ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / splice.c
blob9d890085f9ba116b991b43780ba1ba28f9b61337
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
37 * Attempt to steal a page from a pipe buffer. This should perhaps go into
38 * a vm helper function, it's already simplified quite a bit by the
39 * addition of remove_mapping(). If success is returned, the caller may
40 * attempt to reuse this page for another destination.
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43 struct pipe_buffer *buf)
45 struct page *page = buf->page;
46 struct address_space *mapping;
48 lock_page(page);
50 mapping = page_mapping(page);
51 if (mapping) {
52 WARN_ON(!PageUptodate(page));
55 * At least for ext2 with nobh option, we need to wait on
56 * writeback completing on this page, since we'll remove it
57 * from the pagecache. Otherwise truncate wont wait on the
58 * page, allowing the disk blocks to be reused by someone else
59 * before we actually wrote our data to them. fs corruption
60 * ensues.
62 wait_on_page_writeback(page);
64 if (page_has_private(page) &&
65 !try_to_release_page(page, GFP_KERNEL))
66 goto out_unlock;
69 * If we succeeded in removing the mapping, set LRU flag
70 * and return good.
72 if (remove_mapping(mapping, page)) {
73 buf->flags |= PIPE_BUF_FLAG_LRU;
74 return 0;
79 * Raced with truncate or failed to remove page from current
80 * address space, unlock and return failure.
82 out_unlock:
83 unlock_page(page);
84 return 1;
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
90 page_cache_release(buf->page);
91 buf->flags &= ~PIPE_BUF_FLAG_LRU;
95 * Check whether the contents of buf is OK to access. Since the content
96 * is a page cache page, IO may be in flight.
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99 struct pipe_buffer *buf)
101 struct page *page = buf->page;
102 int err;
104 if (!PageUptodate(page)) {
105 lock_page(page);
108 * Page got truncated/unhashed. This will cause a 0-byte
109 * splice, if this is the first page.
111 if (!page->mapping) {
112 err = -ENODATA;
113 goto error;
117 * Uh oh, read-error from disk.
119 if (!PageUptodate(page)) {
120 err = -EIO;
121 goto error;
125 * Page is ok afterall, we are done.
127 unlock_page(page);
130 return 0;
131 error:
132 unlock_page(page);
133 return err;
136 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137 .can_merge = 0,
138 .map = generic_pipe_buf_map,
139 .unmap = generic_pipe_buf_unmap,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .map = generic_pipe_buf_map,
159 .unmap = generic_pipe_buf_unmap,
160 .confirm = generic_pipe_buf_confirm,
161 .release = page_cache_pipe_buf_release,
162 .steal = user_page_pipe_buf_steal,
163 .get = generic_pipe_buf_get,
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
168 smp_mb();
169 if (waitqueue_active(&pipe->wait))
170 wake_up_interruptible(&pipe->wait);
171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
175 * splice_to_pipe - fill passed data into a pipe
176 * @pipe: pipe to fill
177 * @spd: data to fill
179 * Description:
180 * @spd contains a map of pages and len/offset tuples, along with
181 * the struct pipe_buf_operations associated with these pages. This
182 * function will link that data to the pipe.
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 struct splice_pipe_desc *spd)
188 unsigned int spd_pages = spd->nr_pages;
189 int ret, do_wakeup, page_nr;
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
195 pipe_lock(pipe);
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
221 if (pipe->inode)
222 do_wakeup = 1;
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
229 break;
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
257 pipe_unlock(pipe);
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
265 return ret;
268 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 page_cache_release(spd->pages[i]);
274 * Check if we need to grow the arrays holding pages and partial page
275 * descriptions.
277 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 if (pipe->buffers <= PIPE_DEF_BUFFERS)
280 return 0;
282 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
283 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
285 if (spd->pages && spd->partial)
286 return 0;
288 kfree(spd->pages);
289 kfree(spd->partial);
290 return -ENOMEM;
293 void splice_shrink_spd(struct pipe_inode_info *pipe,
294 struct splice_pipe_desc *spd)
296 if (pipe->buffers <= PIPE_DEF_BUFFERS)
297 return;
299 kfree(spd->pages);
300 kfree(spd->partial);
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .flags = flags,
320 .ops = &page_cache_pipe_buf_ops,
321 .spd_release = spd_release_page,
324 if (splice_grow_spd(pipe, &spd))
325 return -ENOMEM;
327 index = *ppos >> PAGE_CACHE_SHIFT;
328 loff = *ppos & ~PAGE_CACHE_MASK;
329 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 nr_pages = min(req_pages, pipe->buffers);
333 * Lookup the (hopefully) full range of pages we need.
335 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 index += spd.nr_pages;
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
342 if (spd.nr_pages < nr_pages)
343 page_cache_sync_readahead(mapping, &in->f_ra, in,
344 index, req_pages - spd.nr_pages);
346 error = 0;
347 while (spd.nr_pages < nr_pages) {
349 * Page could be there, find_get_pages_contig() breaks on
350 * the first hole.
352 page = find_get_page(mapping, index);
353 if (!page) {
355 * page didn't exist, allocate one.
357 page = page_cache_alloc_cold(mapping);
358 if (!page)
359 break;
361 error = add_to_page_cache_lru(page, mapping, index,
362 GFP_KERNEL);
363 if (unlikely(error)) {
364 page_cache_release(page);
365 if (error == -EEXIST)
366 continue;
367 break;
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
373 unlock_page(page);
376 spd.pages[spd.nr_pages++] = page;
377 index++;
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
384 index = *ppos >> PAGE_CACHE_SHIFT;
385 nr_pages = spd.nr_pages;
386 spd.nr_pages = 0;
387 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 unsigned int this_len;
390 if (!len)
391 break;
394 * this_len is the max we'll use from this page
396 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 page = spd.pages[page_nr];
399 if (PageReadahead(page))
400 page_cache_async_readahead(mapping, &in->f_ra, in,
401 page, index, req_pages - page_nr);
404 * If the page isn't uptodate, we may need to start io on it
406 if (!PageUptodate(page)) {
407 lock_page(page);
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
415 if (!page->mapping) {
416 unlock_page(page);
417 page = find_or_create_page(mapping, index,
418 mapping_gfp_mask(mapping));
420 if (!page) {
421 error = -ENOMEM;
422 break;
424 page_cache_release(spd.pages[page_nr]);
425 spd.pages[page_nr] = page;
428 * page was already under io and is now done, great
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 goto fill_it;
436 * need to read in the page
438 error = mapping->a_ops->readpage(in, page);
439 if (unlikely(error)) {
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
446 if (error == AOP_TRUNCATED_PAGE)
447 error = 0;
449 break;
452 fill_it:
454 * i_size must be checked after PageUptodate.
456 isize = i_size_read(mapping->host);
457 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 if (unlikely(!isize || index > end_index))
459 break;
462 * if this is the last page, see if we need to shrink
463 * the length and stop
465 if (end_index == index) {
466 unsigned int plen;
469 * max good bytes in this page
471 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 if (plen <= loff)
473 break;
476 * force quit after adding this page
478 this_len = min(this_len, plen - loff);
479 len = this_len;
482 spd.partial[page_nr].offset = loff;
483 spd.partial[page_nr].len = this_len;
484 len -= this_len;
485 loff = 0;
486 spd.nr_pages++;
487 index++;
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
494 while (page_nr < nr_pages)
495 page_cache_release(spd.pages[page_nr++]);
496 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498 if (spd.nr_pages)
499 error = splice_to_pipe(pipe, &spd);
501 splice_shrink_spd(pipe, &spd);
502 return error;
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
513 * Description:
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
516 * a readpage() hook.
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 struct pipe_inode_info *pipe, size_t len,
521 unsigned int flags)
523 loff_t isize, left;
524 int ret;
526 isize = i_size_read(in->f_mapping->host);
527 if (unlikely(*ppos >= isize))
528 return 0;
530 left = isize - *ppos;
531 if (unlikely(left < len))
532 len = left;
534 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535 if (ret > 0) {
536 *ppos += ret;
537 file_accessed(in);
540 return ret;
542 EXPORT_SYMBOL(generic_file_splice_read);
544 static const struct pipe_buf_operations default_pipe_buf_ops = {
545 .can_merge = 0,
546 .map = generic_pipe_buf_map,
547 .unmap = generic_pipe_buf_unmap,
548 .confirm = generic_pipe_buf_confirm,
549 .release = generic_pipe_buf_release,
550 .steal = generic_pipe_buf_steal,
551 .get = generic_pipe_buf_get,
554 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
555 unsigned long vlen, loff_t offset)
557 mm_segment_t old_fs;
558 loff_t pos = offset;
559 ssize_t res;
561 old_fs = get_fs();
562 set_fs(get_ds());
563 /* The cast to a user pointer is valid due to the set_fs() */
564 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
565 set_fs(old_fs);
567 return res;
570 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
571 loff_t pos)
573 mm_segment_t old_fs;
574 ssize_t res;
576 old_fs = get_fs();
577 set_fs(get_ds());
578 /* The cast to a user pointer is valid due to the set_fs() */
579 res = vfs_write(file, (const char __user *)buf, count, &pos);
580 set_fs(old_fs);
582 return res;
585 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
586 struct pipe_inode_info *pipe, size_t len,
587 unsigned int flags)
589 unsigned int nr_pages;
590 unsigned int nr_freed;
591 size_t offset;
592 struct page *pages[PIPE_DEF_BUFFERS];
593 struct partial_page partial[PIPE_DEF_BUFFERS];
594 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
595 ssize_t res;
596 size_t this_len;
597 int error;
598 int i;
599 struct splice_pipe_desc spd = {
600 .pages = pages,
601 .partial = partial,
602 .flags = flags,
603 .ops = &default_pipe_buf_ops,
604 .spd_release = spd_release_page,
607 if (splice_grow_spd(pipe, &spd))
608 return -ENOMEM;
610 res = -ENOMEM;
611 vec = __vec;
612 if (pipe->buffers > PIPE_DEF_BUFFERS) {
613 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
614 if (!vec)
615 goto shrink_ret;
618 offset = *ppos & ~PAGE_CACHE_MASK;
619 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
621 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
622 struct page *page;
624 page = alloc_page(GFP_USER);
625 error = -ENOMEM;
626 if (!page)
627 goto err;
629 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
630 vec[i].iov_base = (void __user *) page_address(page);
631 vec[i].iov_len = this_len;
632 spd.pages[i] = page;
633 spd.nr_pages++;
634 len -= this_len;
635 offset = 0;
638 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
639 if (res < 0) {
640 error = res;
641 goto err;
644 error = 0;
645 if (!res)
646 goto err;
648 nr_freed = 0;
649 for (i = 0; i < spd.nr_pages; i++) {
650 this_len = min_t(size_t, vec[i].iov_len, res);
651 spd.partial[i].offset = 0;
652 spd.partial[i].len = this_len;
653 if (!this_len) {
654 __free_page(spd.pages[i]);
655 spd.pages[i] = NULL;
656 nr_freed++;
658 res -= this_len;
660 spd.nr_pages -= nr_freed;
662 res = splice_to_pipe(pipe, &spd);
663 if (res > 0)
664 *ppos += res;
666 shrink_ret:
667 if (vec != __vec)
668 kfree(vec);
669 splice_shrink_spd(pipe, &spd);
670 return res;
672 err:
673 for (i = 0; i < spd.nr_pages; i++)
674 __free_page(spd.pages[i]);
676 res = error;
677 goto shrink_ret;
679 EXPORT_SYMBOL(default_file_splice_read);
682 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
683 * using sendpage(). Return the number of bytes sent.
685 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
686 struct pipe_buffer *buf, struct splice_desc *sd)
688 struct file *file = sd->u.file;
689 loff_t pos = sd->pos;
690 int more;
692 if (!likely(file->f_op && file->f_op->sendpage))
693 return -EINVAL;
695 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
696 if (sd->len < sd->total_len)
697 more |= MSG_SENDPAGE_NOTLAST;
698 return file->f_op->sendpage(file, buf->page, buf->offset,
699 sd->len, &pos, more);
703 * This is a little more tricky than the file -> pipe splicing. There are
704 * basically three cases:
706 * - Destination page already exists in the address space and there
707 * are users of it. For that case we have no other option that
708 * copying the data. Tough luck.
709 * - Destination page already exists in the address space, but there
710 * are no users of it. Make sure it's uptodate, then drop it. Fall
711 * through to last case.
712 * - Destination page does not exist, we can add the pipe page to
713 * the page cache and avoid the copy.
715 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
716 * sd->flags), we attempt to migrate pages from the pipe to the output
717 * file address space page cache. This is possible if no one else has
718 * the pipe page referenced outside of the pipe and page cache. If
719 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
720 * a new page in the output file page cache and fill/dirty that.
722 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
723 struct splice_desc *sd)
725 struct file *file = sd->u.file;
726 struct address_space *mapping = file->f_mapping;
727 unsigned int offset, this_len;
728 struct page *page;
729 void *fsdata;
730 int ret;
732 offset = sd->pos & ~PAGE_CACHE_MASK;
734 this_len = sd->len;
735 if (this_len + offset > PAGE_CACHE_SIZE)
736 this_len = PAGE_CACHE_SIZE - offset;
738 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
739 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
740 if (unlikely(ret))
741 goto out;
743 if (buf->page != page) {
745 * Careful, ->map() uses KM_USER0!
747 char *src = buf->ops->map(pipe, buf, 1);
748 char *dst = kmap_atomic(page, KM_USER1);
750 memcpy(dst + offset, src + buf->offset, this_len);
751 flush_dcache_page(page);
752 kunmap_atomic(dst, KM_USER1);
753 buf->ops->unmap(pipe, buf, src);
755 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
756 page, fsdata);
757 out:
758 return ret;
760 EXPORT_SYMBOL(pipe_to_file);
762 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
764 smp_mb();
765 if (waitqueue_active(&pipe->wait))
766 wake_up_interruptible(&pipe->wait);
767 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
771 * splice_from_pipe_feed - feed available data from a pipe to a file
772 * @pipe: pipe to splice from
773 * @sd: information to @actor
774 * @actor: handler that splices the data
776 * Description:
777 * This function loops over the pipe and calls @actor to do the
778 * actual moving of a single struct pipe_buffer to the desired
779 * destination. It returns when there's no more buffers left in
780 * the pipe or if the requested number of bytes (@sd->total_len)
781 * have been copied. It returns a positive number (one) if the
782 * pipe needs to be filled with more data, zero if the required
783 * number of bytes have been copied and -errno on error.
785 * This, together with splice_from_pipe_{begin,end,next}, may be
786 * used to implement the functionality of __splice_from_pipe() when
787 * locking is required around copying the pipe buffers to the
788 * destination.
790 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
791 splice_actor *actor)
793 int ret;
795 while (pipe->nrbufs) {
796 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
797 const struct pipe_buf_operations *ops = buf->ops;
799 sd->len = buf->len;
800 if (sd->len > sd->total_len)
801 sd->len = sd->total_len;
803 ret = buf->ops->confirm(pipe, buf);
804 if (unlikely(ret)) {
805 if (ret == -ENODATA)
806 ret = 0;
807 return ret;
810 ret = actor(pipe, buf, sd);
811 if (ret <= 0)
812 return ret;
814 buf->offset += ret;
815 buf->len -= ret;
817 sd->num_spliced += ret;
818 sd->len -= ret;
819 sd->pos += ret;
820 sd->total_len -= ret;
822 if (!buf->len) {
823 buf->ops = NULL;
824 ops->release(pipe, buf);
825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826 pipe->nrbufs--;
827 if (pipe->inode)
828 sd->need_wakeup = true;
831 if (!sd->total_len)
832 return 0;
835 return 1;
837 EXPORT_SYMBOL(splice_from_pipe_feed);
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
844 * Description:
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
851 while (!pipe->nrbufs) {
852 if (!pipe->writers)
853 return 0;
855 if (!pipe->waiting_writers && sd->num_spliced)
856 return 0;
858 if (sd->flags & SPLICE_F_NONBLOCK)
859 return -EAGAIN;
861 if (signal_pending(current))
862 return -ERESTARTSYS;
864 if (sd->need_wakeup) {
865 wakeup_pipe_writers(pipe);
866 sd->need_wakeup = false;
869 pipe_wait(pipe);
872 return 1;
874 EXPORT_SYMBOL(splice_from_pipe_next);
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
880 * Description:
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
885 void splice_from_pipe_begin(struct splice_desc *sd)
887 sd->num_spliced = 0;
888 sd->need_wakeup = false;
890 EXPORT_SYMBOL(splice_from_pipe_begin);
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
897 * Description:
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
904 if (sd->need_wakeup)
905 wakeup_pipe_writers(pipe);
907 EXPORT_SYMBOL(splice_from_pipe_end);
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
915 * Description:
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
919 * pipe_to_user.
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923 splice_actor *actor)
925 int ret;
927 splice_from_pipe_begin(sd);
928 do {
929 ret = splice_from_pipe_next(pipe, sd);
930 if (ret > 0)
931 ret = splice_from_pipe_feed(pipe, sd, actor);
932 } while (ret > 0);
933 splice_from_pipe_end(pipe, sd);
935 return sd->num_spliced ? sd->num_spliced : ret;
937 EXPORT_SYMBOL(__splice_from_pipe);
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
948 * Description:
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 loff_t *ppos, size_t len, unsigned int flags,
955 splice_actor *actor)
957 ssize_t ret;
958 struct splice_desc sd = {
959 .total_len = len,
960 .flags = flags,
961 .pos = *ppos,
962 .u.file = out,
965 pipe_lock(pipe);
966 ret = __splice_from_pipe(pipe, &sd, actor);
967 pipe_unlock(pipe);
969 return ret;
973 * generic_file_splice_write - splice data from a pipe to a file
974 * @pipe: pipe info
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
980 * Description:
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 loff_t *ppos, size_t len, unsigned int flags)
989 struct address_space *mapping = out->f_mapping;
990 struct inode *inode = mapping->host;
991 struct splice_desc sd = {
992 .total_len = len,
993 .flags = flags,
994 .pos = *ppos,
995 .u.file = out,
997 ssize_t ret;
999 pipe_lock(pipe);
1001 splice_from_pipe_begin(&sd);
1002 do {
1003 ret = splice_from_pipe_next(pipe, &sd);
1004 if (ret <= 0)
1005 break;
1007 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1008 ret = file_remove_suid(out);
1009 if (!ret) {
1010 file_update_time(out);
1011 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1013 mutex_unlock(&inode->i_mutex);
1014 } while (ret > 0);
1015 splice_from_pipe_end(pipe, &sd);
1017 pipe_unlock(pipe);
1019 if (sd.num_spliced)
1020 ret = sd.num_spliced;
1022 if (ret > 0) {
1023 unsigned long nr_pages;
1024 int err;
1026 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1028 err = generic_write_sync(out, *ppos, ret);
1029 if (err)
1030 ret = err;
1031 else
1032 *ppos += ret;
1033 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1036 return ret;
1039 EXPORT_SYMBOL(generic_file_splice_write);
1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1042 struct splice_desc *sd)
1044 int ret;
1045 void *data;
1047 data = buf->ops->map(pipe, buf, 0);
1048 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1049 buf->ops->unmap(pipe, buf, data);
1051 return ret;
1054 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1055 struct file *out, loff_t *ppos,
1056 size_t len, unsigned int flags)
1058 ssize_t ret;
1060 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1061 if (ret > 0)
1062 *ppos += ret;
1064 return ret;
1068 * generic_splice_sendpage - splice data from a pipe to a socket
1069 * @pipe: pipe to splice from
1070 * @out: socket to write to
1071 * @ppos: position in @out
1072 * @len: number of bytes to splice
1073 * @flags: splice modifier flags
1075 * Description:
1076 * Will send @len bytes from the pipe to a network socket. No data copying
1077 * is involved.
1080 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1081 loff_t *ppos, size_t len, unsigned int flags)
1083 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1086 EXPORT_SYMBOL(generic_splice_sendpage);
1089 * Attempt to initiate a splice from pipe to file.
1091 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1092 loff_t *ppos, size_t len, unsigned int flags)
1094 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1095 loff_t *, size_t, unsigned int);
1096 int ret;
1098 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1099 return -EBADF;
1101 if (unlikely(out->f_flags & O_APPEND))
1102 return -EINVAL;
1104 ret = rw_verify_area(WRITE, out, ppos, len);
1105 if (unlikely(ret < 0))
1106 return ret;
1108 if (out->f_op && out->f_op->splice_write)
1109 splice_write = out->f_op->splice_write;
1110 else
1111 splice_write = default_file_splice_write;
1113 return splice_write(pipe, out, ppos, len, flags);
1117 * Attempt to initiate a splice from a file to a pipe.
1119 static long do_splice_to(struct file *in, loff_t *ppos,
1120 struct pipe_inode_info *pipe, size_t len,
1121 unsigned int flags)
1123 ssize_t (*splice_read)(struct file *, loff_t *,
1124 struct pipe_inode_info *, size_t, unsigned int);
1125 int ret;
1127 if (unlikely(!(in->f_mode & FMODE_READ)))
1128 return -EBADF;
1130 ret = rw_verify_area(READ, in, ppos, len);
1131 if (unlikely(ret < 0))
1132 return ret;
1134 if (in->f_op && in->f_op->splice_read)
1135 splice_read = in->f_op->splice_read;
1136 else
1137 splice_read = default_file_splice_read;
1139 return splice_read(in, ppos, pipe, len, flags);
1143 * splice_direct_to_actor - splices data directly between two non-pipes
1144 * @in: file to splice from
1145 * @sd: actor information on where to splice to
1146 * @actor: handles the data splicing
1148 * Description:
1149 * This is a special case helper to splice directly between two
1150 * points, without requiring an explicit pipe. Internally an allocated
1151 * pipe is cached in the process, and reused during the lifetime of
1152 * that process.
1155 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1156 splice_direct_actor *actor)
1158 struct pipe_inode_info *pipe;
1159 long ret, bytes;
1160 umode_t i_mode;
1161 size_t len;
1162 int i, flags;
1165 * We require the input being a regular file, as we don't want to
1166 * randomly drop data for eg socket -> socket splicing. Use the
1167 * piped splicing for that!
1169 i_mode = in->f_path.dentry->d_inode->i_mode;
1170 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1171 return -EINVAL;
1174 * neither in nor out is a pipe, setup an internal pipe attached to
1175 * 'out' and transfer the wanted data from 'in' to 'out' through that
1177 pipe = current->splice_pipe;
1178 if (unlikely(!pipe)) {
1179 pipe = alloc_pipe_info(NULL);
1180 if (!pipe)
1181 return -ENOMEM;
1184 * We don't have an immediate reader, but we'll read the stuff
1185 * out of the pipe right after the splice_to_pipe(). So set
1186 * PIPE_READERS appropriately.
1188 pipe->readers = 1;
1190 current->splice_pipe = pipe;
1194 * Do the splice.
1196 ret = 0;
1197 bytes = 0;
1198 len = sd->total_len;
1199 flags = sd->flags;
1202 * Don't block on output, we have to drain the direct pipe.
1204 sd->flags &= ~SPLICE_F_NONBLOCK;
1206 while (len) {
1207 size_t read_len;
1208 loff_t pos = sd->pos, prev_pos = pos;
1210 ret = do_splice_to(in, &pos, pipe, len, flags);
1211 if (unlikely(ret <= 0))
1212 goto out_release;
1214 read_len = ret;
1215 sd->total_len = read_len;
1218 * NOTE: nonblocking mode only applies to the input. We
1219 * must not do the output in nonblocking mode as then we
1220 * could get stuck data in the internal pipe:
1222 ret = actor(pipe, sd);
1223 if (unlikely(ret <= 0)) {
1224 sd->pos = prev_pos;
1225 goto out_release;
1228 bytes += ret;
1229 len -= ret;
1230 sd->pos = pos;
1232 if (ret < read_len) {
1233 sd->pos = prev_pos + ret;
1234 goto out_release;
1238 done:
1239 pipe->nrbufs = pipe->curbuf = 0;
1240 file_accessed(in);
1241 return bytes;
1243 out_release:
1245 * If we did an incomplete transfer we must release
1246 * the pipe buffers in question:
1248 for (i = 0; i < pipe->buffers; i++) {
1249 struct pipe_buffer *buf = pipe->bufs + i;
1251 if (buf->ops) {
1252 buf->ops->release(pipe, buf);
1253 buf->ops = NULL;
1257 if (!bytes)
1258 bytes = ret;
1260 goto done;
1262 EXPORT_SYMBOL(splice_direct_to_actor);
1264 static int direct_splice_actor(struct pipe_inode_info *pipe,
1265 struct splice_desc *sd)
1267 struct file *file = sd->u.file;
1269 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1270 sd->flags);
1274 * do_splice_direct - splices data directly between two files
1275 * @in: file to splice from
1276 * @ppos: input file offset
1277 * @out: file to splice to
1278 * @len: number of bytes to splice
1279 * @flags: splice modifier flags
1281 * Description:
1282 * For use by do_sendfile(). splice can easily emulate sendfile, but
1283 * doing it in the application would incur an extra system call
1284 * (splice in + splice out, as compared to just sendfile()). So this helper
1285 * can splice directly through a process-private pipe.
1288 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1289 size_t len, unsigned int flags)
1291 struct splice_desc sd = {
1292 .len = len,
1293 .total_len = len,
1294 .flags = flags,
1295 .pos = *ppos,
1296 .u.file = out,
1298 long ret;
1300 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1301 if (ret > 0)
1302 *ppos = sd.pos;
1304 return ret;
1307 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1308 struct pipe_inode_info *opipe,
1309 size_t len, unsigned int flags);
1312 * Determine where to splice to/from.
1314 static long do_splice(struct file *in, loff_t __user *off_in,
1315 struct file *out, loff_t __user *off_out,
1316 size_t len, unsigned int flags)
1318 struct pipe_inode_info *ipipe;
1319 struct pipe_inode_info *opipe;
1320 loff_t offset, *off;
1321 long ret;
1323 ipipe = get_pipe_info(in);
1324 opipe = get_pipe_info(out);
1326 if (ipipe && opipe) {
1327 if (off_in || off_out)
1328 return -ESPIPE;
1330 if (!(in->f_mode & FMODE_READ))
1331 return -EBADF;
1333 if (!(out->f_mode & FMODE_WRITE))
1334 return -EBADF;
1336 /* Splicing to self would be fun, but... */
1337 if (ipipe == opipe)
1338 return -EINVAL;
1340 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1343 if (ipipe) {
1344 if (off_in)
1345 return -ESPIPE;
1346 if (off_out) {
1347 if (!(out->f_mode & FMODE_PWRITE))
1348 return -EINVAL;
1349 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1350 return -EFAULT;
1351 off = &offset;
1352 } else
1353 off = &out->f_pos;
1355 ret = do_splice_from(ipipe, out, off, len, flags);
1357 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1358 ret = -EFAULT;
1360 return ret;
1363 if (opipe) {
1364 if (off_out)
1365 return -ESPIPE;
1366 if (off_in) {
1367 if (!(in->f_mode & FMODE_PREAD))
1368 return -EINVAL;
1369 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1370 return -EFAULT;
1371 off = &offset;
1372 } else
1373 off = &in->f_pos;
1375 ret = do_splice_to(in, off, opipe, len, flags);
1377 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1378 ret = -EFAULT;
1380 return ret;
1383 return -EINVAL;
1387 * Map an iov into an array of pages and offset/length tupples. With the
1388 * partial_page structure, we can map several non-contiguous ranges into
1389 * our ones pages[] map instead of splitting that operation into pieces.
1390 * Could easily be exported as a generic helper for other users, in which
1391 * case one would probably want to add a 'max_nr_pages' parameter as well.
1393 static int get_iovec_page_array(const struct iovec __user *iov,
1394 unsigned int nr_vecs, struct page **pages,
1395 struct partial_page *partial, int aligned,
1396 unsigned int pipe_buffers)
1398 int buffers = 0, error = 0;
1400 while (nr_vecs) {
1401 unsigned long off, npages;
1402 struct iovec entry;
1403 void __user *base;
1404 size_t len;
1405 int i;
1407 error = -EFAULT;
1408 if (copy_from_user(&entry, iov, sizeof(entry)))
1409 break;
1411 base = entry.iov_base;
1412 len = entry.iov_len;
1415 * Sanity check this iovec. 0 read succeeds.
1417 error = 0;
1418 if (unlikely(!len))
1419 break;
1420 error = -EFAULT;
1421 if (!access_ok(VERIFY_READ, base, len))
1422 break;
1425 * Get this base offset and number of pages, then map
1426 * in the user pages.
1428 off = (unsigned long) base & ~PAGE_MASK;
1431 * If asked for alignment, the offset must be zero and the
1432 * length a multiple of the PAGE_SIZE.
1434 error = -EINVAL;
1435 if (aligned && (off || len & ~PAGE_MASK))
1436 break;
1438 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1439 if (npages > pipe_buffers - buffers)
1440 npages = pipe_buffers - buffers;
1442 error = get_user_pages_fast((unsigned long)base, npages,
1443 0, &pages[buffers]);
1445 if (unlikely(error <= 0))
1446 break;
1449 * Fill this contiguous range into the partial page map.
1451 for (i = 0; i < error; i++) {
1452 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1454 partial[buffers].offset = off;
1455 partial[buffers].len = plen;
1457 off = 0;
1458 len -= plen;
1459 buffers++;
1463 * We didn't complete this iov, stop here since it probably
1464 * means we have to move some of this into a pipe to
1465 * be able to continue.
1467 if (len)
1468 break;
1471 * Don't continue if we mapped fewer pages than we asked for,
1472 * or if we mapped the max number of pages that we have
1473 * room for.
1475 if (error < npages || buffers == pipe_buffers)
1476 break;
1478 nr_vecs--;
1479 iov++;
1482 if (buffers)
1483 return buffers;
1485 return error;
1488 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1489 struct splice_desc *sd)
1491 char *src;
1492 int ret;
1495 * See if we can use the atomic maps, by prefaulting in the
1496 * pages and doing an atomic copy
1498 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1499 src = buf->ops->map(pipe, buf, 1);
1500 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1501 sd->len);
1502 buf->ops->unmap(pipe, buf, src);
1503 if (!ret) {
1504 ret = sd->len;
1505 goto out;
1510 * No dice, use slow non-atomic map and copy
1512 src = buf->ops->map(pipe, buf, 0);
1514 ret = sd->len;
1515 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1516 ret = -EFAULT;
1518 buf->ops->unmap(pipe, buf, src);
1519 out:
1520 if (ret > 0)
1521 sd->u.userptr += ret;
1522 return ret;
1526 * For lack of a better implementation, implement vmsplice() to userspace
1527 * as a simple copy of the pipes pages to the user iov.
1529 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1530 unsigned long nr_segs, unsigned int flags)
1532 struct pipe_inode_info *pipe;
1533 struct splice_desc sd;
1534 ssize_t size;
1535 int error;
1536 long ret;
1538 pipe = get_pipe_info(file);
1539 if (!pipe)
1540 return -EBADF;
1542 pipe_lock(pipe);
1544 error = ret = 0;
1545 while (nr_segs) {
1546 void __user *base;
1547 size_t len;
1550 * Get user address base and length for this iovec.
1552 error = get_user(base, &iov->iov_base);
1553 if (unlikely(error))
1554 break;
1555 error = get_user(len, &iov->iov_len);
1556 if (unlikely(error))
1557 break;
1560 * Sanity check this iovec. 0 read succeeds.
1562 if (unlikely(!len))
1563 break;
1564 if (unlikely(!base)) {
1565 error = -EFAULT;
1566 break;
1569 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1570 error = -EFAULT;
1571 break;
1574 sd.len = 0;
1575 sd.total_len = len;
1576 sd.flags = flags;
1577 sd.u.userptr = base;
1578 sd.pos = 0;
1580 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581 if (size < 0) {
1582 if (!ret)
1583 ret = size;
1585 break;
1588 ret += size;
1590 if (size < len)
1591 break;
1593 nr_segs--;
1594 iov++;
1597 pipe_unlock(pipe);
1599 if (!ret)
1600 ret = error;
1602 return ret;
1606 * vmsplice splices a user address range into a pipe. It can be thought of
1607 * as splice-from-memory, where the regular splice is splice-from-file (or
1608 * to file). In both cases the output is a pipe, naturally.
1610 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1611 unsigned long nr_segs, unsigned int flags)
1613 struct pipe_inode_info *pipe;
1614 struct page *pages[PIPE_DEF_BUFFERS];
1615 struct partial_page partial[PIPE_DEF_BUFFERS];
1616 struct splice_pipe_desc spd = {
1617 .pages = pages,
1618 .partial = partial,
1619 .flags = flags,
1620 .ops = &user_page_pipe_buf_ops,
1621 .spd_release = spd_release_page,
1623 long ret;
1625 pipe = get_pipe_info(file);
1626 if (!pipe)
1627 return -EBADF;
1629 if (splice_grow_spd(pipe, &spd))
1630 return -ENOMEM;
1632 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1633 spd.partial, flags & SPLICE_F_GIFT,
1634 pipe->buffers);
1635 if (spd.nr_pages <= 0)
1636 ret = spd.nr_pages;
1637 else
1638 ret = splice_to_pipe(pipe, &spd);
1640 splice_shrink_spd(pipe, &spd);
1641 return ret;
1645 * Note that vmsplice only really supports true splicing _from_ user memory
1646 * to a pipe, not the other way around. Splicing from user memory is a simple
1647 * operation that can be supported without any funky alignment restrictions
1648 * or nasty vm tricks. We simply map in the user memory and fill them into
1649 * a pipe. The reverse isn't quite as easy, though. There are two possible
1650 * solutions for that:
1652 * - memcpy() the data internally, at which point we might as well just
1653 * do a regular read() on the buffer anyway.
1654 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1655 * has restriction limitations on both ends of the pipe).
1657 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1660 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1661 unsigned long, nr_segs, unsigned int, flags)
1663 struct file *file;
1664 long error;
1665 int fput;
1667 if (unlikely(nr_segs > UIO_MAXIOV))
1668 return -EINVAL;
1669 else if (unlikely(!nr_segs))
1670 return 0;
1672 error = -EBADF;
1673 file = fget_light(fd, &fput);
1674 if (file) {
1675 if (file->f_mode & FMODE_WRITE)
1676 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1677 else if (file->f_mode & FMODE_READ)
1678 error = vmsplice_to_user(file, iov, nr_segs, flags);
1680 fput_light(file, fput);
1683 return error;
1686 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1687 int, fd_out, loff_t __user *, off_out,
1688 size_t, len, unsigned int, flags)
1690 long error;
1691 struct file *in, *out;
1692 int fput_in, fput_out;
1694 if (unlikely(!len))
1695 return 0;
1697 error = -EBADF;
1698 in = fget_light(fd_in, &fput_in);
1699 if (in) {
1700 if (in->f_mode & FMODE_READ) {
1701 out = fget_light(fd_out, &fput_out);
1702 if (out) {
1703 if (out->f_mode & FMODE_WRITE)
1704 error = do_splice(in, off_in,
1705 out, off_out,
1706 len, flags);
1707 fput_light(out, fput_out);
1711 fput_light(in, fput_in);
1714 return error;
1718 * Make sure there's data to read. Wait for input if we can, otherwise
1719 * return an appropriate error.
1721 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723 int ret;
1726 * Check ->nrbufs without the inode lock first. This function
1727 * is speculative anyways, so missing one is ok.
1729 if (pipe->nrbufs)
1730 return 0;
1732 ret = 0;
1733 pipe_lock(pipe);
1735 while (!pipe->nrbufs) {
1736 if (signal_pending(current)) {
1737 ret = -ERESTARTSYS;
1738 break;
1740 if (!pipe->writers)
1741 break;
1742 if (!pipe->waiting_writers) {
1743 if (flags & SPLICE_F_NONBLOCK) {
1744 ret = -EAGAIN;
1745 break;
1748 pipe_wait(pipe);
1751 pipe_unlock(pipe);
1752 return ret;
1756 * Make sure there's writeable room. Wait for room if we can, otherwise
1757 * return an appropriate error.
1759 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761 int ret;
1764 * Check ->nrbufs without the inode lock first. This function
1765 * is speculative anyways, so missing one is ok.
1767 if (pipe->nrbufs < pipe->buffers)
1768 return 0;
1770 ret = 0;
1771 pipe_lock(pipe);
1773 while (pipe->nrbufs >= pipe->buffers) {
1774 if (!pipe->readers) {
1775 send_sig(SIGPIPE, current, 0);
1776 ret = -EPIPE;
1777 break;
1779 if (flags & SPLICE_F_NONBLOCK) {
1780 ret = -EAGAIN;
1781 break;
1783 if (signal_pending(current)) {
1784 ret = -ERESTARTSYS;
1785 break;
1787 pipe->waiting_writers++;
1788 pipe_wait(pipe);
1789 pipe->waiting_writers--;
1792 pipe_unlock(pipe);
1793 return ret;
1797 * Splice contents of ipipe to opipe.
1799 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1800 struct pipe_inode_info *opipe,
1801 size_t len, unsigned int flags)
1803 struct pipe_buffer *ibuf, *obuf;
1804 int ret = 0, nbuf;
1805 bool input_wakeup = false;
1808 retry:
1809 ret = ipipe_prep(ipipe, flags);
1810 if (ret)
1811 return ret;
1813 ret = opipe_prep(opipe, flags);
1814 if (ret)
1815 return ret;
1818 * Potential ABBA deadlock, work around it by ordering lock
1819 * grabbing by pipe info address. Otherwise two different processes
1820 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 pipe_double_lock(ipipe, opipe);
1824 do {
1825 if (!opipe->readers) {
1826 send_sig(SIGPIPE, current, 0);
1827 if (!ret)
1828 ret = -EPIPE;
1829 break;
1832 if (!ipipe->nrbufs && !ipipe->writers)
1833 break;
1836 * Cannot make any progress, because either the input
1837 * pipe is empty or the output pipe is full.
1839 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1840 /* Already processed some buffers, break */
1841 if (ret)
1842 break;
1844 if (flags & SPLICE_F_NONBLOCK) {
1845 ret = -EAGAIN;
1846 break;
1850 * We raced with another reader/writer and haven't
1851 * managed to process any buffers. A zero return
1852 * value means EOF, so retry instead.
1854 pipe_unlock(ipipe);
1855 pipe_unlock(opipe);
1856 goto retry;
1859 ibuf = ipipe->bufs + ipipe->curbuf;
1860 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1861 obuf = opipe->bufs + nbuf;
1863 if (len >= ibuf->len) {
1865 * Simply move the whole buffer from ipipe to opipe
1867 *obuf = *ibuf;
1868 ibuf->ops = NULL;
1869 opipe->nrbufs++;
1870 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1871 ipipe->nrbufs--;
1872 input_wakeup = true;
1873 } else {
1875 * Get a reference to this pipe buffer,
1876 * so we can copy the contents over.
1878 ibuf->ops->get(ipipe, ibuf);
1879 *obuf = *ibuf;
1882 * Don't inherit the gift flag, we need to
1883 * prevent multiple steals of this page.
1885 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887 obuf->len = len;
1888 opipe->nrbufs++;
1889 ibuf->offset += obuf->len;
1890 ibuf->len -= obuf->len;
1892 ret += obuf->len;
1893 len -= obuf->len;
1894 } while (len);
1896 pipe_unlock(ipipe);
1897 pipe_unlock(opipe);
1900 * If we put data in the output pipe, wakeup any potential readers.
1902 if (ret > 0)
1903 wakeup_pipe_readers(opipe);
1905 if (input_wakeup)
1906 wakeup_pipe_writers(ipipe);
1908 return ret;
1912 * Link contents of ipipe to opipe.
1914 static int link_pipe(struct pipe_inode_info *ipipe,
1915 struct pipe_inode_info *opipe,
1916 size_t len, unsigned int flags)
1918 struct pipe_buffer *ibuf, *obuf;
1919 int ret = 0, i = 0, nbuf;
1922 * Potential ABBA deadlock, work around it by ordering lock
1923 * grabbing by pipe info address. Otherwise two different processes
1924 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 pipe_double_lock(ipipe, opipe);
1928 do {
1929 if (!opipe->readers) {
1930 send_sig(SIGPIPE, current, 0);
1931 if (!ret)
1932 ret = -EPIPE;
1933 break;
1937 * If we have iterated all input buffers or ran out of
1938 * output room, break.
1940 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1941 break;
1943 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1944 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1947 * Get a reference to this pipe buffer,
1948 * so we can copy the contents over.
1950 ibuf->ops->get(ipipe, ibuf);
1952 obuf = opipe->bufs + nbuf;
1953 *obuf = *ibuf;
1956 * Don't inherit the gift flag, we need to
1957 * prevent multiple steals of this page.
1959 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961 if (obuf->len > len)
1962 obuf->len = len;
1964 opipe->nrbufs++;
1965 ret += obuf->len;
1966 len -= obuf->len;
1967 i++;
1968 } while (len);
1971 * return EAGAIN if we have the potential of some data in the
1972 * future, otherwise just return 0
1974 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1975 ret = -EAGAIN;
1977 pipe_unlock(ipipe);
1978 pipe_unlock(opipe);
1981 * If we put data in the output pipe, wakeup any potential readers.
1983 if (ret > 0)
1984 wakeup_pipe_readers(opipe);
1986 return ret;
1990 * This is a tee(1) implementation that works on pipes. It doesn't copy
1991 * any data, it simply references the 'in' pages on the 'out' pipe.
1992 * The 'flags' used are the SPLICE_F_* variants, currently the only
1993 * applicable one is SPLICE_F_NONBLOCK.
1995 static long do_tee(struct file *in, struct file *out, size_t len,
1996 unsigned int flags)
1998 struct pipe_inode_info *ipipe = get_pipe_info(in);
1999 struct pipe_inode_info *opipe = get_pipe_info(out);
2000 int ret = -EINVAL;
2003 * Duplicate the contents of ipipe to opipe without actually
2004 * copying the data.
2006 if (ipipe && opipe && ipipe != opipe) {
2008 * Keep going, unless we encounter an error. The ipipe/opipe
2009 * ordering doesn't really matter.
2011 ret = ipipe_prep(ipipe, flags);
2012 if (!ret) {
2013 ret = opipe_prep(opipe, flags);
2014 if (!ret)
2015 ret = link_pipe(ipipe, opipe, len, flags);
2019 return ret;
2022 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024 struct file *in;
2025 int error, fput_in;
2027 if (unlikely(!len))
2028 return 0;
2030 error = -EBADF;
2031 in = fget_light(fdin, &fput_in);
2032 if (in) {
2033 if (in->f_mode & FMODE_READ) {
2034 int fput_out;
2035 struct file *out = fget_light(fdout, &fput_out);
2037 if (out) {
2038 if (out->f_mode & FMODE_WRITE)
2039 error = do_tee(in, out, len, flags);
2040 fput_light(out, fput_out);
2043 fput_light(in, fput_in);
2046 return error;