ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / ext4 / extents.c
blob611647b28a4dd3c0e0b7fdc5b5693a3ccdd5270e
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 static int ext4_split_extent(handle_t *handle,
50 struct inode *inode,
51 struct ext4_ext_path *path,
52 struct ext4_map_blocks *map,
53 int split_flag,
54 int flags);
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57 struct inode *inode,
58 int needed)
60 int err;
62 if (!ext4_handle_valid(handle))
63 return 0;
64 if (handle->h_buffer_credits > needed)
65 return 0;
66 err = ext4_journal_extend(handle, needed);
67 if (err <= 0)
68 return err;
69 err = ext4_truncate_restart_trans(handle, inode, needed);
70 if (err == 0)
71 err = -EAGAIN;
73 return err;
77 * could return:
78 * - EROFS
79 * - ENOMEM
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82 struct ext4_ext_path *path)
84 if (path->p_bh) {
85 /* path points to block */
86 return ext4_journal_get_write_access(handle, path->p_bh);
88 /* path points to leaf/index in inode body */
89 /* we use in-core data, no need to protect them */
90 return 0;
94 * could return:
95 * - EROFS
96 * - ENOMEM
97 * - EIO
99 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100 struct ext4_ext_path *path)
102 int err;
103 if (path->p_bh) {
104 /* path points to block */
105 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106 } else {
107 /* path points to leaf/index in inode body */
108 err = ext4_mark_inode_dirty(handle, inode);
110 return err;
113 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114 struct ext4_ext_path *path,
115 ext4_lblk_t block)
117 struct ext4_inode_info *ei = EXT4_I(inode);
118 ext4_fsblk_t bg_start;
119 ext4_fsblk_t last_block;
120 ext4_grpblk_t colour;
121 ext4_group_t block_group;
122 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
123 int depth;
125 if (path) {
126 struct ext4_extent *ex;
127 depth = path->p_depth;
130 * Try to predict block placement assuming that we are
131 * filling in a file which will eventually be
132 * non-sparse --- i.e., in the case of libbfd writing
133 * an ELF object sections out-of-order but in a way
134 * the eventually results in a contiguous object or
135 * executable file, or some database extending a table
136 * space file. However, this is actually somewhat
137 * non-ideal if we are writing a sparse file such as
138 * qemu or KVM writing a raw image file that is going
139 * to stay fairly sparse, since it will end up
140 * fragmenting the file system's free space. Maybe we
141 * should have some hueristics or some way to allow
142 * userspace to pass a hint to file system,
143 * especially if the latter case turns out to be
144 * common.
146 ex = path[depth].p_ext;
147 if (ex) {
148 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
149 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
151 if (block > ext_block)
152 return ext_pblk + (block - ext_block);
153 else
154 return ext_pblk - (ext_block - block);
157 /* it looks like index is empty;
158 * try to find starting block from index itself */
159 if (path[depth].p_bh)
160 return path[depth].p_bh->b_blocknr;
163 /* OK. use inode's group */
164 block_group = ei->i_block_group;
165 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
167 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
168 * block groups per flexgroup, reserve the first block
169 * group for directories and special files. Regular
170 * files will start at the second block group. This
171 * tends to speed up directory access and improves
172 * fsck times.
174 block_group &= ~(flex_size-1);
175 if (S_ISREG(inode->i_mode))
176 block_group++;
178 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
179 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
182 * If we are doing delayed allocation, we don't need take
183 * colour into account.
185 if (test_opt(inode->i_sb, DELALLOC))
186 return bg_start;
188 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
189 colour = (current->pid % 16) *
190 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
191 else
192 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
193 return bg_start + colour + block;
197 * Allocation for a meta data block
199 static ext4_fsblk_t
200 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
201 struct ext4_ext_path *path,
202 struct ext4_extent *ex, int *err, unsigned int flags)
204 ext4_fsblk_t goal, newblock;
206 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
207 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
208 NULL, err);
209 return newblock;
212 static inline int ext4_ext_space_block(struct inode *inode, int check)
214 int size;
216 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
217 / sizeof(struct ext4_extent);
218 if (!check) {
219 #ifdef AGGRESSIVE_TEST
220 if (size > 6)
221 size = 6;
222 #endif
224 return size;
227 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
229 int size;
231 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
232 / sizeof(struct ext4_extent_idx);
233 if (!check) {
234 #ifdef AGGRESSIVE_TEST
235 if (size > 5)
236 size = 5;
237 #endif
239 return size;
242 static inline int ext4_ext_space_root(struct inode *inode, int check)
244 int size;
246 size = sizeof(EXT4_I(inode)->i_data);
247 size -= sizeof(struct ext4_extent_header);
248 size /= sizeof(struct ext4_extent);
249 if (!check) {
250 #ifdef AGGRESSIVE_TEST
251 if (size > 3)
252 size = 3;
253 #endif
255 return size;
258 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
260 int size;
262 size = sizeof(EXT4_I(inode)->i_data);
263 size -= sizeof(struct ext4_extent_header);
264 size /= sizeof(struct ext4_extent_idx);
265 if (!check) {
266 #ifdef AGGRESSIVE_TEST
267 if (size > 4)
268 size = 4;
269 #endif
271 return size;
275 * Calculate the number of metadata blocks needed
276 * to allocate @blocks
277 * Worse case is one block per extent
279 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
281 struct ext4_inode_info *ei = EXT4_I(inode);
282 int idxs, num = 0;
284 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
285 / sizeof(struct ext4_extent_idx));
288 * If the new delayed allocation block is contiguous with the
289 * previous da block, it can share index blocks with the
290 * previous block, so we only need to allocate a new index
291 * block every idxs leaf blocks. At ldxs**2 blocks, we need
292 * an additional index block, and at ldxs**3 blocks, yet
293 * another index blocks.
295 if (ei->i_da_metadata_calc_len &&
296 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
297 if ((ei->i_da_metadata_calc_len % idxs) == 0)
298 num++;
299 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
300 num++;
301 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
302 num++;
303 ei->i_da_metadata_calc_len = 0;
304 } else
305 ei->i_da_metadata_calc_len++;
306 ei->i_da_metadata_calc_last_lblock++;
307 return num;
311 * In the worst case we need a new set of index blocks at
312 * every level of the inode's extent tree.
314 ei->i_da_metadata_calc_len = 1;
315 ei->i_da_metadata_calc_last_lblock = lblock;
316 return ext_depth(inode) + 1;
319 static int
320 ext4_ext_max_entries(struct inode *inode, int depth)
322 int max;
324 if (depth == ext_depth(inode)) {
325 if (depth == 0)
326 max = ext4_ext_space_root(inode, 1);
327 else
328 max = ext4_ext_space_root_idx(inode, 1);
329 } else {
330 if (depth == 0)
331 max = ext4_ext_space_block(inode, 1);
332 else
333 max = ext4_ext_space_block_idx(inode, 1);
336 return max;
339 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
341 ext4_fsblk_t block = ext4_ext_pblock(ext);
342 int len = ext4_ext_get_actual_len(ext);
344 if (len == 0)
345 return 0;
346 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
349 static int ext4_valid_extent_idx(struct inode *inode,
350 struct ext4_extent_idx *ext_idx)
352 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
354 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
357 static int ext4_valid_extent_entries(struct inode *inode,
358 struct ext4_extent_header *eh,
359 int depth)
361 struct ext4_extent *ext;
362 struct ext4_extent_idx *ext_idx;
363 unsigned short entries;
364 if (eh->eh_entries == 0)
365 return 1;
367 entries = le16_to_cpu(eh->eh_entries);
369 if (depth == 0) {
370 /* leaf entries */
371 ext = EXT_FIRST_EXTENT(eh);
372 while (entries) {
373 if (!ext4_valid_extent(inode, ext))
374 return 0;
375 ext++;
376 entries--;
378 } else {
379 ext_idx = EXT_FIRST_INDEX(eh);
380 while (entries) {
381 if (!ext4_valid_extent_idx(inode, ext_idx))
382 return 0;
383 ext_idx++;
384 entries--;
387 return 1;
390 static int __ext4_ext_check(const char *function, unsigned int line,
391 struct inode *inode, struct ext4_extent_header *eh,
392 int depth)
394 const char *error_msg;
395 int max = 0;
397 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
398 error_msg = "invalid magic";
399 goto corrupted;
401 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
402 error_msg = "unexpected eh_depth";
403 goto corrupted;
405 if (unlikely(eh->eh_max == 0)) {
406 error_msg = "invalid eh_max";
407 goto corrupted;
409 max = ext4_ext_max_entries(inode, depth);
410 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
411 error_msg = "too large eh_max";
412 goto corrupted;
414 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
415 error_msg = "invalid eh_entries";
416 goto corrupted;
418 if (!ext4_valid_extent_entries(inode, eh, depth)) {
419 error_msg = "invalid extent entries";
420 goto corrupted;
422 return 0;
424 corrupted:
425 ext4_error_inode(inode, function, line, 0,
426 "bad header/extent: %s - magic %x, "
427 "entries %u, max %u(%u), depth %u(%u)",
428 error_msg, le16_to_cpu(eh->eh_magic),
429 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
430 max, le16_to_cpu(eh->eh_depth), depth);
432 return -EIO;
435 #define ext4_ext_check(inode, eh, depth) \
436 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
438 int ext4_ext_check_inode(struct inode *inode)
440 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
443 #ifdef EXT_DEBUG
444 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
446 int k, l = path->p_depth;
448 ext_debug("path:");
449 for (k = 0; k <= l; k++, path++) {
450 if (path->p_idx) {
451 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
452 ext4_idx_pblock(path->p_idx));
453 } else if (path->p_ext) {
454 ext_debug(" %d:[%d]%d:%llu ",
455 le32_to_cpu(path->p_ext->ee_block),
456 ext4_ext_is_uninitialized(path->p_ext),
457 ext4_ext_get_actual_len(path->p_ext),
458 ext4_ext_pblock(path->p_ext));
459 } else
460 ext_debug(" []");
462 ext_debug("\n");
465 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
467 int depth = ext_depth(inode);
468 struct ext4_extent_header *eh;
469 struct ext4_extent *ex;
470 int i;
472 if (!path)
473 return;
475 eh = path[depth].p_hdr;
476 ex = EXT_FIRST_EXTENT(eh);
478 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
480 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
481 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
482 ext4_ext_is_uninitialized(ex),
483 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
485 ext_debug("\n");
488 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
489 ext4_fsblk_t newblock, int level)
491 int depth = ext_depth(inode);
492 struct ext4_extent *ex;
494 if (depth != level) {
495 struct ext4_extent_idx *idx;
496 idx = path[level].p_idx;
497 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
498 ext_debug("%d: move %d:%llu in new index %llu\n", level,
499 le32_to_cpu(idx->ei_block),
500 ext4_idx_pblock(idx),
501 newblock);
502 idx++;
505 return;
508 ex = path[depth].p_ext;
509 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
510 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
511 le32_to_cpu(ex->ee_block),
512 ext4_ext_pblock(ex),
513 ext4_ext_is_uninitialized(ex),
514 ext4_ext_get_actual_len(ex),
515 newblock);
516 ex++;
520 #else
521 #define ext4_ext_show_path(inode, path)
522 #define ext4_ext_show_leaf(inode, path)
523 #define ext4_ext_show_move(inode, path, newblock, level)
524 #endif
526 void ext4_ext_drop_refs(struct ext4_ext_path *path)
528 int depth = path->p_depth;
529 int i;
531 for (i = 0; i <= depth; i++, path++)
532 if (path->p_bh) {
533 brelse(path->p_bh);
534 path->p_bh = NULL;
539 * ext4_ext_binsearch_idx:
540 * binary search for the closest index of the given block
541 * the header must be checked before calling this
543 static void
544 ext4_ext_binsearch_idx(struct inode *inode,
545 struct ext4_ext_path *path, ext4_lblk_t block)
547 struct ext4_extent_header *eh = path->p_hdr;
548 struct ext4_extent_idx *r, *l, *m;
551 ext_debug("binsearch for %u(idx): ", block);
553 l = EXT_FIRST_INDEX(eh) + 1;
554 r = EXT_LAST_INDEX(eh);
555 while (l <= r) {
556 m = l + (r - l) / 2;
557 if (block < le32_to_cpu(m->ei_block))
558 r = m - 1;
559 else
560 l = m + 1;
561 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
562 m, le32_to_cpu(m->ei_block),
563 r, le32_to_cpu(r->ei_block));
566 path->p_idx = l - 1;
567 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
568 ext4_idx_pblock(path->p_idx));
570 #ifdef CHECK_BINSEARCH
572 struct ext4_extent_idx *chix, *ix;
573 int k;
575 chix = ix = EXT_FIRST_INDEX(eh);
576 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
577 if (k != 0 &&
578 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
579 printk(KERN_DEBUG "k=%d, ix=0x%p, "
580 "first=0x%p\n", k,
581 ix, EXT_FIRST_INDEX(eh));
582 printk(KERN_DEBUG "%u <= %u\n",
583 le32_to_cpu(ix->ei_block),
584 le32_to_cpu(ix[-1].ei_block));
586 BUG_ON(k && le32_to_cpu(ix->ei_block)
587 <= le32_to_cpu(ix[-1].ei_block));
588 if (block < le32_to_cpu(ix->ei_block))
589 break;
590 chix = ix;
592 BUG_ON(chix != path->p_idx);
594 #endif
599 * ext4_ext_binsearch:
600 * binary search for closest extent of the given block
601 * the header must be checked before calling this
603 static void
604 ext4_ext_binsearch(struct inode *inode,
605 struct ext4_ext_path *path, ext4_lblk_t block)
607 struct ext4_extent_header *eh = path->p_hdr;
608 struct ext4_extent *r, *l, *m;
610 if (eh->eh_entries == 0) {
612 * this leaf is empty:
613 * we get such a leaf in split/add case
615 return;
618 ext_debug("binsearch for %u: ", block);
620 l = EXT_FIRST_EXTENT(eh) + 1;
621 r = EXT_LAST_EXTENT(eh);
623 while (l <= r) {
624 m = l + (r - l) / 2;
625 if (block < le32_to_cpu(m->ee_block))
626 r = m - 1;
627 else
628 l = m + 1;
629 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
630 m, le32_to_cpu(m->ee_block),
631 r, le32_to_cpu(r->ee_block));
634 path->p_ext = l - 1;
635 ext_debug(" -> %d:%llu:[%d]%d ",
636 le32_to_cpu(path->p_ext->ee_block),
637 ext4_ext_pblock(path->p_ext),
638 ext4_ext_is_uninitialized(path->p_ext),
639 ext4_ext_get_actual_len(path->p_ext));
641 #ifdef CHECK_BINSEARCH
643 struct ext4_extent *chex, *ex;
644 int k;
646 chex = ex = EXT_FIRST_EXTENT(eh);
647 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
648 BUG_ON(k && le32_to_cpu(ex->ee_block)
649 <= le32_to_cpu(ex[-1].ee_block));
650 if (block < le32_to_cpu(ex->ee_block))
651 break;
652 chex = ex;
654 BUG_ON(chex != path->p_ext);
656 #endif
660 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
662 struct ext4_extent_header *eh;
664 eh = ext_inode_hdr(inode);
665 eh->eh_depth = 0;
666 eh->eh_entries = 0;
667 eh->eh_magic = EXT4_EXT_MAGIC;
668 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
669 ext4_mark_inode_dirty(handle, inode);
670 ext4_ext_invalidate_cache(inode);
671 return 0;
674 struct ext4_ext_path *
675 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
676 struct ext4_ext_path *path)
678 struct ext4_extent_header *eh;
679 struct buffer_head *bh;
680 short int depth, i, ppos = 0, alloc = 0;
682 eh = ext_inode_hdr(inode);
683 depth = ext_depth(inode);
685 /* account possible depth increase */
686 if (!path) {
687 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
688 GFP_NOFS);
689 if (!path)
690 return ERR_PTR(-ENOMEM);
691 alloc = 1;
693 path[0].p_hdr = eh;
694 path[0].p_bh = NULL;
696 i = depth;
697 /* walk through the tree */
698 while (i) {
699 int need_to_validate = 0;
701 ext_debug("depth %d: num %d, max %d\n",
702 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
704 ext4_ext_binsearch_idx(inode, path + ppos, block);
705 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
706 path[ppos].p_depth = i;
707 path[ppos].p_ext = NULL;
709 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
710 if (unlikely(!bh))
711 goto err;
712 if (!bh_uptodate_or_lock(bh)) {
713 trace_ext4_ext_load_extent(inode, block,
714 path[ppos].p_block);
715 if (bh_submit_read(bh) < 0) {
716 put_bh(bh);
717 goto err;
719 /* validate the extent entries */
720 need_to_validate = 1;
722 eh = ext_block_hdr(bh);
723 ppos++;
724 if (unlikely(ppos > depth)) {
725 put_bh(bh);
726 EXT4_ERROR_INODE(inode,
727 "ppos %d > depth %d", ppos, depth);
728 goto err;
730 path[ppos].p_bh = bh;
731 path[ppos].p_hdr = eh;
732 i--;
734 if (need_to_validate && ext4_ext_check(inode, eh, i))
735 goto err;
738 path[ppos].p_depth = i;
739 path[ppos].p_ext = NULL;
740 path[ppos].p_idx = NULL;
742 /* find extent */
743 ext4_ext_binsearch(inode, path + ppos, block);
744 /* if not an empty leaf */
745 if (path[ppos].p_ext)
746 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
748 ext4_ext_show_path(inode, path);
750 return path;
752 err:
753 ext4_ext_drop_refs(path);
754 if (alloc)
755 kfree(path);
756 return ERR_PTR(-EIO);
760 * ext4_ext_insert_index:
761 * insert new index [@logical;@ptr] into the block at @curp;
762 * check where to insert: before @curp or after @curp
764 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
765 struct ext4_ext_path *curp,
766 int logical, ext4_fsblk_t ptr)
768 struct ext4_extent_idx *ix;
769 int len, err;
771 err = ext4_ext_get_access(handle, inode, curp);
772 if (err)
773 return err;
775 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
776 EXT4_ERROR_INODE(inode,
777 "logical %d == ei_block %d!",
778 logical, le32_to_cpu(curp->p_idx->ei_block));
779 return -EIO;
781 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
782 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
783 /* insert after */
784 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
785 len = (len - 1) * sizeof(struct ext4_extent_idx);
786 len = len < 0 ? 0 : len;
787 ext_debug("insert new index %d after: %llu. "
788 "move %d from 0x%p to 0x%p\n",
789 logical, ptr, len,
790 (curp->p_idx + 1), (curp->p_idx + 2));
791 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
793 ix = curp->p_idx + 1;
794 } else {
795 /* insert before */
796 len = len * sizeof(struct ext4_extent_idx);
797 len = len < 0 ? 0 : len;
798 ext_debug("insert new index %d before: %llu. "
799 "move %d from 0x%p to 0x%p\n",
800 logical, ptr, len,
801 curp->p_idx, (curp->p_idx + 1));
802 memmove(curp->p_idx + 1, curp->p_idx, len);
803 ix = curp->p_idx;
806 ix->ei_block = cpu_to_le32(logical);
807 ext4_idx_store_pblock(ix, ptr);
808 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
810 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
811 > le16_to_cpu(curp->p_hdr->eh_max))) {
812 EXT4_ERROR_INODE(inode,
813 "logical %d == ei_block %d!",
814 logical, le32_to_cpu(curp->p_idx->ei_block));
815 return -EIO;
817 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
818 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
819 return -EIO;
822 err = ext4_ext_dirty(handle, inode, curp);
823 ext4_std_error(inode->i_sb, err);
825 return err;
829 * ext4_ext_split:
830 * inserts new subtree into the path, using free index entry
831 * at depth @at:
832 * - allocates all needed blocks (new leaf and all intermediate index blocks)
833 * - makes decision where to split
834 * - moves remaining extents and index entries (right to the split point)
835 * into the newly allocated blocks
836 * - initializes subtree
838 static int ext4_ext_split(handle_t *handle, struct inode *inode,
839 unsigned int flags,
840 struct ext4_ext_path *path,
841 struct ext4_extent *newext, int at)
843 struct buffer_head *bh = NULL;
844 int depth = ext_depth(inode);
845 struct ext4_extent_header *neh;
846 struct ext4_extent_idx *fidx;
847 int i = at, k, m, a;
848 ext4_fsblk_t newblock, oldblock;
849 __le32 border;
850 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
851 int err = 0;
853 /* make decision: where to split? */
854 /* FIXME: now decision is simplest: at current extent */
856 /* if current leaf will be split, then we should use
857 * border from split point */
858 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
859 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
860 return -EIO;
862 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
863 border = path[depth].p_ext[1].ee_block;
864 ext_debug("leaf will be split."
865 " next leaf starts at %d\n",
866 le32_to_cpu(border));
867 } else {
868 border = newext->ee_block;
869 ext_debug("leaf will be added."
870 " next leaf starts at %d\n",
871 le32_to_cpu(border));
875 * If error occurs, then we break processing
876 * and mark filesystem read-only. index won't
877 * be inserted and tree will be in consistent
878 * state. Next mount will repair buffers too.
882 * Get array to track all allocated blocks.
883 * We need this to handle errors and free blocks
884 * upon them.
886 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
887 if (!ablocks)
888 return -ENOMEM;
890 /* allocate all needed blocks */
891 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
892 for (a = 0; a < depth - at; a++) {
893 newblock = ext4_ext_new_meta_block(handle, inode, path,
894 newext, &err, flags);
895 if (newblock == 0)
896 goto cleanup;
897 ablocks[a] = newblock;
900 /* initialize new leaf */
901 newblock = ablocks[--a];
902 if (unlikely(newblock == 0)) {
903 EXT4_ERROR_INODE(inode, "newblock == 0!");
904 err = -EIO;
905 goto cleanup;
907 bh = sb_getblk(inode->i_sb, newblock);
908 if (!bh) {
909 err = -EIO;
910 goto cleanup;
912 lock_buffer(bh);
914 err = ext4_journal_get_create_access(handle, bh);
915 if (err)
916 goto cleanup;
918 neh = ext_block_hdr(bh);
919 neh->eh_entries = 0;
920 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
921 neh->eh_magic = EXT4_EXT_MAGIC;
922 neh->eh_depth = 0;
924 /* move remainder of path[depth] to the new leaf */
925 if (unlikely(path[depth].p_hdr->eh_entries !=
926 path[depth].p_hdr->eh_max)) {
927 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
928 path[depth].p_hdr->eh_entries,
929 path[depth].p_hdr->eh_max);
930 err = -EIO;
931 goto cleanup;
933 /* start copy from next extent */
934 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
935 ext4_ext_show_move(inode, path, newblock, depth);
936 if (m) {
937 struct ext4_extent *ex;
938 ex = EXT_FIRST_EXTENT(neh);
939 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
940 le16_add_cpu(&neh->eh_entries, m);
943 set_buffer_uptodate(bh);
944 unlock_buffer(bh);
946 err = ext4_handle_dirty_metadata(handle, inode, bh);
947 if (err)
948 goto cleanup;
949 brelse(bh);
950 bh = NULL;
952 /* correct old leaf */
953 if (m) {
954 err = ext4_ext_get_access(handle, inode, path + depth);
955 if (err)
956 goto cleanup;
957 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
958 err = ext4_ext_dirty(handle, inode, path + depth);
959 if (err)
960 goto cleanup;
964 /* create intermediate indexes */
965 k = depth - at - 1;
966 if (unlikely(k < 0)) {
967 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
968 err = -EIO;
969 goto cleanup;
971 if (k)
972 ext_debug("create %d intermediate indices\n", k);
973 /* insert new index into current index block */
974 /* current depth stored in i var */
975 i = depth - 1;
976 while (k--) {
977 oldblock = newblock;
978 newblock = ablocks[--a];
979 bh = sb_getblk(inode->i_sb, newblock);
980 if (!bh) {
981 err = -EIO;
982 goto cleanup;
984 lock_buffer(bh);
986 err = ext4_journal_get_create_access(handle, bh);
987 if (err)
988 goto cleanup;
990 neh = ext_block_hdr(bh);
991 neh->eh_entries = cpu_to_le16(1);
992 neh->eh_magic = EXT4_EXT_MAGIC;
993 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
994 neh->eh_depth = cpu_to_le16(depth - i);
995 fidx = EXT_FIRST_INDEX(neh);
996 fidx->ei_block = border;
997 ext4_idx_store_pblock(fidx, oldblock);
999 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1000 i, newblock, le32_to_cpu(border), oldblock);
1002 /* move remainder of path[i] to the new index block */
1003 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1004 EXT_LAST_INDEX(path[i].p_hdr))) {
1005 EXT4_ERROR_INODE(inode,
1006 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1007 le32_to_cpu(path[i].p_ext->ee_block));
1008 err = -EIO;
1009 goto cleanup;
1011 /* start copy indexes */
1012 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1013 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1014 EXT_MAX_INDEX(path[i].p_hdr));
1015 ext4_ext_show_move(inode, path, newblock, i);
1016 if (m) {
1017 memmove(++fidx, path[i].p_idx,
1018 sizeof(struct ext4_extent_idx) * m);
1019 le16_add_cpu(&neh->eh_entries, m);
1021 set_buffer_uptodate(bh);
1022 unlock_buffer(bh);
1024 err = ext4_handle_dirty_metadata(handle, inode, bh);
1025 if (err)
1026 goto cleanup;
1027 brelse(bh);
1028 bh = NULL;
1030 /* correct old index */
1031 if (m) {
1032 err = ext4_ext_get_access(handle, inode, path + i);
1033 if (err)
1034 goto cleanup;
1035 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1036 err = ext4_ext_dirty(handle, inode, path + i);
1037 if (err)
1038 goto cleanup;
1041 i--;
1044 /* insert new index */
1045 err = ext4_ext_insert_index(handle, inode, path + at,
1046 le32_to_cpu(border), newblock);
1048 cleanup:
1049 if (bh) {
1050 if (buffer_locked(bh))
1051 unlock_buffer(bh);
1052 brelse(bh);
1055 if (err) {
1056 /* free all allocated blocks in error case */
1057 for (i = 0; i < depth; i++) {
1058 if (!ablocks[i])
1059 continue;
1060 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1061 EXT4_FREE_BLOCKS_METADATA);
1064 kfree(ablocks);
1066 return err;
1070 * ext4_ext_grow_indepth:
1071 * implements tree growing procedure:
1072 * - allocates new block
1073 * - moves top-level data (index block or leaf) into the new block
1074 * - initializes new top-level, creating index that points to the
1075 * just created block
1077 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1078 unsigned int flags,
1079 struct ext4_ext_path *path,
1080 struct ext4_extent *newext)
1082 struct ext4_ext_path *curp = path;
1083 struct ext4_extent_header *neh;
1084 struct buffer_head *bh;
1085 ext4_fsblk_t newblock;
1086 int err = 0;
1088 newblock = ext4_ext_new_meta_block(handle, inode, path,
1089 newext, &err, flags);
1090 if (newblock == 0)
1091 return err;
1093 bh = sb_getblk(inode->i_sb, newblock);
1094 if (!bh) {
1095 err = -EIO;
1096 ext4_std_error(inode->i_sb, err);
1097 return err;
1099 lock_buffer(bh);
1101 err = ext4_journal_get_create_access(handle, bh);
1102 if (err) {
1103 unlock_buffer(bh);
1104 goto out;
1107 /* move top-level index/leaf into new block */
1108 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1110 /* set size of new block */
1111 neh = ext_block_hdr(bh);
1112 /* old root could have indexes or leaves
1113 * so calculate e_max right way */
1114 if (ext_depth(inode))
1115 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1116 else
1117 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1118 neh->eh_magic = EXT4_EXT_MAGIC;
1119 set_buffer_uptodate(bh);
1120 unlock_buffer(bh);
1122 err = ext4_handle_dirty_metadata(handle, inode, bh);
1123 if (err)
1124 goto out;
1126 /* create index in new top-level index: num,max,pointer */
1127 err = ext4_ext_get_access(handle, inode, curp);
1128 if (err)
1129 goto out;
1131 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1132 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1133 curp->p_hdr->eh_entries = cpu_to_le16(1);
1134 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1136 if (path[0].p_hdr->eh_depth)
1137 curp->p_idx->ei_block =
1138 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1139 else
1140 curp->p_idx->ei_block =
1141 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1142 ext4_idx_store_pblock(curp->p_idx, newblock);
1144 neh = ext_inode_hdr(inode);
1145 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1146 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1147 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1148 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1150 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1151 err = ext4_ext_dirty(handle, inode, curp);
1152 out:
1153 brelse(bh);
1155 return err;
1159 * ext4_ext_create_new_leaf:
1160 * finds empty index and adds new leaf.
1161 * if no free index is found, then it requests in-depth growing.
1163 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1164 unsigned int flags,
1165 struct ext4_ext_path *path,
1166 struct ext4_extent *newext)
1168 struct ext4_ext_path *curp;
1169 int depth, i, err = 0;
1171 repeat:
1172 i = depth = ext_depth(inode);
1174 /* walk up to the tree and look for free index entry */
1175 curp = path + depth;
1176 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1177 i--;
1178 curp--;
1181 /* we use already allocated block for index block,
1182 * so subsequent data blocks should be contiguous */
1183 if (EXT_HAS_FREE_INDEX(curp)) {
1184 /* if we found index with free entry, then use that
1185 * entry: create all needed subtree and add new leaf */
1186 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1187 if (err)
1188 goto out;
1190 /* refill path */
1191 ext4_ext_drop_refs(path);
1192 path = ext4_ext_find_extent(inode,
1193 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1194 path);
1195 if (IS_ERR(path))
1196 err = PTR_ERR(path);
1197 } else {
1198 /* tree is full, time to grow in depth */
1199 err = ext4_ext_grow_indepth(handle, inode, flags,
1200 path, newext);
1201 if (err)
1202 goto out;
1204 /* refill path */
1205 ext4_ext_drop_refs(path);
1206 path = ext4_ext_find_extent(inode,
1207 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1208 path);
1209 if (IS_ERR(path)) {
1210 err = PTR_ERR(path);
1211 goto out;
1215 * only first (depth 0 -> 1) produces free space;
1216 * in all other cases we have to split the grown tree
1218 depth = ext_depth(inode);
1219 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1220 /* now we need to split */
1221 goto repeat;
1225 out:
1226 return err;
1230 * search the closest allocated block to the left for *logical
1231 * and returns it at @logical + it's physical address at @phys
1232 * if *logical is the smallest allocated block, the function
1233 * returns 0 at @phys
1234 * return value contains 0 (success) or error code
1236 static int ext4_ext_search_left(struct inode *inode,
1237 struct ext4_ext_path *path,
1238 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1240 struct ext4_extent_idx *ix;
1241 struct ext4_extent *ex;
1242 int depth, ee_len;
1244 if (unlikely(path == NULL)) {
1245 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1246 return -EIO;
1248 depth = path->p_depth;
1249 *phys = 0;
1251 if (depth == 0 && path->p_ext == NULL)
1252 return 0;
1254 /* usually extent in the path covers blocks smaller
1255 * then *logical, but it can be that extent is the
1256 * first one in the file */
1258 ex = path[depth].p_ext;
1259 ee_len = ext4_ext_get_actual_len(ex);
1260 if (*logical < le32_to_cpu(ex->ee_block)) {
1261 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1262 EXT4_ERROR_INODE(inode,
1263 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1264 *logical, le32_to_cpu(ex->ee_block));
1265 return -EIO;
1267 while (--depth >= 0) {
1268 ix = path[depth].p_idx;
1269 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1270 EXT4_ERROR_INODE(inode,
1271 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1272 ix != NULL ? ix->ei_block : 0,
1273 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1274 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1275 depth);
1276 return -EIO;
1279 return 0;
1282 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1283 EXT4_ERROR_INODE(inode,
1284 "logical %d < ee_block %d + ee_len %d!",
1285 *logical, le32_to_cpu(ex->ee_block), ee_len);
1286 return -EIO;
1289 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1290 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1291 return 0;
1295 * search the closest allocated block to the right for *logical
1296 * and returns it at @logical + it's physical address at @phys
1297 * if *logical is the smallest allocated block, the function
1298 * returns 0 at @phys
1299 * return value contains 0 (success) or error code
1301 static int ext4_ext_search_right(struct inode *inode,
1302 struct ext4_ext_path *path,
1303 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1305 struct buffer_head *bh = NULL;
1306 struct ext4_extent_header *eh;
1307 struct ext4_extent_idx *ix;
1308 struct ext4_extent *ex;
1309 ext4_fsblk_t block;
1310 int depth; /* Note, NOT eh_depth; depth from top of tree */
1311 int ee_len;
1313 if (unlikely(path == NULL)) {
1314 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1315 return -EIO;
1317 depth = path->p_depth;
1318 *phys = 0;
1320 if (depth == 0 && path->p_ext == NULL)
1321 return 0;
1323 /* usually extent in the path covers blocks smaller
1324 * then *logical, but it can be that extent is the
1325 * first one in the file */
1327 ex = path[depth].p_ext;
1328 ee_len = ext4_ext_get_actual_len(ex);
1329 if (*logical < le32_to_cpu(ex->ee_block)) {
1330 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1331 EXT4_ERROR_INODE(inode,
1332 "first_extent(path[%d].p_hdr) != ex",
1333 depth);
1334 return -EIO;
1336 while (--depth >= 0) {
1337 ix = path[depth].p_idx;
1338 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1339 EXT4_ERROR_INODE(inode,
1340 "ix != EXT_FIRST_INDEX *logical %d!",
1341 *logical);
1342 return -EIO;
1345 *logical = le32_to_cpu(ex->ee_block);
1346 *phys = ext4_ext_pblock(ex);
1347 return 0;
1350 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1351 EXT4_ERROR_INODE(inode,
1352 "logical %d < ee_block %d + ee_len %d!",
1353 *logical, le32_to_cpu(ex->ee_block), ee_len);
1354 return -EIO;
1357 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1358 /* next allocated block in this leaf */
1359 ex++;
1360 *logical = le32_to_cpu(ex->ee_block);
1361 *phys = ext4_ext_pblock(ex);
1362 return 0;
1365 /* go up and search for index to the right */
1366 while (--depth >= 0) {
1367 ix = path[depth].p_idx;
1368 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1369 goto got_index;
1372 /* we've gone up to the root and found no index to the right */
1373 return 0;
1375 got_index:
1376 /* we've found index to the right, let's
1377 * follow it and find the closest allocated
1378 * block to the right */
1379 ix++;
1380 block = ext4_idx_pblock(ix);
1381 while (++depth < path->p_depth) {
1382 bh = sb_bread(inode->i_sb, block);
1383 if (bh == NULL)
1384 return -EIO;
1385 eh = ext_block_hdr(bh);
1386 /* subtract from p_depth to get proper eh_depth */
1387 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1388 put_bh(bh);
1389 return -EIO;
1391 ix = EXT_FIRST_INDEX(eh);
1392 block = ext4_idx_pblock(ix);
1393 put_bh(bh);
1396 bh = sb_bread(inode->i_sb, block);
1397 if (bh == NULL)
1398 return -EIO;
1399 eh = ext_block_hdr(bh);
1400 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1401 put_bh(bh);
1402 return -EIO;
1404 ex = EXT_FIRST_EXTENT(eh);
1405 *logical = le32_to_cpu(ex->ee_block);
1406 *phys = ext4_ext_pblock(ex);
1407 put_bh(bh);
1408 return 0;
1412 * ext4_ext_next_allocated_block:
1413 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1414 * NOTE: it considers block number from index entry as
1415 * allocated block. Thus, index entries have to be consistent
1416 * with leaves.
1418 static ext4_lblk_t
1419 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1421 int depth;
1423 BUG_ON(path == NULL);
1424 depth = path->p_depth;
1426 if (depth == 0 && path->p_ext == NULL)
1427 return EXT_MAX_BLOCKS;
1429 while (depth >= 0) {
1430 if (depth == path->p_depth) {
1431 /* leaf */
1432 if (path[depth].p_ext !=
1433 EXT_LAST_EXTENT(path[depth].p_hdr))
1434 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1435 } else {
1436 /* index */
1437 if (path[depth].p_idx !=
1438 EXT_LAST_INDEX(path[depth].p_hdr))
1439 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1441 depth--;
1444 return EXT_MAX_BLOCKS;
1448 * ext4_ext_next_leaf_block:
1449 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1451 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1452 struct ext4_ext_path *path)
1454 int depth;
1456 BUG_ON(path == NULL);
1457 depth = path->p_depth;
1459 /* zero-tree has no leaf blocks at all */
1460 if (depth == 0)
1461 return EXT_MAX_BLOCKS;
1463 /* go to index block */
1464 depth--;
1466 while (depth >= 0) {
1467 if (path[depth].p_idx !=
1468 EXT_LAST_INDEX(path[depth].p_hdr))
1469 return (ext4_lblk_t)
1470 le32_to_cpu(path[depth].p_idx[1].ei_block);
1471 depth--;
1474 return EXT_MAX_BLOCKS;
1478 * ext4_ext_correct_indexes:
1479 * if leaf gets modified and modified extent is first in the leaf,
1480 * then we have to correct all indexes above.
1481 * TODO: do we need to correct tree in all cases?
1483 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1484 struct ext4_ext_path *path)
1486 struct ext4_extent_header *eh;
1487 int depth = ext_depth(inode);
1488 struct ext4_extent *ex;
1489 __le32 border;
1490 int k, err = 0;
1492 eh = path[depth].p_hdr;
1493 ex = path[depth].p_ext;
1495 if (unlikely(ex == NULL || eh == NULL)) {
1496 EXT4_ERROR_INODE(inode,
1497 "ex %p == NULL or eh %p == NULL", ex, eh);
1498 return -EIO;
1501 if (depth == 0) {
1502 /* there is no tree at all */
1503 return 0;
1506 if (ex != EXT_FIRST_EXTENT(eh)) {
1507 /* we correct tree if first leaf got modified only */
1508 return 0;
1512 * TODO: we need correction if border is smaller than current one
1514 k = depth - 1;
1515 border = path[depth].p_ext->ee_block;
1516 err = ext4_ext_get_access(handle, inode, path + k);
1517 if (err)
1518 return err;
1519 path[k].p_idx->ei_block = border;
1520 err = ext4_ext_dirty(handle, inode, path + k);
1521 if (err)
1522 return err;
1524 while (k--) {
1525 /* change all left-side indexes */
1526 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1527 break;
1528 err = ext4_ext_get_access(handle, inode, path + k);
1529 if (err)
1530 break;
1531 path[k].p_idx->ei_block = border;
1532 err = ext4_ext_dirty(handle, inode, path + k);
1533 if (err)
1534 break;
1537 return err;
1541 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1542 struct ext4_extent *ex2)
1544 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1547 * Make sure that either both extents are uninitialized, or
1548 * both are _not_.
1550 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1551 return 0;
1553 if (ext4_ext_is_uninitialized(ex1))
1554 max_len = EXT_UNINIT_MAX_LEN;
1555 else
1556 max_len = EXT_INIT_MAX_LEN;
1558 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1559 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1561 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1562 le32_to_cpu(ex2->ee_block))
1563 return 0;
1566 * To allow future support for preallocated extents to be added
1567 * as an RO_COMPAT feature, refuse to merge to extents if
1568 * this can result in the top bit of ee_len being set.
1570 if (ext1_ee_len + ext2_ee_len > max_len)
1571 return 0;
1572 #ifdef AGGRESSIVE_TEST
1573 if (ext1_ee_len >= 4)
1574 return 0;
1575 #endif
1577 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1578 return 1;
1579 return 0;
1583 * This function tries to merge the "ex" extent to the next extent in the tree.
1584 * It always tries to merge towards right. If you want to merge towards
1585 * left, pass "ex - 1" as argument instead of "ex".
1586 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1587 * 1 if they got merged.
1589 static int ext4_ext_try_to_merge_right(struct inode *inode,
1590 struct ext4_ext_path *path,
1591 struct ext4_extent *ex)
1593 struct ext4_extent_header *eh;
1594 unsigned int depth, len;
1595 int merge_done = 0;
1596 int uninitialized = 0;
1598 depth = ext_depth(inode);
1599 BUG_ON(path[depth].p_hdr == NULL);
1600 eh = path[depth].p_hdr;
1602 while (ex < EXT_LAST_EXTENT(eh)) {
1603 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1604 break;
1605 /* merge with next extent! */
1606 if (ext4_ext_is_uninitialized(ex))
1607 uninitialized = 1;
1608 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1609 + ext4_ext_get_actual_len(ex + 1));
1610 if (uninitialized)
1611 ext4_ext_mark_uninitialized(ex);
1613 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1614 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1615 * sizeof(struct ext4_extent);
1616 memmove(ex + 1, ex + 2, len);
1618 le16_add_cpu(&eh->eh_entries, -1);
1619 merge_done = 1;
1620 WARN_ON(eh->eh_entries == 0);
1621 if (!eh->eh_entries)
1622 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1625 return merge_done;
1629 * This function tries to merge the @ex extent to neighbours in the tree.
1630 * return 1 if merge left else 0.
1632 static int ext4_ext_try_to_merge(struct inode *inode,
1633 struct ext4_ext_path *path,
1634 struct ext4_extent *ex) {
1635 struct ext4_extent_header *eh;
1636 unsigned int depth;
1637 int merge_done = 0;
1638 int ret = 0;
1640 depth = ext_depth(inode);
1641 BUG_ON(path[depth].p_hdr == NULL);
1642 eh = path[depth].p_hdr;
1644 if (ex > EXT_FIRST_EXTENT(eh))
1645 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1647 if (!merge_done)
1648 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1650 return ret;
1654 * check if a portion of the "newext" extent overlaps with an
1655 * existing extent.
1657 * If there is an overlap discovered, it updates the length of the newext
1658 * such that there will be no overlap, and then returns 1.
1659 * If there is no overlap found, it returns 0.
1661 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1662 struct ext4_extent *newext,
1663 struct ext4_ext_path *path)
1665 ext4_lblk_t b1, b2;
1666 unsigned int depth, len1;
1667 unsigned int ret = 0;
1669 b1 = le32_to_cpu(newext->ee_block);
1670 len1 = ext4_ext_get_actual_len(newext);
1671 depth = ext_depth(inode);
1672 if (!path[depth].p_ext)
1673 goto out;
1674 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1677 * get the next allocated block if the extent in the path
1678 * is before the requested block(s)
1680 if (b2 < b1) {
1681 b2 = ext4_ext_next_allocated_block(path);
1682 if (b2 == EXT_MAX_BLOCKS)
1683 goto out;
1686 /* check for wrap through zero on extent logical start block*/
1687 if (b1 + len1 < b1) {
1688 len1 = EXT_MAX_BLOCKS - b1;
1689 newext->ee_len = cpu_to_le16(len1);
1690 ret = 1;
1693 /* check for overlap */
1694 if (b1 + len1 > b2) {
1695 newext->ee_len = cpu_to_le16(b2 - b1);
1696 ret = 1;
1698 out:
1699 return ret;
1703 * ext4_ext_insert_extent:
1704 * tries to merge requsted extent into the existing extent or
1705 * inserts requested extent as new one into the tree,
1706 * creating new leaf in the no-space case.
1708 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1709 struct ext4_ext_path *path,
1710 struct ext4_extent *newext, int flag)
1712 struct ext4_extent_header *eh;
1713 struct ext4_extent *ex, *fex;
1714 struct ext4_extent *nearex; /* nearest extent */
1715 struct ext4_ext_path *npath = NULL;
1716 int depth, len, err;
1717 ext4_lblk_t next;
1718 unsigned uninitialized = 0;
1719 int flags = 0;
1721 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1722 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1723 return -EIO;
1725 depth = ext_depth(inode);
1726 ex = path[depth].p_ext;
1727 if (unlikely(path[depth].p_hdr == NULL)) {
1728 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1729 return -EIO;
1732 /* try to insert block into found extent and return */
1733 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1734 && ext4_can_extents_be_merged(inode, ex, newext)) {
1735 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1736 ext4_ext_is_uninitialized(newext),
1737 ext4_ext_get_actual_len(newext),
1738 le32_to_cpu(ex->ee_block),
1739 ext4_ext_is_uninitialized(ex),
1740 ext4_ext_get_actual_len(ex),
1741 ext4_ext_pblock(ex));
1742 err = ext4_ext_get_access(handle, inode, path + depth);
1743 if (err)
1744 return err;
1747 * ext4_can_extents_be_merged should have checked that either
1748 * both extents are uninitialized, or both aren't. Thus we
1749 * need to check only one of them here.
1751 if (ext4_ext_is_uninitialized(ex))
1752 uninitialized = 1;
1753 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1754 + ext4_ext_get_actual_len(newext));
1755 if (uninitialized)
1756 ext4_ext_mark_uninitialized(ex);
1757 eh = path[depth].p_hdr;
1758 nearex = ex;
1759 goto merge;
1762 repeat:
1763 depth = ext_depth(inode);
1764 eh = path[depth].p_hdr;
1765 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1766 goto has_space;
1768 /* probably next leaf has space for us? */
1769 fex = EXT_LAST_EXTENT(eh);
1770 next = ext4_ext_next_leaf_block(inode, path);
1771 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1772 && next != EXT_MAX_BLOCKS) {
1773 ext_debug("next leaf block - %d\n", next);
1774 BUG_ON(npath != NULL);
1775 npath = ext4_ext_find_extent(inode, next, NULL);
1776 if (IS_ERR(npath))
1777 return PTR_ERR(npath);
1778 BUG_ON(npath->p_depth != path->p_depth);
1779 eh = npath[depth].p_hdr;
1780 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1781 ext_debug("next leaf isn't full(%d)\n",
1782 le16_to_cpu(eh->eh_entries));
1783 path = npath;
1784 goto repeat;
1786 ext_debug("next leaf has no free space(%d,%d)\n",
1787 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1791 * There is no free space in the found leaf.
1792 * We're gonna add a new leaf in the tree.
1794 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1795 flags = EXT4_MB_USE_ROOT_BLOCKS;
1796 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1797 if (err)
1798 goto cleanup;
1799 depth = ext_depth(inode);
1800 eh = path[depth].p_hdr;
1802 has_space:
1803 nearex = path[depth].p_ext;
1805 err = ext4_ext_get_access(handle, inode, path + depth);
1806 if (err)
1807 goto cleanup;
1809 if (!nearex) {
1810 /* there is no extent in this leaf, create first one */
1811 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1812 le32_to_cpu(newext->ee_block),
1813 ext4_ext_pblock(newext),
1814 ext4_ext_is_uninitialized(newext),
1815 ext4_ext_get_actual_len(newext));
1816 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1817 } else if (le32_to_cpu(newext->ee_block)
1818 > le32_to_cpu(nearex->ee_block)) {
1819 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1820 if (nearex != EXT_LAST_EXTENT(eh)) {
1821 len = EXT_MAX_EXTENT(eh) - nearex;
1822 len = (len - 1) * sizeof(struct ext4_extent);
1823 len = len < 0 ? 0 : len;
1824 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1825 "move %d from 0x%p to 0x%p\n",
1826 le32_to_cpu(newext->ee_block),
1827 ext4_ext_pblock(newext),
1828 ext4_ext_is_uninitialized(newext),
1829 ext4_ext_get_actual_len(newext),
1830 nearex, len, nearex + 1, nearex + 2);
1831 memmove(nearex + 2, nearex + 1, len);
1833 path[depth].p_ext = nearex + 1;
1834 } else {
1835 BUG_ON(newext->ee_block == nearex->ee_block);
1836 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1837 len = len < 0 ? 0 : len;
1838 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1839 "move %d from 0x%p to 0x%p\n",
1840 le32_to_cpu(newext->ee_block),
1841 ext4_ext_pblock(newext),
1842 ext4_ext_is_uninitialized(newext),
1843 ext4_ext_get_actual_len(newext),
1844 nearex, len, nearex + 1, nearex + 2);
1845 memmove(nearex + 1, nearex, len);
1846 path[depth].p_ext = nearex;
1849 le16_add_cpu(&eh->eh_entries, 1);
1850 nearex = path[depth].p_ext;
1851 nearex->ee_block = newext->ee_block;
1852 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1853 nearex->ee_len = newext->ee_len;
1855 merge:
1856 /* try to merge extents to the right */
1857 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1858 ext4_ext_try_to_merge(inode, path, nearex);
1860 /* try to merge extents to the left */
1862 /* time to correct all indexes above */
1863 err = ext4_ext_correct_indexes(handle, inode, path);
1864 if (err)
1865 goto cleanup;
1867 err = ext4_ext_dirty(handle, inode, path + depth);
1869 cleanup:
1870 if (npath) {
1871 ext4_ext_drop_refs(npath);
1872 kfree(npath);
1874 ext4_ext_invalidate_cache(inode);
1875 return err;
1878 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1879 ext4_lblk_t num, ext_prepare_callback func,
1880 void *cbdata)
1882 struct ext4_ext_path *path = NULL;
1883 struct ext4_ext_cache cbex;
1884 struct ext4_extent *ex;
1885 ext4_lblk_t next, start = 0, end = 0;
1886 ext4_lblk_t last = block + num;
1887 int depth, exists, err = 0;
1889 BUG_ON(func == NULL);
1890 BUG_ON(inode == NULL);
1892 while (block < last && block != EXT_MAX_BLOCKS) {
1893 num = last - block;
1894 /* find extent for this block */
1895 down_read(&EXT4_I(inode)->i_data_sem);
1896 path = ext4_ext_find_extent(inode, block, path);
1897 up_read(&EXT4_I(inode)->i_data_sem);
1898 if (IS_ERR(path)) {
1899 err = PTR_ERR(path);
1900 path = NULL;
1901 break;
1904 depth = ext_depth(inode);
1905 if (unlikely(path[depth].p_hdr == NULL)) {
1906 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1907 err = -EIO;
1908 break;
1910 ex = path[depth].p_ext;
1911 next = ext4_ext_next_allocated_block(path);
1913 exists = 0;
1914 if (!ex) {
1915 /* there is no extent yet, so try to allocate
1916 * all requested space */
1917 start = block;
1918 end = block + num;
1919 } else if (le32_to_cpu(ex->ee_block) > block) {
1920 /* need to allocate space before found extent */
1921 start = block;
1922 end = le32_to_cpu(ex->ee_block);
1923 if (block + num < end)
1924 end = block + num;
1925 } else if (block >= le32_to_cpu(ex->ee_block)
1926 + ext4_ext_get_actual_len(ex)) {
1927 /* need to allocate space after found extent */
1928 start = block;
1929 end = block + num;
1930 if (end >= next)
1931 end = next;
1932 } else if (block >= le32_to_cpu(ex->ee_block)) {
1934 * some part of requested space is covered
1935 * by found extent
1937 start = block;
1938 end = le32_to_cpu(ex->ee_block)
1939 + ext4_ext_get_actual_len(ex);
1940 if (block + num < end)
1941 end = block + num;
1942 exists = 1;
1943 } else {
1944 BUG();
1946 BUG_ON(end <= start);
1948 if (!exists) {
1949 cbex.ec_block = start;
1950 cbex.ec_len = end - start;
1951 cbex.ec_start = 0;
1952 } else {
1953 cbex.ec_block = le32_to_cpu(ex->ee_block);
1954 cbex.ec_len = ext4_ext_get_actual_len(ex);
1955 cbex.ec_start = ext4_ext_pblock(ex);
1958 if (unlikely(cbex.ec_len == 0)) {
1959 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1960 err = -EIO;
1961 break;
1963 err = func(inode, next, &cbex, ex, cbdata);
1964 ext4_ext_drop_refs(path);
1966 if (err < 0)
1967 break;
1969 if (err == EXT_REPEAT)
1970 continue;
1971 else if (err == EXT_BREAK) {
1972 err = 0;
1973 break;
1976 if (ext_depth(inode) != depth) {
1977 /* depth was changed. we have to realloc path */
1978 kfree(path);
1979 path = NULL;
1982 block = cbex.ec_block + cbex.ec_len;
1985 if (path) {
1986 ext4_ext_drop_refs(path);
1987 kfree(path);
1990 return err;
1993 static void
1994 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1995 __u32 len, ext4_fsblk_t start)
1997 struct ext4_ext_cache *cex;
1998 BUG_ON(len == 0);
1999 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2000 cex = &EXT4_I(inode)->i_cached_extent;
2001 cex->ec_block = block;
2002 cex->ec_len = len;
2003 cex->ec_start = start;
2004 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2008 * ext4_ext_put_gap_in_cache:
2009 * calculate boundaries of the gap that the requested block fits into
2010 * and cache this gap
2012 static void
2013 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2014 ext4_lblk_t block)
2016 int depth = ext_depth(inode);
2017 unsigned long len;
2018 ext4_lblk_t lblock;
2019 struct ext4_extent *ex;
2021 ex = path[depth].p_ext;
2022 if (ex == NULL) {
2023 /* there is no extent yet, so gap is [0;-] */
2024 lblock = 0;
2025 len = EXT_MAX_BLOCKS;
2026 ext_debug("cache gap(whole file):");
2027 } else if (block < le32_to_cpu(ex->ee_block)) {
2028 lblock = block;
2029 len = le32_to_cpu(ex->ee_block) - block;
2030 ext_debug("cache gap(before): %u [%u:%u]",
2031 block,
2032 le32_to_cpu(ex->ee_block),
2033 ext4_ext_get_actual_len(ex));
2034 } else if (block >= le32_to_cpu(ex->ee_block)
2035 + ext4_ext_get_actual_len(ex)) {
2036 ext4_lblk_t next;
2037 lblock = le32_to_cpu(ex->ee_block)
2038 + ext4_ext_get_actual_len(ex);
2040 next = ext4_ext_next_allocated_block(path);
2041 ext_debug("cache gap(after): [%u:%u] %u",
2042 le32_to_cpu(ex->ee_block),
2043 ext4_ext_get_actual_len(ex),
2044 block);
2045 BUG_ON(next == lblock);
2046 len = next - lblock;
2047 } else {
2048 lblock = len = 0;
2049 BUG();
2052 ext_debug(" -> %u:%lu\n", lblock, len);
2053 ext4_ext_put_in_cache(inode, lblock, len, 0);
2057 * ext4_ext_in_cache()
2058 * Checks to see if the given block is in the cache.
2059 * If it is, the cached extent is stored in the given
2060 * cache extent pointer. If the cached extent is a hole,
2061 * this routine should be used instead of
2062 * ext4_ext_in_cache if the calling function needs to
2063 * know the size of the hole.
2065 * @inode: The files inode
2066 * @block: The block to look for in the cache
2067 * @ex: Pointer where the cached extent will be stored
2068 * if it contains block
2070 * Return 0 if cache is invalid; 1 if the cache is valid
2072 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2073 struct ext4_ext_cache *ex){
2074 struct ext4_ext_cache *cex;
2075 struct ext4_sb_info *sbi;
2076 int ret = 0;
2079 * We borrow i_block_reservation_lock to protect i_cached_extent
2081 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2082 cex = &EXT4_I(inode)->i_cached_extent;
2083 sbi = EXT4_SB(inode->i_sb);
2085 /* has cache valid data? */
2086 if (cex->ec_len == 0)
2087 goto errout;
2089 if (in_range(block, cex->ec_block, cex->ec_len)) {
2090 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2091 ext_debug("%u cached by %u:%u:%llu\n",
2092 block,
2093 cex->ec_block, cex->ec_len, cex->ec_start);
2094 ret = 1;
2096 errout:
2097 if (!ret)
2098 sbi->extent_cache_misses++;
2099 else
2100 sbi->extent_cache_hits++;
2101 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2102 return ret;
2106 * ext4_ext_in_cache()
2107 * Checks to see if the given block is in the cache.
2108 * If it is, the cached extent is stored in the given
2109 * extent pointer.
2111 * @inode: The files inode
2112 * @block: The block to look for in the cache
2113 * @ex: Pointer where the cached extent will be stored
2114 * if it contains block
2116 * Return 0 if cache is invalid; 1 if the cache is valid
2118 static int
2119 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2120 struct ext4_extent *ex)
2122 struct ext4_ext_cache cex;
2123 int ret = 0;
2125 if (ext4_ext_check_cache(inode, block, &cex)) {
2126 ex->ee_block = cpu_to_le32(cex.ec_block);
2127 ext4_ext_store_pblock(ex, cex.ec_start);
2128 ex->ee_len = cpu_to_le16(cex.ec_len);
2129 ret = 1;
2132 return ret;
2137 * ext4_ext_rm_idx:
2138 * removes index from the index block.
2139 * It's used in truncate case only, thus all requests are for
2140 * last index in the block only.
2142 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2143 struct ext4_ext_path *path)
2145 int err;
2146 ext4_fsblk_t leaf;
2148 /* free index block */
2149 path--;
2150 leaf = ext4_idx_pblock(path->p_idx);
2151 if (unlikely(path->p_hdr->eh_entries == 0)) {
2152 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2153 return -EIO;
2155 err = ext4_ext_get_access(handle, inode, path);
2156 if (err)
2157 return err;
2158 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2159 err = ext4_ext_dirty(handle, inode, path);
2160 if (err)
2161 return err;
2162 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2163 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2164 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2165 return err;
2169 * ext4_ext_calc_credits_for_single_extent:
2170 * This routine returns max. credits that needed to insert an extent
2171 * to the extent tree.
2172 * When pass the actual path, the caller should calculate credits
2173 * under i_data_sem.
2175 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2176 struct ext4_ext_path *path)
2178 if (path) {
2179 int depth = ext_depth(inode);
2180 int ret = 0;
2182 /* probably there is space in leaf? */
2183 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2184 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2187 * There are some space in the leaf tree, no
2188 * need to account for leaf block credit
2190 * bitmaps and block group descriptor blocks
2191 * and other metadat blocks still need to be
2192 * accounted.
2194 /* 1 bitmap, 1 block group descriptor */
2195 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2196 return ret;
2200 return ext4_chunk_trans_blocks(inode, nrblocks);
2204 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2206 * if nrblocks are fit in a single extent (chunk flag is 1), then
2207 * in the worse case, each tree level index/leaf need to be changed
2208 * if the tree split due to insert a new extent, then the old tree
2209 * index/leaf need to be updated too
2211 * If the nrblocks are discontiguous, they could cause
2212 * the whole tree split more than once, but this is really rare.
2214 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2216 int index;
2217 int depth = ext_depth(inode);
2219 if (chunk)
2220 index = depth * 2;
2221 else
2222 index = depth * 3;
2224 return index;
2227 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2228 struct ext4_extent *ex,
2229 ext4_lblk_t from, ext4_lblk_t to)
2231 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2232 int flags = EXT4_FREE_BLOCKS_FORGET;
2234 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2235 flags |= EXT4_FREE_BLOCKS_METADATA;
2236 #ifdef EXTENTS_STATS
2238 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2239 spin_lock(&sbi->s_ext_stats_lock);
2240 sbi->s_ext_blocks += ee_len;
2241 sbi->s_ext_extents++;
2242 if (ee_len < sbi->s_ext_min)
2243 sbi->s_ext_min = ee_len;
2244 if (ee_len > sbi->s_ext_max)
2245 sbi->s_ext_max = ee_len;
2246 if (ext_depth(inode) > sbi->s_depth_max)
2247 sbi->s_depth_max = ext_depth(inode);
2248 spin_unlock(&sbi->s_ext_stats_lock);
2250 #endif
2251 if (from >= le32_to_cpu(ex->ee_block)
2252 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2253 /* tail removal */
2254 ext4_lblk_t num;
2255 ext4_fsblk_t start;
2257 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2258 start = ext4_ext_pblock(ex) + ee_len - num;
2259 ext_debug("free last %u blocks starting %llu\n", num, start);
2260 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2261 } else if (from == le32_to_cpu(ex->ee_block)
2262 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2263 /* head removal */
2264 ext4_lblk_t num;
2265 ext4_fsblk_t start;
2267 num = to - from;
2268 start = ext4_ext_pblock(ex);
2270 ext_debug("free first %u blocks starting %llu\n", num, start);
2271 ext4_free_blocks(handle, inode, 0, start, num, flags);
2273 } else {
2274 printk(KERN_INFO "strange request: removal(2) "
2275 "%u-%u from %u:%u\n",
2276 from, to, le32_to_cpu(ex->ee_block), ee_len);
2278 return 0;
2283 * ext4_ext_rm_leaf() Removes the extents associated with the
2284 * blocks appearing between "start" and "end", and splits the extents
2285 * if "start" and "end" appear in the same extent
2287 * @handle: The journal handle
2288 * @inode: The files inode
2289 * @path: The path to the leaf
2290 * @start: The first block to remove
2291 * @end: The last block to remove
2293 static int
2294 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2295 struct ext4_ext_path *path, ext4_lblk_t start,
2296 ext4_lblk_t end)
2298 int err = 0, correct_index = 0;
2299 int depth = ext_depth(inode), credits;
2300 struct ext4_extent_header *eh;
2301 ext4_lblk_t a, b, block;
2302 unsigned num;
2303 ext4_lblk_t ex_ee_block;
2304 unsigned short ex_ee_len;
2305 unsigned uninitialized = 0;
2306 struct ext4_extent *ex;
2307 struct ext4_map_blocks map;
2309 /* the header must be checked already in ext4_ext_remove_space() */
2310 ext_debug("truncate since %u in leaf\n", start);
2311 if (!path[depth].p_hdr)
2312 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2313 eh = path[depth].p_hdr;
2314 if (unlikely(path[depth].p_hdr == NULL)) {
2315 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2316 return -EIO;
2318 /* find where to start removing */
2319 ex = EXT_LAST_EXTENT(eh);
2321 ex_ee_block = le32_to_cpu(ex->ee_block);
2322 ex_ee_len = ext4_ext_get_actual_len(ex);
2324 while (ex >= EXT_FIRST_EXTENT(eh) &&
2325 ex_ee_block + ex_ee_len > start) {
2327 if (ext4_ext_is_uninitialized(ex))
2328 uninitialized = 1;
2329 else
2330 uninitialized = 0;
2332 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2333 uninitialized, ex_ee_len);
2334 path[depth].p_ext = ex;
2336 a = ex_ee_block > start ? ex_ee_block : start;
2337 b = ex_ee_block+ex_ee_len - 1 < end ?
2338 ex_ee_block+ex_ee_len - 1 : end;
2340 ext_debug(" border %u:%u\n", a, b);
2342 /* If this extent is beyond the end of the hole, skip it */
2343 if (end <= ex_ee_block) {
2344 ex--;
2345 ex_ee_block = le32_to_cpu(ex->ee_block);
2346 ex_ee_len = ext4_ext_get_actual_len(ex);
2347 continue;
2348 } else if (a != ex_ee_block &&
2349 b != ex_ee_block + ex_ee_len - 1) {
2351 * If this is a truncate, then this condition should
2352 * never happen because at least one of the end points
2353 * needs to be on the edge of the extent.
2355 if (end == EXT_MAX_BLOCKS - 1) {
2356 ext_debug(" bad truncate %u:%u\n",
2357 start, end);
2358 block = 0;
2359 num = 0;
2360 err = -EIO;
2361 goto out;
2364 * else this is a hole punch, so the extent needs to
2365 * be split since neither edge of the hole is on the
2366 * extent edge
2368 else{
2369 map.m_pblk = ext4_ext_pblock(ex);
2370 map.m_lblk = ex_ee_block;
2371 map.m_len = b - ex_ee_block;
2373 err = ext4_split_extent(handle,
2374 inode, path, &map, 0,
2375 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2376 EXT4_GET_BLOCKS_PRE_IO);
2378 if (err < 0)
2379 goto out;
2381 ex_ee_len = ext4_ext_get_actual_len(ex);
2383 b = ex_ee_block+ex_ee_len - 1 < end ?
2384 ex_ee_block+ex_ee_len - 1 : end;
2386 /* Then remove tail of this extent */
2387 block = ex_ee_block;
2388 num = a - block;
2390 } else if (a != ex_ee_block) {
2391 /* remove tail of the extent */
2392 block = ex_ee_block;
2393 num = a - block;
2394 } else if (b != ex_ee_block + ex_ee_len - 1) {
2395 /* remove head of the extent */
2396 block = b;
2397 num = ex_ee_block + ex_ee_len - b;
2400 * If this is a truncate, this condition
2401 * should never happen
2403 if (end == EXT_MAX_BLOCKS - 1) {
2404 ext_debug(" bad truncate %u:%u\n",
2405 start, end);
2406 err = -EIO;
2407 goto out;
2409 } else {
2410 /* remove whole extent: excellent! */
2411 block = ex_ee_block;
2412 num = 0;
2413 if (a != ex_ee_block) {
2414 ext_debug(" bad truncate %u:%u\n",
2415 start, end);
2416 err = -EIO;
2417 goto out;
2420 if (b != ex_ee_block + ex_ee_len - 1) {
2421 ext_debug(" bad truncate %u:%u\n",
2422 start, end);
2423 err = -EIO;
2424 goto out;
2429 * 3 for leaf, sb, and inode plus 2 (bmap and group
2430 * descriptor) for each block group; assume two block
2431 * groups plus ex_ee_len/blocks_per_block_group for
2432 * the worst case
2434 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2435 if (ex == EXT_FIRST_EXTENT(eh)) {
2436 correct_index = 1;
2437 credits += (ext_depth(inode)) + 1;
2439 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2441 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2442 if (err)
2443 goto out;
2445 err = ext4_ext_get_access(handle, inode, path + depth);
2446 if (err)
2447 goto out;
2449 err = ext4_remove_blocks(handle, inode, ex, a, b);
2450 if (err)
2451 goto out;
2453 if (num == 0) {
2454 /* this extent is removed; mark slot entirely unused */
2455 ext4_ext_store_pblock(ex, 0);
2456 } else if (block != ex_ee_block) {
2458 * If this was a head removal, then we need to update
2459 * the physical block since it is now at a different
2460 * location
2462 ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2465 ex->ee_block = cpu_to_le32(block);
2466 ex->ee_len = cpu_to_le16(num);
2468 * Do not mark uninitialized if all the blocks in the
2469 * extent have been removed.
2471 if (uninitialized && num)
2472 ext4_ext_mark_uninitialized(ex);
2474 err = ext4_ext_dirty(handle, inode, path + depth);
2475 if (err)
2476 goto out;
2479 * If the extent was completely released,
2480 * we need to remove it from the leaf
2482 if (num == 0) {
2483 if (end != EXT_MAX_BLOCKS - 1) {
2485 * For hole punching, we need to scoot all the
2486 * extents up when an extent is removed so that
2487 * we dont have blank extents in the middle
2489 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2490 sizeof(struct ext4_extent));
2492 /* Now get rid of the one at the end */
2493 memset(EXT_LAST_EXTENT(eh), 0,
2494 sizeof(struct ext4_extent));
2496 le16_add_cpu(&eh->eh_entries, -1);
2499 ext_debug("new extent: %u:%u:%llu\n", block, num,
2500 ext4_ext_pblock(ex));
2501 ex--;
2502 ex_ee_block = le32_to_cpu(ex->ee_block);
2503 ex_ee_len = ext4_ext_get_actual_len(ex);
2506 if (correct_index && eh->eh_entries)
2507 err = ext4_ext_correct_indexes(handle, inode, path);
2509 /* if this leaf is free, then we should
2510 * remove it from index block above */
2511 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2512 err = ext4_ext_rm_idx(handle, inode, path + depth);
2514 out:
2515 return err;
2519 * ext4_ext_more_to_rm:
2520 * returns 1 if current index has to be freed (even partial)
2522 static int
2523 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2525 BUG_ON(path->p_idx == NULL);
2527 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2528 return 0;
2531 * if truncate on deeper level happened, it wasn't partial,
2532 * so we have to consider current index for truncation
2534 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2535 return 0;
2536 return 1;
2539 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2540 ext4_lblk_t end)
2542 struct super_block *sb = inode->i_sb;
2543 int depth = ext_depth(inode);
2544 struct ext4_ext_path *path;
2545 handle_t *handle;
2546 int i, err;
2548 ext_debug("truncate since %u\n", start);
2550 /* probably first extent we're gonna free will be last in block */
2551 handle = ext4_journal_start(inode, depth + 1);
2552 if (IS_ERR(handle))
2553 return PTR_ERR(handle);
2555 again:
2556 ext4_ext_invalidate_cache(inode);
2559 * We start scanning from right side, freeing all the blocks
2560 * after i_size and walking into the tree depth-wise.
2562 depth = ext_depth(inode);
2563 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2564 if (path == NULL) {
2565 ext4_journal_stop(handle);
2566 return -ENOMEM;
2568 path[0].p_depth = depth;
2569 path[0].p_hdr = ext_inode_hdr(inode);
2570 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2571 err = -EIO;
2572 goto out;
2574 i = err = 0;
2576 while (i >= 0 && err == 0) {
2577 if (i == depth) {
2578 /* this is leaf block */
2579 err = ext4_ext_rm_leaf(handle, inode, path,
2580 start, end);
2581 /* root level has p_bh == NULL, brelse() eats this */
2582 brelse(path[i].p_bh);
2583 path[i].p_bh = NULL;
2584 i--;
2585 continue;
2588 /* this is index block */
2589 if (!path[i].p_hdr) {
2590 ext_debug("initialize header\n");
2591 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2594 if (!path[i].p_idx) {
2595 /* this level hasn't been touched yet */
2596 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2597 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2598 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2599 path[i].p_hdr,
2600 le16_to_cpu(path[i].p_hdr->eh_entries));
2601 } else {
2602 /* we were already here, see at next index */
2603 path[i].p_idx--;
2606 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2607 i, EXT_FIRST_INDEX(path[i].p_hdr),
2608 path[i].p_idx);
2609 if (ext4_ext_more_to_rm(path + i)) {
2610 struct buffer_head *bh;
2611 /* go to the next level */
2612 ext_debug("move to level %d (block %llu)\n",
2613 i + 1, ext4_idx_pblock(path[i].p_idx));
2614 memset(path + i + 1, 0, sizeof(*path));
2615 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2616 if (!bh) {
2617 /* should we reset i_size? */
2618 err = -EIO;
2619 break;
2621 if (WARN_ON(i + 1 > depth)) {
2622 err = -EIO;
2623 break;
2625 if (ext4_ext_check(inode, ext_block_hdr(bh),
2626 depth - i - 1)) {
2627 err = -EIO;
2628 break;
2630 path[i + 1].p_bh = bh;
2632 /* save actual number of indexes since this
2633 * number is changed at the next iteration */
2634 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2635 i++;
2636 } else {
2637 /* we finished processing this index, go up */
2638 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2639 /* index is empty, remove it;
2640 * handle must be already prepared by the
2641 * truncatei_leaf() */
2642 err = ext4_ext_rm_idx(handle, inode, path + i);
2644 /* root level has p_bh == NULL, brelse() eats this */
2645 brelse(path[i].p_bh);
2646 path[i].p_bh = NULL;
2647 i--;
2648 ext_debug("return to level %d\n", i);
2652 /* TODO: flexible tree reduction should be here */
2653 if (path->p_hdr->eh_entries == 0) {
2655 * truncate to zero freed all the tree,
2656 * so we need to correct eh_depth
2658 err = ext4_ext_get_access(handle, inode, path);
2659 if (err == 0) {
2660 ext_inode_hdr(inode)->eh_depth = 0;
2661 ext_inode_hdr(inode)->eh_max =
2662 cpu_to_le16(ext4_ext_space_root(inode, 0));
2663 err = ext4_ext_dirty(handle, inode, path);
2666 out:
2667 ext4_ext_drop_refs(path);
2668 kfree(path);
2669 if (err == -EAGAIN)
2670 goto again;
2671 ext4_journal_stop(handle);
2673 return err;
2677 * called at mount time
2679 void ext4_ext_init(struct super_block *sb)
2682 * possible initialization would be here
2685 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2686 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2687 printk(KERN_INFO "EXT4-fs: file extents enabled");
2688 #ifdef AGGRESSIVE_TEST
2689 printk(", aggressive tests");
2690 #endif
2691 #ifdef CHECK_BINSEARCH
2692 printk(", check binsearch");
2693 #endif
2694 #ifdef EXTENTS_STATS
2695 printk(", stats");
2696 #endif
2697 printk("\n");
2698 #endif
2699 #ifdef EXTENTS_STATS
2700 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2701 EXT4_SB(sb)->s_ext_min = 1 << 30;
2702 EXT4_SB(sb)->s_ext_max = 0;
2703 #endif
2708 * called at umount time
2710 void ext4_ext_release(struct super_block *sb)
2712 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2713 return;
2715 #ifdef EXTENTS_STATS
2716 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2717 struct ext4_sb_info *sbi = EXT4_SB(sb);
2718 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2719 sbi->s_ext_blocks, sbi->s_ext_extents,
2720 sbi->s_ext_blocks / sbi->s_ext_extents);
2721 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2722 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2724 #endif
2727 /* FIXME!! we need to try to merge to left or right after zero-out */
2728 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2730 ext4_fsblk_t ee_pblock;
2731 unsigned int ee_len;
2732 int ret;
2734 ee_len = ext4_ext_get_actual_len(ex);
2735 ee_pblock = ext4_ext_pblock(ex);
2737 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2738 if (ret > 0)
2739 ret = 0;
2741 return ret;
2745 * used by extent splitting.
2747 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2748 due to ENOSPC */
2749 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2750 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2753 * ext4_split_extent_at() splits an extent at given block.
2755 * @handle: the journal handle
2756 * @inode: the file inode
2757 * @path: the path to the extent
2758 * @split: the logical block where the extent is splitted.
2759 * @split_flags: indicates if the extent could be zeroout if split fails, and
2760 * the states(init or uninit) of new extents.
2761 * @flags: flags used to insert new extent to extent tree.
2764 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2765 * of which are deterimined by split_flag.
2767 * There are two cases:
2768 * a> the extent are splitted into two extent.
2769 * b> split is not needed, and just mark the extent.
2771 * return 0 on success.
2773 static int ext4_split_extent_at(handle_t *handle,
2774 struct inode *inode,
2775 struct ext4_ext_path *path,
2776 ext4_lblk_t split,
2777 int split_flag,
2778 int flags)
2780 ext4_fsblk_t newblock;
2781 ext4_lblk_t ee_block;
2782 struct ext4_extent *ex, newex, orig_ex;
2783 struct ext4_extent *ex2 = NULL;
2784 unsigned int ee_len, depth;
2785 int err = 0;
2787 ext_debug("ext4_split_extents_at: inode %lu, logical"
2788 "block %llu\n", inode->i_ino, (unsigned long long)split);
2790 ext4_ext_show_leaf(inode, path);
2792 depth = ext_depth(inode);
2793 ex = path[depth].p_ext;
2794 ee_block = le32_to_cpu(ex->ee_block);
2795 ee_len = ext4_ext_get_actual_len(ex);
2796 newblock = split - ee_block + ext4_ext_pblock(ex);
2798 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2800 err = ext4_ext_get_access(handle, inode, path + depth);
2801 if (err)
2802 goto out;
2804 if (split == ee_block) {
2806 * case b: block @split is the block that the extent begins with
2807 * then we just change the state of the extent, and splitting
2808 * is not needed.
2810 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2811 ext4_ext_mark_uninitialized(ex);
2812 else
2813 ext4_ext_mark_initialized(ex);
2815 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2816 ext4_ext_try_to_merge(inode, path, ex);
2818 err = ext4_ext_dirty(handle, inode, path + depth);
2819 goto out;
2822 /* case a */
2823 memcpy(&orig_ex, ex, sizeof(orig_ex));
2824 ex->ee_len = cpu_to_le16(split - ee_block);
2825 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2826 ext4_ext_mark_uninitialized(ex);
2829 * path may lead to new leaf, not to original leaf any more
2830 * after ext4_ext_insert_extent() returns,
2832 err = ext4_ext_dirty(handle, inode, path + depth);
2833 if (err)
2834 goto fix_extent_len;
2836 ex2 = &newex;
2837 ex2->ee_block = cpu_to_le32(split);
2838 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2839 ext4_ext_store_pblock(ex2, newblock);
2840 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2841 ext4_ext_mark_uninitialized(ex2);
2843 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2844 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2845 err = ext4_ext_zeroout(inode, &orig_ex);
2846 if (err)
2847 goto fix_extent_len;
2848 /* update the extent length and mark as initialized */
2849 ex->ee_len = cpu_to_le16(ee_len);
2850 ext4_ext_try_to_merge(inode, path, ex);
2851 err = ext4_ext_dirty(handle, inode, path + depth);
2852 goto out;
2853 } else if (err)
2854 goto fix_extent_len;
2856 out:
2857 ext4_ext_show_leaf(inode, path);
2858 return err;
2860 fix_extent_len:
2861 ex->ee_len = orig_ex.ee_len;
2862 ext4_ext_dirty(handle, inode, path + depth);
2863 return err;
2867 * ext4_split_extents() splits an extent and mark extent which is covered
2868 * by @map as split_flags indicates
2870 * It may result in splitting the extent into multiple extents (upto three)
2871 * There are three possibilities:
2872 * a> There is no split required
2873 * b> Splits in two extents: Split is happening at either end of the extent
2874 * c> Splits in three extents: Somone is splitting in middle of the extent
2877 static int ext4_split_extent(handle_t *handle,
2878 struct inode *inode,
2879 struct ext4_ext_path *path,
2880 struct ext4_map_blocks *map,
2881 int split_flag,
2882 int flags)
2884 ext4_lblk_t ee_block;
2885 struct ext4_extent *ex;
2886 unsigned int ee_len, depth;
2887 int err = 0;
2888 int uninitialized;
2889 int split_flag1, flags1;
2891 depth = ext_depth(inode);
2892 ex = path[depth].p_ext;
2893 ee_block = le32_to_cpu(ex->ee_block);
2894 ee_len = ext4_ext_get_actual_len(ex);
2895 uninitialized = ext4_ext_is_uninitialized(ex);
2897 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2898 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2899 EXT4_EXT_MAY_ZEROOUT : 0;
2900 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2901 if (uninitialized)
2902 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2903 EXT4_EXT_MARK_UNINIT2;
2904 err = ext4_split_extent_at(handle, inode, path,
2905 map->m_lblk + map->m_len, split_flag1, flags1);
2906 if (err)
2907 goto out;
2910 ext4_ext_drop_refs(path);
2911 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2912 if (IS_ERR(path))
2913 return PTR_ERR(path);
2915 if (map->m_lblk >= ee_block) {
2916 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2917 EXT4_EXT_MAY_ZEROOUT : 0;
2918 if (uninitialized)
2919 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2920 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2921 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2922 err = ext4_split_extent_at(handle, inode, path,
2923 map->m_lblk, split_flag1, flags);
2924 if (err)
2925 goto out;
2928 ext4_ext_show_leaf(inode, path);
2929 out:
2930 return err ? err : map->m_len;
2933 #define EXT4_EXT_ZERO_LEN 7
2935 * This function is called by ext4_ext_map_blocks() if someone tries to write
2936 * to an uninitialized extent. It may result in splitting the uninitialized
2937 * extent into multiple extents (up to three - one initialized and two
2938 * uninitialized).
2939 * There are three possibilities:
2940 * a> There is no split required: Entire extent should be initialized
2941 * b> Splits in two extents: Write is happening at either end of the extent
2942 * c> Splits in three extents: Somone is writing in middle of the extent
2944 static int ext4_ext_convert_to_initialized(handle_t *handle,
2945 struct inode *inode,
2946 struct ext4_map_blocks *map,
2947 struct ext4_ext_path *path)
2949 struct ext4_map_blocks split_map;
2950 struct ext4_extent zero_ex;
2951 struct ext4_extent *ex;
2952 ext4_lblk_t ee_block, eof_block;
2953 unsigned int allocated, ee_len, depth;
2954 int err = 0;
2955 int split_flag = 0;
2957 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2958 "block %llu, max_blocks %u\n", inode->i_ino,
2959 (unsigned long long)map->m_lblk, map->m_len);
2961 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2962 inode->i_sb->s_blocksize_bits;
2963 if (eof_block < map->m_lblk + map->m_len)
2964 eof_block = map->m_lblk + map->m_len;
2966 depth = ext_depth(inode);
2967 ex = path[depth].p_ext;
2968 ee_block = le32_to_cpu(ex->ee_block);
2969 ee_len = ext4_ext_get_actual_len(ex);
2970 allocated = ee_len - (map->m_lblk - ee_block);
2972 WARN_ON(map->m_lblk < ee_block);
2974 * It is safe to convert extent to initialized via explicit
2975 * zeroout only if extent is fully insde i_size or new_size.
2977 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2979 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2980 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2981 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2982 err = ext4_ext_zeroout(inode, ex);
2983 if (err)
2984 goto out;
2986 err = ext4_ext_get_access(handle, inode, path + depth);
2987 if (err)
2988 goto out;
2989 ext4_ext_mark_initialized(ex);
2990 ext4_ext_try_to_merge(inode, path, ex);
2991 err = ext4_ext_dirty(handle, inode, path + depth);
2992 goto out;
2996 * four cases:
2997 * 1. split the extent into three extents.
2998 * 2. split the extent into two extents, zeroout the first half.
2999 * 3. split the extent into two extents, zeroout the second half.
3000 * 4. split the extent into two extents with out zeroout.
3002 split_map.m_lblk = map->m_lblk;
3003 split_map.m_len = map->m_len;
3005 if (allocated > map->m_len) {
3006 if (allocated <= EXT4_EXT_ZERO_LEN &&
3007 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3008 /* case 3 */
3009 zero_ex.ee_block =
3010 cpu_to_le32(map->m_lblk);
3011 zero_ex.ee_len = cpu_to_le16(allocated);
3012 ext4_ext_store_pblock(&zero_ex,
3013 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3014 err = ext4_ext_zeroout(inode, &zero_ex);
3015 if (err)
3016 goto out;
3017 split_map.m_lblk = map->m_lblk;
3018 split_map.m_len = allocated;
3019 } else if ((map->m_lblk - ee_block + map->m_len <
3020 EXT4_EXT_ZERO_LEN) &&
3021 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3022 /* case 2 */
3023 if (map->m_lblk != ee_block) {
3024 zero_ex.ee_block = ex->ee_block;
3025 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3026 ee_block);
3027 ext4_ext_store_pblock(&zero_ex,
3028 ext4_ext_pblock(ex));
3029 err = ext4_ext_zeroout(inode, &zero_ex);
3030 if (err)
3031 goto out;
3034 split_map.m_lblk = ee_block;
3035 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3036 allocated = map->m_len;
3040 allocated = ext4_split_extent(handle, inode, path,
3041 &split_map, split_flag, 0);
3042 if (allocated < 0)
3043 err = allocated;
3045 out:
3046 return err ? err : allocated;
3050 * This function is called by ext4_ext_map_blocks() from
3051 * ext4_get_blocks_dio_write() when DIO to write
3052 * to an uninitialized extent.
3054 * Writing to an uninitialized extent may result in splitting the uninitialized
3055 * extent into multiple /initialized uninitialized extents (up to three)
3056 * There are three possibilities:
3057 * a> There is no split required: Entire extent should be uninitialized
3058 * b> Splits in two extents: Write is happening at either end of the extent
3059 * c> Splits in three extents: Somone is writing in middle of the extent
3061 * One of more index blocks maybe needed if the extent tree grow after
3062 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3063 * complete, we need to split the uninitialized extent before DIO submit
3064 * the IO. The uninitialized extent called at this time will be split
3065 * into three uninitialized extent(at most). After IO complete, the part
3066 * being filled will be convert to initialized by the end_io callback function
3067 * via ext4_convert_unwritten_extents().
3069 * Returns the size of uninitialized extent to be written on success.
3071 static int ext4_split_unwritten_extents(handle_t *handle,
3072 struct inode *inode,
3073 struct ext4_map_blocks *map,
3074 struct ext4_ext_path *path,
3075 int flags)
3077 ext4_lblk_t eof_block;
3078 ext4_lblk_t ee_block;
3079 struct ext4_extent *ex;
3080 unsigned int ee_len;
3081 int split_flag = 0, depth;
3083 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3084 "block %llu, max_blocks %u\n", inode->i_ino,
3085 (unsigned long long)map->m_lblk, map->m_len);
3087 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3088 inode->i_sb->s_blocksize_bits;
3089 if (eof_block < map->m_lblk + map->m_len)
3090 eof_block = map->m_lblk + map->m_len;
3092 * It is safe to convert extent to initialized via explicit
3093 * zeroout only if extent is fully insde i_size or new_size.
3095 depth = ext_depth(inode);
3096 ex = path[depth].p_ext;
3097 ee_block = le32_to_cpu(ex->ee_block);
3098 ee_len = ext4_ext_get_actual_len(ex);
3100 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3101 split_flag |= EXT4_EXT_MARK_UNINIT2;
3103 flags |= EXT4_GET_BLOCKS_PRE_IO;
3104 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3107 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3108 struct inode *inode,
3109 struct ext4_ext_path *path)
3111 struct ext4_extent *ex;
3112 struct ext4_extent_header *eh;
3113 int depth;
3114 int err = 0;
3116 depth = ext_depth(inode);
3117 eh = path[depth].p_hdr;
3118 ex = path[depth].p_ext;
3120 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3121 "block %llu, max_blocks %u\n", inode->i_ino,
3122 (unsigned long long)le32_to_cpu(ex->ee_block),
3123 ext4_ext_get_actual_len(ex));
3125 err = ext4_ext_get_access(handle, inode, path + depth);
3126 if (err)
3127 goto out;
3128 /* first mark the extent as initialized */
3129 ext4_ext_mark_initialized(ex);
3131 /* note: ext4_ext_correct_indexes() isn't needed here because
3132 * borders are not changed
3134 ext4_ext_try_to_merge(inode, path, ex);
3136 /* Mark modified extent as dirty */
3137 err = ext4_ext_dirty(handle, inode, path + depth);
3138 out:
3139 ext4_ext_show_leaf(inode, path);
3140 return err;
3143 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3144 sector_t block, int count)
3146 int i;
3147 for (i = 0; i < count; i++)
3148 unmap_underlying_metadata(bdev, block + i);
3152 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3154 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3155 ext4_lblk_t lblk,
3156 struct ext4_ext_path *path,
3157 unsigned int len)
3159 int i, depth;
3160 struct ext4_extent_header *eh;
3161 struct ext4_extent *last_ex;
3163 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3164 return 0;
3166 depth = ext_depth(inode);
3167 eh = path[depth].p_hdr;
3169 if (unlikely(!eh->eh_entries)) {
3170 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3171 "EOFBLOCKS_FL set");
3172 return -EIO;
3174 last_ex = EXT_LAST_EXTENT(eh);
3176 * We should clear the EOFBLOCKS_FL flag if we are writing the
3177 * last block in the last extent in the file. We test this by
3178 * first checking to see if the caller to
3179 * ext4_ext_get_blocks() was interested in the last block (or
3180 * a block beyond the last block) in the current extent. If
3181 * this turns out to be false, we can bail out from this
3182 * function immediately.
3184 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3185 ext4_ext_get_actual_len(last_ex))
3186 return 0;
3188 * If the caller does appear to be planning to write at or
3189 * beyond the end of the current extent, we then test to see
3190 * if the current extent is the last extent in the file, by
3191 * checking to make sure it was reached via the rightmost node
3192 * at each level of the tree.
3194 for (i = depth-1; i >= 0; i--)
3195 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3196 return 0;
3197 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3198 return ext4_mark_inode_dirty(handle, inode);
3201 static int
3202 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3203 struct ext4_map_blocks *map,
3204 struct ext4_ext_path *path, int flags,
3205 unsigned int allocated, ext4_fsblk_t newblock)
3207 int ret = 0;
3208 int err = 0;
3209 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3211 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3212 "block %llu, max_blocks %u, flags %d, allocated %u",
3213 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3214 flags, allocated);
3215 ext4_ext_show_leaf(inode, path);
3217 /* get_block() before submit the IO, split the extent */
3218 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3219 ret = ext4_split_unwritten_extents(handle, inode, map,
3220 path, flags);
3222 * Flag the inode(non aio case) or end_io struct (aio case)
3223 * that this IO needs to conversion to written when IO is
3224 * completed
3226 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3227 io->flag = EXT4_IO_END_UNWRITTEN;
3228 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3229 } else
3230 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3231 if (ext4_should_dioread_nolock(inode))
3232 map->m_flags |= EXT4_MAP_UNINIT;
3233 goto out;
3235 /* IO end_io complete, convert the filled extent to written */
3236 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3237 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3238 path);
3239 if (ret >= 0) {
3240 ext4_update_inode_fsync_trans(handle, inode, 1);
3241 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3242 path, map->m_len);
3243 } else
3244 err = ret;
3245 goto out2;
3247 /* buffered IO case */
3249 * repeat fallocate creation request
3250 * we already have an unwritten extent
3252 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3253 goto map_out;
3255 /* buffered READ or buffered write_begin() lookup */
3256 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3258 * We have blocks reserved already. We
3259 * return allocated blocks so that delalloc
3260 * won't do block reservation for us. But
3261 * the buffer head will be unmapped so that
3262 * a read from the block returns 0s.
3264 map->m_flags |= EXT4_MAP_UNWRITTEN;
3265 goto out1;
3268 /* buffered write, writepage time, convert*/
3269 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3270 if (ret >= 0) {
3271 ext4_update_inode_fsync_trans(handle, inode, 1);
3272 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3273 map->m_len);
3274 if (err < 0)
3275 goto out2;
3278 out:
3279 if (ret <= 0) {
3280 err = ret;
3281 goto out2;
3282 } else
3283 allocated = ret;
3284 map->m_flags |= EXT4_MAP_NEW;
3286 * if we allocated more blocks than requested
3287 * we need to make sure we unmap the extra block
3288 * allocated. The actual needed block will get
3289 * unmapped later when we find the buffer_head marked
3290 * new.
3292 if (allocated > map->m_len) {
3293 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3294 newblock + map->m_len,
3295 allocated - map->m_len);
3296 allocated = map->m_len;
3300 * If we have done fallocate with the offset that is already
3301 * delayed allocated, we would have block reservation
3302 * and quota reservation done in the delayed write path.
3303 * But fallocate would have already updated quota and block
3304 * count for this offset. So cancel these reservation
3306 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3307 ext4_da_update_reserve_space(inode, allocated, 0);
3309 map_out:
3310 map->m_flags |= EXT4_MAP_MAPPED;
3311 out1:
3312 if (allocated > map->m_len)
3313 allocated = map->m_len;
3314 ext4_ext_show_leaf(inode, path);
3315 map->m_pblk = newblock;
3316 map->m_len = allocated;
3317 out2:
3318 if (path) {
3319 ext4_ext_drop_refs(path);
3320 kfree(path);
3322 return err ? err : allocated;
3326 * Block allocation/map/preallocation routine for extents based files
3329 * Need to be called with
3330 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3331 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3333 * return > 0, number of of blocks already mapped/allocated
3334 * if create == 0 and these are pre-allocated blocks
3335 * buffer head is unmapped
3336 * otherwise blocks are mapped
3338 * return = 0, if plain look up failed (blocks have not been allocated)
3339 * buffer head is unmapped
3341 * return < 0, error case.
3343 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3344 struct ext4_map_blocks *map, int flags)
3346 struct ext4_ext_path *path = NULL;
3347 struct ext4_extent newex, *ex;
3348 ext4_fsblk_t newblock = 0;
3349 int err = 0, depth, ret;
3350 unsigned int allocated = 0;
3351 unsigned int punched_out = 0;
3352 unsigned int result = 0;
3353 struct ext4_allocation_request ar;
3354 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3355 struct ext4_map_blocks punch_map;
3357 ext_debug("blocks %u/%u requested for inode %lu\n",
3358 map->m_lblk, map->m_len, inode->i_ino);
3359 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3361 /* check in cache */
3362 if (ext4_ext_in_cache(inode, map->m_lblk, &newex) &&
3363 ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0)) {
3364 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3365 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3367 * block isn't allocated yet and
3368 * user doesn't want to allocate it
3370 goto out2;
3372 /* we should allocate requested block */
3373 } else {
3374 /* block is already allocated */
3375 newblock = map->m_lblk
3376 - le32_to_cpu(newex.ee_block)
3377 + ext4_ext_pblock(&newex);
3378 /* number of remaining blocks in the extent */
3379 allocated = ext4_ext_get_actual_len(&newex) -
3380 (map->m_lblk - le32_to_cpu(newex.ee_block));
3381 goto out;
3385 /* find extent for this block */
3386 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3387 if (IS_ERR(path)) {
3388 err = PTR_ERR(path);
3389 path = NULL;
3390 goto out2;
3393 depth = ext_depth(inode);
3396 * consistent leaf must not be empty;
3397 * this situation is possible, though, _during_ tree modification;
3398 * this is why assert can't be put in ext4_ext_find_extent()
3400 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3401 EXT4_ERROR_INODE(inode, "bad extent address "
3402 "lblock: %lu, depth: %d pblock %lld",
3403 (unsigned long) map->m_lblk, depth,
3404 path[depth].p_block);
3405 err = -EIO;
3406 goto out2;
3409 ex = path[depth].p_ext;
3410 if (ex) {
3411 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3412 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3413 unsigned short ee_len;
3416 * Uninitialized extents are treated as holes, except that
3417 * we split out initialized portions during a write.
3419 ee_len = ext4_ext_get_actual_len(ex);
3420 /* if found extent covers block, simply return it */
3421 if (in_range(map->m_lblk, ee_block, ee_len)) {
3422 newblock = map->m_lblk - ee_block + ee_start;
3423 /* number of remaining blocks in the extent */
3424 allocated = ee_len - (map->m_lblk - ee_block);
3425 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3426 ee_block, ee_len, newblock);
3428 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3430 * Do not put uninitialized extent
3431 * in the cache
3433 if (!ext4_ext_is_uninitialized(ex)) {
3434 ext4_ext_put_in_cache(inode, ee_block,
3435 ee_len, ee_start);
3436 goto out;
3438 ret = ext4_ext_handle_uninitialized_extents(
3439 handle, inode, map, path, flags,
3440 allocated, newblock);
3441 return ret;
3445 * Punch out the map length, but only to the
3446 * end of the extent
3448 punched_out = allocated < map->m_len ?
3449 allocated : map->m_len;
3452 * Sense extents need to be converted to
3453 * uninitialized, they must fit in an
3454 * uninitialized extent
3456 if (punched_out > EXT_UNINIT_MAX_LEN)
3457 punched_out = EXT_UNINIT_MAX_LEN;
3459 punch_map.m_lblk = map->m_lblk;
3460 punch_map.m_pblk = newblock;
3461 punch_map.m_len = punched_out;
3462 punch_map.m_flags = 0;
3464 /* Check to see if the extent needs to be split */
3465 if (punch_map.m_len != ee_len ||
3466 punch_map.m_lblk != ee_block) {
3468 ret = ext4_split_extent(handle, inode,
3469 path, &punch_map, 0,
3470 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3471 EXT4_GET_BLOCKS_PRE_IO);
3473 if (ret < 0) {
3474 err = ret;
3475 goto out2;
3478 * find extent for the block at
3479 * the start of the hole
3481 ext4_ext_drop_refs(path);
3482 kfree(path);
3484 path = ext4_ext_find_extent(inode,
3485 map->m_lblk, NULL);
3486 if (IS_ERR(path)) {
3487 err = PTR_ERR(path);
3488 path = NULL;
3489 goto out2;
3492 depth = ext_depth(inode);
3493 ex = path[depth].p_ext;
3494 ee_len = ext4_ext_get_actual_len(ex);
3495 ee_block = le32_to_cpu(ex->ee_block);
3496 ee_start = ext4_ext_pblock(ex);
3500 ext4_ext_mark_uninitialized(ex);
3502 err = ext4_ext_remove_space(inode, map->m_lblk,
3503 map->m_lblk + punched_out);
3505 goto out2;
3510 * requested block isn't allocated yet;
3511 * we couldn't try to create block if create flag is zero
3513 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3515 * put just found gap into cache to speed up
3516 * subsequent requests
3518 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3519 goto out2;
3522 * Okay, we need to do block allocation.
3525 /* find neighbour allocated blocks */
3526 ar.lleft = map->m_lblk;
3527 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3528 if (err)
3529 goto out2;
3530 ar.lright = map->m_lblk;
3531 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3532 if (err)
3533 goto out2;
3536 * See if request is beyond maximum number of blocks we can have in
3537 * a single extent. For an initialized extent this limit is
3538 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3539 * EXT_UNINIT_MAX_LEN.
3541 if (map->m_len > EXT_INIT_MAX_LEN &&
3542 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3543 map->m_len = EXT_INIT_MAX_LEN;
3544 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3545 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3546 map->m_len = EXT_UNINIT_MAX_LEN;
3548 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3549 newex.ee_block = cpu_to_le32(map->m_lblk);
3550 newex.ee_len = cpu_to_le16(map->m_len);
3551 err = ext4_ext_check_overlap(inode, &newex, path);
3552 if (err)
3553 allocated = ext4_ext_get_actual_len(&newex);
3554 else
3555 allocated = map->m_len;
3557 /* allocate new block */
3558 ar.inode = inode;
3559 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3560 ar.logical = map->m_lblk;
3561 ar.len = allocated;
3562 if (S_ISREG(inode->i_mode))
3563 ar.flags = EXT4_MB_HINT_DATA;
3564 else
3565 /* disable in-core preallocation for non-regular files */
3566 ar.flags = 0;
3567 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3568 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3569 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3570 if (!newblock)
3571 goto out2;
3572 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3573 ar.goal, newblock, allocated);
3575 /* try to insert new extent into found leaf and return */
3576 ext4_ext_store_pblock(&newex, newblock);
3577 newex.ee_len = cpu_to_le16(ar.len);
3578 /* Mark uninitialized */
3579 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3580 ext4_ext_mark_uninitialized(&newex);
3582 * io_end structure was created for every IO write to an
3583 * uninitialized extent. To avoid unnecessary conversion,
3584 * here we flag the IO that really needs the conversion.
3585 * For non asycn direct IO case, flag the inode state
3586 * that we need to perform conversion when IO is done.
3588 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3589 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3590 io->flag = EXT4_IO_END_UNWRITTEN;
3591 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3592 } else
3593 ext4_set_inode_state(inode,
3594 EXT4_STATE_DIO_UNWRITTEN);
3596 if (ext4_should_dioread_nolock(inode))
3597 map->m_flags |= EXT4_MAP_UNINIT;
3600 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3601 if (!err)
3602 err = ext4_ext_insert_extent(handle, inode, path,
3603 &newex, flags);
3604 if (err) {
3605 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3606 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3607 /* free data blocks we just allocated */
3608 /* not a good idea to call discard here directly,
3609 * but otherwise we'd need to call it every free() */
3610 ext4_discard_preallocations(inode);
3611 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3612 ext4_ext_get_actual_len(&newex), fb_flags);
3613 goto out2;
3616 /* previous routine could use block we allocated */
3617 newblock = ext4_ext_pblock(&newex);
3618 allocated = ext4_ext_get_actual_len(&newex);
3619 if (allocated > map->m_len)
3620 allocated = map->m_len;
3621 map->m_flags |= EXT4_MAP_NEW;
3624 * Update reserved blocks/metadata blocks after successful
3625 * block allocation which had been deferred till now.
3627 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3628 ext4_da_update_reserve_space(inode, allocated, 1);
3631 * Cache the extent and update transaction to commit on fdatasync only
3632 * when it is _not_ an uninitialized extent.
3634 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3635 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3636 ext4_update_inode_fsync_trans(handle, inode, 1);
3637 } else
3638 ext4_update_inode_fsync_trans(handle, inode, 0);
3639 out:
3640 if (allocated > map->m_len)
3641 allocated = map->m_len;
3642 ext4_ext_show_leaf(inode, path);
3643 map->m_flags |= EXT4_MAP_MAPPED;
3644 map->m_pblk = newblock;
3645 map->m_len = allocated;
3646 out2:
3647 if (path) {
3648 ext4_ext_drop_refs(path);
3649 kfree(path);
3651 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3652 newblock, map->m_len, err ? err : allocated);
3654 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3655 punched_out : allocated;
3657 return err ? err : result;
3660 void ext4_ext_truncate(struct inode *inode)
3662 struct address_space *mapping = inode->i_mapping;
3663 struct super_block *sb = inode->i_sb;
3664 ext4_lblk_t last_block;
3665 handle_t *handle;
3666 int err = 0;
3669 * finish any pending end_io work so we won't run the risk of
3670 * converting any truncated blocks to initialized later
3672 ext4_flush_completed_IO(inode);
3675 * probably first extent we're gonna free will be last in block
3677 err = ext4_writepage_trans_blocks(inode);
3678 handle = ext4_journal_start(inode, err);
3679 if (IS_ERR(handle))
3680 return;
3682 if (inode->i_size & (sb->s_blocksize - 1))
3683 ext4_block_truncate_page(handle, mapping, inode->i_size);
3685 if (ext4_orphan_add(handle, inode))
3686 goto out_stop;
3688 down_write(&EXT4_I(inode)->i_data_sem);
3689 ext4_ext_invalidate_cache(inode);
3691 ext4_discard_preallocations(inode);
3694 * TODO: optimization is possible here.
3695 * Probably we need not scan at all,
3696 * because page truncation is enough.
3699 /* we have to know where to truncate from in crash case */
3700 EXT4_I(inode)->i_disksize = inode->i_size;
3701 ext4_mark_inode_dirty(handle, inode);
3703 last_block = (inode->i_size + sb->s_blocksize - 1)
3704 >> EXT4_BLOCK_SIZE_BITS(sb);
3705 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
3707 /* In a multi-transaction truncate, we only make the final
3708 * transaction synchronous.
3710 if (IS_SYNC(inode))
3711 ext4_handle_sync(handle);
3713 up_write(&EXT4_I(inode)->i_data_sem);
3715 out_stop:
3717 * If this was a simple ftruncate() and the file will remain alive,
3718 * then we need to clear up the orphan record which we created above.
3719 * However, if this was a real unlink then we were called by
3720 * ext4_delete_inode(), and we allow that function to clean up the
3721 * orphan info for us.
3723 if (inode->i_nlink)
3724 ext4_orphan_del(handle, inode);
3726 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3727 ext4_mark_inode_dirty(handle, inode);
3728 ext4_journal_stop(handle);
3731 static void ext4_falloc_update_inode(struct inode *inode,
3732 int mode, loff_t new_size, int update_ctime)
3734 struct timespec now;
3736 if (update_ctime) {
3737 now = current_fs_time(inode->i_sb);
3738 if (!timespec_equal(&inode->i_ctime, &now))
3739 inode->i_ctime = now;
3742 * Update only when preallocation was requested beyond
3743 * the file size.
3745 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3746 if (new_size > i_size_read(inode))
3747 i_size_write(inode, new_size);
3748 if (new_size > EXT4_I(inode)->i_disksize)
3749 ext4_update_i_disksize(inode, new_size);
3750 } else {
3752 * Mark that we allocate beyond EOF so the subsequent truncate
3753 * can proceed even if the new size is the same as i_size.
3755 if (new_size > i_size_read(inode))
3756 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3762 * preallocate space for a file. This implements ext4's fallocate file
3763 * operation, which gets called from sys_fallocate system call.
3764 * For block-mapped files, posix_fallocate should fall back to the method
3765 * of writing zeroes to the required new blocks (the same behavior which is
3766 * expected for file systems which do not support fallocate() system call).
3768 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3770 struct inode *inode = file->f_path.dentry->d_inode;
3771 handle_t *handle;
3772 loff_t new_size;
3773 unsigned int max_blocks;
3774 int ret = 0;
3775 int ret2 = 0;
3776 int retries = 0;
3777 struct ext4_map_blocks map;
3778 unsigned int credits, blkbits = inode->i_blkbits;
3781 * currently supporting (pre)allocate mode for extent-based
3782 * files _only_
3784 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3785 return -EOPNOTSUPP;
3787 /* Return error if mode is not supported */
3788 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3789 return -EOPNOTSUPP;
3791 if (mode & FALLOC_FL_PUNCH_HOLE)
3792 return ext4_punch_hole(file, offset, len);
3794 trace_ext4_fallocate_enter(inode, offset, len, mode);
3795 map.m_lblk = offset >> blkbits;
3797 * We can't just convert len to max_blocks because
3798 * If blocksize = 4096 offset = 3072 and len = 2048
3800 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3801 - map.m_lblk;
3803 * credits to insert 1 extent into extent tree
3805 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3806 mutex_lock(&inode->i_mutex);
3807 ret = inode_newsize_ok(inode, (len + offset));
3808 if (ret) {
3809 mutex_unlock(&inode->i_mutex);
3810 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3811 return ret;
3813 retry:
3814 while (ret >= 0 && ret < max_blocks) {
3815 map.m_lblk = map.m_lblk + ret;
3816 map.m_len = max_blocks = max_blocks - ret;
3817 handle = ext4_journal_start(inode, credits);
3818 if (IS_ERR(handle)) {
3819 ret = PTR_ERR(handle);
3820 break;
3822 ret = ext4_map_blocks(handle, inode, &map,
3823 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3824 EXT4_GET_BLOCKS_NO_NORMALIZE);
3825 if (ret <= 0) {
3826 #ifdef EXT4FS_DEBUG
3827 WARN_ON(ret <= 0);
3828 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3829 "returned error inode#%lu, block=%u, "
3830 "max_blocks=%u", __func__,
3831 inode->i_ino, map.m_lblk, max_blocks);
3832 #endif
3833 ext4_mark_inode_dirty(handle, inode);
3834 ret2 = ext4_journal_stop(handle);
3835 break;
3837 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3838 blkbits) >> blkbits))
3839 new_size = offset + len;
3840 else
3841 new_size = (map.m_lblk + ret) << blkbits;
3843 ext4_falloc_update_inode(inode, mode, new_size,
3844 (map.m_flags & EXT4_MAP_NEW));
3845 ext4_mark_inode_dirty(handle, inode);
3846 ret2 = ext4_journal_stop(handle);
3847 if (ret2)
3848 break;
3850 if (ret == -ENOSPC &&
3851 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3852 ret = 0;
3853 goto retry;
3855 mutex_unlock(&inode->i_mutex);
3856 trace_ext4_fallocate_exit(inode, offset, max_blocks,
3857 ret > 0 ? ret2 : ret);
3858 return ret > 0 ? ret2 : ret;
3862 * This function convert a range of blocks to written extents
3863 * The caller of this function will pass the start offset and the size.
3864 * all unwritten extents within this range will be converted to
3865 * written extents.
3867 * This function is called from the direct IO end io call back
3868 * function, to convert the fallocated extents after IO is completed.
3869 * Returns 0 on success.
3871 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3872 ssize_t len)
3874 handle_t *handle;
3875 unsigned int max_blocks;
3876 int ret = 0;
3877 int ret2 = 0;
3878 struct ext4_map_blocks map;
3879 unsigned int credits, blkbits = inode->i_blkbits;
3881 map.m_lblk = offset >> blkbits;
3883 * We can't just convert len to max_blocks because
3884 * If blocksize = 4096 offset = 3072 and len = 2048
3886 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3887 map.m_lblk);
3889 * credits to insert 1 extent into extent tree
3891 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3892 while (ret >= 0 && ret < max_blocks) {
3893 map.m_lblk += ret;
3894 map.m_len = (max_blocks -= ret);
3895 handle = ext4_journal_start(inode, credits);
3896 if (IS_ERR(handle)) {
3897 ret = PTR_ERR(handle);
3898 break;
3900 ret = ext4_map_blocks(handle, inode, &map,
3901 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3902 if (ret <= 0) {
3903 WARN_ON(ret <= 0);
3904 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3905 "returned error inode#%lu, block=%u, "
3906 "max_blocks=%u", __func__,
3907 inode->i_ino, map.m_lblk, map.m_len);
3909 ext4_mark_inode_dirty(handle, inode);
3910 ret2 = ext4_journal_stop(handle);
3911 if (ret <= 0 || ret2 )
3912 break;
3914 return ret > 0 ? ret2 : ret;
3918 * Callback function called for each extent to gather FIEMAP information.
3920 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3921 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3922 void *data)
3924 __u64 logical;
3925 __u64 physical;
3926 __u64 length;
3927 __u32 flags = 0;
3928 int ret = 0;
3929 struct fiemap_extent_info *fieinfo = data;
3930 unsigned char blksize_bits;
3932 blksize_bits = inode->i_sb->s_blocksize_bits;
3933 logical = (__u64)newex->ec_block << blksize_bits;
3935 if (newex->ec_start == 0) {
3937 * No extent in extent-tree contains block @newex->ec_start,
3938 * then the block may stay in 1)a hole or 2)delayed-extent.
3940 * Holes or delayed-extents are processed as follows.
3941 * 1. lookup dirty pages with specified range in pagecache.
3942 * If no page is got, then there is no delayed-extent and
3943 * return with EXT_CONTINUE.
3944 * 2. find the 1st mapped buffer,
3945 * 3. check if the mapped buffer is both in the request range
3946 * and a delayed buffer. If not, there is no delayed-extent,
3947 * then return.
3948 * 4. a delayed-extent is found, the extent will be collected.
3950 ext4_lblk_t end = 0;
3951 pgoff_t last_offset;
3952 pgoff_t offset;
3953 pgoff_t index;
3954 pgoff_t start_index = 0;
3955 struct page **pages = NULL;
3956 struct buffer_head *bh = NULL;
3957 struct buffer_head *head = NULL;
3958 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3960 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3961 if (pages == NULL)
3962 return -ENOMEM;
3964 offset = logical >> PAGE_SHIFT;
3965 repeat:
3966 last_offset = offset;
3967 head = NULL;
3968 ret = find_get_pages_tag(inode->i_mapping, &offset,
3969 PAGECACHE_TAG_DIRTY, nr_pages, pages);
3971 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3972 /* First time, try to find a mapped buffer. */
3973 if (ret == 0) {
3974 out:
3975 for (index = 0; index < ret; index++)
3976 page_cache_release(pages[index]);
3977 /* just a hole. */
3978 kfree(pages);
3979 return EXT_CONTINUE;
3981 index = 0;
3983 next_page:
3984 /* Try to find the 1st mapped buffer. */
3985 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3986 blksize_bits;
3987 if (!page_has_buffers(pages[index]))
3988 goto out;
3989 head = page_buffers(pages[index]);
3990 if (!head)
3991 goto out;
3993 index++;
3994 bh = head;
3995 do {
3996 if (end >= newex->ec_block +
3997 newex->ec_len)
3998 /* The buffer is out of
3999 * the request range.
4001 goto out;
4003 if (buffer_mapped(bh) &&
4004 end >= newex->ec_block) {
4005 start_index = index - 1;
4006 /* get the 1st mapped buffer. */
4007 goto found_mapped_buffer;
4010 bh = bh->b_this_page;
4011 end++;
4012 } while (bh != head);
4014 /* No mapped buffer in the range found in this page,
4015 * We need to look up next page.
4017 if (index >= ret) {
4018 /* There is no page left, but we need to limit
4019 * newex->ec_len.
4021 newex->ec_len = end - newex->ec_block;
4022 goto out;
4024 goto next_page;
4025 } else {
4026 /*Find contiguous delayed buffers. */
4027 if (ret > 0 && pages[0]->index == last_offset)
4028 head = page_buffers(pages[0]);
4029 bh = head;
4030 index = 1;
4031 start_index = 0;
4034 found_mapped_buffer:
4035 if (bh != NULL && buffer_delay(bh)) {
4036 /* 1st or contiguous delayed buffer found. */
4037 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4039 * 1st delayed buffer found, record
4040 * the start of extent.
4042 flags |= FIEMAP_EXTENT_DELALLOC;
4043 newex->ec_block = end;
4044 logical = (__u64)end << blksize_bits;
4046 /* Find contiguous delayed buffers. */
4047 do {
4048 if (!buffer_delay(bh))
4049 goto found_delayed_extent;
4050 bh = bh->b_this_page;
4051 end++;
4052 } while (bh != head);
4054 for (; index < ret; index++) {
4055 if (!page_has_buffers(pages[index])) {
4056 bh = NULL;
4057 break;
4059 head = page_buffers(pages[index]);
4060 if (!head) {
4061 bh = NULL;
4062 break;
4065 if (pages[index]->index !=
4066 pages[start_index]->index + index
4067 - start_index) {
4068 /* Blocks are not contiguous. */
4069 bh = NULL;
4070 break;
4072 bh = head;
4073 do {
4074 if (!buffer_delay(bh))
4075 /* Delayed-extent ends. */
4076 goto found_delayed_extent;
4077 bh = bh->b_this_page;
4078 end++;
4079 } while (bh != head);
4081 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4082 /* a hole found. */
4083 goto out;
4085 found_delayed_extent:
4086 newex->ec_len = min(end - newex->ec_block,
4087 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4088 if (ret == nr_pages && bh != NULL &&
4089 newex->ec_len < EXT_INIT_MAX_LEN &&
4090 buffer_delay(bh)) {
4091 /* Have not collected an extent and continue. */
4092 for (index = 0; index < ret; index++)
4093 page_cache_release(pages[index]);
4094 goto repeat;
4097 for (index = 0; index < ret; index++)
4098 page_cache_release(pages[index]);
4099 kfree(pages);
4102 physical = (__u64)newex->ec_start << blksize_bits;
4103 length = (__u64)newex->ec_len << blksize_bits;
4105 if (ex && ext4_ext_is_uninitialized(ex))
4106 flags |= FIEMAP_EXTENT_UNWRITTEN;
4108 if (next == EXT_MAX_BLOCKS)
4109 flags |= FIEMAP_EXTENT_LAST;
4111 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4112 length, flags);
4113 if (ret < 0)
4114 return ret;
4115 if (ret == 1)
4116 return EXT_BREAK;
4117 return EXT_CONTINUE;
4120 /* fiemap flags we can handle specified here */
4121 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4123 static int ext4_xattr_fiemap(struct inode *inode,
4124 struct fiemap_extent_info *fieinfo)
4126 __u64 physical = 0;
4127 __u64 length;
4128 __u32 flags = FIEMAP_EXTENT_LAST;
4129 int blockbits = inode->i_sb->s_blocksize_bits;
4130 int error = 0;
4132 /* in-inode? */
4133 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4134 struct ext4_iloc iloc;
4135 int offset; /* offset of xattr in inode */
4137 error = ext4_get_inode_loc(inode, &iloc);
4138 if (error)
4139 return error;
4140 physical = iloc.bh->b_blocknr << blockbits;
4141 offset = EXT4_GOOD_OLD_INODE_SIZE +
4142 EXT4_I(inode)->i_extra_isize;
4143 physical += offset;
4144 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4145 flags |= FIEMAP_EXTENT_DATA_INLINE;
4146 brelse(iloc.bh);
4147 } else { /* external block */
4148 physical = EXT4_I(inode)->i_file_acl << blockbits;
4149 length = inode->i_sb->s_blocksize;
4152 if (physical)
4153 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4154 length, flags);
4155 return (error < 0 ? error : 0);
4159 * ext4_ext_punch_hole
4161 * Punches a hole of "length" bytes in a file starting
4162 * at byte "offset"
4164 * @inode: The inode of the file to punch a hole in
4165 * @offset: The starting byte offset of the hole
4166 * @length: The length of the hole
4168 * Returns the number of blocks removed or negative on err
4170 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4172 struct inode *inode = file->f_path.dentry->d_inode;
4173 struct super_block *sb = inode->i_sb;
4174 struct ext4_ext_cache cache_ex;
4175 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4176 struct address_space *mapping = inode->i_mapping;
4177 struct ext4_map_blocks map;
4178 handle_t *handle;
4179 loff_t first_block_offset, last_block_offset, block_len;
4180 loff_t first_page, last_page, first_page_offset, last_page_offset;
4181 int ret, credits, blocks_released, err = 0;
4183 first_block = (offset + sb->s_blocksize - 1) >>
4184 EXT4_BLOCK_SIZE_BITS(sb);
4185 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4187 first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4188 last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4190 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4191 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4193 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4194 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4197 * Write out all dirty pages to avoid race conditions
4198 * Then release them.
4200 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4201 err = filemap_write_and_wait_range(mapping,
4202 first_page_offset == 0 ? 0 : first_page_offset-1,
4203 last_page_offset);
4205 if (err)
4206 return err;
4209 /* Now release the pages */
4210 if (last_page_offset > first_page_offset) {
4211 truncate_inode_pages_range(mapping, first_page_offset,
4212 last_page_offset-1);
4215 /* finish any pending end_io work */
4216 ext4_flush_completed_IO(inode);
4218 credits = ext4_writepage_trans_blocks(inode);
4219 handle = ext4_journal_start(inode, credits);
4220 if (IS_ERR(handle))
4221 return PTR_ERR(handle);
4223 err = ext4_orphan_add(handle, inode);
4224 if (err)
4225 goto out;
4228 * Now we need to zero out the un block aligned data.
4229 * If the file is smaller than a block, just
4230 * zero out the middle
4232 if (first_block > last_block)
4233 ext4_block_zero_page_range(handle, mapping, offset, length);
4234 else {
4235 /* zero out the head of the hole before the first block */
4236 block_len = first_block_offset - offset;
4237 if (block_len > 0)
4238 ext4_block_zero_page_range(handle, mapping,
4239 offset, block_len);
4241 /* zero out the tail of the hole after the last block */
4242 block_len = offset + length - last_block_offset;
4243 if (block_len > 0) {
4244 ext4_block_zero_page_range(handle, mapping,
4245 last_block_offset, block_len);
4249 /* If there are no blocks to remove, return now */
4250 if (first_block >= last_block)
4251 goto out;
4253 down_write(&EXT4_I(inode)->i_data_sem);
4254 ext4_ext_invalidate_cache(inode);
4255 ext4_discard_preallocations(inode);
4258 * Loop over all the blocks and identify blocks
4259 * that need to be punched out
4261 iblock = first_block;
4262 blocks_released = 0;
4263 while (iblock < last_block) {
4264 max_blocks = last_block - iblock;
4265 num_blocks = 1;
4266 memset(&map, 0, sizeof(map));
4267 map.m_lblk = iblock;
4268 map.m_len = max_blocks;
4269 ret = ext4_ext_map_blocks(handle, inode, &map,
4270 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4272 if (ret > 0) {
4273 blocks_released += ret;
4274 num_blocks = ret;
4275 } else if (ret == 0) {
4277 * If map blocks could not find the block,
4278 * then it is in a hole. If the hole was
4279 * not already cached, then map blocks should
4280 * put it in the cache. So we can get the hole
4281 * out of the cache
4283 memset(&cache_ex, 0, sizeof(cache_ex));
4284 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4285 !cache_ex.ec_start) {
4287 /* The hole is cached */
4288 num_blocks = cache_ex.ec_block +
4289 cache_ex.ec_len - iblock;
4291 } else {
4292 /* The block could not be identified */
4293 err = -EIO;
4294 break;
4296 } else {
4297 /* Map blocks error */
4298 err = ret;
4299 break;
4302 if (num_blocks == 0) {
4303 /* This condition should never happen */
4304 ext_debug("Block lookup failed");
4305 err = -EIO;
4306 break;
4309 iblock += num_blocks;
4312 if (blocks_released > 0) {
4313 ext4_ext_invalidate_cache(inode);
4314 ext4_discard_preallocations(inode);
4317 if (IS_SYNC(inode))
4318 ext4_handle_sync(handle);
4320 up_write(&EXT4_I(inode)->i_data_sem);
4322 out:
4323 ext4_orphan_del(handle, inode);
4324 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4325 ext4_mark_inode_dirty(handle, inode);
4326 ext4_journal_stop(handle);
4327 return err;
4329 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4330 __u64 start, __u64 len)
4332 ext4_lblk_t start_blk;
4333 int error = 0;
4335 /* fallback to generic here if not in extents fmt */
4336 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4337 return generic_block_fiemap(inode, fieinfo, start, len,
4338 ext4_get_block);
4340 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4341 return -EBADR;
4343 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4344 error = ext4_xattr_fiemap(inode, fieinfo);
4345 } else {
4346 ext4_lblk_t len_blks;
4347 __u64 last_blk;
4349 start_blk = start >> inode->i_sb->s_blocksize_bits;
4350 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4351 if (last_blk >= EXT_MAX_BLOCKS)
4352 last_blk = EXT_MAX_BLOCKS-1;
4353 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4356 * Walk the extent tree gathering extent information.
4357 * ext4_ext_fiemap_cb will push extents back to user.
4359 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4360 ext4_ext_fiemap_cb, fieinfo);
4363 return error;