2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
44 static int ext3_writepage_trans_blocks(struct inode
*inode
);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
51 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
52 (inode
->i_sb
->s_blocksize
>> 9) : 0;
54 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
67 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
73 BUFFER_TRACE(bh
, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
77 bh
, is_metadata
, inode
->i_mode
,
78 test_opt(inode
->i_sb
, DATA_FLAGS
));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
85 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
86 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
88 BUFFER_TRACE(bh
, "call journal_forget");
89 return ext3_journal_forget(handle
, bh
);
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
98 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
100 ext3_abort(inode
->i_sb
, __func__
,
101 "error %d when attempting revoke", err
);
102 BUFFER_TRACE(bh
, "exit");
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode
*inode
)
112 unsigned long needed
;
114 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
125 /* But we need to bound the transaction so we don't overflow the
127 if (needed
> EXT3_MAX_TRANS_DATA
)
128 needed
= EXT3_MAX_TRANS_DATA
;
130 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t
*start_transaction(struct inode
*inode
)
147 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
151 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
163 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
165 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
175 static int truncate_restart_transaction(handle_t
*handle
, struct inode
*inode
)
179 jbd_debug(2, "restarting handle %p\n", handle
);
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
186 mutex_unlock(&EXT3_I(inode
)->truncate_mutex
);
187 ret
= ext3_journal_restart(handle
, blocks_for_truncate(inode
));
188 mutex_lock(&EXT3_I(inode
)->truncate_mutex
);
193 * Called at inode eviction from icache
195 void ext3_evict_inode (struct inode
*inode
)
197 struct ext3_block_alloc_info
*rsv
;
201 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
202 dquot_initialize(inode
);
206 truncate_inode_pages(&inode
->i_data
, 0);
208 ext3_discard_reservation(inode
);
209 rsv
= EXT3_I(inode
)->i_block_alloc_info
;
210 EXT3_I(inode
)->i_block_alloc_info
= NULL
;
217 handle
= start_transaction(inode
);
218 if (IS_ERR(handle
)) {
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
224 ext3_orphan_del(NULL
, inode
);
232 ext3_truncate(inode
);
234 * Kill off the orphan record which ext3_truncate created.
235 * AKPM: I think this can be inside the above `if'.
236 * Note that ext3_orphan_del() has to be able to cope with the
237 * deletion of a non-existent orphan - this is because we don't
238 * know if ext3_truncate() actually created an orphan record.
239 * (Well, we could do this if we need to, but heck - it works)
241 ext3_orphan_del(handle
, inode
);
242 EXT3_I(inode
)->i_dtime
= get_seconds();
245 * One subtle ordering requirement: if anything has gone wrong
246 * (transaction abort, IO errors, whatever), then we can still
247 * do these next steps (the fs will already have been marked as
248 * having errors), but we can't free the inode if the mark_dirty
251 if (ext3_mark_inode_dirty(handle
, inode
)) {
252 /* If that failed, just dquot_drop() and be done with that */
254 end_writeback(inode
);
256 ext3_xattr_delete_inode(handle
, inode
);
257 dquot_free_inode(inode
);
259 end_writeback(inode
);
260 ext3_free_inode(handle
, inode
);
262 ext3_journal_stop(handle
);
265 end_writeback(inode
);
272 struct buffer_head
*bh
;
275 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
277 p
->key
= *(p
->p
= v
);
281 static int verify_chain(Indirect
*from
, Indirect
*to
)
283 while (from
<= to
&& from
->key
== *from
->p
)
289 * ext3_block_to_path - parse the block number into array of offsets
290 * @inode: inode in question (we are only interested in its superblock)
291 * @i_block: block number to be parsed
292 * @offsets: array to store the offsets in
293 * @boundary: set this non-zero if the referred-to block is likely to be
294 * followed (on disk) by an indirect block.
296 * To store the locations of file's data ext3 uses a data structure common
297 * for UNIX filesystems - tree of pointers anchored in the inode, with
298 * data blocks at leaves and indirect blocks in intermediate nodes.
299 * This function translates the block number into path in that tree -
300 * return value is the path length and @offsets[n] is the offset of
301 * pointer to (n+1)th node in the nth one. If @block is out of range
302 * (negative or too large) warning is printed and zero returned.
304 * Note: function doesn't find node addresses, so no IO is needed. All
305 * we need to know is the capacity of indirect blocks (taken from the
310 * Portability note: the last comparison (check that we fit into triple
311 * indirect block) is spelled differently, because otherwise on an
312 * architecture with 32-bit longs and 8Kb pages we might get into trouble
313 * if our filesystem had 8Kb blocks. We might use long long, but that would
314 * kill us on x86. Oh, well, at least the sign propagation does not matter -
315 * i_block would have to be negative in the very beginning, so we would not
319 static int ext3_block_to_path(struct inode
*inode
,
320 long i_block
, int offsets
[4], int *boundary
)
322 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
323 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
324 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
325 indirect_blocks
= ptrs
,
326 double_blocks
= (1 << (ptrs_bits
* 2));
331 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
332 } else if (i_block
< direct_blocks
) {
333 offsets
[n
++] = i_block
;
334 final
= direct_blocks
;
335 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
336 offsets
[n
++] = EXT3_IND_BLOCK
;
337 offsets
[n
++] = i_block
;
339 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
340 offsets
[n
++] = EXT3_DIND_BLOCK
;
341 offsets
[n
++] = i_block
>> ptrs_bits
;
342 offsets
[n
++] = i_block
& (ptrs
- 1);
344 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
345 offsets
[n
++] = EXT3_TIND_BLOCK
;
346 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
347 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
348 offsets
[n
++] = i_block
& (ptrs
- 1);
351 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
354 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
359 * ext3_get_branch - read the chain of indirect blocks leading to data
360 * @inode: inode in question
361 * @depth: depth of the chain (1 - direct pointer, etc.)
362 * @offsets: offsets of pointers in inode/indirect blocks
363 * @chain: place to store the result
364 * @err: here we store the error value
366 * Function fills the array of triples <key, p, bh> and returns %NULL
367 * if everything went OK or the pointer to the last filled triple
368 * (incomplete one) otherwise. Upon the return chain[i].key contains
369 * the number of (i+1)-th block in the chain (as it is stored in memory,
370 * i.e. little-endian 32-bit), chain[i].p contains the address of that
371 * number (it points into struct inode for i==0 and into the bh->b_data
372 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
373 * block for i>0 and NULL for i==0. In other words, it holds the block
374 * numbers of the chain, addresses they were taken from (and where we can
375 * verify that chain did not change) and buffer_heads hosting these
378 * Function stops when it stumbles upon zero pointer (absent block)
379 * (pointer to last triple returned, *@err == 0)
380 * or when it gets an IO error reading an indirect block
381 * (ditto, *@err == -EIO)
382 * or when it notices that chain had been changed while it was reading
383 * (ditto, *@err == -EAGAIN)
384 * or when it reads all @depth-1 indirect blocks successfully and finds
385 * the whole chain, all way to the data (returns %NULL, *err == 0).
387 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
388 Indirect chain
[4], int *err
)
390 struct super_block
*sb
= inode
->i_sb
;
392 struct buffer_head
*bh
;
395 /* i_data is not going away, no lock needed */
396 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
400 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
403 /* Reader: pointers */
404 if (!verify_chain(chain
, p
))
406 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
424 * ext3_find_near - find a place for allocation with sufficient locality
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
445 struct ext3_inode_info
*ei
= EXT3_I(inode
);
446 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
448 ext3_fsblk_t bg_start
;
449 ext3_grpblk_t colour
;
451 /* Try to find previous block */
452 for (p
= ind
->p
- 1; p
>= start
; p
--) {
454 return le32_to_cpu(*p
);
457 /* No such thing, so let's try location of indirect block */
459 return ind
->bh
->b_blocknr
;
462 * It is going to be referred to from the inode itself? OK, just put it
463 * into the same cylinder group then.
465 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
466 colour
= (current
->pid
% 16) *
467 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
468 return bg_start
+ colour
;
472 * ext3_find_goal - find a preferred place for allocation.
474 * @block: block we want
475 * @partial: pointer to the last triple within a chain
477 * Normally this function find the preferred place for block allocation,
481 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
484 struct ext3_block_alloc_info
*block_i
;
486 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
489 * try the heuristic for sequential allocation,
490 * failing that at least try to get decent locality.
492 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
493 && (block_i
->last_alloc_physical_block
!= 0)) {
494 return block_i
->last_alloc_physical_block
+ 1;
497 return ext3_find_near(inode
, partial
);
501 * ext3_blks_to_allocate - Look up the block map and count the number
502 * of direct blocks need to be allocated for the given branch.
504 * @branch: chain of indirect blocks
505 * @k: number of blocks need for indirect blocks
506 * @blks: number of data blocks to be mapped.
507 * @blocks_to_boundary: the offset in the indirect block
509 * return the total number of blocks to be allocate, including the
510 * direct and indirect blocks.
512 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
513 int blocks_to_boundary
)
515 unsigned long count
= 0;
518 * Simple case, [t,d]Indirect block(s) has not allocated yet
519 * then it's clear blocks on that path have not allocated
522 /* right now we don't handle cross boundary allocation */
523 if (blks
< blocks_to_boundary
+ 1)
526 count
+= blocks_to_boundary
+ 1;
531 while (count
< blks
&& count
<= blocks_to_boundary
&&
532 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
539 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
540 * @handle: handle for this transaction
542 * @goal: preferred place for allocation
543 * @indirect_blks: the number of blocks need to allocate for indirect
545 * @blks: number of blocks need to allocated for direct blocks
546 * @new_blocks: on return it will store the new block numbers for
547 * the indirect blocks(if needed) and the first direct block,
548 * @err: here we store the error value
550 * return the number of direct blocks allocated
552 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
553 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
554 ext3_fsblk_t new_blocks
[4], int *err
)
557 unsigned long count
= 0;
559 ext3_fsblk_t current_block
= 0;
563 * Here we try to allocate the requested multiple blocks at once,
564 * on a best-effort basis.
565 * To build a branch, we should allocate blocks for
566 * the indirect blocks(if not allocated yet), and at least
567 * the first direct block of this branch. That's the
568 * minimum number of blocks need to allocate(required)
570 target
= blks
+ indirect_blks
;
574 /* allocating blocks for indirect blocks and direct blocks */
575 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
580 /* allocate blocks for indirect blocks */
581 while (index
< indirect_blks
&& count
) {
582 new_blocks
[index
++] = current_block
++;
590 /* save the new block number for the first direct block */
591 new_blocks
[index
] = current_block
;
593 /* total number of blocks allocated for direct blocks */
598 for (i
= 0; i
<index
; i
++)
599 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
604 * ext3_alloc_branch - allocate and set up a chain of blocks.
605 * @handle: handle for this transaction
607 * @indirect_blks: number of allocated indirect blocks
608 * @blks: number of allocated direct blocks
609 * @goal: preferred place for allocation
610 * @offsets: offsets (in the blocks) to store the pointers to next.
611 * @branch: place to store the chain in.
613 * This function allocates blocks, zeroes out all but the last one,
614 * links them into chain and (if we are synchronous) writes them to disk.
615 * In other words, it prepares a branch that can be spliced onto the
616 * inode. It stores the information about that chain in the branch[], in
617 * the same format as ext3_get_branch() would do. We are calling it after
618 * we had read the existing part of chain and partial points to the last
619 * triple of that (one with zero ->key). Upon the exit we have the same
620 * picture as after the successful ext3_get_block(), except that in one
621 * place chain is disconnected - *branch->p is still zero (we did not
622 * set the last link), but branch->key contains the number that should
623 * be placed into *branch->p to fill that gap.
625 * If allocation fails we free all blocks we've allocated (and forget
626 * their buffer_heads) and return the error value the from failed
627 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
628 * as described above and return 0.
630 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
631 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
632 int *offsets
, Indirect
*branch
)
634 int blocksize
= inode
->i_sb
->s_blocksize
;
637 struct buffer_head
*bh
;
639 ext3_fsblk_t new_blocks
[4];
640 ext3_fsblk_t current_block
;
642 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
643 *blks
, new_blocks
, &err
);
647 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
649 * metadata blocks and data blocks are allocated.
651 for (n
= 1; n
<= indirect_blks
; n
++) {
653 * Get buffer_head for parent block, zero it out
654 * and set the pointer to new one, then send
657 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
660 BUFFER_TRACE(bh
, "call get_create_access");
661 err
= ext3_journal_get_create_access(handle
, bh
);
668 memset(bh
->b_data
, 0, blocksize
);
669 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
670 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
671 *branch
[n
].p
= branch
[n
].key
;
672 if ( n
== indirect_blks
) {
673 current_block
= new_blocks
[n
];
675 * End of chain, update the last new metablock of
676 * the chain to point to the new allocated
677 * data blocks numbers
679 for (i
=1; i
< num
; i
++)
680 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
682 BUFFER_TRACE(bh
, "marking uptodate");
683 set_buffer_uptodate(bh
);
686 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
687 err
= ext3_journal_dirty_metadata(handle
, bh
);
694 /* Allocation failed, free what we already allocated */
695 for (i
= 1; i
<= n
; i
++) {
696 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
697 ext3_journal_forget(handle
, branch
[i
].bh
);
699 for (i
= 0; i
<indirect_blks
; i
++)
700 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
702 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
708 * ext3_splice_branch - splice the allocated branch onto inode.
709 * @handle: handle for this transaction
711 * @block: (logical) number of block we are adding
712 * @where: location of missing link
713 * @num: number of indirect blocks we are adding
714 * @blks: number of direct blocks we are adding
716 * This function fills the missing link and does all housekeeping needed in
717 * inode (->i_blocks, etc.). In case of success we end up with the full
718 * chain to new block and return 0.
720 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
721 long block
, Indirect
*where
, int num
, int blks
)
725 struct ext3_block_alloc_info
*block_i
;
726 ext3_fsblk_t current_block
;
727 struct ext3_inode_info
*ei
= EXT3_I(inode
);
729 block_i
= ei
->i_block_alloc_info
;
731 * If we're splicing into a [td]indirect block (as opposed to the
732 * inode) then we need to get write access to the [td]indirect block
736 BUFFER_TRACE(where
->bh
, "get_write_access");
737 err
= ext3_journal_get_write_access(handle
, where
->bh
);
743 *where
->p
= where
->key
;
746 * Update the host buffer_head or inode to point to more just allocated
747 * direct blocks blocks
749 if (num
== 0 && blks
> 1) {
750 current_block
= le32_to_cpu(where
->key
) + 1;
751 for (i
= 1; i
< blks
; i
++)
752 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
756 * update the most recently allocated logical & physical block
757 * in i_block_alloc_info, to assist find the proper goal block for next
761 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
762 block_i
->last_alloc_physical_block
=
763 le32_to_cpu(where
[num
].key
) + blks
- 1;
766 /* We are done with atomic stuff, now do the rest of housekeeping */
768 inode
->i_ctime
= CURRENT_TIME_SEC
;
769 ext3_mark_inode_dirty(handle
, inode
);
770 /* ext3_mark_inode_dirty already updated i_sync_tid */
771 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
773 /* had we spliced it onto indirect block? */
776 * If we spliced it onto an indirect block, we haven't
777 * altered the inode. Note however that if it is being spliced
778 * onto an indirect block at the very end of the file (the
779 * file is growing) then we *will* alter the inode to reflect
780 * the new i_size. But that is not done here - it is done in
781 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
783 jbd_debug(5, "splicing indirect only\n");
784 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
785 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
790 * OK, we spliced it into the inode itself on a direct block.
791 * Inode was dirtied above.
793 jbd_debug(5, "splicing direct\n");
798 for (i
= 1; i
<= num
; i
++) {
799 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
800 ext3_journal_forget(handle
, where
[i
].bh
);
801 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
803 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
809 * Allocation strategy is simple: if we have to allocate something, we will
810 * have to go the whole way to leaf. So let's do it before attaching anything
811 * to tree, set linkage between the newborn blocks, write them if sync is
812 * required, recheck the path, free and repeat if check fails, otherwise
813 * set the last missing link (that will protect us from any truncate-generated
814 * removals - all blocks on the path are immune now) and possibly force the
815 * write on the parent block.
816 * That has a nice additional property: no special recovery from the failed
817 * allocations is needed - we simply release blocks and do not touch anything
818 * reachable from inode.
820 * `handle' can be NULL if create == 0.
822 * The BKL may not be held on entry here. Be sure to take it early.
823 * return > 0, # of blocks mapped or allocated.
824 * return = 0, if plain lookup failed.
825 * return < 0, error case.
827 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
828 sector_t iblock
, unsigned long maxblocks
,
829 struct buffer_head
*bh_result
,
838 int blocks_to_boundary
= 0;
840 struct ext3_inode_info
*ei
= EXT3_I(inode
);
842 ext3_fsblk_t first_block
= 0;
845 J_ASSERT(handle
!= NULL
|| create
== 0);
846 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
851 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
853 /* Simplest case - block found, no allocation needed */
855 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
856 clear_buffer_new(bh_result
);
859 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
862 if (!verify_chain(chain
, chain
+ depth
- 1)) {
864 * Indirect block might be removed by
865 * truncate while we were reading it.
866 * Handling of that case: forget what we've
867 * got now. Flag the err as EAGAIN, so it
874 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
876 if (blk
== first_block
+ count
)
885 /* Next simple case - plain lookup or failed read of indirect block */
886 if (!create
|| err
== -EIO
)
889 mutex_lock(&ei
->truncate_mutex
);
892 * If the indirect block is missing while we are reading
893 * the chain(ext3_get_branch() returns -EAGAIN err), or
894 * if the chain has been changed after we grab the semaphore,
895 * (either because another process truncated this branch, or
896 * another get_block allocated this branch) re-grab the chain to see if
897 * the request block has been allocated or not.
899 * Since we already block the truncate/other get_block
900 * at this point, we will have the current copy of the chain when we
901 * splice the branch into the tree.
903 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
904 while (partial
> chain
) {
908 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
911 mutex_unlock(&ei
->truncate_mutex
);
914 clear_buffer_new(bh_result
);
920 * Okay, we need to do block allocation. Lazily initialize the block
921 * allocation info here if necessary
923 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
924 ext3_init_block_alloc_info(inode
);
926 goal
= ext3_find_goal(inode
, iblock
, partial
);
928 /* the number of blocks need to allocate for [d,t]indirect blocks */
929 indirect_blks
= (chain
+ depth
) - partial
- 1;
932 * Next look up the indirect map to count the totoal number of
933 * direct blocks to allocate for this branch.
935 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
936 maxblocks
, blocks_to_boundary
);
938 * Block out ext3_truncate while we alter the tree
940 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
941 offsets
+ (partial
- chain
), partial
);
944 * The ext3_splice_branch call will free and forget any buffers
945 * on the new chain if there is a failure, but that risks using
946 * up transaction credits, especially for bitmaps where the
947 * credits cannot be returned. Can we handle this somehow? We
948 * may need to return -EAGAIN upwards in the worst case. --sct
951 err
= ext3_splice_branch(handle
, inode
, iblock
,
952 partial
, indirect_blks
, count
);
953 mutex_unlock(&ei
->truncate_mutex
);
957 set_buffer_new(bh_result
);
959 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
960 if (count
> blocks_to_boundary
)
961 set_buffer_boundary(bh_result
);
963 /* Clean up and exit */
964 partial
= chain
+ depth
- 1; /* the whole chain */
966 while (partial
> chain
) {
967 BUFFER_TRACE(partial
->bh
, "call brelse");
971 BUFFER_TRACE(bh_result
, "returned");
976 /* Maximum number of blocks we map for direct IO at once. */
977 #define DIO_MAX_BLOCKS 4096
979 * Number of credits we need for writing DIO_MAX_BLOCKS:
980 * We need sb + group descriptor + bitmap + inode -> 4
981 * For B blocks with A block pointers per block we need:
982 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
983 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
985 #define DIO_CREDITS 25
987 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
988 struct buffer_head
*bh_result
, int create
)
990 handle_t
*handle
= ext3_journal_current_handle();
991 int ret
= 0, started
= 0;
992 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
994 if (create
&& !handle
) { /* Direct IO write... */
995 if (max_blocks
> DIO_MAX_BLOCKS
)
996 max_blocks
= DIO_MAX_BLOCKS
;
997 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
998 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
));
999 if (IS_ERR(handle
)) {
1000 ret
= PTR_ERR(handle
);
1006 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
1007 max_blocks
, bh_result
, create
);
1009 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1013 ext3_journal_stop(handle
);
1018 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1021 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
1026 * `handle' can be NULL if create is zero
1028 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
1029 long block
, int create
, int *errp
)
1031 struct buffer_head dummy
;
1034 J_ASSERT(handle
!= NULL
|| create
== 0);
1037 dummy
.b_blocknr
= -1000;
1038 buffer_trace_init(&dummy
.b_history
);
1039 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1042 * ext3_get_blocks_handle() returns number of blocks
1043 * mapped. 0 in case of a HOLE.
1051 if (!err
&& buffer_mapped(&dummy
)) {
1052 struct buffer_head
*bh
;
1053 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1058 if (buffer_new(&dummy
)) {
1059 J_ASSERT(create
!= 0);
1060 J_ASSERT(handle
!= NULL
);
1063 * Now that we do not always journal data, we should
1064 * keep in mind whether this should always journal the
1065 * new buffer as metadata. For now, regular file
1066 * writes use ext3_get_block instead, so it's not a
1070 BUFFER_TRACE(bh
, "call get_create_access");
1071 fatal
= ext3_journal_get_create_access(handle
, bh
);
1072 if (!fatal
&& !buffer_uptodate(bh
)) {
1073 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1074 set_buffer_uptodate(bh
);
1077 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1078 err
= ext3_journal_dirty_metadata(handle
, bh
);
1082 BUFFER_TRACE(bh
, "not a new buffer");
1095 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1096 int block
, int create
, int *err
)
1098 struct buffer_head
* bh
;
1100 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1103 if (buffer_uptodate(bh
))
1105 ll_rw_block(READ_META
, 1, &bh
);
1107 if (buffer_uptodate(bh
))
1114 static int walk_page_buffers( handle_t
*handle
,
1115 struct buffer_head
*head
,
1119 int (*fn
)( handle_t
*handle
,
1120 struct buffer_head
*bh
))
1122 struct buffer_head
*bh
;
1123 unsigned block_start
, block_end
;
1124 unsigned blocksize
= head
->b_size
;
1126 struct buffer_head
*next
;
1128 for ( bh
= head
, block_start
= 0;
1129 ret
== 0 && (bh
!= head
|| !block_start
);
1130 block_start
= block_end
, bh
= next
)
1132 next
= bh
->b_this_page
;
1133 block_end
= block_start
+ blocksize
;
1134 if (block_end
<= from
|| block_start
>= to
) {
1135 if (partial
&& !buffer_uptodate(bh
))
1139 err
= (*fn
)(handle
, bh
);
1147 * To preserve ordering, it is essential that the hole instantiation and
1148 * the data write be encapsulated in a single transaction. We cannot
1149 * close off a transaction and start a new one between the ext3_get_block()
1150 * and the commit_write(). So doing the journal_start at the start of
1151 * prepare_write() is the right place.
1153 * Also, this function can nest inside ext3_writepage() ->
1154 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1155 * has generated enough buffer credits to do the whole page. So we won't
1156 * block on the journal in that case, which is good, because the caller may
1159 * By accident, ext3 can be reentered when a transaction is open via
1160 * quota file writes. If we were to commit the transaction while thus
1161 * reentered, there can be a deadlock - we would be holding a quota
1162 * lock, and the commit would never complete if another thread had a
1163 * transaction open and was blocking on the quota lock - a ranking
1166 * So what we do is to rely on the fact that journal_stop/journal_start
1167 * will _not_ run commit under these circumstances because handle->h_ref
1168 * is elevated. We'll still have enough credits for the tiny quotafile
1171 static int do_journal_get_write_access(handle_t
*handle
,
1172 struct buffer_head
*bh
)
1174 int dirty
= buffer_dirty(bh
);
1177 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1180 * __block_prepare_write() could have dirtied some buffers. Clean
1181 * the dirty bit as jbd2_journal_get_write_access() could complain
1182 * otherwise about fs integrity issues. Setting of the dirty bit
1183 * by __block_prepare_write() isn't a real problem here as we clear
1184 * the bit before releasing a page lock and thus writeback cannot
1185 * ever write the buffer.
1188 clear_buffer_dirty(bh
);
1189 ret
= ext3_journal_get_write_access(handle
, bh
);
1191 ret
= ext3_journal_dirty_metadata(handle
, bh
);
1196 * Truncate blocks that were not used by write. We have to truncate the
1197 * pagecache as well so that corresponding buffers get properly unmapped.
1199 static void ext3_truncate_failed_write(struct inode
*inode
)
1201 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1202 ext3_truncate(inode
);
1205 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1206 loff_t pos
, unsigned len
, unsigned flags
,
1207 struct page
**pagep
, void **fsdata
)
1209 struct inode
*inode
= mapping
->host
;
1216 /* Reserve one block more for addition to orphan list in case
1217 * we allocate blocks but write fails for some reason */
1218 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1220 index
= pos
>> PAGE_CACHE_SHIFT
;
1221 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1225 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1230 handle
= ext3_journal_start(inode
, needed_blocks
);
1231 if (IS_ERR(handle
)) {
1233 page_cache_release(page
);
1234 ret
= PTR_ERR(handle
);
1237 ret
= __block_write_begin(page
, pos
, len
, ext3_get_block
);
1239 goto write_begin_failed
;
1241 if (ext3_should_journal_data(inode
)) {
1242 ret
= walk_page_buffers(handle
, page_buffers(page
),
1243 from
, to
, NULL
, do_journal_get_write_access
);
1248 * block_write_begin may have instantiated a few blocks
1249 * outside i_size. Trim these off again. Don't need
1250 * i_size_read because we hold i_mutex.
1252 * Add inode to orphan list in case we crash before truncate
1253 * finishes. Do this only if ext3_can_truncate() agrees so
1254 * that orphan processing code is happy.
1256 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1257 ext3_orphan_add(handle
, inode
);
1258 ext3_journal_stop(handle
);
1260 page_cache_release(page
);
1261 if (pos
+ len
> inode
->i_size
)
1262 ext3_truncate_failed_write(inode
);
1264 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1271 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1273 int err
= journal_dirty_data(handle
, bh
);
1275 ext3_journal_abort_handle(__func__
, __func__
,
1280 /* For ordered writepage and write_end functions */
1281 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1284 * Write could have mapped the buffer but it didn't copy the data in
1285 * yet. So avoid filing such buffer into a transaction.
1287 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1288 return ext3_journal_dirty_data(handle
, bh
);
1292 /* For write_end() in data=journal mode */
1293 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1295 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1297 set_buffer_uptodate(bh
);
1298 return ext3_journal_dirty_metadata(handle
, bh
);
1302 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1303 * for the whole page but later we failed to copy the data in. Update inode
1304 * size according to what we managed to copy. The rest is going to be
1305 * truncated in write_end function.
1307 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1309 /* What matters to us is i_disksize. We don't write i_size anywhere */
1310 if (pos
+ copied
> inode
->i_size
)
1311 i_size_write(inode
, pos
+ copied
);
1312 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1313 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1314 mark_inode_dirty(inode
);
1319 * We need to pick up the new inode size which generic_commit_write gave us
1320 * `file' can be NULL - eg, when called from page_symlink().
1322 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1323 * buffers are managed internally.
1325 static int ext3_ordered_write_end(struct file
*file
,
1326 struct address_space
*mapping
,
1327 loff_t pos
, unsigned len
, unsigned copied
,
1328 struct page
*page
, void *fsdata
)
1330 handle_t
*handle
= ext3_journal_current_handle();
1331 struct inode
*inode
= file
->f_mapping
->host
;
1335 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1337 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1339 ret
= walk_page_buffers(handle
, page_buffers(page
),
1340 from
, to
, NULL
, journal_dirty_data_fn
);
1343 update_file_sizes(inode
, pos
, copied
);
1345 * There may be allocated blocks outside of i_size because
1346 * we failed to copy some data. Prepare for truncate.
1348 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1349 ext3_orphan_add(handle
, inode
);
1350 ret2
= ext3_journal_stop(handle
);
1354 page_cache_release(page
);
1356 if (pos
+ len
> inode
->i_size
)
1357 ext3_truncate_failed_write(inode
);
1358 return ret
? ret
: copied
;
1361 static int ext3_writeback_write_end(struct file
*file
,
1362 struct address_space
*mapping
,
1363 loff_t pos
, unsigned len
, unsigned copied
,
1364 struct page
*page
, void *fsdata
)
1366 handle_t
*handle
= ext3_journal_current_handle();
1367 struct inode
*inode
= file
->f_mapping
->host
;
1370 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1371 update_file_sizes(inode
, pos
, copied
);
1373 * There may be allocated blocks outside of i_size because
1374 * we failed to copy some data. Prepare for truncate.
1376 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1377 ext3_orphan_add(handle
, inode
);
1378 ret
= ext3_journal_stop(handle
);
1380 page_cache_release(page
);
1382 if (pos
+ len
> inode
->i_size
)
1383 ext3_truncate_failed_write(inode
);
1384 return ret
? ret
: copied
;
1387 static int ext3_journalled_write_end(struct file
*file
,
1388 struct address_space
*mapping
,
1389 loff_t pos
, unsigned len
, unsigned copied
,
1390 struct page
*page
, void *fsdata
)
1392 handle_t
*handle
= ext3_journal_current_handle();
1393 struct inode
*inode
= mapping
->host
;
1398 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1402 if (!PageUptodate(page
))
1404 page_zero_new_buffers(page
, from
+ copied
, to
);
1408 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1409 to
, &partial
, write_end_fn
);
1411 SetPageUptodate(page
);
1413 if (pos
+ copied
> inode
->i_size
)
1414 i_size_write(inode
, pos
+ copied
);
1416 * There may be allocated blocks outside of i_size because
1417 * we failed to copy some data. Prepare for truncate.
1419 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1420 ext3_orphan_add(handle
, inode
);
1421 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1422 if (inode
->i_size
> EXT3_I(inode
)->i_disksize
) {
1423 EXT3_I(inode
)->i_disksize
= inode
->i_size
;
1424 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1429 ret2
= ext3_journal_stop(handle
);
1433 page_cache_release(page
);
1435 if (pos
+ len
> inode
->i_size
)
1436 ext3_truncate_failed_write(inode
);
1437 return ret
? ret
: copied
;
1441 * bmap() is special. It gets used by applications such as lilo and by
1442 * the swapper to find the on-disk block of a specific piece of data.
1444 * Naturally, this is dangerous if the block concerned is still in the
1445 * journal. If somebody makes a swapfile on an ext3 data-journaling
1446 * filesystem and enables swap, then they may get a nasty shock when the
1447 * data getting swapped to that swapfile suddenly gets overwritten by
1448 * the original zero's written out previously to the journal and
1449 * awaiting writeback in the kernel's buffer cache.
1451 * So, if we see any bmap calls here on a modified, data-journaled file,
1452 * take extra steps to flush any blocks which might be in the cache.
1454 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1456 struct inode
*inode
= mapping
->host
;
1460 if (ext3_test_inode_state(inode
, EXT3_STATE_JDATA
)) {
1462 * This is a REALLY heavyweight approach, but the use of
1463 * bmap on dirty files is expected to be extremely rare:
1464 * only if we run lilo or swapon on a freshly made file
1465 * do we expect this to happen.
1467 * (bmap requires CAP_SYS_RAWIO so this does not
1468 * represent an unprivileged user DOS attack --- we'd be
1469 * in trouble if mortal users could trigger this path at
1472 * NB. EXT3_STATE_JDATA is not set on files other than
1473 * regular files. If somebody wants to bmap a directory
1474 * or symlink and gets confused because the buffer
1475 * hasn't yet been flushed to disk, they deserve
1476 * everything they get.
1479 ext3_clear_inode_state(inode
, EXT3_STATE_JDATA
);
1480 journal
= EXT3_JOURNAL(inode
);
1481 journal_lock_updates(journal
);
1482 err
= journal_flush(journal
);
1483 journal_unlock_updates(journal
);
1489 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1492 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1498 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1504 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1506 return !buffer_mapped(bh
);
1510 * Note that we always start a transaction even if we're not journalling
1511 * data. This is to preserve ordering: any hole instantiation within
1512 * __block_write_full_page -> ext3_get_block() should be journalled
1513 * along with the data so we don't crash and then get metadata which
1514 * refers to old data.
1516 * In all journalling modes block_write_full_page() will start the I/O.
1520 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1525 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1527 * Same applies to ext3_get_block(). We will deadlock on various things like
1528 * lock_journal and i_truncate_mutex.
1530 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1533 * 16May01: If we're reentered then journal_current_handle() will be
1534 * non-zero. We simply *return*.
1536 * 1 July 2001: @@@ FIXME:
1537 * In journalled data mode, a data buffer may be metadata against the
1538 * current transaction. But the same file is part of a shared mapping
1539 * and someone does a writepage() on it.
1541 * We will move the buffer onto the async_data list, but *after* it has
1542 * been dirtied. So there's a small window where we have dirty data on
1545 * Note that this only applies to the last partial page in the file. The
1546 * bit which block_write_full_page() uses prepare/commit for. (That's
1547 * broken code anyway: it's wrong for msync()).
1549 * It's a rare case: affects the final partial page, for journalled data
1550 * where the file is subject to bith write() and writepage() in the same
1551 * transction. To fix it we'll need a custom block_write_full_page().
1552 * We'll probably need that anyway for journalling writepage() output.
1554 * We don't honour synchronous mounts for writepage(). That would be
1555 * disastrous. Any write() or metadata operation will sync the fs for
1558 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1559 * we don't need to open a transaction here.
1561 static int ext3_ordered_writepage(struct page
*page
,
1562 struct writeback_control
*wbc
)
1564 struct inode
*inode
= page
->mapping
->host
;
1565 struct buffer_head
*page_bufs
;
1566 handle_t
*handle
= NULL
;
1570 J_ASSERT(PageLocked(page
));
1572 * We don't want to warn for emergency remount. The condition is
1573 * ordered to avoid dereferencing inode->i_sb in non-error case to
1576 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1577 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1580 * We give up here if we're reentered, because it might be for a
1581 * different filesystem.
1583 if (ext3_journal_current_handle())
1586 if (!page_has_buffers(page
)) {
1587 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1588 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1589 page_bufs
= page_buffers(page
);
1591 page_bufs
= page_buffers(page
);
1592 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1593 NULL
, buffer_unmapped
)) {
1594 /* Provide NULL get_block() to catch bugs if buffers
1595 * weren't really mapped */
1596 return block_write_full_page(page
, NULL
, wbc
);
1599 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1601 if (IS_ERR(handle
)) {
1602 ret
= PTR_ERR(handle
);
1606 walk_page_buffers(handle
, page_bufs
, 0,
1607 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1609 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1612 * The page can become unlocked at any point now, and
1613 * truncate can then come in and change things. So we
1614 * can't touch *page from now on. But *page_bufs is
1615 * safe due to elevated refcount.
1619 * And attach them to the current transaction. But only if
1620 * block_write_full_page() succeeded. Otherwise they are unmapped,
1621 * and generally junk.
1624 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1625 NULL
, journal_dirty_data_fn
);
1629 walk_page_buffers(handle
, page_bufs
, 0,
1630 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1631 err
= ext3_journal_stop(handle
);
1637 redirty_page_for_writepage(wbc
, page
);
1642 static int ext3_writeback_writepage(struct page
*page
,
1643 struct writeback_control
*wbc
)
1645 struct inode
*inode
= page
->mapping
->host
;
1646 handle_t
*handle
= NULL
;
1650 J_ASSERT(PageLocked(page
));
1652 * We don't want to warn for emergency remount. The condition is
1653 * ordered to avoid dereferencing inode->i_sb in non-error case to
1656 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1657 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1659 if (ext3_journal_current_handle())
1662 if (page_has_buffers(page
)) {
1663 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1664 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1665 /* Provide NULL get_block() to catch bugs if buffers
1666 * weren't really mapped */
1667 return block_write_full_page(page
, NULL
, wbc
);
1671 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1672 if (IS_ERR(handle
)) {
1673 ret
= PTR_ERR(handle
);
1677 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1679 err
= ext3_journal_stop(handle
);
1685 redirty_page_for_writepage(wbc
, page
);
1690 static int ext3_journalled_writepage(struct page
*page
,
1691 struct writeback_control
*wbc
)
1693 struct inode
*inode
= page
->mapping
->host
;
1694 handle_t
*handle
= NULL
;
1698 J_ASSERT(PageLocked(page
));
1700 * We don't want to warn for emergency remount. The condition is
1701 * ordered to avoid dereferencing inode->i_sb in non-error case to
1704 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1705 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1707 if (ext3_journal_current_handle())
1710 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1711 if (IS_ERR(handle
)) {
1712 ret
= PTR_ERR(handle
);
1716 if (!page_has_buffers(page
) || PageChecked(page
)) {
1718 * It's mmapped pagecache. Add buffers and journal it. There
1719 * doesn't seem much point in redirtying the page here.
1721 ClearPageChecked(page
);
1722 ret
= __block_write_begin(page
, 0, PAGE_CACHE_SIZE
,
1725 ext3_journal_stop(handle
);
1728 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1729 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1731 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1732 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1735 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1739 * It may be a page full of checkpoint-mode buffers. We don't
1740 * really know unless we go poke around in the buffer_heads.
1741 * But block_write_full_page will do the right thing.
1743 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1745 err
= ext3_journal_stop(handle
);
1752 redirty_page_for_writepage(wbc
, page
);
1758 static int ext3_readpage(struct file
*file
, struct page
*page
)
1760 return mpage_readpage(page
, ext3_get_block
);
1764 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1765 struct list_head
*pages
, unsigned nr_pages
)
1767 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1770 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1772 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1775 * If it's a full truncate we just forget about the pending dirtying
1778 ClearPageChecked(page
);
1780 journal_invalidatepage(journal
, page
, offset
);
1783 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1785 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1787 WARN_ON(PageChecked(page
));
1788 if (!page_has_buffers(page
))
1790 return journal_try_to_free_buffers(journal
, page
, wait
);
1794 * If the O_DIRECT write will extend the file then add this inode to the
1795 * orphan list. So recovery will truncate it back to the original size
1796 * if the machine crashes during the write.
1798 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1799 * crashes then stale disk data _may_ be exposed inside the file. But current
1800 * VFS code falls back into buffered path in that case so we are safe.
1802 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1803 const struct iovec
*iov
, loff_t offset
,
1804 unsigned long nr_segs
)
1806 struct file
*file
= iocb
->ki_filp
;
1807 struct inode
*inode
= file
->f_mapping
->host
;
1808 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1812 size_t count
= iov_length(iov
, nr_segs
);
1816 loff_t final_size
= offset
+ count
;
1818 if (final_size
> inode
->i_size
) {
1819 /* Credits for sb + inode write */
1820 handle
= ext3_journal_start(inode
, 2);
1821 if (IS_ERR(handle
)) {
1822 ret
= PTR_ERR(handle
);
1825 ret
= ext3_orphan_add(handle
, inode
);
1827 ext3_journal_stop(handle
);
1831 ei
->i_disksize
= inode
->i_size
;
1832 ext3_journal_stop(handle
);
1837 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1839 ext3_get_block
, NULL
);
1841 * In case of error extending write may have instantiated a few
1842 * blocks outside i_size. Trim these off again.
1844 if (unlikely((rw
& WRITE
) && ret
< 0)) {
1845 loff_t isize
= i_size_read(inode
);
1846 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
1849 vmtruncate(inode
, isize
);
1851 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1857 /* Credits for sb + inode write */
1858 handle
= ext3_journal_start(inode
, 2);
1859 if (IS_ERR(handle
)) {
1860 /* This is really bad luck. We've written the data
1861 * but cannot extend i_size. Truncate allocated blocks
1862 * and pretend the write failed... */
1863 ext3_truncate(inode
);
1864 ret
= PTR_ERR(handle
);
1868 ext3_orphan_del(handle
, inode
);
1870 loff_t end
= offset
+ ret
;
1871 if (end
> inode
->i_size
) {
1872 ei
->i_disksize
= end
;
1873 i_size_write(inode
, end
);
1875 * We're going to return a positive `ret'
1876 * here due to non-zero-length I/O, so there's
1877 * no way of reporting error returns from
1878 * ext3_mark_inode_dirty() to userspace. So
1881 ext3_mark_inode_dirty(handle
, inode
);
1884 err
= ext3_journal_stop(handle
);
1893 * Pages can be marked dirty completely asynchronously from ext3's journalling
1894 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1895 * much here because ->set_page_dirty is called under VFS locks. The page is
1896 * not necessarily locked.
1898 * We cannot just dirty the page and leave attached buffers clean, because the
1899 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1900 * or jbddirty because all the journalling code will explode.
1902 * So what we do is to mark the page "pending dirty" and next time writepage
1903 * is called, propagate that into the buffers appropriately.
1905 static int ext3_journalled_set_page_dirty(struct page
*page
)
1907 SetPageChecked(page
);
1908 return __set_page_dirty_nobuffers(page
);
1911 static const struct address_space_operations ext3_ordered_aops
= {
1912 .readpage
= ext3_readpage
,
1913 .readpages
= ext3_readpages
,
1914 .writepage
= ext3_ordered_writepage
,
1915 .write_begin
= ext3_write_begin
,
1916 .write_end
= ext3_ordered_write_end
,
1918 .invalidatepage
= ext3_invalidatepage
,
1919 .releasepage
= ext3_releasepage
,
1920 .direct_IO
= ext3_direct_IO
,
1921 .migratepage
= buffer_migrate_page
,
1922 .is_partially_uptodate
= block_is_partially_uptodate
,
1923 .error_remove_page
= generic_error_remove_page
,
1926 static const struct address_space_operations ext3_writeback_aops
= {
1927 .readpage
= ext3_readpage
,
1928 .readpages
= ext3_readpages
,
1929 .writepage
= ext3_writeback_writepage
,
1930 .write_begin
= ext3_write_begin
,
1931 .write_end
= ext3_writeback_write_end
,
1933 .invalidatepage
= ext3_invalidatepage
,
1934 .releasepage
= ext3_releasepage
,
1935 .direct_IO
= ext3_direct_IO
,
1936 .migratepage
= buffer_migrate_page
,
1937 .is_partially_uptodate
= block_is_partially_uptodate
,
1938 .error_remove_page
= generic_error_remove_page
,
1941 static const struct address_space_operations ext3_journalled_aops
= {
1942 .readpage
= ext3_readpage
,
1943 .readpages
= ext3_readpages
,
1944 .writepage
= ext3_journalled_writepage
,
1945 .write_begin
= ext3_write_begin
,
1946 .write_end
= ext3_journalled_write_end
,
1947 .set_page_dirty
= ext3_journalled_set_page_dirty
,
1949 .invalidatepage
= ext3_invalidatepage
,
1950 .releasepage
= ext3_releasepage
,
1951 .is_partially_uptodate
= block_is_partially_uptodate
,
1952 .error_remove_page
= generic_error_remove_page
,
1955 void ext3_set_aops(struct inode
*inode
)
1957 if (ext3_should_order_data(inode
))
1958 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
1959 else if (ext3_should_writeback_data(inode
))
1960 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
1962 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
1966 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1967 * up to the end of the block which corresponds to `from'.
1968 * This required during truncate. We need to physically zero the tail end
1969 * of that block so it doesn't yield old data if the file is later grown.
1971 static int ext3_block_truncate_page(handle_t
*handle
, struct page
*page
,
1972 struct address_space
*mapping
, loff_t from
)
1974 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1975 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1976 unsigned blocksize
, iblock
, length
, pos
;
1977 struct inode
*inode
= mapping
->host
;
1978 struct buffer_head
*bh
;
1981 blocksize
= inode
->i_sb
->s_blocksize
;
1982 length
= blocksize
- (offset
& (blocksize
- 1));
1983 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1985 if (!page_has_buffers(page
))
1986 create_empty_buffers(page
, blocksize
, 0);
1988 /* Find the buffer that contains "offset" */
1989 bh
= page_buffers(page
);
1991 while (offset
>= pos
) {
1992 bh
= bh
->b_this_page
;
1998 if (buffer_freed(bh
)) {
1999 BUFFER_TRACE(bh
, "freed: skip");
2003 if (!buffer_mapped(bh
)) {
2004 BUFFER_TRACE(bh
, "unmapped");
2005 ext3_get_block(inode
, iblock
, bh
, 0);
2006 /* unmapped? It's a hole - nothing to do */
2007 if (!buffer_mapped(bh
)) {
2008 BUFFER_TRACE(bh
, "still unmapped");
2013 /* Ok, it's mapped. Make sure it's up-to-date */
2014 if (PageUptodate(page
))
2015 set_buffer_uptodate(bh
);
2017 if (!buffer_uptodate(bh
)) {
2019 ll_rw_block(READ
, 1, &bh
);
2021 /* Uhhuh. Read error. Complain and punt. */
2022 if (!buffer_uptodate(bh
))
2026 if (ext3_should_journal_data(inode
)) {
2027 BUFFER_TRACE(bh
, "get write access");
2028 err
= ext3_journal_get_write_access(handle
, bh
);
2033 zero_user(page
, offset
, length
);
2034 BUFFER_TRACE(bh
, "zeroed end of block");
2037 if (ext3_should_journal_data(inode
)) {
2038 err
= ext3_journal_dirty_metadata(handle
, bh
);
2040 if (ext3_should_order_data(inode
))
2041 err
= ext3_journal_dirty_data(handle
, bh
);
2042 mark_buffer_dirty(bh
);
2047 page_cache_release(page
);
2052 * Probably it should be a library function... search for first non-zero word
2053 * or memcmp with zero_page, whatever is better for particular architecture.
2056 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2065 * ext3_find_shared - find the indirect blocks for partial truncation.
2066 * @inode: inode in question
2067 * @depth: depth of the affected branch
2068 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2069 * @chain: place to store the pointers to partial indirect blocks
2070 * @top: place to the (detached) top of branch
2072 * This is a helper function used by ext3_truncate().
2074 * When we do truncate() we may have to clean the ends of several
2075 * indirect blocks but leave the blocks themselves alive. Block is
2076 * partially truncated if some data below the new i_size is referred
2077 * from it (and it is on the path to the first completely truncated
2078 * data block, indeed). We have to free the top of that path along
2079 * with everything to the right of the path. Since no allocation
2080 * past the truncation point is possible until ext3_truncate()
2081 * finishes, we may safely do the latter, but top of branch may
2082 * require special attention - pageout below the truncation point
2083 * might try to populate it.
2085 * We atomically detach the top of branch from the tree, store the
2086 * block number of its root in *@top, pointers to buffer_heads of
2087 * partially truncated blocks - in @chain[].bh and pointers to
2088 * their last elements that should not be removed - in
2089 * @chain[].p. Return value is the pointer to last filled element
2092 * The work left to caller to do the actual freeing of subtrees:
2093 * a) free the subtree starting from *@top
2094 * b) free the subtrees whose roots are stored in
2095 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2096 * c) free the subtrees growing from the inode past the @chain[0].
2097 * (no partially truncated stuff there). */
2099 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2100 int offsets
[4], Indirect chain
[4], __le32
*top
)
2102 Indirect
*partial
, *p
;
2106 /* Make k index the deepest non-null offset + 1 */
2107 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2109 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2110 /* Writer: pointers */
2112 partial
= chain
+ k
-1;
2114 * If the branch acquired continuation since we've looked at it -
2115 * fine, it should all survive and (new) top doesn't belong to us.
2117 if (!partial
->key
&& *partial
->p
)
2120 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2123 * OK, we've found the last block that must survive. The rest of our
2124 * branch should be detached before unlocking. However, if that rest
2125 * of branch is all ours and does not grow immediately from the inode
2126 * it's easier to cheat and just decrement partial->p.
2128 if (p
== chain
+ k
- 1 && p
> chain
) {
2132 /* Nope, don't do this in ext3. Must leave the tree intact */
2139 while(partial
> p
) {
2140 brelse(partial
->bh
);
2148 * Zero a number of block pointers in either an inode or an indirect block.
2149 * If we restart the transaction we must again get write access to the
2150 * indirect block for further modification.
2152 * We release `count' blocks on disk, but (last - first) may be greater
2153 * than `count' because there can be holes in there.
2155 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2156 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2157 unsigned long count
, __le32
*first
, __le32
*last
)
2160 if (try_to_extend_transaction(handle
, inode
)) {
2162 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2163 if (ext3_journal_dirty_metadata(handle
, bh
))
2166 ext3_mark_inode_dirty(handle
, inode
);
2167 truncate_restart_transaction(handle
, inode
);
2169 BUFFER_TRACE(bh
, "retaking write access");
2170 if (ext3_journal_get_write_access(handle
, bh
))
2176 * Any buffers which are on the journal will be in memory. We find
2177 * them on the hash table so journal_revoke() will run journal_forget()
2178 * on them. We've already detached each block from the file, so
2179 * bforget() in journal_forget() should be safe.
2181 * AKPM: turn on bforget in journal_forget()!!!
2183 for (p
= first
; p
< last
; p
++) {
2184 u32 nr
= le32_to_cpu(*p
);
2186 struct buffer_head
*bh
;
2189 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2190 ext3_forget(handle
, 0, inode
, bh
, nr
);
2194 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2198 * ext3_free_data - free a list of data blocks
2199 * @handle: handle for this transaction
2200 * @inode: inode we are dealing with
2201 * @this_bh: indirect buffer_head which contains *@first and *@last
2202 * @first: array of block numbers
2203 * @last: points immediately past the end of array
2205 * We are freeing all blocks referred from that array (numbers are stored as
2206 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2208 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2209 * blocks are contiguous then releasing them at one time will only affect one
2210 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2211 * actually use a lot of journal space.
2213 * @this_bh will be %NULL if @first and @last point into the inode's direct
2216 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2217 struct buffer_head
*this_bh
,
2218 __le32
*first
, __le32
*last
)
2220 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2221 unsigned long count
= 0; /* Number of blocks in the run */
2222 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2225 ext3_fsblk_t nr
; /* Current block # */
2226 __le32
*p
; /* Pointer into inode/ind
2227 for current block */
2230 if (this_bh
) { /* For indirect block */
2231 BUFFER_TRACE(this_bh
, "get_write_access");
2232 err
= ext3_journal_get_write_access(handle
, this_bh
);
2233 /* Important: if we can't update the indirect pointers
2234 * to the blocks, we can't free them. */
2239 for (p
= first
; p
< last
; p
++) {
2240 nr
= le32_to_cpu(*p
);
2242 /* accumulate blocks to free if they're contiguous */
2245 block_to_free_p
= p
;
2247 } else if (nr
== block_to_free
+ count
) {
2250 ext3_clear_blocks(handle
, inode
, this_bh
,
2252 count
, block_to_free_p
, p
);
2254 block_to_free_p
= p
;
2261 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2262 count
, block_to_free_p
, p
);
2265 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2268 * The buffer head should have an attached journal head at this
2269 * point. However, if the data is corrupted and an indirect
2270 * block pointed to itself, it would have been detached when
2271 * the block was cleared. Check for this instead of OOPSing.
2274 ext3_journal_dirty_metadata(handle
, this_bh
);
2276 ext3_error(inode
->i_sb
, "ext3_free_data",
2277 "circular indirect block detected, "
2278 "inode=%lu, block=%llu",
2280 (unsigned long long)this_bh
->b_blocknr
);
2285 * ext3_free_branches - free an array of branches
2286 * @handle: JBD handle for this transaction
2287 * @inode: inode we are dealing with
2288 * @parent_bh: the buffer_head which contains *@first and *@last
2289 * @first: array of block numbers
2290 * @last: pointer immediately past the end of array
2291 * @depth: depth of the branches to free
2293 * We are freeing all blocks referred from these branches (numbers are
2294 * stored as little-endian 32-bit) and updating @inode->i_blocks
2297 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2298 struct buffer_head
*parent_bh
,
2299 __le32
*first
, __le32
*last
, int depth
)
2304 if (is_handle_aborted(handle
))
2308 struct buffer_head
*bh
;
2309 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2311 while (--p
>= first
) {
2312 nr
= le32_to_cpu(*p
);
2314 continue; /* A hole */
2316 /* Go read the buffer for the next level down */
2317 bh
= sb_bread(inode
->i_sb
, nr
);
2320 * A read failure? Report error and clear slot
2324 ext3_error(inode
->i_sb
, "ext3_free_branches",
2325 "Read failure, inode=%lu, block="E3FSBLK
,
2330 /* This zaps the entire block. Bottom up. */
2331 BUFFER_TRACE(bh
, "free child branches");
2332 ext3_free_branches(handle
, inode
, bh
,
2333 (__le32
*)bh
->b_data
,
2334 (__le32
*)bh
->b_data
+ addr_per_block
,
2338 * Everything below this this pointer has been
2339 * released. Now let this top-of-subtree go.
2341 * We want the freeing of this indirect block to be
2342 * atomic in the journal with the updating of the
2343 * bitmap block which owns it. So make some room in
2346 * We zero the parent pointer *after* freeing its
2347 * pointee in the bitmaps, so if extend_transaction()
2348 * for some reason fails to put the bitmap changes and
2349 * the release into the same transaction, recovery
2350 * will merely complain about releasing a free block,
2351 * rather than leaking blocks.
2353 if (is_handle_aborted(handle
))
2355 if (try_to_extend_transaction(handle
, inode
)) {
2356 ext3_mark_inode_dirty(handle
, inode
);
2357 truncate_restart_transaction(handle
, inode
);
2361 * We've probably journalled the indirect block several
2362 * times during the truncate. But it's no longer
2363 * needed and we now drop it from the transaction via
2366 * That's easy if it's exclusively part of this
2367 * transaction. But if it's part of the committing
2368 * transaction then journal_forget() will simply
2369 * brelse() it. That means that if the underlying
2370 * block is reallocated in ext3_get_block(),
2371 * unmap_underlying_metadata() will find this block
2372 * and will try to get rid of it. damn, damn. Thus
2373 * we don't allow a block to be reallocated until
2374 * a transaction freeing it has fully committed.
2376 * We also have to make sure journal replay after a
2377 * crash does not overwrite non-journaled data blocks
2378 * with old metadata when the block got reallocated for
2379 * data. Thus we have to store a revoke record for a
2380 * block in the same transaction in which we free the
2383 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2385 ext3_free_blocks(handle
, inode
, nr
, 1);
2389 * The block which we have just freed is
2390 * pointed to by an indirect block: journal it
2392 BUFFER_TRACE(parent_bh
, "get_write_access");
2393 if (!ext3_journal_get_write_access(handle
,
2396 BUFFER_TRACE(parent_bh
,
2397 "call ext3_journal_dirty_metadata");
2398 ext3_journal_dirty_metadata(handle
,
2404 /* We have reached the bottom of the tree. */
2405 BUFFER_TRACE(parent_bh
, "free data blocks");
2406 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2410 int ext3_can_truncate(struct inode
*inode
)
2412 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2414 if (S_ISREG(inode
->i_mode
))
2416 if (S_ISDIR(inode
->i_mode
))
2418 if (S_ISLNK(inode
->i_mode
))
2419 return !ext3_inode_is_fast_symlink(inode
);
2426 * We block out ext3_get_block() block instantiations across the entire
2427 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2428 * simultaneously on behalf of the same inode.
2430 * As we work through the truncate and commmit bits of it to the journal there
2431 * is one core, guiding principle: the file's tree must always be consistent on
2432 * disk. We must be able to restart the truncate after a crash.
2434 * The file's tree may be transiently inconsistent in memory (although it
2435 * probably isn't), but whenever we close off and commit a journal transaction,
2436 * the contents of (the filesystem + the journal) must be consistent and
2437 * restartable. It's pretty simple, really: bottom up, right to left (although
2438 * left-to-right works OK too).
2440 * Note that at recovery time, journal replay occurs *before* the restart of
2441 * truncate against the orphan inode list.
2443 * The committed inode has the new, desired i_size (which is the same as
2444 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2445 * that this inode's truncate did not complete and it will again call
2446 * ext3_truncate() to have another go. So there will be instantiated blocks
2447 * to the right of the truncation point in a crashed ext3 filesystem. But
2448 * that's fine - as long as they are linked from the inode, the post-crash
2449 * ext3_truncate() run will find them and release them.
2451 void ext3_truncate(struct inode
*inode
)
2454 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2455 __le32
*i_data
= ei
->i_data
;
2456 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2457 struct address_space
*mapping
= inode
->i_mapping
;
2464 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2467 if (!ext3_can_truncate(inode
))
2470 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2471 ext3_set_inode_state(inode
, EXT3_STATE_FLUSH_ON_CLOSE
);
2474 * We have to lock the EOF page here, because lock_page() nests
2475 * outside journal_start().
2477 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2478 /* Block boundary? Nothing to do */
2481 page
= grab_cache_page(mapping
,
2482 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2487 handle
= start_transaction(inode
);
2488 if (IS_ERR(handle
)) {
2490 clear_highpage(page
);
2491 flush_dcache_page(page
);
2493 page_cache_release(page
);
2498 last_block
= (inode
->i_size
+ blocksize
-1)
2499 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2502 ext3_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2504 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2506 goto out_stop
; /* error */
2509 * OK. This truncate is going to happen. We add the inode to the
2510 * orphan list, so that if this truncate spans multiple transactions,
2511 * and we crash, we will resume the truncate when the filesystem
2512 * recovers. It also marks the inode dirty, to catch the new size.
2514 * Implication: the file must always be in a sane, consistent
2515 * truncatable state while each transaction commits.
2517 if (ext3_orphan_add(handle
, inode
))
2521 * The orphan list entry will now protect us from any crash which
2522 * occurs before the truncate completes, so it is now safe to propagate
2523 * the new, shorter inode size (held for now in i_size) into the
2524 * on-disk inode. We do this via i_disksize, which is the value which
2525 * ext3 *really* writes onto the disk inode.
2527 ei
->i_disksize
= inode
->i_size
;
2530 * From here we block out all ext3_get_block() callers who want to
2531 * modify the block allocation tree.
2533 mutex_lock(&ei
->truncate_mutex
);
2535 if (n
== 1) { /* direct blocks */
2536 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2537 i_data
+ EXT3_NDIR_BLOCKS
);
2541 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2542 /* Kill the top of shared branch (not detached) */
2544 if (partial
== chain
) {
2545 /* Shared branch grows from the inode */
2546 ext3_free_branches(handle
, inode
, NULL
,
2547 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2550 * We mark the inode dirty prior to restart,
2551 * and prior to stop. No need for it here.
2554 /* Shared branch grows from an indirect block */
2555 ext3_free_branches(handle
, inode
, partial
->bh
,
2557 partial
->p
+1, (chain
+n
-1) - partial
);
2560 /* Clear the ends of indirect blocks on the shared branch */
2561 while (partial
> chain
) {
2562 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2563 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2564 (chain
+n
-1) - partial
);
2565 BUFFER_TRACE(partial
->bh
, "call brelse");
2566 brelse (partial
->bh
);
2570 /* Kill the remaining (whole) subtrees */
2571 switch (offsets
[0]) {
2573 nr
= i_data
[EXT3_IND_BLOCK
];
2575 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2576 i_data
[EXT3_IND_BLOCK
] = 0;
2578 case EXT3_IND_BLOCK
:
2579 nr
= i_data
[EXT3_DIND_BLOCK
];
2581 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2582 i_data
[EXT3_DIND_BLOCK
] = 0;
2584 case EXT3_DIND_BLOCK
:
2585 nr
= i_data
[EXT3_TIND_BLOCK
];
2587 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2588 i_data
[EXT3_TIND_BLOCK
] = 0;
2590 case EXT3_TIND_BLOCK
:
2594 ext3_discard_reservation(inode
);
2596 mutex_unlock(&ei
->truncate_mutex
);
2597 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2598 ext3_mark_inode_dirty(handle
, inode
);
2601 * In a multi-transaction truncate, we only make the final transaction
2608 * If this was a simple ftruncate(), and the file will remain alive
2609 * then we need to clear up the orphan record which we created above.
2610 * However, if this was a real unlink then we were called by
2611 * ext3_evict_inode(), and we allow that function to clean up the
2612 * orphan info for us.
2615 ext3_orphan_del(handle
, inode
);
2617 ext3_journal_stop(handle
);
2621 * Delete the inode from orphan list so that it doesn't stay there
2622 * forever and trigger assertion on umount.
2625 ext3_orphan_del(NULL
, inode
);
2628 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2629 unsigned long ino
, struct ext3_iloc
*iloc
)
2631 unsigned long block_group
;
2632 unsigned long offset
;
2634 struct ext3_group_desc
*gdp
;
2636 if (!ext3_valid_inum(sb
, ino
)) {
2638 * This error is already checked for in namei.c unless we are
2639 * looking at an NFS filehandle, in which case no error
2645 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2646 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2650 * Figure out the offset within the block group inode table
2652 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2653 EXT3_INODE_SIZE(sb
);
2654 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2655 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2657 iloc
->block_group
= block_group
;
2658 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2663 * ext3_get_inode_loc returns with an extra refcount against the inode's
2664 * underlying buffer_head on success. If 'in_mem' is true, we have all
2665 * data in memory that is needed to recreate the on-disk version of this
2668 static int __ext3_get_inode_loc(struct inode
*inode
,
2669 struct ext3_iloc
*iloc
, int in_mem
)
2672 struct buffer_head
*bh
;
2674 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2678 bh
= sb_getblk(inode
->i_sb
, block
);
2680 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2681 "unable to read inode block - "
2682 "inode=%lu, block="E3FSBLK
,
2683 inode
->i_ino
, block
);
2686 if (!buffer_uptodate(bh
)) {
2690 * If the buffer has the write error flag, we have failed
2691 * to write out another inode in the same block. In this
2692 * case, we don't have to read the block because we may
2693 * read the old inode data successfully.
2695 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2696 set_buffer_uptodate(bh
);
2698 if (buffer_uptodate(bh
)) {
2699 /* someone brought it uptodate while we waited */
2705 * If we have all information of the inode in memory and this
2706 * is the only valid inode in the block, we need not read the
2710 struct buffer_head
*bitmap_bh
;
2711 struct ext3_group_desc
*desc
;
2712 int inodes_per_buffer
;
2713 int inode_offset
, i
;
2717 block_group
= (inode
->i_ino
- 1) /
2718 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2719 inodes_per_buffer
= bh
->b_size
/
2720 EXT3_INODE_SIZE(inode
->i_sb
);
2721 inode_offset
= ((inode
->i_ino
- 1) %
2722 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2723 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2725 /* Is the inode bitmap in cache? */
2726 desc
= ext3_get_group_desc(inode
->i_sb
,
2731 bitmap_bh
= sb_getblk(inode
->i_sb
,
2732 le32_to_cpu(desc
->bg_inode_bitmap
));
2737 * If the inode bitmap isn't in cache then the
2738 * optimisation may end up performing two reads instead
2739 * of one, so skip it.
2741 if (!buffer_uptodate(bitmap_bh
)) {
2745 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2746 if (i
== inode_offset
)
2748 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2752 if (i
== start
+ inodes_per_buffer
) {
2753 /* all other inodes are free, so skip I/O */
2754 memset(bh
->b_data
, 0, bh
->b_size
);
2755 set_buffer_uptodate(bh
);
2763 * There are other valid inodes in the buffer, this inode
2764 * has in-inode xattrs, or we don't have this inode in memory.
2765 * Read the block from disk.
2768 bh
->b_end_io
= end_buffer_read_sync
;
2769 submit_bh(READ_META
, bh
);
2771 if (!buffer_uptodate(bh
)) {
2772 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2773 "unable to read inode block - "
2774 "inode=%lu, block="E3FSBLK
,
2775 inode
->i_ino
, block
);
2785 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2787 /* We have all inode data except xattrs in memory here. */
2788 return __ext3_get_inode_loc(inode
, iloc
,
2789 !ext3_test_inode_state(inode
, EXT3_STATE_XATTR
));
2792 void ext3_set_inode_flags(struct inode
*inode
)
2794 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2796 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2797 if (flags
& EXT3_SYNC_FL
)
2798 inode
->i_flags
|= S_SYNC
;
2799 if (flags
& EXT3_APPEND_FL
)
2800 inode
->i_flags
|= S_APPEND
;
2801 if (flags
& EXT3_IMMUTABLE_FL
)
2802 inode
->i_flags
|= S_IMMUTABLE
;
2803 if (flags
& EXT3_NOATIME_FL
)
2804 inode
->i_flags
|= S_NOATIME
;
2805 if (flags
& EXT3_DIRSYNC_FL
)
2806 inode
->i_flags
|= S_DIRSYNC
;
2809 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2810 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2812 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2814 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2815 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2817 ei
->i_flags
|= EXT3_SYNC_FL
;
2818 if (flags
& S_APPEND
)
2819 ei
->i_flags
|= EXT3_APPEND_FL
;
2820 if (flags
& S_IMMUTABLE
)
2821 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2822 if (flags
& S_NOATIME
)
2823 ei
->i_flags
|= EXT3_NOATIME_FL
;
2824 if (flags
& S_DIRSYNC
)
2825 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2828 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2830 struct ext3_iloc iloc
;
2831 struct ext3_inode
*raw_inode
;
2832 struct ext3_inode_info
*ei
;
2833 struct buffer_head
*bh
;
2834 struct inode
*inode
;
2835 journal_t
*journal
= EXT3_SB(sb
)->s_journal
;
2836 transaction_t
*transaction
;
2840 inode
= iget_locked(sb
, ino
);
2842 return ERR_PTR(-ENOMEM
);
2843 if (!(inode
->i_state
& I_NEW
))
2847 ei
->i_block_alloc_info
= NULL
;
2849 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2853 raw_inode
= ext3_raw_inode(&iloc
);
2854 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2855 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2856 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2857 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2858 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2859 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2861 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2862 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2863 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2864 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2865 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2866 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2868 ei
->i_state_flags
= 0;
2869 ei
->i_dir_start_lookup
= 0;
2870 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2871 /* We now have enough fields to check if the inode was active or not.
2872 * This is needed because nfsd might try to access dead inodes
2873 * the test is that same one that e2fsck uses
2874 * NeilBrown 1999oct15
2876 if (inode
->i_nlink
== 0) {
2877 if (inode
->i_mode
== 0 ||
2878 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2879 /* this inode is deleted */
2884 /* The only unlinked inodes we let through here have
2885 * valid i_mode and are being read by the orphan
2886 * recovery code: that's fine, we're about to complete
2887 * the process of deleting those. */
2889 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2890 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2891 #ifdef EXT3_FRAGMENTS
2892 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2893 ei
->i_frag_no
= raw_inode
->i_frag
;
2894 ei
->i_frag_size
= raw_inode
->i_fsize
;
2896 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2897 if (!S_ISREG(inode
->i_mode
)) {
2898 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2901 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2903 ei
->i_disksize
= inode
->i_size
;
2904 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2905 ei
->i_block_group
= iloc
.block_group
;
2907 * NOTE! The in-memory inode i_data array is in little-endian order
2908 * even on big-endian machines: we do NOT byteswap the block numbers!
2910 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2911 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2912 INIT_LIST_HEAD(&ei
->i_orphan
);
2915 * Set transaction id's of transactions that have to be committed
2916 * to finish f[data]sync. We set them to currently running transaction
2917 * as we cannot be sure that the inode or some of its metadata isn't
2918 * part of the transaction - the inode could have been reclaimed and
2919 * now it is reread from disk.
2924 spin_lock(&journal
->j_state_lock
);
2925 if (journal
->j_running_transaction
)
2926 transaction
= journal
->j_running_transaction
;
2928 transaction
= journal
->j_committing_transaction
;
2930 tid
= transaction
->t_tid
;
2932 tid
= journal
->j_commit_sequence
;
2933 spin_unlock(&journal
->j_state_lock
);
2934 atomic_set(&ei
->i_sync_tid
, tid
);
2935 atomic_set(&ei
->i_datasync_tid
, tid
);
2938 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2939 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2941 * When mke2fs creates big inodes it does not zero out
2942 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2943 * so ignore those first few inodes.
2945 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2946 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2947 EXT3_INODE_SIZE(inode
->i_sb
)) {
2952 if (ei
->i_extra_isize
== 0) {
2953 /* The extra space is currently unused. Use it. */
2954 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
2955 EXT3_GOOD_OLD_INODE_SIZE
;
2957 __le32
*magic
= (void *)raw_inode
+
2958 EXT3_GOOD_OLD_INODE_SIZE
+
2960 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
2961 ext3_set_inode_state(inode
, EXT3_STATE_XATTR
);
2964 ei
->i_extra_isize
= 0;
2966 if (S_ISREG(inode
->i_mode
)) {
2967 inode
->i_op
= &ext3_file_inode_operations
;
2968 inode
->i_fop
= &ext3_file_operations
;
2969 ext3_set_aops(inode
);
2970 } else if (S_ISDIR(inode
->i_mode
)) {
2971 inode
->i_op
= &ext3_dir_inode_operations
;
2972 inode
->i_fop
= &ext3_dir_operations
;
2973 } else if (S_ISLNK(inode
->i_mode
)) {
2974 if (ext3_inode_is_fast_symlink(inode
)) {
2975 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
2976 nd_terminate_link(ei
->i_data
, inode
->i_size
,
2977 sizeof(ei
->i_data
) - 1);
2979 inode
->i_op
= &ext3_symlink_inode_operations
;
2980 ext3_set_aops(inode
);
2983 inode
->i_op
= &ext3_special_inode_operations
;
2984 if (raw_inode
->i_block
[0])
2985 init_special_inode(inode
, inode
->i_mode
,
2986 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2988 init_special_inode(inode
, inode
->i_mode
,
2989 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2992 ext3_set_inode_flags(inode
);
2993 unlock_new_inode(inode
);
2998 return ERR_PTR(ret
);
3002 * Post the struct inode info into an on-disk inode location in the
3003 * buffer-cache. This gobbles the caller's reference to the
3004 * buffer_head in the inode location struct.
3006 * The caller must have write access to iloc->bh.
3008 static int ext3_do_update_inode(handle_t
*handle
,
3009 struct inode
*inode
,
3010 struct ext3_iloc
*iloc
)
3012 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
3013 struct ext3_inode_info
*ei
= EXT3_I(inode
);
3014 struct buffer_head
*bh
= iloc
->bh
;
3015 int err
= 0, rc
, block
;
3018 /* we can't allow multiple procs in here at once, its a bit racey */
3021 /* For fields not not tracking in the in-memory inode,
3022 * initialise them to zero for new inodes. */
3023 if (ext3_test_inode_state(inode
, EXT3_STATE_NEW
))
3024 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
3026 ext3_get_inode_flags(ei
);
3027 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3028 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
3029 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3030 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3032 * Fix up interoperability with old kernels. Otherwise, old inodes get
3033 * re-used with the upper 16 bits of the uid/gid intact
3036 raw_inode
->i_uid_high
=
3037 cpu_to_le16(high_16_bits(inode
->i_uid
));
3038 raw_inode
->i_gid_high
=
3039 cpu_to_le16(high_16_bits(inode
->i_gid
));
3041 raw_inode
->i_uid_high
= 0;
3042 raw_inode
->i_gid_high
= 0;
3045 raw_inode
->i_uid_low
=
3046 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3047 raw_inode
->i_gid_low
=
3048 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3049 raw_inode
->i_uid_high
= 0;
3050 raw_inode
->i_gid_high
= 0;
3052 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3053 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
3054 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
3055 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
3056 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
3057 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
3058 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3059 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3060 #ifdef EXT3_FRAGMENTS
3061 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
3062 raw_inode
->i_frag
= ei
->i_frag_no
;
3063 raw_inode
->i_fsize
= ei
->i_frag_size
;
3065 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
3066 if (!S_ISREG(inode
->i_mode
)) {
3067 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
3069 raw_inode
->i_size_high
=
3070 cpu_to_le32(ei
->i_disksize
>> 32);
3071 if (ei
->i_disksize
> 0x7fffffffULL
) {
3072 struct super_block
*sb
= inode
->i_sb
;
3073 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
3074 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3075 EXT3_SB(sb
)->s_es
->s_rev_level
==
3076 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
3077 /* If this is the first large file
3078 * created, add a flag to the superblock.
3081 err
= ext3_journal_get_write_access(handle
,
3082 EXT3_SB(sb
)->s_sbh
);
3086 ext3_update_dynamic_rev(sb
);
3087 EXT3_SET_RO_COMPAT_FEATURE(sb
,
3088 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
3090 err
= ext3_journal_dirty_metadata(handle
,
3091 EXT3_SB(sb
)->s_sbh
);
3092 /* get our lock and start over */
3097 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3098 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3099 if (old_valid_dev(inode
->i_rdev
)) {
3100 raw_inode
->i_block
[0] =
3101 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3102 raw_inode
->i_block
[1] = 0;
3104 raw_inode
->i_block
[0] = 0;
3105 raw_inode
->i_block
[1] =
3106 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3107 raw_inode
->i_block
[2] = 0;
3109 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
3110 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3112 if (ei
->i_extra_isize
)
3113 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3115 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
3117 rc
= ext3_journal_dirty_metadata(handle
, bh
);
3120 ext3_clear_inode_state(inode
, EXT3_STATE_NEW
);
3122 atomic_set(&ei
->i_sync_tid
, handle
->h_transaction
->t_tid
);
3125 ext3_std_error(inode
->i_sb
, err
);
3130 * ext3_write_inode()
3132 * We are called from a few places:
3134 * - Within generic_file_write() for O_SYNC files.
3135 * Here, there will be no transaction running. We wait for any running
3136 * trasnaction to commit.
3138 * - Within sys_sync(), kupdate and such.
3139 * We wait on commit, if tol to.
3141 * - Within prune_icache() (PF_MEMALLOC == true)
3142 * Here we simply return. We can't afford to block kswapd on the
3145 * In all cases it is actually safe for us to return without doing anything,
3146 * because the inode has been copied into a raw inode buffer in
3147 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3150 * Note that we are absolutely dependent upon all inode dirtiers doing the
3151 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3152 * which we are interested.
3154 * It would be a bug for them to not do this. The code:
3156 * mark_inode_dirty(inode)
3158 * inode->i_size = expr;
3160 * is in error because a kswapd-driven write_inode() could occur while
3161 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3162 * will no longer be on the superblock's dirty inode list.
3164 int ext3_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3166 if (current
->flags
& PF_MEMALLOC
)
3169 if (ext3_journal_current_handle()) {
3170 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3175 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3178 return ext3_force_commit(inode
->i_sb
);
3184 * Called from notify_change.
3186 * We want to trap VFS attempts to truncate the file as soon as
3187 * possible. In particular, we want to make sure that when the VFS
3188 * shrinks i_size, we put the inode on the orphan list and modify
3189 * i_disksize immediately, so that during the subsequent flushing of
3190 * dirty pages and freeing of disk blocks, we can guarantee that any
3191 * commit will leave the blocks being flushed in an unused state on
3192 * disk. (On recovery, the inode will get truncated and the blocks will
3193 * be freed, so we have a strong guarantee that no future commit will
3194 * leave these blocks visible to the user.)
3196 * Called with inode->sem down.
3198 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3200 struct inode
*inode
= dentry
->d_inode
;
3202 const unsigned int ia_valid
= attr
->ia_valid
;
3204 error
= inode_change_ok(inode
, attr
);
3208 if (is_quota_modification(inode
, attr
))
3209 dquot_initialize(inode
);
3210 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3211 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3214 /* (user+group)*(old+new) structure, inode write (sb,
3215 * inode block, ? - but truncate inode update has it) */
3216 handle
= ext3_journal_start(inode
, EXT3_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3217 EXT3_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)+3);
3218 if (IS_ERR(handle
)) {
3219 error
= PTR_ERR(handle
);
3222 error
= dquot_transfer(inode
, attr
);
3224 ext3_journal_stop(handle
);
3227 /* Update corresponding info in inode so that everything is in
3228 * one transaction */
3229 if (attr
->ia_valid
& ATTR_UID
)
3230 inode
->i_uid
= attr
->ia_uid
;
3231 if (attr
->ia_valid
& ATTR_GID
)
3232 inode
->i_gid
= attr
->ia_gid
;
3233 error
= ext3_mark_inode_dirty(handle
, inode
);
3234 ext3_journal_stop(handle
);
3237 if (S_ISREG(inode
->i_mode
) &&
3238 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3241 handle
= ext3_journal_start(inode
, 3);
3242 if (IS_ERR(handle
)) {
3243 error
= PTR_ERR(handle
);
3247 error
= ext3_orphan_add(handle
, inode
);
3248 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3249 rc
= ext3_mark_inode_dirty(handle
, inode
);
3252 ext3_journal_stop(handle
);
3255 if ((attr
->ia_valid
& ATTR_SIZE
) &&
3256 attr
->ia_size
!= i_size_read(inode
)) {
3257 rc
= vmtruncate(inode
, attr
->ia_size
);
3262 setattr_copy(inode
, attr
);
3263 mark_inode_dirty(inode
);
3265 if (ia_valid
& ATTR_MODE
)
3266 rc
= ext3_acl_chmod(inode
);
3269 ext3_std_error(inode
->i_sb
, error
);
3277 * How many blocks doth make a writepage()?
3279 * With N blocks per page, it may be:
3284 * N+5 bitmap blocks (from the above)
3285 * N+5 group descriptor summary blocks
3288 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3290 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3292 * With ordered or writeback data it's the same, less the N data blocks.
3294 * If the inode's direct blocks can hold an integral number of pages then a
3295 * page cannot straddle two indirect blocks, and we can only touch one indirect
3296 * and dindirect block, and the "5" above becomes "3".
3298 * This still overestimates under most circumstances. If we were to pass the
3299 * start and end offsets in here as well we could do block_to_path() on each
3300 * block and work out the exact number of indirects which are touched. Pah.
3303 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3305 int bpp
= ext3_journal_blocks_per_page(inode
);
3306 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3309 if (ext3_should_journal_data(inode
))
3310 ret
= 3 * (bpp
+ indirects
) + 2;
3312 ret
= 2 * (bpp
+ indirects
) + indirects
+ 2;
3315 /* We know that structure was already allocated during dquot_initialize so
3316 * we will be updating only the data blocks + inodes */
3317 ret
+= EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
3324 * The caller must have previously called ext3_reserve_inode_write().
3325 * Give this, we know that the caller already has write access to iloc->bh.
3327 int ext3_mark_iloc_dirty(handle_t
*handle
,
3328 struct inode
*inode
, struct ext3_iloc
*iloc
)
3332 /* the do_update_inode consumes one bh->b_count */
3335 /* ext3_do_update_inode() does journal_dirty_metadata */
3336 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3342 * On success, We end up with an outstanding reference count against
3343 * iloc->bh. This _must_ be cleaned up later.
3347 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3348 struct ext3_iloc
*iloc
)
3352 err
= ext3_get_inode_loc(inode
, iloc
);
3354 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3355 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3362 ext3_std_error(inode
->i_sb
, err
);
3367 * What we do here is to mark the in-core inode as clean with respect to inode
3368 * dirtiness (it may still be data-dirty).
3369 * This means that the in-core inode may be reaped by prune_icache
3370 * without having to perform any I/O. This is a very good thing,
3371 * because *any* task may call prune_icache - even ones which
3372 * have a transaction open against a different journal.
3374 * Is this cheating? Not really. Sure, we haven't written the
3375 * inode out, but prune_icache isn't a user-visible syncing function.
3376 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3377 * we start and wait on commits.
3379 * Is this efficient/effective? Well, we're being nice to the system
3380 * by cleaning up our inodes proactively so they can be reaped
3381 * without I/O. But we are potentially leaving up to five seconds'
3382 * worth of inodes floating about which prune_icache wants us to
3383 * write out. One way to fix that would be to get prune_icache()
3384 * to do a write_super() to free up some memory. It has the desired
3387 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3389 struct ext3_iloc iloc
;
3393 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3395 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3400 * ext3_dirty_inode() is called from __mark_inode_dirty()
3402 * We're really interested in the case where a file is being extended.
3403 * i_size has been changed by generic_commit_write() and we thus need
3404 * to include the updated inode in the current transaction.
3406 * Also, dquot_alloc_space() will always dirty the inode when blocks
3407 * are allocated to the file.
3409 * If the inode is marked synchronous, we don't honour that here - doing
3410 * so would cause a commit on atime updates, which we don't bother doing.
3411 * We handle synchronous inodes at the highest possible level.
3413 void ext3_dirty_inode(struct inode
*inode
, int flags
)
3415 handle_t
*current_handle
= ext3_journal_current_handle();
3418 handle
= ext3_journal_start(inode
, 2);
3421 if (current_handle
&&
3422 current_handle
->h_transaction
!= handle
->h_transaction
) {
3423 /* This task has a transaction open against a different fs */
3424 printk(KERN_EMERG
"%s: transactions do not match!\n",
3427 jbd_debug(5, "marking dirty. outer handle=%p\n",
3429 ext3_mark_inode_dirty(handle
, inode
);
3431 ext3_journal_stop(handle
);
3438 * Bind an inode's backing buffer_head into this transaction, to prevent
3439 * it from being flushed to disk early. Unlike
3440 * ext3_reserve_inode_write, this leaves behind no bh reference and
3441 * returns no iloc structure, so the caller needs to repeat the iloc
3442 * lookup to mark the inode dirty later.
3444 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3446 struct ext3_iloc iloc
;
3450 err
= ext3_get_inode_loc(inode
, &iloc
);
3452 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3453 err
= journal_get_write_access(handle
, iloc
.bh
);
3455 err
= ext3_journal_dirty_metadata(handle
,
3460 ext3_std_error(inode
->i_sb
, err
);
3465 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3472 * We have to be very careful here: changing a data block's
3473 * journaling status dynamically is dangerous. If we write a
3474 * data block to the journal, change the status and then delete
3475 * that block, we risk forgetting to revoke the old log record
3476 * from the journal and so a subsequent replay can corrupt data.
3477 * So, first we make sure that the journal is empty and that
3478 * nobody is changing anything.
3481 journal
= EXT3_JOURNAL(inode
);
3482 if (is_journal_aborted(journal
))
3485 journal_lock_updates(journal
);
3486 journal_flush(journal
);
3489 * OK, there are no updates running now, and all cached data is
3490 * synced to disk. We are now in a completely consistent state
3491 * which doesn't have anything in the journal, and we know that
3492 * no filesystem updates are running, so it is safe to modify
3493 * the inode's in-core data-journaling state flag now.
3497 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3499 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3500 ext3_set_aops(inode
);
3502 journal_unlock_updates(journal
);
3504 /* Finally we can mark the inode as dirty. */
3506 handle
= ext3_journal_start(inode
, 1);
3508 return PTR_ERR(handle
);
3510 err
= ext3_mark_inode_dirty(handle
, inode
);
3512 ext3_journal_stop(handle
);
3513 ext3_std_error(inode
->i_sb
, err
);