ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / jbd2 / journal.c
blob40c5fb73e9c696cbede4bbb5b6a66c372bf3d125
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
104 * Helper function used to manage commit timeouts
107 static void commit_timeout(unsigned long __data)
109 struct task_struct * p = (struct task_struct *) __data;
111 wake_up_process(p);
115 * kjournald2: The main thread function used to manage a logging device
116 * journal.
118 * This kernel thread is responsible for two things:
120 * 1) COMMIT: Every so often we need to commit the current state of the
121 * filesystem to disk. The journal thread is responsible for writing
122 * all of the metadata buffers to disk.
124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125 * of the data in that part of the log has been rewritten elsewhere on
126 * the disk. Flushing these old buffers to reclaim space in the log is
127 * known as checkpointing, and this thread is responsible for that job.
130 static int kjournald2(void *arg)
132 journal_t *journal = arg;
133 transaction_t *transaction;
136 * Set up an interval timer which can be used to trigger a commit wakeup
137 * after the commit interval expires
139 setup_timer(&journal->j_commit_timer, commit_timeout,
140 (unsigned long)current);
142 /* Record that the journal thread is running */
143 journal->j_task = current;
144 wake_up(&journal->j_wait_done_commit);
147 * And now, wait forever for commit wakeup events.
149 write_lock(&journal->j_state_lock);
151 loop:
152 if (journal->j_flags & JBD2_UNMOUNT)
153 goto end_loop;
155 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156 journal->j_commit_sequence, journal->j_commit_request);
158 if (journal->j_commit_sequence != journal->j_commit_request) {
159 jbd_debug(1, "OK, requests differ\n");
160 write_unlock(&journal->j_state_lock);
161 del_timer_sync(&journal->j_commit_timer);
162 jbd2_journal_commit_transaction(journal);
163 write_lock(&journal->j_state_lock);
164 goto loop;
167 wake_up(&journal->j_wait_done_commit);
168 if (freezing(current)) {
170 * The simpler the better. Flushing journal isn't a
171 * good idea, because that depends on threads that may
172 * be already stopped.
174 jbd_debug(1, "Now suspending kjournald2\n");
175 write_unlock(&journal->j_state_lock);
176 refrigerator();
177 write_lock(&journal->j_state_lock);
178 } else {
180 * We assume on resume that commits are already there,
181 * so we don't sleep
183 DEFINE_WAIT(wait);
184 int should_sleep = 1;
186 prepare_to_wait(&journal->j_wait_commit, &wait,
187 TASK_INTERRUPTIBLE);
188 if (journal->j_commit_sequence != journal->j_commit_request)
189 should_sleep = 0;
190 transaction = journal->j_running_transaction;
191 if (transaction && time_after_eq(jiffies,
192 transaction->t_expires))
193 should_sleep = 0;
194 if (journal->j_flags & JBD2_UNMOUNT)
195 should_sleep = 0;
196 if (should_sleep) {
197 write_unlock(&journal->j_state_lock);
198 schedule();
199 write_lock(&journal->j_state_lock);
201 finish_wait(&journal->j_wait_commit, &wait);
204 jbd_debug(1, "kjournald2 wakes\n");
207 * Were we woken up by a commit wakeup event?
209 transaction = journal->j_running_transaction;
210 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211 journal->j_commit_request = transaction->t_tid;
212 jbd_debug(1, "woke because of timeout\n");
214 goto loop;
216 end_loop:
217 write_unlock(&journal->j_state_lock);
218 del_timer_sync(&journal->j_commit_timer);
219 journal->j_task = NULL;
220 wake_up(&journal->j_wait_done_commit);
221 jbd_debug(1, "Journal thread exiting.\n");
222 return 0;
225 static int jbd2_journal_start_thread(journal_t *journal)
227 struct task_struct *t;
229 t = kthread_run(kjournald2, journal, "jbd2/%s",
230 journal->j_devname);
231 if (IS_ERR(t))
232 return PTR_ERR(t);
234 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235 return 0;
238 static void journal_kill_thread(journal_t *journal)
240 write_lock(&journal->j_state_lock);
241 journal->j_flags |= JBD2_UNMOUNT;
243 while (journal->j_task) {
244 wake_up(&journal->j_wait_commit);
245 write_unlock(&journal->j_state_lock);
246 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247 write_lock(&journal->j_state_lock);
249 write_unlock(&journal->j_state_lock);
253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
255 * Writes a metadata buffer to a given disk block. The actual IO is not
256 * performed but a new buffer_head is constructed which labels the data
257 * to be written with the correct destination disk block.
259 * Any magic-number escaping which needs to be done will cause a
260 * copy-out here. If the buffer happens to start with the
261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262 * magic number is only written to the log for descripter blocks. In
263 * this case, we copy the data and replace the first word with 0, and we
264 * return a result code which indicates that this buffer needs to be
265 * marked as an escaped buffer in the corresponding log descriptor
266 * block. The missing word can then be restored when the block is read
267 * during recovery.
269 * If the source buffer has already been modified by a new transaction
270 * since we took the last commit snapshot, we use the frozen copy of
271 * that data for IO. If we end up using the existing buffer_head's data
272 * for the write, then we *have* to lock the buffer to prevent anyone
273 * else from using and possibly modifying it while the IO is in
274 * progress.
276 * The function returns a pointer to the buffer_heads to be used for IO.
278 * We assume that the journal has already been locked in this function.
280 * Return value:
281 * <0: Error
282 * >=0: Finished OK
284 * On success:
285 * Bit 0 set == escape performed on the data
286 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 struct journal_head *jh_in,
291 struct journal_head **jh_out,
292 unsigned long long blocknr)
294 int need_copy_out = 0;
295 int done_copy_out = 0;
296 int do_escape = 0;
297 char *mapped_data;
298 struct buffer_head *new_bh;
299 struct journal_head *new_jh;
300 struct page *new_page;
301 unsigned int new_offset;
302 struct buffer_head *bh_in = jh2bh(jh_in);
303 journal_t *journal = transaction->t_journal;
306 * The buffer really shouldn't be locked: only the current committing
307 * transaction is allowed to write it, so nobody else is allowed
308 * to do any IO.
310 * akpm: except if we're journalling data, and write() output is
311 * also part of a shared mapping, and another thread has
312 * decided to launch a writepage() against this buffer.
314 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
316 retry_alloc:
317 new_bh = alloc_buffer_head(GFP_NOFS);
318 if (!new_bh) {
320 * Failure is not an option, but __GFP_NOFAIL is going
321 * away; so we retry ourselves here.
323 congestion_wait(BLK_RW_ASYNC, HZ/50);
324 goto retry_alloc;
327 /* keep subsequent assertions sane */
328 new_bh->b_state = 0;
329 init_buffer(new_bh, NULL, NULL);
330 atomic_set(&new_bh->b_count, 1);
331 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
334 * If a new transaction has already done a buffer copy-out, then
335 * we use that version of the data for the commit.
337 jbd_lock_bh_state(bh_in);
338 repeat:
339 if (jh_in->b_frozen_data) {
340 done_copy_out = 1;
341 new_page = virt_to_page(jh_in->b_frozen_data);
342 new_offset = offset_in_page(jh_in->b_frozen_data);
343 } else {
344 new_page = jh2bh(jh_in)->b_page;
345 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
348 mapped_data = kmap_atomic(new_page, KM_USER0);
350 * Fire data frozen trigger if data already wasn't frozen. Do this
351 * before checking for escaping, as the trigger may modify the magic
352 * offset. If a copy-out happens afterwards, it will have the correct
353 * data in the buffer.
355 if (!done_copy_out)
356 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357 jh_in->b_triggers);
360 * Check for escaping
362 if (*((__be32 *)(mapped_data + new_offset)) ==
363 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 need_copy_out = 1;
365 do_escape = 1;
367 kunmap_atomic(mapped_data, KM_USER0);
370 * Do we need to do a data copy?
372 if (need_copy_out && !done_copy_out) {
373 char *tmp;
375 jbd_unlock_bh_state(bh_in);
376 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 if (!tmp) {
378 jbd2_journal_put_journal_head(new_jh);
379 return -ENOMEM;
381 jbd_lock_bh_state(bh_in);
382 if (jh_in->b_frozen_data) {
383 jbd2_free(tmp, bh_in->b_size);
384 goto repeat;
387 jh_in->b_frozen_data = tmp;
388 mapped_data = kmap_atomic(new_page, KM_USER0);
389 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390 kunmap_atomic(mapped_data, KM_USER0);
392 new_page = virt_to_page(tmp);
393 new_offset = offset_in_page(tmp);
394 done_copy_out = 1;
397 * This isn't strictly necessary, as we're using frozen
398 * data for the escaping, but it keeps consistency with
399 * b_frozen_data usage.
401 jh_in->b_frozen_triggers = jh_in->b_triggers;
405 * Did we need to do an escaping? Now we've done all the
406 * copying, we can finally do so.
408 if (do_escape) {
409 mapped_data = kmap_atomic(new_page, KM_USER0);
410 *((unsigned int *)(mapped_data + new_offset)) = 0;
411 kunmap_atomic(mapped_data, KM_USER0);
414 set_bh_page(new_bh, new_page, new_offset);
415 new_jh->b_transaction = NULL;
416 new_bh->b_size = jh2bh(jh_in)->b_size;
417 new_bh->b_bdev = transaction->t_journal->j_dev;
418 new_bh->b_blocknr = blocknr;
419 set_buffer_mapped(new_bh);
420 set_buffer_dirty(new_bh);
422 *jh_out = new_jh;
425 * The to-be-written buffer needs to get moved to the io queue,
426 * and the original buffer whose contents we are shadowing or
427 * copying is moved to the transaction's shadow queue.
429 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 spin_lock(&journal->j_list_lock);
431 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432 spin_unlock(&journal->j_list_lock);
433 jbd_unlock_bh_state(bh_in);
435 JBUFFER_TRACE(new_jh, "file as BJ_IO");
436 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
438 return do_escape | (done_copy_out << 1);
442 * Allocation code for the journal file. Manage the space left in the
443 * journal, so that we can begin checkpointing when appropriate.
447 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
449 * Called with the journal already locked.
451 * Called under j_state_lock
454 int __jbd2_log_space_left(journal_t *journal)
456 int left = journal->j_free;
458 /* assert_spin_locked(&journal->j_state_lock); */
461 * Be pessimistic here about the number of those free blocks which
462 * might be required for log descriptor control blocks.
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
467 left -= MIN_LOG_RESERVED_BLOCKS;
469 if (left <= 0)
470 return 0;
471 left -= (left >> 3);
472 return left;
476 * Called with j_state_lock locked for writing.
477 * Returns true if a transaction commit was started.
479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 * The only transaction we can possibly wait upon is the
483 * currently running transaction (if it exists). Otherwise,
484 * the target tid must be an old one.
486 if (journal->j_running_transaction &&
487 journal->j_running_transaction->t_tid == target) {
489 * We want a new commit: OK, mark the request and wakeup the
490 * commit thread. We do _not_ do the commit ourselves.
493 journal->j_commit_request = target;
494 jbd_debug(1, "JBD: requesting commit %d/%d\n",
495 journal->j_commit_request,
496 journal->j_commit_sequence);
497 wake_up(&journal->j_wait_commit);
498 return 1;
499 } else if (!tid_geq(journal->j_commit_request, target))
500 /* This should never happen, but if it does, preserve
501 the evidence before kjournald goes into a loop and
502 increments j_commit_sequence beyond all recognition. */
503 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence,
506 target, journal->j_running_transaction ?
507 journal->j_running_transaction->t_tid : 0);
508 return 0;
511 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
513 int ret;
515 write_lock(&journal->j_state_lock);
516 ret = __jbd2_log_start_commit(journal, tid);
517 write_unlock(&journal->j_state_lock);
518 return ret;
522 * Force and wait upon a commit if the calling process is not within
523 * transaction. This is used for forcing out undo-protected data which contains
524 * bitmaps, when the fs is running out of space.
526 * We can only force the running transaction if we don't have an active handle;
527 * otherwise, we will deadlock.
529 * Returns true if a transaction was started.
531 int jbd2_journal_force_commit_nested(journal_t *journal)
533 transaction_t *transaction = NULL;
534 tid_t tid;
535 int need_to_start = 0;
537 read_lock(&journal->j_state_lock);
538 if (journal->j_running_transaction && !current->journal_info) {
539 transaction = journal->j_running_transaction;
540 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
541 need_to_start = 1;
542 } else if (journal->j_committing_transaction)
543 transaction = journal->j_committing_transaction;
545 if (!transaction) {
546 read_unlock(&journal->j_state_lock);
547 return 0; /* Nothing to retry */
550 tid = transaction->t_tid;
551 read_unlock(&journal->j_state_lock);
552 if (need_to_start)
553 jbd2_log_start_commit(journal, tid);
554 jbd2_log_wait_commit(journal, tid);
555 return 1;
559 * Start a commit of the current running transaction (if any). Returns true
560 * if a transaction is going to be committed (or is currently already
561 * committing), and fills its tid in at *ptid
563 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
565 int ret = 0;
567 write_lock(&journal->j_state_lock);
568 if (journal->j_running_transaction) {
569 tid_t tid = journal->j_running_transaction->t_tid;
571 __jbd2_log_start_commit(journal, tid);
572 /* There's a running transaction and we've just made sure
573 * it's commit has been scheduled. */
574 if (ptid)
575 *ptid = tid;
576 ret = 1;
577 } else if (journal->j_committing_transaction) {
579 * If ext3_write_super() recently started a commit, then we
580 * have to wait for completion of that transaction
582 if (ptid)
583 *ptid = journal->j_committing_transaction->t_tid;
584 ret = 1;
586 write_unlock(&journal->j_state_lock);
587 return ret;
591 * Return 1 if a given transaction has not yet sent barrier request
592 * connected with a transaction commit. If 0 is returned, transaction
593 * may or may not have sent the barrier. Used to avoid sending barrier
594 * twice in common cases.
596 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
598 int ret = 0;
599 transaction_t *commit_trans;
601 if (!(journal->j_flags & JBD2_BARRIER))
602 return 0;
603 read_lock(&journal->j_state_lock);
604 /* Transaction already committed? */
605 if (tid_geq(journal->j_commit_sequence, tid))
606 goto out;
607 commit_trans = journal->j_committing_transaction;
608 if (!commit_trans || commit_trans->t_tid != tid) {
609 ret = 1;
610 goto out;
613 * Transaction is being committed and we already proceeded to
614 * submitting a flush to fs partition?
616 if (journal->j_fs_dev != journal->j_dev) {
617 if (!commit_trans->t_need_data_flush ||
618 commit_trans->t_state >= T_COMMIT_DFLUSH)
619 goto out;
620 } else {
621 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
622 goto out;
624 ret = 1;
625 out:
626 read_unlock(&journal->j_state_lock);
627 return ret;
629 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
632 * Wait for a specified commit to complete.
633 * The caller may not hold the journal lock.
635 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
637 int err = 0;
639 read_lock(&journal->j_state_lock);
640 #ifdef CONFIG_JBD2_DEBUG
641 if (!tid_geq(journal->j_commit_request, tid)) {
642 printk(KERN_EMERG
643 "%s: error: j_commit_request=%d, tid=%d\n",
644 __func__, journal->j_commit_request, tid);
646 #endif
647 while (tid_gt(tid, journal->j_commit_sequence)) {
648 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
649 tid, journal->j_commit_sequence);
650 wake_up(&journal->j_wait_commit);
651 read_unlock(&journal->j_state_lock);
652 wait_event(journal->j_wait_done_commit,
653 !tid_gt(tid, journal->j_commit_sequence));
654 read_lock(&journal->j_state_lock);
656 read_unlock(&journal->j_state_lock);
658 if (unlikely(is_journal_aborted(journal))) {
659 printk(KERN_EMERG "journal commit I/O error\n");
660 err = -EIO;
662 return err;
666 * Log buffer allocation routines:
669 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
671 unsigned long blocknr;
673 write_lock(&journal->j_state_lock);
674 J_ASSERT(journal->j_free > 1);
676 blocknr = journal->j_head;
677 journal->j_head++;
678 journal->j_free--;
679 if (journal->j_head == journal->j_last)
680 journal->j_head = journal->j_first;
681 write_unlock(&journal->j_state_lock);
682 return jbd2_journal_bmap(journal, blocknr, retp);
686 * Conversion of logical to physical block numbers for the journal
688 * On external journals the journal blocks are identity-mapped, so
689 * this is a no-op. If needed, we can use j_blk_offset - everything is
690 * ready.
692 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
693 unsigned long long *retp)
695 int err = 0;
696 unsigned long long ret;
698 if (journal->j_inode) {
699 ret = bmap(journal->j_inode, blocknr);
700 if (ret)
701 *retp = ret;
702 else {
703 printk(KERN_ALERT "%s: journal block not found "
704 "at offset %lu on %s\n",
705 __func__, blocknr, journal->j_devname);
706 err = -EIO;
707 __journal_abort_soft(journal, err);
709 } else {
710 *retp = blocknr; /* +journal->j_blk_offset */
712 return err;
716 * We play buffer_head aliasing tricks to write data/metadata blocks to
717 * the journal without copying their contents, but for journal
718 * descriptor blocks we do need to generate bona fide buffers.
720 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
721 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
722 * But we don't bother doing that, so there will be coherency problems with
723 * mmaps of blockdevs which hold live JBD-controlled filesystems.
725 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
727 struct buffer_head *bh;
728 unsigned long long blocknr;
729 int err;
731 err = jbd2_journal_next_log_block(journal, &blocknr);
733 if (err)
734 return NULL;
736 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
737 if (!bh)
738 return NULL;
739 lock_buffer(bh);
740 memset(bh->b_data, 0, journal->j_blocksize);
741 set_buffer_uptodate(bh);
742 unlock_buffer(bh);
743 BUFFER_TRACE(bh, "return this buffer");
744 return jbd2_journal_add_journal_head(bh);
747 struct jbd2_stats_proc_session {
748 journal_t *journal;
749 struct transaction_stats_s *stats;
750 int start;
751 int max;
754 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
756 return *pos ? NULL : SEQ_START_TOKEN;
759 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
761 return NULL;
764 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
766 struct jbd2_stats_proc_session *s = seq->private;
768 if (v != SEQ_START_TOKEN)
769 return 0;
770 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
771 s->stats->ts_tid,
772 s->journal->j_max_transaction_buffers);
773 if (s->stats->ts_tid == 0)
774 return 0;
775 seq_printf(seq, "average: \n %ums waiting for transaction\n",
776 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
777 seq_printf(seq, " %ums running transaction\n",
778 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
779 seq_printf(seq, " %ums transaction was being locked\n",
780 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
781 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
782 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
783 seq_printf(seq, " %ums logging transaction\n",
784 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
785 seq_printf(seq, " %lluus average transaction commit time\n",
786 div_u64(s->journal->j_average_commit_time, 1000));
787 seq_printf(seq, " %lu handles per transaction\n",
788 s->stats->run.rs_handle_count / s->stats->ts_tid);
789 seq_printf(seq, " %lu blocks per transaction\n",
790 s->stats->run.rs_blocks / s->stats->ts_tid);
791 seq_printf(seq, " %lu logged blocks per transaction\n",
792 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
793 return 0;
796 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
800 static const struct seq_operations jbd2_seq_info_ops = {
801 .start = jbd2_seq_info_start,
802 .next = jbd2_seq_info_next,
803 .stop = jbd2_seq_info_stop,
804 .show = jbd2_seq_info_show,
807 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
809 journal_t *journal = PDE(inode)->data;
810 struct jbd2_stats_proc_session *s;
811 int rc, size;
813 s = kmalloc(sizeof(*s), GFP_KERNEL);
814 if (s == NULL)
815 return -ENOMEM;
816 size = sizeof(struct transaction_stats_s);
817 s->stats = kmalloc(size, GFP_KERNEL);
818 if (s->stats == NULL) {
819 kfree(s);
820 return -ENOMEM;
822 spin_lock(&journal->j_history_lock);
823 memcpy(s->stats, &journal->j_stats, size);
824 s->journal = journal;
825 spin_unlock(&journal->j_history_lock);
827 rc = seq_open(file, &jbd2_seq_info_ops);
828 if (rc == 0) {
829 struct seq_file *m = file->private_data;
830 m->private = s;
831 } else {
832 kfree(s->stats);
833 kfree(s);
835 return rc;
839 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
841 struct seq_file *seq = file->private_data;
842 struct jbd2_stats_proc_session *s = seq->private;
843 kfree(s->stats);
844 kfree(s);
845 return seq_release(inode, file);
848 static const struct file_operations jbd2_seq_info_fops = {
849 .owner = THIS_MODULE,
850 .open = jbd2_seq_info_open,
851 .read = seq_read,
852 .llseek = seq_lseek,
853 .release = jbd2_seq_info_release,
856 static struct proc_dir_entry *proc_jbd2_stats;
858 static void jbd2_stats_proc_init(journal_t *journal)
860 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
861 if (journal->j_proc_entry) {
862 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
863 &jbd2_seq_info_fops, journal);
867 static void jbd2_stats_proc_exit(journal_t *journal)
869 remove_proc_entry("info", journal->j_proc_entry);
870 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
874 * Management for journal control blocks: functions to create and
875 * destroy journal_t structures, and to initialise and read existing
876 * journal blocks from disk. */
878 /* First: create and setup a journal_t object in memory. We initialise
879 * very few fields yet: that has to wait until we have created the
880 * journal structures from from scratch, or loaded them from disk. */
882 static journal_t * journal_init_common (void)
884 journal_t *journal;
885 int err;
887 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
888 if (!journal)
889 return NULL;
891 init_waitqueue_head(&journal->j_wait_transaction_locked);
892 init_waitqueue_head(&journal->j_wait_logspace);
893 init_waitqueue_head(&journal->j_wait_done_commit);
894 init_waitqueue_head(&journal->j_wait_checkpoint);
895 init_waitqueue_head(&journal->j_wait_commit);
896 init_waitqueue_head(&journal->j_wait_updates);
897 mutex_init(&journal->j_barrier);
898 mutex_init(&journal->j_checkpoint_mutex);
899 spin_lock_init(&journal->j_revoke_lock);
900 spin_lock_init(&journal->j_list_lock);
901 rwlock_init(&journal->j_state_lock);
903 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
904 journal->j_min_batch_time = 0;
905 journal->j_max_batch_time = 15000; /* 15ms */
907 /* The journal is marked for error until we succeed with recovery! */
908 journal->j_flags = JBD2_ABORT;
910 /* Set up a default-sized revoke table for the new mount. */
911 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
912 if (err) {
913 kfree(journal);
914 return NULL;
917 spin_lock_init(&journal->j_history_lock);
919 return journal;
922 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
924 * Create a journal structure assigned some fixed set of disk blocks to
925 * the journal. We don't actually touch those disk blocks yet, but we
926 * need to set up all of the mapping information to tell the journaling
927 * system where the journal blocks are.
932 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
933 * @bdev: Block device on which to create the journal
934 * @fs_dev: Device which hold journalled filesystem for this journal.
935 * @start: Block nr Start of journal.
936 * @len: Length of the journal in blocks.
937 * @blocksize: blocksize of journalling device
939 * Returns: a newly created journal_t *
941 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
942 * range of blocks on an arbitrary block device.
945 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
946 struct block_device *fs_dev,
947 unsigned long long start, int len, int blocksize)
949 journal_t *journal = journal_init_common();
950 struct buffer_head *bh;
951 char *p;
952 int n;
954 if (!journal)
955 return NULL;
957 /* journal descriptor can store up to n blocks -bzzz */
958 journal->j_blocksize = blocksize;
959 journal->j_dev = bdev;
960 journal->j_fs_dev = fs_dev;
961 journal->j_blk_offset = start;
962 journal->j_maxlen = len;
963 bdevname(journal->j_dev, journal->j_devname);
964 p = journal->j_devname;
965 while ((p = strchr(p, '/')))
966 *p = '!';
967 jbd2_stats_proc_init(journal);
968 n = journal->j_blocksize / sizeof(journal_block_tag_t);
969 journal->j_wbufsize = n;
970 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
971 if (!journal->j_wbuf) {
972 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
973 __func__);
974 goto out_err;
977 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
978 if (!bh) {
979 printk(KERN_ERR
980 "%s: Cannot get buffer for journal superblock\n",
981 __func__);
982 goto out_err;
984 journal->j_sb_buffer = bh;
985 journal->j_superblock = (journal_superblock_t *)bh->b_data;
987 return journal;
988 out_err:
989 kfree(journal->j_wbuf);
990 jbd2_stats_proc_exit(journal);
991 kfree(journal);
992 return NULL;
996 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
997 * @inode: An inode to create the journal in
999 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1000 * the journal. The inode must exist already, must support bmap() and
1001 * must have all data blocks preallocated.
1003 journal_t * jbd2_journal_init_inode (struct inode *inode)
1005 struct buffer_head *bh;
1006 journal_t *journal = journal_init_common();
1007 char *p;
1008 int err;
1009 int n;
1010 unsigned long long blocknr;
1012 if (!journal)
1013 return NULL;
1015 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1016 journal->j_inode = inode;
1017 bdevname(journal->j_dev, journal->j_devname);
1018 p = journal->j_devname;
1019 while ((p = strchr(p, '/')))
1020 *p = '!';
1021 p = journal->j_devname + strlen(journal->j_devname);
1022 sprintf(p, "-%lu", journal->j_inode->i_ino);
1023 jbd_debug(1,
1024 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1025 journal, inode->i_sb->s_id, inode->i_ino,
1026 (long long) inode->i_size,
1027 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1029 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1030 journal->j_blocksize = inode->i_sb->s_blocksize;
1031 jbd2_stats_proc_init(journal);
1033 /* journal descriptor can store up to n blocks -bzzz */
1034 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1035 journal->j_wbufsize = n;
1036 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1037 if (!journal->j_wbuf) {
1038 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1039 __func__);
1040 goto out_err;
1043 err = jbd2_journal_bmap(journal, 0, &blocknr);
1044 /* If that failed, give up */
1045 if (err) {
1046 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1047 __func__);
1048 goto out_err;
1051 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1052 if (!bh) {
1053 printk(KERN_ERR
1054 "%s: Cannot get buffer for journal superblock\n",
1055 __func__);
1056 goto out_err;
1058 journal->j_sb_buffer = bh;
1059 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1061 return journal;
1062 out_err:
1063 kfree(journal->j_wbuf);
1064 jbd2_stats_proc_exit(journal);
1065 kfree(journal);
1066 return NULL;
1070 * If the journal init or create aborts, we need to mark the journal
1071 * superblock as being NULL to prevent the journal destroy from writing
1072 * back a bogus superblock.
1074 static void journal_fail_superblock (journal_t *journal)
1076 struct buffer_head *bh = journal->j_sb_buffer;
1077 brelse(bh);
1078 journal->j_sb_buffer = NULL;
1082 * Given a journal_t structure, initialise the various fields for
1083 * startup of a new journaling session. We use this both when creating
1084 * a journal, and after recovering an old journal to reset it for
1085 * subsequent use.
1088 static int journal_reset(journal_t *journal)
1090 journal_superblock_t *sb = journal->j_superblock;
1091 unsigned long long first, last;
1093 first = be32_to_cpu(sb->s_first);
1094 last = be32_to_cpu(sb->s_maxlen);
1095 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1096 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1097 first, last);
1098 journal_fail_superblock(journal);
1099 return -EINVAL;
1102 journal->j_first = first;
1103 journal->j_last = last;
1105 journal->j_head = first;
1106 journal->j_tail = first;
1107 journal->j_free = last - first;
1109 journal->j_tail_sequence = journal->j_transaction_sequence;
1110 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1111 journal->j_commit_request = journal->j_commit_sequence;
1113 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1115 /* Add the dynamic fields and write it to disk. */
1116 jbd2_journal_update_superblock(journal, 1);
1117 return jbd2_journal_start_thread(journal);
1121 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1122 * @journal: The journal to update.
1123 * @wait: Set to '0' if you don't want to wait for IO completion.
1125 * Update a journal's dynamic superblock fields and write it to disk,
1126 * optionally waiting for the IO to complete.
1128 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1130 journal_superblock_t *sb = journal->j_superblock;
1131 struct buffer_head *bh = journal->j_sb_buffer;
1134 * As a special case, if the on-disk copy is already marked as needing
1135 * no recovery (s_start == 0) and there are no outstanding transactions
1136 * in the filesystem, then we can safely defer the superblock update
1137 * until the next commit by setting JBD2_FLUSHED. This avoids
1138 * attempting a write to a potential-readonly device.
1140 if (sb->s_start == 0 && journal->j_tail_sequence ==
1141 journal->j_transaction_sequence) {
1142 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1143 "(start %ld, seq %d, errno %d)\n",
1144 journal->j_tail, journal->j_tail_sequence,
1145 journal->j_errno);
1146 goto out;
1149 if (buffer_write_io_error(bh)) {
1151 * Oh, dear. A previous attempt to write the journal
1152 * superblock failed. This could happen because the
1153 * USB device was yanked out. Or it could happen to
1154 * be a transient write error and maybe the block will
1155 * be remapped. Nothing we can do but to retry the
1156 * write and hope for the best.
1158 printk(KERN_ERR "JBD2: previous I/O error detected "
1159 "for journal superblock update for %s.\n",
1160 journal->j_devname);
1161 clear_buffer_write_io_error(bh);
1162 set_buffer_uptodate(bh);
1165 read_lock(&journal->j_state_lock);
1166 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1167 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1169 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1170 sb->s_start = cpu_to_be32(journal->j_tail);
1171 sb->s_errno = cpu_to_be32(journal->j_errno);
1172 read_unlock(&journal->j_state_lock);
1174 BUFFER_TRACE(bh, "marking dirty");
1175 mark_buffer_dirty(bh);
1176 if (wait) {
1177 sync_dirty_buffer(bh);
1178 if (buffer_write_io_error(bh)) {
1179 printk(KERN_ERR "JBD2: I/O error detected "
1180 "when updating journal superblock for %s.\n",
1181 journal->j_devname);
1182 clear_buffer_write_io_error(bh);
1183 set_buffer_uptodate(bh);
1185 } else
1186 write_dirty_buffer(bh, WRITE);
1188 out:
1189 /* If we have just flushed the log (by marking s_start==0), then
1190 * any future commit will have to be careful to update the
1191 * superblock again to re-record the true start of the log. */
1193 write_lock(&journal->j_state_lock);
1194 if (sb->s_start)
1195 journal->j_flags &= ~JBD2_FLUSHED;
1196 else
1197 journal->j_flags |= JBD2_FLUSHED;
1198 write_unlock(&journal->j_state_lock);
1202 * Read the superblock for a given journal, performing initial
1203 * validation of the format.
1206 static int journal_get_superblock(journal_t *journal)
1208 struct buffer_head *bh;
1209 journal_superblock_t *sb;
1210 int err = -EIO;
1212 bh = journal->j_sb_buffer;
1214 J_ASSERT(bh != NULL);
1215 if (!buffer_uptodate(bh)) {
1216 ll_rw_block(READ, 1, &bh);
1217 wait_on_buffer(bh);
1218 if (!buffer_uptodate(bh)) {
1219 printk (KERN_ERR
1220 "JBD: IO error reading journal superblock\n");
1221 goto out;
1225 sb = journal->j_superblock;
1227 err = -EINVAL;
1229 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1230 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1231 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1232 goto out;
1235 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1236 case JBD2_SUPERBLOCK_V1:
1237 journal->j_format_version = 1;
1238 break;
1239 case JBD2_SUPERBLOCK_V2:
1240 journal->j_format_version = 2;
1241 break;
1242 default:
1243 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1244 goto out;
1247 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1248 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1249 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1250 printk (KERN_WARNING "JBD: journal file too short\n");
1251 goto out;
1254 if (be32_to_cpu(sb->s_first) == 0 ||
1255 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1256 printk(KERN_WARNING
1257 "JBD2: Invalid start block of journal: %u\n",
1258 be32_to_cpu(sb->s_first));
1259 goto out;
1262 return 0;
1264 out:
1265 journal_fail_superblock(journal);
1266 return err;
1270 * Load the on-disk journal superblock and read the key fields into the
1271 * journal_t.
1274 static int load_superblock(journal_t *journal)
1276 int err;
1277 journal_superblock_t *sb;
1279 err = journal_get_superblock(journal);
1280 if (err)
1281 return err;
1283 sb = journal->j_superblock;
1285 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1286 journal->j_tail = be32_to_cpu(sb->s_start);
1287 journal->j_first = be32_to_cpu(sb->s_first);
1288 journal->j_last = be32_to_cpu(sb->s_maxlen);
1289 journal->j_errno = be32_to_cpu(sb->s_errno);
1291 return 0;
1296 * int jbd2_journal_load() - Read journal from disk.
1297 * @journal: Journal to act on.
1299 * Given a journal_t structure which tells us which disk blocks contain
1300 * a journal, read the journal from disk to initialise the in-memory
1301 * structures.
1303 int jbd2_journal_load(journal_t *journal)
1305 int err;
1306 journal_superblock_t *sb;
1308 err = load_superblock(journal);
1309 if (err)
1310 return err;
1312 sb = journal->j_superblock;
1313 /* If this is a V2 superblock, then we have to check the
1314 * features flags on it. */
1316 if (journal->j_format_version >= 2) {
1317 if ((sb->s_feature_ro_compat &
1318 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1319 (sb->s_feature_incompat &
1320 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1321 printk (KERN_WARNING
1322 "JBD: Unrecognised features on journal\n");
1323 return -EINVAL;
1328 * Create a slab for this blocksize
1330 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1331 if (err)
1332 return err;
1334 /* Let the recovery code check whether it needs to recover any
1335 * data from the journal. */
1336 if (jbd2_journal_recover(journal))
1337 goto recovery_error;
1339 if (journal->j_failed_commit) {
1340 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1341 "is corrupt.\n", journal->j_failed_commit,
1342 journal->j_devname);
1343 return -EIO;
1346 /* OK, we've finished with the dynamic journal bits:
1347 * reinitialise the dynamic contents of the superblock in memory
1348 * and reset them on disk. */
1349 if (journal_reset(journal))
1350 goto recovery_error;
1352 journal->j_flags &= ~JBD2_ABORT;
1353 journal->j_flags |= JBD2_LOADED;
1354 return 0;
1356 recovery_error:
1357 printk (KERN_WARNING "JBD: recovery failed\n");
1358 return -EIO;
1362 * void jbd2_journal_destroy() - Release a journal_t structure.
1363 * @journal: Journal to act on.
1365 * Release a journal_t structure once it is no longer in use by the
1366 * journaled object.
1367 * Return <0 if we couldn't clean up the journal.
1369 int jbd2_journal_destroy(journal_t *journal)
1371 int err = 0;
1373 /* Wait for the commit thread to wake up and die. */
1374 journal_kill_thread(journal);
1376 /* Force a final log commit */
1377 if (journal->j_running_transaction)
1378 jbd2_journal_commit_transaction(journal);
1380 /* Force any old transactions to disk */
1382 /* Totally anal locking here... */
1383 spin_lock(&journal->j_list_lock);
1384 while (journal->j_checkpoint_transactions != NULL) {
1385 spin_unlock(&journal->j_list_lock);
1386 mutex_lock(&journal->j_checkpoint_mutex);
1387 jbd2_log_do_checkpoint(journal);
1388 mutex_unlock(&journal->j_checkpoint_mutex);
1389 spin_lock(&journal->j_list_lock);
1392 J_ASSERT(journal->j_running_transaction == NULL);
1393 J_ASSERT(journal->j_committing_transaction == NULL);
1394 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1395 spin_unlock(&journal->j_list_lock);
1397 if (journal->j_sb_buffer) {
1398 if (!is_journal_aborted(journal)) {
1399 /* We can now mark the journal as empty. */
1400 journal->j_tail = 0;
1401 journal->j_tail_sequence =
1402 ++journal->j_transaction_sequence;
1403 jbd2_journal_update_superblock(journal, 1);
1404 } else {
1405 err = -EIO;
1407 brelse(journal->j_sb_buffer);
1410 if (journal->j_proc_entry)
1411 jbd2_stats_proc_exit(journal);
1412 if (journal->j_inode)
1413 iput(journal->j_inode);
1414 if (journal->j_revoke)
1415 jbd2_journal_destroy_revoke(journal);
1416 kfree(journal->j_wbuf);
1417 kfree(journal);
1419 return err;
1424 *int jbd2_journal_check_used_features () - Check if features specified are used.
1425 * @journal: Journal to check.
1426 * @compat: bitmask of compatible features
1427 * @ro: bitmask of features that force read-only mount
1428 * @incompat: bitmask of incompatible features
1430 * Check whether the journal uses all of a given set of
1431 * features. Return true (non-zero) if it does.
1434 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1435 unsigned long ro, unsigned long incompat)
1437 journal_superblock_t *sb;
1439 if (!compat && !ro && !incompat)
1440 return 1;
1441 /* Load journal superblock if it is not loaded yet. */
1442 if (journal->j_format_version == 0 &&
1443 journal_get_superblock(journal) != 0)
1444 return 0;
1445 if (journal->j_format_version == 1)
1446 return 0;
1448 sb = journal->j_superblock;
1450 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1451 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1452 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1453 return 1;
1455 return 0;
1459 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1460 * @journal: Journal to check.
1461 * @compat: bitmask of compatible features
1462 * @ro: bitmask of features that force read-only mount
1463 * @incompat: bitmask of incompatible features
1465 * Check whether the journaling code supports the use of
1466 * all of a given set of features on this journal. Return true
1467 * (non-zero) if it can. */
1469 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1470 unsigned long ro, unsigned long incompat)
1472 if (!compat && !ro && !incompat)
1473 return 1;
1475 /* We can support any known requested features iff the
1476 * superblock is in version 2. Otherwise we fail to support any
1477 * extended sb features. */
1479 if (journal->j_format_version != 2)
1480 return 0;
1482 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1483 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1484 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1485 return 1;
1487 return 0;
1491 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1492 * @journal: Journal to act on.
1493 * @compat: bitmask of compatible features
1494 * @ro: bitmask of features that force read-only mount
1495 * @incompat: bitmask of incompatible features
1497 * Mark a given journal feature as present on the
1498 * superblock. Returns true if the requested features could be set.
1502 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1503 unsigned long ro, unsigned long incompat)
1505 journal_superblock_t *sb;
1507 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1508 return 1;
1510 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1511 return 0;
1513 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1514 compat, ro, incompat);
1516 sb = journal->j_superblock;
1518 sb->s_feature_compat |= cpu_to_be32(compat);
1519 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1520 sb->s_feature_incompat |= cpu_to_be32(incompat);
1522 return 1;
1526 * jbd2_journal_clear_features () - Clear a given journal feature in the
1527 * superblock
1528 * @journal: Journal to act on.
1529 * @compat: bitmask of compatible features
1530 * @ro: bitmask of features that force read-only mount
1531 * @incompat: bitmask of incompatible features
1533 * Clear a given journal feature as present on the
1534 * superblock.
1536 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1537 unsigned long ro, unsigned long incompat)
1539 journal_superblock_t *sb;
1541 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1542 compat, ro, incompat);
1544 sb = journal->j_superblock;
1546 sb->s_feature_compat &= ~cpu_to_be32(compat);
1547 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1548 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1550 EXPORT_SYMBOL(jbd2_journal_clear_features);
1553 * int jbd2_journal_update_format () - Update on-disk journal structure.
1554 * @journal: Journal to act on.
1556 * Given an initialised but unloaded journal struct, poke about in the
1557 * on-disk structure to update it to the most recent supported version.
1559 int jbd2_journal_update_format (journal_t *journal)
1561 journal_superblock_t *sb;
1562 int err;
1564 err = journal_get_superblock(journal);
1565 if (err)
1566 return err;
1568 sb = journal->j_superblock;
1570 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1571 case JBD2_SUPERBLOCK_V2:
1572 return 0;
1573 case JBD2_SUPERBLOCK_V1:
1574 return journal_convert_superblock_v1(journal, sb);
1575 default:
1576 break;
1578 return -EINVAL;
1581 static int journal_convert_superblock_v1(journal_t *journal,
1582 journal_superblock_t *sb)
1584 int offset, blocksize;
1585 struct buffer_head *bh;
1587 printk(KERN_WARNING
1588 "JBD: Converting superblock from version 1 to 2.\n");
1590 /* Pre-initialise new fields to zero */
1591 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1592 blocksize = be32_to_cpu(sb->s_blocksize);
1593 memset(&sb->s_feature_compat, 0, blocksize-offset);
1595 sb->s_nr_users = cpu_to_be32(1);
1596 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1597 journal->j_format_version = 2;
1599 bh = journal->j_sb_buffer;
1600 BUFFER_TRACE(bh, "marking dirty");
1601 mark_buffer_dirty(bh);
1602 sync_dirty_buffer(bh);
1603 return 0;
1608 * int jbd2_journal_flush () - Flush journal
1609 * @journal: Journal to act on.
1611 * Flush all data for a given journal to disk and empty the journal.
1612 * Filesystems can use this when remounting readonly to ensure that
1613 * recovery does not need to happen on remount.
1616 int jbd2_journal_flush(journal_t *journal)
1618 int err = 0;
1619 transaction_t *transaction = NULL;
1620 unsigned long old_tail;
1622 write_lock(&journal->j_state_lock);
1624 /* Force everything buffered to the log... */
1625 if (journal->j_running_transaction) {
1626 transaction = journal->j_running_transaction;
1627 __jbd2_log_start_commit(journal, transaction->t_tid);
1628 } else if (journal->j_committing_transaction)
1629 transaction = journal->j_committing_transaction;
1631 /* Wait for the log commit to complete... */
1632 if (transaction) {
1633 tid_t tid = transaction->t_tid;
1635 write_unlock(&journal->j_state_lock);
1636 jbd2_log_wait_commit(journal, tid);
1637 } else {
1638 write_unlock(&journal->j_state_lock);
1641 /* ...and flush everything in the log out to disk. */
1642 spin_lock(&journal->j_list_lock);
1643 while (!err && journal->j_checkpoint_transactions != NULL) {
1644 spin_unlock(&journal->j_list_lock);
1645 mutex_lock(&journal->j_checkpoint_mutex);
1646 err = jbd2_log_do_checkpoint(journal);
1647 mutex_unlock(&journal->j_checkpoint_mutex);
1648 spin_lock(&journal->j_list_lock);
1650 spin_unlock(&journal->j_list_lock);
1652 if (is_journal_aborted(journal))
1653 return -EIO;
1655 jbd2_cleanup_journal_tail(journal);
1657 /* Finally, mark the journal as really needing no recovery.
1658 * This sets s_start==0 in the underlying superblock, which is
1659 * the magic code for a fully-recovered superblock. Any future
1660 * commits of data to the journal will restore the current
1661 * s_start value. */
1662 write_lock(&journal->j_state_lock);
1663 old_tail = journal->j_tail;
1664 journal->j_tail = 0;
1665 write_unlock(&journal->j_state_lock);
1666 jbd2_journal_update_superblock(journal, 1);
1667 write_lock(&journal->j_state_lock);
1668 journal->j_tail = old_tail;
1670 J_ASSERT(!journal->j_running_transaction);
1671 J_ASSERT(!journal->j_committing_transaction);
1672 J_ASSERT(!journal->j_checkpoint_transactions);
1673 J_ASSERT(journal->j_head == journal->j_tail);
1674 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1675 write_unlock(&journal->j_state_lock);
1676 return 0;
1680 * int jbd2_journal_wipe() - Wipe journal contents
1681 * @journal: Journal to act on.
1682 * @write: flag (see below)
1684 * Wipe out all of the contents of a journal, safely. This will produce
1685 * a warning if the journal contains any valid recovery information.
1686 * Must be called between journal_init_*() and jbd2_journal_load().
1688 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1689 * we merely suppress recovery.
1692 int jbd2_journal_wipe(journal_t *journal, int write)
1694 int err = 0;
1696 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1698 err = load_superblock(journal);
1699 if (err)
1700 return err;
1702 if (!journal->j_tail)
1703 goto no_recovery;
1705 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1706 write ? "Clearing" : "Ignoring");
1708 err = jbd2_journal_skip_recovery(journal);
1709 if (write)
1710 jbd2_journal_update_superblock(journal, 1);
1712 no_recovery:
1713 return err;
1717 * Journal abort has very specific semantics, which we describe
1718 * for journal abort.
1720 * Two internal functions, which provide abort to the jbd layer
1721 * itself are here.
1725 * Quick version for internal journal use (doesn't lock the journal).
1726 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1727 * and don't attempt to make any other journal updates.
1729 void __jbd2_journal_abort_hard(journal_t *journal)
1731 transaction_t *transaction;
1733 if (journal->j_flags & JBD2_ABORT)
1734 return;
1736 printk(KERN_ERR "Aborting journal on device %s.\n",
1737 journal->j_devname);
1739 write_lock(&journal->j_state_lock);
1740 journal->j_flags |= JBD2_ABORT;
1741 transaction = journal->j_running_transaction;
1742 if (transaction)
1743 __jbd2_log_start_commit(journal, transaction->t_tid);
1744 write_unlock(&journal->j_state_lock);
1747 /* Soft abort: record the abort error status in the journal superblock,
1748 * but don't do any other IO. */
1749 static void __journal_abort_soft (journal_t *journal, int errno)
1751 if (journal->j_flags & JBD2_ABORT)
1752 return;
1754 if (!journal->j_errno)
1755 journal->j_errno = errno;
1757 __jbd2_journal_abort_hard(journal);
1759 if (errno)
1760 jbd2_journal_update_superblock(journal, 1);
1764 * void jbd2_journal_abort () - Shutdown the journal immediately.
1765 * @journal: the journal to shutdown.
1766 * @errno: an error number to record in the journal indicating
1767 * the reason for the shutdown.
1769 * Perform a complete, immediate shutdown of the ENTIRE
1770 * journal (not of a single transaction). This operation cannot be
1771 * undone without closing and reopening the journal.
1773 * The jbd2_journal_abort function is intended to support higher level error
1774 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1775 * mode.
1777 * Journal abort has very specific semantics. Any existing dirty,
1778 * unjournaled buffers in the main filesystem will still be written to
1779 * disk by bdflush, but the journaling mechanism will be suspended
1780 * immediately and no further transaction commits will be honoured.
1782 * Any dirty, journaled buffers will be written back to disk without
1783 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1784 * filesystem, but we _do_ attempt to leave as much data as possible
1785 * behind for fsck to use for cleanup.
1787 * Any attempt to get a new transaction handle on a journal which is in
1788 * ABORT state will just result in an -EROFS error return. A
1789 * jbd2_journal_stop on an existing handle will return -EIO if we have
1790 * entered abort state during the update.
1792 * Recursive transactions are not disturbed by journal abort until the
1793 * final jbd2_journal_stop, which will receive the -EIO error.
1795 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1796 * which will be recorded (if possible) in the journal superblock. This
1797 * allows a client to record failure conditions in the middle of a
1798 * transaction without having to complete the transaction to record the
1799 * failure to disk. ext3_error, for example, now uses this
1800 * functionality.
1802 * Errors which originate from within the journaling layer will NOT
1803 * supply an errno; a null errno implies that absolutely no further
1804 * writes are done to the journal (unless there are any already in
1805 * progress).
1809 void jbd2_journal_abort(journal_t *journal, int errno)
1811 __journal_abort_soft(journal, errno);
1815 * int jbd2_journal_errno () - returns the journal's error state.
1816 * @journal: journal to examine.
1818 * This is the errno number set with jbd2_journal_abort(), the last
1819 * time the journal was mounted - if the journal was stopped
1820 * without calling abort this will be 0.
1822 * If the journal has been aborted on this mount time -EROFS will
1823 * be returned.
1825 int jbd2_journal_errno(journal_t *journal)
1827 int err;
1829 read_lock(&journal->j_state_lock);
1830 if (journal->j_flags & JBD2_ABORT)
1831 err = -EROFS;
1832 else
1833 err = journal->j_errno;
1834 read_unlock(&journal->j_state_lock);
1835 return err;
1839 * int jbd2_journal_clear_err () - clears the journal's error state
1840 * @journal: journal to act on.
1842 * An error must be cleared or acked to take a FS out of readonly
1843 * mode.
1845 int jbd2_journal_clear_err(journal_t *journal)
1847 int err = 0;
1849 write_lock(&journal->j_state_lock);
1850 if (journal->j_flags & JBD2_ABORT)
1851 err = -EROFS;
1852 else
1853 journal->j_errno = 0;
1854 write_unlock(&journal->j_state_lock);
1855 return err;
1859 * void jbd2_journal_ack_err() - Ack journal err.
1860 * @journal: journal to act on.
1862 * An error must be cleared or acked to take a FS out of readonly
1863 * mode.
1865 void jbd2_journal_ack_err(journal_t *journal)
1867 write_lock(&journal->j_state_lock);
1868 if (journal->j_errno)
1869 journal->j_flags |= JBD2_ACK_ERR;
1870 write_unlock(&journal->j_state_lock);
1873 int jbd2_journal_blocks_per_page(struct inode *inode)
1875 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1879 * helper functions to deal with 32 or 64bit block numbers.
1881 size_t journal_tag_bytes(journal_t *journal)
1883 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1884 return JBD2_TAG_SIZE64;
1885 else
1886 return JBD2_TAG_SIZE32;
1890 * JBD memory management
1892 * These functions are used to allocate block-sized chunks of memory
1893 * used for making copies of buffer_head data. Very often it will be
1894 * page-sized chunks of data, but sometimes it will be in
1895 * sub-page-size chunks. (For example, 16k pages on Power systems
1896 * with a 4k block file system.) For blocks smaller than a page, we
1897 * use a SLAB allocator. There are slab caches for each block size,
1898 * which are allocated at mount time, if necessary, and we only free
1899 * (all of) the slab caches when/if the jbd2 module is unloaded. For
1900 * this reason we don't need to a mutex to protect access to
1901 * jbd2_slab[] allocating or releasing memory; only in
1902 * jbd2_journal_create_slab().
1904 #define JBD2_MAX_SLABS 8
1905 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1907 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1908 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1909 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1913 static void jbd2_journal_destroy_slabs(void)
1915 int i;
1917 for (i = 0; i < JBD2_MAX_SLABS; i++) {
1918 if (jbd2_slab[i])
1919 kmem_cache_destroy(jbd2_slab[i]);
1920 jbd2_slab[i] = NULL;
1924 static int jbd2_journal_create_slab(size_t size)
1926 static DEFINE_MUTEX(jbd2_slab_create_mutex);
1927 int i = order_base_2(size) - 10;
1928 size_t slab_size;
1930 if (size == PAGE_SIZE)
1931 return 0;
1933 if (i >= JBD2_MAX_SLABS)
1934 return -EINVAL;
1936 if (unlikely(i < 0))
1937 i = 0;
1938 mutex_lock(&jbd2_slab_create_mutex);
1939 if (jbd2_slab[i]) {
1940 mutex_unlock(&jbd2_slab_create_mutex);
1941 return 0; /* Already created */
1944 slab_size = 1 << (i+10);
1945 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1946 slab_size, 0, NULL);
1947 mutex_unlock(&jbd2_slab_create_mutex);
1948 if (!jbd2_slab[i]) {
1949 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1950 return -ENOMEM;
1952 return 0;
1955 static struct kmem_cache *get_slab(size_t size)
1957 int i = order_base_2(size) - 10;
1959 BUG_ON(i >= JBD2_MAX_SLABS);
1960 if (unlikely(i < 0))
1961 i = 0;
1962 BUG_ON(jbd2_slab[i] == NULL);
1963 return jbd2_slab[i];
1966 void *jbd2_alloc(size_t size, gfp_t flags)
1968 void *ptr;
1970 BUG_ON(size & (size-1)); /* Must be a power of 2 */
1972 flags |= __GFP_REPEAT;
1973 if (size == PAGE_SIZE)
1974 ptr = (void *)__get_free_pages(flags, 0);
1975 else if (size > PAGE_SIZE) {
1976 int order = get_order(size);
1978 if (order < 3)
1979 ptr = (void *)__get_free_pages(flags, order);
1980 else
1981 ptr = vmalloc(size);
1982 } else
1983 ptr = kmem_cache_alloc(get_slab(size), flags);
1985 /* Check alignment; SLUB has gotten this wrong in the past,
1986 * and this can lead to user data corruption! */
1987 BUG_ON(((unsigned long) ptr) & (size-1));
1989 return ptr;
1992 void jbd2_free(void *ptr, size_t size)
1994 if (size == PAGE_SIZE) {
1995 free_pages((unsigned long)ptr, 0);
1996 return;
1998 if (size > PAGE_SIZE) {
1999 int order = get_order(size);
2001 if (order < 3)
2002 free_pages((unsigned long)ptr, order);
2003 else
2004 vfree(ptr);
2005 return;
2007 kmem_cache_free(get_slab(size), ptr);
2011 * Journal_head storage management
2013 static struct kmem_cache *jbd2_journal_head_cache;
2014 #ifdef CONFIG_JBD2_DEBUG
2015 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2016 #endif
2018 static int journal_init_jbd2_journal_head_cache(void)
2020 int retval;
2022 J_ASSERT(jbd2_journal_head_cache == NULL);
2023 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2024 sizeof(struct journal_head),
2025 0, /* offset */
2026 SLAB_TEMPORARY, /* flags */
2027 NULL); /* ctor */
2028 retval = 0;
2029 if (!jbd2_journal_head_cache) {
2030 retval = -ENOMEM;
2031 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
2033 return retval;
2036 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2038 if (jbd2_journal_head_cache) {
2039 kmem_cache_destroy(jbd2_journal_head_cache);
2040 jbd2_journal_head_cache = NULL;
2045 * journal_head splicing and dicing
2047 static struct journal_head *journal_alloc_journal_head(void)
2049 struct journal_head *ret;
2051 #ifdef CONFIG_JBD2_DEBUG
2052 atomic_inc(&nr_journal_heads);
2053 #endif
2054 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2055 if (!ret) {
2056 jbd_debug(1, "out of memory for journal_head\n");
2057 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2058 while (!ret) {
2059 yield();
2060 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2063 return ret;
2066 static void journal_free_journal_head(struct journal_head *jh)
2068 #ifdef CONFIG_JBD2_DEBUG
2069 atomic_dec(&nr_journal_heads);
2070 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2071 #endif
2072 kmem_cache_free(jbd2_journal_head_cache, jh);
2076 * A journal_head is attached to a buffer_head whenever JBD has an
2077 * interest in the buffer.
2079 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2080 * is set. This bit is tested in core kernel code where we need to take
2081 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2082 * there.
2084 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2086 * When a buffer has its BH_JBD bit set it is immune from being released by
2087 * core kernel code, mainly via ->b_count.
2089 * A journal_head is detached from its buffer_head when the journal_head's
2090 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2091 * transaction (b_cp_transaction) hold their references to b_jcount.
2093 * Various places in the kernel want to attach a journal_head to a buffer_head
2094 * _before_ attaching the journal_head to a transaction. To protect the
2095 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2096 * journal_head's b_jcount refcount by one. The caller must call
2097 * jbd2_journal_put_journal_head() to undo this.
2099 * So the typical usage would be:
2101 * (Attach a journal_head if needed. Increments b_jcount)
2102 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2103 * ...
2104 * (Get another reference for transaction)
2105 * jbd2_journal_grab_journal_head(bh);
2106 * jh->b_transaction = xxx;
2107 * (Put original reference)
2108 * jbd2_journal_put_journal_head(jh);
2112 * Give a buffer_head a journal_head.
2114 * May sleep.
2116 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2118 struct journal_head *jh;
2119 struct journal_head *new_jh = NULL;
2121 repeat:
2122 if (!buffer_jbd(bh)) {
2123 new_jh = journal_alloc_journal_head();
2124 memset(new_jh, 0, sizeof(*new_jh));
2127 jbd_lock_bh_journal_head(bh);
2128 if (buffer_jbd(bh)) {
2129 jh = bh2jh(bh);
2130 } else {
2131 J_ASSERT_BH(bh,
2132 (atomic_read(&bh->b_count) > 0) ||
2133 (bh->b_page && bh->b_page->mapping));
2135 if (!new_jh) {
2136 jbd_unlock_bh_journal_head(bh);
2137 goto repeat;
2140 jh = new_jh;
2141 new_jh = NULL; /* We consumed it */
2142 set_buffer_jbd(bh);
2143 bh->b_private = jh;
2144 jh->b_bh = bh;
2145 get_bh(bh);
2146 BUFFER_TRACE(bh, "added journal_head");
2148 jh->b_jcount++;
2149 jbd_unlock_bh_journal_head(bh);
2150 if (new_jh)
2151 journal_free_journal_head(new_jh);
2152 return bh->b_private;
2156 * Grab a ref against this buffer_head's journal_head. If it ended up not
2157 * having a journal_head, return NULL
2159 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2161 struct journal_head *jh = NULL;
2163 jbd_lock_bh_journal_head(bh);
2164 if (buffer_jbd(bh)) {
2165 jh = bh2jh(bh);
2166 jh->b_jcount++;
2168 jbd_unlock_bh_journal_head(bh);
2169 return jh;
2172 static void __journal_remove_journal_head(struct buffer_head *bh)
2174 struct journal_head *jh = bh2jh(bh);
2176 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2177 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2178 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2179 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2180 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2181 J_ASSERT_BH(bh, buffer_jbd(bh));
2182 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2183 BUFFER_TRACE(bh, "remove journal_head");
2184 if (jh->b_frozen_data) {
2185 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2186 jbd2_free(jh->b_frozen_data, bh->b_size);
2188 if (jh->b_committed_data) {
2189 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2190 jbd2_free(jh->b_committed_data, bh->b_size);
2192 bh->b_private = NULL;
2193 jh->b_bh = NULL; /* debug, really */
2194 clear_buffer_jbd(bh);
2195 journal_free_journal_head(jh);
2199 * Drop a reference on the passed journal_head. If it fell to zero then
2200 * release the journal_head from the buffer_head.
2202 void jbd2_journal_put_journal_head(struct journal_head *jh)
2204 struct buffer_head *bh = jh2bh(jh);
2206 jbd_lock_bh_journal_head(bh);
2207 J_ASSERT_JH(jh, jh->b_jcount > 0);
2208 --jh->b_jcount;
2209 if (!jh->b_jcount) {
2210 __journal_remove_journal_head(bh);
2211 jbd_unlock_bh_journal_head(bh);
2212 __brelse(bh);
2213 } else
2214 jbd_unlock_bh_journal_head(bh);
2218 * Initialize jbd inode head
2220 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2222 jinode->i_transaction = NULL;
2223 jinode->i_next_transaction = NULL;
2224 jinode->i_vfs_inode = inode;
2225 jinode->i_flags = 0;
2226 INIT_LIST_HEAD(&jinode->i_list);
2230 * Function to be called before we start removing inode from memory (i.e.,
2231 * clear_inode() is a fine place to be called from). It removes inode from
2232 * transaction's lists.
2234 void jbd2_journal_release_jbd_inode(journal_t *journal,
2235 struct jbd2_inode *jinode)
2237 if (!journal)
2238 return;
2239 restart:
2240 spin_lock(&journal->j_list_lock);
2241 /* Is commit writing out inode - we have to wait */
2242 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2243 wait_queue_head_t *wq;
2244 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2245 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2246 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2247 spin_unlock(&journal->j_list_lock);
2248 schedule();
2249 finish_wait(wq, &wait.wait);
2250 goto restart;
2253 if (jinode->i_transaction) {
2254 list_del(&jinode->i_list);
2255 jinode->i_transaction = NULL;
2257 spin_unlock(&journal->j_list_lock);
2261 * debugfs tunables
2263 #ifdef CONFIG_JBD2_DEBUG
2264 u8 jbd2_journal_enable_debug __read_mostly;
2265 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2267 #define JBD2_DEBUG_NAME "jbd2-debug"
2269 static struct dentry *jbd2_debugfs_dir;
2270 static struct dentry *jbd2_debug;
2272 static void __init jbd2_create_debugfs_entry(void)
2274 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2275 if (jbd2_debugfs_dir)
2276 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2277 S_IRUGO | S_IWUSR,
2278 jbd2_debugfs_dir,
2279 &jbd2_journal_enable_debug);
2282 static void __exit jbd2_remove_debugfs_entry(void)
2284 debugfs_remove(jbd2_debug);
2285 debugfs_remove(jbd2_debugfs_dir);
2288 #else
2290 static void __init jbd2_create_debugfs_entry(void)
2294 static void __exit jbd2_remove_debugfs_entry(void)
2298 #endif
2300 #ifdef CONFIG_PROC_FS
2302 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2304 static void __init jbd2_create_jbd_stats_proc_entry(void)
2306 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2309 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2311 if (proc_jbd2_stats)
2312 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2315 #else
2317 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2318 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2320 #endif
2322 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2324 static int __init journal_init_handle_cache(void)
2326 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2327 if (jbd2_handle_cache == NULL) {
2328 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2329 return -ENOMEM;
2331 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2332 if (jbd2_inode_cache == NULL) {
2333 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2334 kmem_cache_destroy(jbd2_handle_cache);
2335 return -ENOMEM;
2337 return 0;
2340 static void jbd2_journal_destroy_handle_cache(void)
2342 if (jbd2_handle_cache)
2343 kmem_cache_destroy(jbd2_handle_cache);
2344 if (jbd2_inode_cache)
2345 kmem_cache_destroy(jbd2_inode_cache);
2350 * Module startup and shutdown
2353 static int __init journal_init_caches(void)
2355 int ret;
2357 ret = jbd2_journal_init_revoke_caches();
2358 if (ret == 0)
2359 ret = journal_init_jbd2_journal_head_cache();
2360 if (ret == 0)
2361 ret = journal_init_handle_cache();
2362 return ret;
2365 static void jbd2_journal_destroy_caches(void)
2367 jbd2_journal_destroy_revoke_caches();
2368 jbd2_journal_destroy_jbd2_journal_head_cache();
2369 jbd2_journal_destroy_handle_cache();
2370 jbd2_journal_destroy_slabs();
2373 static int __init journal_init(void)
2375 int ret;
2377 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2379 ret = journal_init_caches();
2380 if (ret == 0) {
2381 jbd2_create_debugfs_entry();
2382 jbd2_create_jbd_stats_proc_entry();
2383 } else {
2384 jbd2_journal_destroy_caches();
2386 return ret;
2389 static void __exit journal_exit(void)
2391 #ifdef CONFIG_JBD2_DEBUG
2392 int n = atomic_read(&nr_journal_heads);
2393 if (n)
2394 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2395 #endif
2396 jbd2_remove_debugfs_entry();
2397 jbd2_remove_jbd_stats_proc_entry();
2398 jbd2_journal_destroy_caches();
2402 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2403 * tracing infrastructure to map a dev_t to a device name.
2405 * The caller should use rcu_read_lock() in order to make sure the
2406 * device name stays valid until its done with it. We use
2407 * rcu_read_lock() as well to make sure we're safe in case the caller
2408 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2409 * nested.
2411 struct devname_cache {
2412 struct rcu_head rcu;
2413 dev_t device;
2414 char devname[BDEVNAME_SIZE];
2416 #define CACHE_SIZE_BITS 6
2417 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2418 static DEFINE_SPINLOCK(devname_cache_lock);
2420 static void free_devcache(struct rcu_head *rcu)
2422 kfree(rcu);
2425 const char *jbd2_dev_to_name(dev_t device)
2427 int i = hash_32(device, CACHE_SIZE_BITS);
2428 char *ret;
2429 struct block_device *bd;
2430 static struct devname_cache *new_dev;
2432 rcu_read_lock();
2433 if (devcache[i] && devcache[i]->device == device) {
2434 ret = devcache[i]->devname;
2435 rcu_read_unlock();
2436 return ret;
2438 rcu_read_unlock();
2440 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2441 if (!new_dev)
2442 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2443 bd = bdget(device);
2444 spin_lock(&devname_cache_lock);
2445 if (devcache[i]) {
2446 if (devcache[i]->device == device) {
2447 kfree(new_dev);
2448 bdput(bd);
2449 ret = devcache[i]->devname;
2450 spin_unlock(&devname_cache_lock);
2451 return ret;
2453 call_rcu(&devcache[i]->rcu, free_devcache);
2455 devcache[i] = new_dev;
2456 devcache[i]->device = device;
2457 if (bd) {
2458 bdevname(bd, devcache[i]->devname);
2459 bdput(bd);
2460 } else
2461 __bdevname(device, devcache[i]->devname);
2462 ret = devcache[i]->devname;
2463 spin_unlock(&devname_cache_lock);
2464 return ret;
2466 EXPORT_SYMBOL(jbd2_dev_to_name);
2468 MODULE_LICENSE("GPL");
2469 module_init(journal_init);
2470 module_exit(journal_exit);