(&mdsc->delayed_work, hz);
2924 static void delayed_work(struct work_struct *work)
2926 int i;
2927 struct ceph_mds_client *mdsc =
2928 container_of(work, struct ceph_mds_client, delayed_work.work);
2929 int renew_interval;
2930 int renew_caps;
2932 dout("mdsc delayed_work\n");
2933 ceph_check_delayed_caps(mdsc);
2935 mutex_lock(&mdsc->mutex);
2936 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2937 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2938 mdsc->last_renew_caps);
2939 if (renew_caps)
2940 mdsc->last_renew_caps = jiffies;
2942 for (i = 0; i < mdsc->max_sessions; i++) {
2943 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2944 if (s == NULL)
2945 continue;
2946 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2947 dout("resending session close request for mds%d\n",
2948 s->s_mds);
2949 request_close_session(mdsc, s);
2950 ceph_put_mds_session(s);
2951 continue;
2953 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2954 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2955 s->s_state = CEPH_MDS_SESSION_HUNG;
2956 pr_info("mds%d hung\n", s->s_mds);
2959 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2960 /* this mds is failed or recovering, just wait */
2961 ceph_put_mds_session(s);
2962 continue;
2964 mutex_unlock(&mdsc->mutex);
2966 mutex_lock(&s->s_mutex);
2967 if (renew_caps)
2968 send_renew_caps(mdsc, s);
2969 else
2970 ceph_con_keepalive(&s->s_con);
2971 ceph_add_cap_releases(mdsc, s);
2972 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2973 s->s_state == CEPH_MDS_SESSION_HUNG)
2974 ceph_send_cap_releases(mdsc, s);
2975 mutex_unlock(&s->s_mutex);
2976 ceph_put_mds_session(s);
2978 mutex_lock(&mdsc->mutex);
2980 mutex_unlock(&mdsc->mutex);
2982 schedule_delayed(mdsc);
2985 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2988 struct ceph_mds_client *mdsc;
2990 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2991 if (!mdsc)
2992 return -ENOMEM;
2993 mdsc->fsc = fsc;
2994 fsc->mdsc = mdsc;
2995 mutex_init(&mdsc->mutex);
2996 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2997 if (mdsc->mdsmap == NULL)
2998 return -ENOMEM;
3000 init_completion(&mdsc->safe_umount_waiters);
3001 init_waitqueue_head(&mdsc->session_close_wq);
3002 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3003 mdsc->sessions = NULL;
3004 mdsc->max_sessions = 0;
3005 mdsc->stopping = 0;
3006 init_rwsem(&mdsc->snap_rwsem);
3007 mdsc->snap_realms = RB_ROOT;
3008 INIT_LIST_HEAD(&mdsc->snap_empty);
3009 spin_lock_init(&mdsc->snap_empty_lock);
3010 mdsc->last_tid = 0;
3011 mdsc->request_tree = RB_ROOT;
3012 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3013 mdsc->last_renew_caps = jiffies;
3014 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3015 spin_lock_init(&mdsc->cap_delay_lock);
3016 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3017 spin_lock_init(&mdsc->snap_flush_lock);
3018 mdsc->cap_flush_seq = 0;
3019 INIT_LIST_HEAD(&mdsc->cap_dirty);
3020 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3021 mdsc->num_cap_flushing = 0;
3022 spin_lock_init(&mdsc->cap_dirty_lock);
3023 init_waitqueue_head(&mdsc->cap_flushing_wq);
3024 spin_lock_init(&mdsc->dentry_lru_lock);
3025 INIT_LIST_HEAD(&mdsc->dentry_lru);
3027 ceph_caps_init(mdsc);
3028 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3030 return 0;
3034 * Wait for safe replies on open mds requests. If we time out, drop
3035 * all requests from the tree to avoid dangling dentry refs.
3037 static void wait_requests(struct ceph_mds_client *mdsc)
3039 struct ceph_mds_request *req;
3040 struct ceph_fs_client *fsc = mdsc->fsc;
3042 mutex_lock(&mdsc->mutex);
3043 if (__get_oldest_req(mdsc)) {
3044 mutex_unlock(&mdsc->mutex);
3046 dout("wait_requests waiting for requests\n");
3047 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3048 fsc->client->options->mount_timeout * HZ);
3050 /* tear down remaining requests */
3051 mutex_lock(&mdsc->mutex);
3052 while ((req = __get_oldest_req(mdsc))) {
3053 dout("wait_requests timed out on tid %llu\n",
3054 req->r_tid);
3055 __unregister_request(mdsc, req);
3058 mutex_unlock(&mdsc->mutex);
3059 dout("wait_requests done\n");
3063 * called before mount is ro, and before dentries are torn down.
3064 * (hmm, does this still race with new lookups?)
3066 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3068 dout("pre_umount\n");
3069 mdsc->stopping = 1;
3071 drop_leases(mdsc);
3072 ceph_flush_dirty_caps(mdsc);
3073 wait_requests(mdsc);
3076 * wait for reply handlers to drop their request refs and
3077 * their inode/dcache refs
3079 ceph_msgr_flush();
3083 * wait for all write mds requests to flush.
3085 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3087 struct ceph_mds_request *req = NULL, *nextreq;
3088 struct rb_node *n;
3090 mutex_lock(&mdsc->mutex);
3091 dout("wait_unsafe_requests want %lld\n", want_tid);
3092 restart:
3093 req = __get_oldest_req(mdsc);
3094 while (req && req->r_tid <= want_tid) {
3095 /* find next request */
3096 n = rb_next(&req->r_node);
3097 if (n)
3098 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3099 else
3100 nextreq = NULL;
3101 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3102 /* write op */
3103 ceph_mdsc_get_request(req);
3104 if (nextreq)
3105 ceph_mdsc_get_request(nextreq);
3106 mutex_unlock(&mdsc->mutex);
3107 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3108 req->r_tid, want_tid);
3109 wait_for_completion(&req->r_safe_completion);
3110 mutex_lock(&mdsc->mutex);
3111 ceph_mdsc_put_request(req);
3112 if (!nextreq)
3113 break; /* next dne before, so we're done! */
3114 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3115 /* next request was removed from tree */
3116 ceph_mdsc_put_request(nextreq);
3117 goto restart;
3119 ceph_mdsc_put_request(nextreq); /* won't go away */
3121 req = nextreq;
3123 mutex_unlock(&mdsc->mutex);
3124 dout("wait_unsafe_requests done\n");
3127 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3129 u64 want_tid, want_flush;
3131 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3132 return;
3134 dout("sync\n");
3135 mutex_lock(&mdsc->mutex);
3136 want_tid = mdsc->last_tid;
3137 want_flush = mdsc->cap_flush_seq;
3138 mutex_unlock(&mdsc->mutex);
3139 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3141 ceph_flush_dirty_caps(mdsc);
3143 wait_unsafe_requests(mdsc, want_tid);
3144 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3148 * true if all sessions are closed, or we force unmount
3150 bool done_closing_sessions(struct ceph_mds_client *mdsc)
3152 int i, n = 0;
3154 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3155 return true;
3157 mutex_lock(&mdsc->mutex);
3158 for (i = 0; i < mdsc->max_sessions; i++)
3159 if (mdsc->sessions[i])
3160 n++;
3161 mutex_unlock(&mdsc->mutex);
3162 return n == 0;
3166 * called after sb is ro.
3168 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3170 struct ceph_mds_session *session;
3171 int i;
3172 struct ceph_fs_client *fsc = mdsc->fsc;
3173 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3175 dout("close_sessions\n");
3177 /* close sessions */
3178 mutex_lock(&mdsc->mutex);
3179 for (i = 0; i < mdsc->max_sessions; i++) {
3180 session = __ceph_lookup_mds_session(mdsc, i);
3181 if (!session)
3182 continue;
3183 mutex_unlock(&mdsc->mutex);
3184 mutex_lock(&session->s_mutex);
3185 __close_session(mdsc, session);
3186 mutex_unlock(&session->s_mutex);
3187 ceph_put_mds_session(session);
3188 mutex_lock(&mdsc->mutex);
3190 mutex_unlock(&mdsc->mutex);
3192 dout("waiting for sessions to close\n");
3193 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3194 timeout);
3196 /* tear down remaining sessions */
3197 mutex_lock(&mdsc->mutex);
3198 for (i = 0; i < mdsc->max_sessions; i++) {
3199 if (mdsc->sessions[i]) {
3200 session = get_session(mdsc->sessions[i]);
3201 __unregister_session(mdsc, session);
3202 mutex_unlock(&mdsc->mutex);
3203 mutex_lock(&session->s_mutex);
3204 remove_session_caps(session);
3205 mutex_unlock(&session->s_mutex);
3206 ceph_put_mds_session(session);
3207 mutex_lock(&mdsc->mutex);
3210 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3211 mutex_unlock(&mdsc->mutex);
3213 ceph_cleanup_empty_realms(mdsc);
3215 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3217 dout("stopped\n");
3220 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3222 dout("stop\n");
3223 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3224 if (mdsc->mdsmap)
3225 ceph_mdsmap_destroy(mdsc->mdsmap);
3226 kfree(mdsc->sessions);
3227 ceph_caps_finalize(mdsc);
3230 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3232 struct ceph_mds_client *mdsc = fsc->mdsc;
3234 dout("mdsc_destroy %p\n", mdsc);
3235 ceph_mdsc_stop(mdsc);
3237 /* flush out any connection work with references to us */
3238 ceph_msgr_flush();
3240 fsc->mdsc = NULL;
3241 kfree(mdsc);
3242 dout("mdsc_destroy %p done\n", mdsc);
3247 * handle mds map update.
3249 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3251 u32 epoch;
3252 u32 maplen;
3253 void *p = msg->front.iov_base;
3254 void *end = p + msg->front.iov_len;
3255 struct ceph_mdsmap *newmap, *oldmap;
3256 struct ceph_fsid fsid;
3257 int err = -EINVAL;
3259 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3260 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3261 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3262 return;
3263 epoch = ceph_decode_32(&p);
3264 maplen = ceph_decode_32(&p);
3265 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3267 /* do we need it? */
3268 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3269 mutex_lock(&mdsc->mutex);
3270 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3271 dout("handle_map epoch %u <= our %u\n",
3272 epoch, mdsc->mdsmap->m_epoch);
3273 mutex_unlock(&mdsc->mutex);
3274 return;
3277 newmap = ceph_mdsmap_decode(&p, end);
3278 if (IS_ERR(newmap)) {
3279 err = PTR_ERR(newmap);
3280 goto bad_unlock;
3283 /* swap into place */
3284 if (mdsc->mdsmap) {
3285 oldmap = mdsc->mdsmap;
3286 mdsc->mdsmap = newmap;
3287 check_new_map(mdsc, newmap, oldmap);
3288 ceph_mdsmap_destroy(oldmap);
3289 } else {
3290 mdsc->mdsmap = newmap; /* first mds map */
3292 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3294 __wake_requests(mdsc, &mdsc->waiting_for_map);
3296 mutex_unlock(&mdsc->mutex);
3297 schedule_delayed(mdsc);
3298 return;
3300 bad_unlock:
3301 mutex_unlock(&mdsc->mutex);
3302 bad:
3303 pr_err("error decoding mdsmap %d\n", err);
3304 return;
3307 static struct ceph_connection *con_get(struct ceph_connection *con)
3309 struct ceph_mds_session *s = con->private;
3311 if (get_session(s)) {
3312 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3313 return con;
3315 dout("mdsc con_get %p FAIL\n", s);
3316 return NULL;
3319 static void con_put(struct ceph_connection *con)
3321 struct ceph_mds_session *s = con->private;
3323 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3324 ceph_put_mds_session(s);
3328 * if the client is unresponsive for long enough, the mds will kill
3329 * the session entirely.
3331 static void peer_reset(struct ceph_connection *con)
3333 struct ceph_mds_session *s = con->private;
3334 struct ceph_mds_client *mdsc = s->s_mdsc;
3336 pr_warning("mds%d closed our session\n", s->s_mds);
3337 send_mds_reconnect(mdsc, s);
3340 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3342 struct ceph_mds_session *s = con->private;
3343 struct ceph_mds_client *mdsc = s->s_mdsc;
3344 int type = le16_to_cpu(msg->hdr.type);
3346 mutex_lock(&mdsc->mutex);
3347 if (__verify_registered_session(mdsc, s) < 0) {
3348 mutex_unlock(&mdsc->mutex);
3349 goto out;
3351 mutex_unlock(&mdsc->mutex);
3353 switch (type) {
3354 case CEPH_MSG_MDS_MAP:
3355 ceph_mdsc_handle_map(mdsc, msg);
3356 break;
3357 case CEPH_MSG_CLIENT_SESSION:
3358 handle_session(s, msg);
3359 break;
3360 case CEPH_MSG_CLIENT_REPLY:
3361 handle_reply(s, msg);
3362 break;
3363 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3364 handle_forward(mdsc, s, msg);
3365 break;
3366 case CEPH_MSG_CLIENT_CAPS:
3367 ceph_handle_caps(s, msg);
3368 break;
3369 case CEPH_MSG_CLIENT_SNAP:
3370 ceph_handle_snap(mdsc, s, msg);
3371 break;
3372 case CEPH_MSG_CLIENT_LEASE:
3373 handle_lease(mdsc, s, msg);
3374 break;
3376 default:
3377 pr_err("received unknown message type %d %s\n", type,
3378 ceph_msg_type_name(type));
3380 out:
3381 ceph_msg_put(msg);
3385 * authentication
3387 static int get_authorizer(struct ceph_connection *con,
3388 void **buf, int *len, int *proto,
3389 void **reply_buf, int *reply_len, int force_new)
3391 struct ceph_mds_session *s = con->private;
3392 struct ceph_mds_client *mdsc = s->s_mdsc;
3393 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3394 int ret = 0;
3396 if (force_new && s->s_authorizer) {
3397 ac->ops->destroy_authorizer(ac, s->s_authorizer);
3398 s->s_authorizer = NULL;
3400 if (s->s_authorizer == NULL) {
3401 if (ac->ops->create_authorizer) {
3402 ret = ac->ops->create_authorizer(
3403 ac, CEPH_ENTITY_TYPE_MDS,
3404 &s->s_authorizer,
3405 &s->s_authorizer_buf,
3406 &s->s_authorizer_buf_len,
3407 &s->s_authorizer_reply_buf,
3408 &s->s_authorizer_reply_buf_len);
3409 if (ret)
3410 return ret;
3414 *proto = ac->protocol;
3415 *buf = s->s_authorizer_buf;
3416 *len = s->s_authorizer_buf_len;
3417 *reply_buf = s->s_authorizer_reply_buf;
3418 *reply_len = s->s_authorizer_reply_buf_len;
3419 return 0;
3423 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3425 struct ceph_mds_session *s = con->private;
3426 struct ceph_mds_client *mdsc = s->s_mdsc;
3427 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3429 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3432 static int invalidate_authorizer(struct ceph_connection *con)
3434 struct ceph_mds_session *s = con->private;
3435 struct ceph_mds_client *mdsc = s->s_mdsc;
3436 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3438 if (ac->ops->invalidate_authorizer)
3439 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3441 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3444 static const struct ceph_connection_operations mds_con_ops = {
3445 .get = con_get,
3446 .put = con_put,
3447 .dispatch = dispatch,
3448 .get_authorizer = get_authorizer,
3449 .verify_authorizer_reply = verify_authorizer_reply,
3450 .invalidate_authorizer = invalidate_authorizer,
3451 .peer_reset = peer_reset,
3454 /* eof */