2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 #include <linux/socket.h>
37 * Attempt to steal a page from a pipe buffer. This should perhaps go into
38 * a vm helper function, it's already simplified quite a bit by the
39 * addition of remove_mapping(). If success is returned, the caller may
40 * attempt to reuse this page for another destination.
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
43 struct pipe_buffer
*buf
)
45 struct page
*page
= buf
->page
;
46 struct address_space
*mapping
;
50 mapping
= page_mapping(page
);
52 WARN_ON(!PageUptodate(page
));
55 * At least for ext2 with nobh option, we need to wait on
56 * writeback completing on this page, since we'll remove it
57 * from the pagecache. Otherwise truncate wont wait on the
58 * page, allowing the disk blocks to be reused by someone else
59 * before we actually wrote our data to them. fs corruption
62 wait_on_page_writeback(page
);
64 if (page_has_private(page
) &&
65 !try_to_release_page(page
, GFP_KERNEL
))
69 * If we succeeded in removing the mapping, set LRU flag
72 if (remove_mapping(mapping
, page
)) {
73 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
79 * Raced with truncate or failed to remove page from current
80 * address space, unlock and return failure.
87 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
88 struct pipe_buffer
*buf
)
90 page_cache_release(buf
->page
);
91 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
95 * Check whether the contents of buf is OK to access. Since the content
96 * is a page cache page, IO may be in flight.
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
99 struct pipe_buffer
*buf
)
101 struct page
*page
= buf
->page
;
104 if (!PageUptodate(page
)) {
108 * Page got truncated/unhashed. This will cause a 0-byte
109 * splice, if this is the first page.
111 if (!page
->mapping
) {
117 * Uh oh, read-error from disk.
119 if (!PageUptodate(page
)) {
125 * Page is ok afterall, we are done.
136 static const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
138 .map
= generic_pipe_buf_map
,
139 .unmap
= generic_pipe_buf_unmap
,
140 .confirm
= page_cache_pipe_buf_confirm
,
141 .release
= page_cache_pipe_buf_release
,
142 .steal
= page_cache_pipe_buf_steal
,
143 .get
= generic_pipe_buf_get
,
146 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
147 struct pipe_buffer
*buf
)
149 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
152 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
153 return generic_pipe_buf_steal(pipe
, buf
);
156 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
158 .map
= generic_pipe_buf_map
,
159 .unmap
= generic_pipe_buf_unmap
,
160 .confirm
= generic_pipe_buf_confirm
,
161 .release
= page_cache_pipe_buf_release
,
162 .steal
= user_page_pipe_buf_steal
,
163 .get
= generic_pipe_buf_get
,
166 static void wakeup_pipe_readers(struct pipe_inode_info
*pipe
)
169 if (waitqueue_active(&pipe
->wait
))
170 wake_up_interruptible(&pipe
->wait
);
171 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
175 * splice_to_pipe - fill passed data into a pipe
176 * @pipe: pipe to fill
180 * @spd contains a map of pages and len/offset tuples, along with
181 * the struct pipe_buf_operations associated with these pages. This
182 * function will link that data to the pipe.
185 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
186 struct splice_pipe_desc
*spd
)
188 unsigned int spd_pages
= spd
->nr_pages
;
189 int ret
, do_wakeup
, page_nr
;
198 if (!pipe
->readers
) {
199 send_sig(SIGPIPE
, current
, 0);
205 if (pipe
->nrbufs
< pipe
->buffers
) {
206 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (pipe
->buffers
- 1);
207 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
209 buf
->page
= spd
->pages
[page_nr
];
210 buf
->offset
= spd
->partial
[page_nr
].offset
;
211 buf
->len
= spd
->partial
[page_nr
].len
;
212 buf
->private = spd
->partial
[page_nr
].private;
214 if (spd
->flags
& SPLICE_F_GIFT
)
215 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
224 if (!--spd
->nr_pages
)
226 if (pipe
->nrbufs
< pipe
->buffers
)
232 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
238 if (signal_pending(current
)) {
246 if (waitqueue_active(&pipe
->wait
))
247 wake_up_interruptible_sync(&pipe
->wait
);
248 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
252 pipe
->waiting_writers
++;
254 pipe
->waiting_writers
--;
260 wakeup_pipe_readers(pipe
);
262 while (page_nr
< spd_pages
)
263 spd
->spd_release(spd
, page_nr
++);
268 static void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
270 page_cache_release(spd
->pages
[i
]);
274 * Check if we need to grow the arrays holding pages and partial page
277 int splice_grow_spd(struct pipe_inode_info
*pipe
, struct splice_pipe_desc
*spd
)
279 if (pipe
->buffers
<= PIPE_DEF_BUFFERS
)
282 spd
->pages
= kmalloc(pipe
->buffers
* sizeof(struct page
*), GFP_KERNEL
);
283 spd
->partial
= kmalloc(pipe
->buffers
* sizeof(struct partial_page
), GFP_KERNEL
);
285 if (spd
->pages
&& spd
->partial
)
293 void splice_shrink_spd(struct pipe_inode_info
*pipe
,
294 struct splice_pipe_desc
*spd
)
296 if (pipe
->buffers
<= PIPE_DEF_BUFFERS
)
304 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
305 struct pipe_inode_info
*pipe
, size_t len
,
308 struct address_space
*mapping
= in
->f_mapping
;
309 unsigned int loff
, nr_pages
, req_pages
;
310 struct page
*pages
[PIPE_DEF_BUFFERS
];
311 struct partial_page partial
[PIPE_DEF_BUFFERS
];
313 pgoff_t index
, end_index
;
316 struct splice_pipe_desc spd
= {
320 .ops
= &page_cache_pipe_buf_ops
,
321 .spd_release
= spd_release_page
,
324 if (splice_grow_spd(pipe
, &spd
))
327 index
= *ppos
>> PAGE_CACHE_SHIFT
;
328 loff
= *ppos
& ~PAGE_CACHE_MASK
;
329 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
330 nr_pages
= min(req_pages
, pipe
->buffers
);
333 * Lookup the (hopefully) full range of pages we need.
335 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, spd
.pages
);
336 index
+= spd
.nr_pages
;
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
342 if (spd
.nr_pages
< nr_pages
)
343 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
344 index
, req_pages
- spd
.nr_pages
);
347 while (spd
.nr_pages
< nr_pages
) {
349 * Page could be there, find_get_pages_contig() breaks on
352 page
= find_get_page(mapping
, index
);
355 * page didn't exist, allocate one.
357 page
= page_cache_alloc_cold(mapping
);
361 error
= add_to_page_cache_lru(page
, mapping
, index
,
363 if (unlikely(error
)) {
364 page_cache_release(page
);
365 if (error
== -EEXIST
)
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
376 spd
.pages
[spd
.nr_pages
++] = page
;
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
384 index
= *ppos
>> PAGE_CACHE_SHIFT
;
385 nr_pages
= spd
.nr_pages
;
387 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
388 unsigned int this_len
;
394 * this_len is the max we'll use from this page
396 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
397 page
= spd
.pages
[page_nr
];
399 if (PageReadahead(page
))
400 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
401 page
, index
, req_pages
- page_nr
);
404 * If the page isn't uptodate, we may need to start io on it
406 if (!PageUptodate(page
)) {
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
415 if (!page
->mapping
) {
417 page
= find_or_create_page(mapping
, index
,
418 mapping_gfp_mask(mapping
));
424 page_cache_release(spd
.pages
[page_nr
]);
425 spd
.pages
[page_nr
] = page
;
428 * page was already under io and is now done, great
430 if (PageUptodate(page
)) {
436 * need to read in the page
438 error
= mapping
->a_ops
->readpage(in
, page
);
439 if (unlikely(error
)) {
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
446 if (error
== AOP_TRUNCATED_PAGE
)
454 * i_size must be checked after PageUptodate.
456 isize
= i_size_read(mapping
->host
);
457 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
458 if (unlikely(!isize
|| index
> end_index
))
462 * if this is the last page, see if we need to shrink
463 * the length and stop
465 if (end_index
== index
) {
469 * max good bytes in this page
471 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
476 * force quit after adding this page
478 this_len
= min(this_len
, plen
- loff
);
482 spd
.partial
[page_nr
].offset
= loff
;
483 spd
.partial
[page_nr
].len
= this_len
;
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
494 while (page_nr
< nr_pages
)
495 page_cache_release(spd
.pages
[page_nr
++]);
496 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
499 error
= splice_to_pipe(pipe
, &spd
);
501 splice_shrink_spd(pipe
, &spd
);
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
519 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
520 struct pipe_inode_info
*pipe
, size_t len
,
526 isize
= i_size_read(in
->f_mapping
->host
);
527 if (unlikely(*ppos
>= isize
))
530 left
= isize
- *ppos
;
531 if (unlikely(left
< len
))
534 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
542 EXPORT_SYMBOL(generic_file_splice_read
);
544 static const struct pipe_buf_operations default_pipe_buf_ops
= {
546 .map
= generic_pipe_buf_map
,
547 .unmap
= generic_pipe_buf_unmap
,
548 .confirm
= generic_pipe_buf_confirm
,
549 .release
= generic_pipe_buf_release
,
550 .steal
= generic_pipe_buf_steal
,
551 .get
= generic_pipe_buf_get
,
554 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
555 unsigned long vlen
, loff_t offset
)
563 /* The cast to a user pointer is valid due to the set_fs() */
564 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
570 static ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
578 /* The cast to a user pointer is valid due to the set_fs() */
579 res
= vfs_write(file
, (const char __user
*)buf
, count
, &pos
);
585 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
586 struct pipe_inode_info
*pipe
, size_t len
,
589 unsigned int nr_pages
;
590 unsigned int nr_freed
;
592 struct page
*pages
[PIPE_DEF_BUFFERS
];
593 struct partial_page partial
[PIPE_DEF_BUFFERS
];
594 struct iovec
*vec
, __vec
[PIPE_DEF_BUFFERS
];
599 struct splice_pipe_desc spd
= {
603 .ops
= &default_pipe_buf_ops
,
604 .spd_release
= spd_release_page
,
607 if (splice_grow_spd(pipe
, &spd
))
612 if (pipe
->buffers
> PIPE_DEF_BUFFERS
) {
613 vec
= kmalloc(pipe
->buffers
* sizeof(struct iovec
), GFP_KERNEL
);
618 offset
= *ppos
& ~PAGE_CACHE_MASK
;
619 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
621 for (i
= 0; i
< nr_pages
&& i
< pipe
->buffers
&& len
; i
++) {
624 page
= alloc_page(GFP_USER
);
629 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
630 vec
[i
].iov_base
= (void __user
*) page_address(page
);
631 vec
[i
].iov_len
= this_len
;
638 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
649 for (i
= 0; i
< spd
.nr_pages
; i
++) {
650 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
651 spd
.partial
[i
].offset
= 0;
652 spd
.partial
[i
].len
= this_len
;
654 __free_page(spd
.pages
[i
]);
660 spd
.nr_pages
-= nr_freed
;
662 res
= splice_to_pipe(pipe
, &spd
);
669 splice_shrink_spd(pipe
, &spd
);
673 for (i
= 0; i
< spd
.nr_pages
; i
++)
674 __free_page(spd
.pages
[i
]);
679 EXPORT_SYMBOL(default_file_splice_read
);
682 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
683 * using sendpage(). Return the number of bytes sent.
685 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
686 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
688 struct file
*file
= sd
->u
.file
;
689 loff_t pos
= sd
->pos
;
692 if (!likely(file
->f_op
&& file
->f_op
->sendpage
))
695 more
= (sd
->flags
& SPLICE_F_MORE
) ? MSG_MORE
: 0;
696 if (sd
->len
< sd
->total_len
)
697 more
|= MSG_SENDPAGE_NOTLAST
;
698 return file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
699 sd
->len
, &pos
, more
);
703 * This is a little more tricky than the file -> pipe splicing. There are
704 * basically three cases:
706 * - Destination page already exists in the address space and there
707 * are users of it. For that case we have no other option that
708 * copying the data. Tough luck.
709 * - Destination page already exists in the address space, but there
710 * are no users of it. Make sure it's uptodate, then drop it. Fall
711 * through to last case.
712 * - Destination page does not exist, we can add the pipe page to
713 * the page cache and avoid the copy.
715 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
716 * sd->flags), we attempt to migrate pages from the pipe to the output
717 * file address space page cache. This is possible if no one else has
718 * the pipe page referenced outside of the pipe and page cache. If
719 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
720 * a new page in the output file page cache and fill/dirty that.
722 int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
723 struct splice_desc
*sd
)
725 struct file
*file
= sd
->u
.file
;
726 struct address_space
*mapping
= file
->f_mapping
;
727 unsigned int offset
, this_len
;
732 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
735 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
736 this_len
= PAGE_CACHE_SIZE
- offset
;
738 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
739 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
743 if (buf
->page
!= page
) {
745 * Careful, ->map() uses KM_USER0!
747 char *src
= buf
->ops
->map(pipe
, buf
, 1);
748 char *dst
= kmap_atomic(page
, KM_USER1
);
750 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
751 flush_dcache_page(page
);
752 kunmap_atomic(dst
, KM_USER1
);
753 buf
->ops
->unmap(pipe
, buf
, src
);
755 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
760 EXPORT_SYMBOL(pipe_to_file
);
762 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
765 if (waitqueue_active(&pipe
->wait
))
766 wake_up_interruptible(&pipe
->wait
);
767 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
771 * splice_from_pipe_feed - feed available data from a pipe to a file
772 * @pipe: pipe to splice from
773 * @sd: information to @actor
774 * @actor: handler that splices the data
777 * This function loops over the pipe and calls @actor to do the
778 * actual moving of a single struct pipe_buffer to the desired
779 * destination. It returns when there's no more buffers left in
780 * the pipe or if the requested number of bytes (@sd->total_len)
781 * have been copied. It returns a positive number (one) if the
782 * pipe needs to be filled with more data, zero if the required
783 * number of bytes have been copied and -errno on error.
785 * This, together with splice_from_pipe_{begin,end,next}, may be
786 * used to implement the functionality of __splice_from_pipe() when
787 * locking is required around copying the pipe buffers to the
790 int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
795 while (pipe
->nrbufs
) {
796 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
797 const struct pipe_buf_operations
*ops
= buf
->ops
;
800 if (sd
->len
> sd
->total_len
)
801 sd
->len
= sd
->total_len
;
803 ret
= buf
->ops
->confirm(pipe
, buf
);
810 ret
= actor(pipe
, buf
, sd
);
817 sd
->num_spliced
+= ret
;
820 sd
->total_len
-= ret
;
824 ops
->release(pipe
, buf
);
825 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
828 sd
->need_wakeup
= true;
837 EXPORT_SYMBOL(splice_from_pipe_feed
);
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
849 int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
851 while (!pipe
->nrbufs
) {
855 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
858 if (sd
->flags
& SPLICE_F_NONBLOCK
)
861 if (signal_pending(current
))
864 if (sd
->need_wakeup
) {
865 wakeup_pipe_writers(pipe
);
866 sd
->need_wakeup
= false;
874 EXPORT_SYMBOL(splice_from_pipe_next
);
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
885 void splice_from_pipe_begin(struct splice_desc
*sd
)
888 sd
->need_wakeup
= false;
890 EXPORT_SYMBOL(splice_from_pipe_begin
);
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
902 void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
905 wakeup_pipe_writers(pipe
);
907 EXPORT_SYMBOL(splice_from_pipe_end
);
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
922 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
927 splice_from_pipe_begin(sd
);
929 ret
= splice_from_pipe_next(pipe
, sd
);
931 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
933 splice_from_pipe_end(pipe
, sd
);
935 return sd
->num_spliced
? sd
->num_spliced
: ret
;
937 EXPORT_SYMBOL(__splice_from_pipe
);
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
953 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
954 loff_t
*ppos
, size_t len
, unsigned int flags
,
958 struct splice_desc sd
= {
966 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
973 * generic_file_splice_write - splice data from a pipe to a file
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
986 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
987 loff_t
*ppos
, size_t len
, unsigned int flags
)
989 struct address_space
*mapping
= out
->f_mapping
;
990 struct inode
*inode
= mapping
->host
;
991 struct splice_desc sd
= {
1001 splice_from_pipe_begin(&sd
);
1003 ret
= splice_from_pipe_next(pipe
, &sd
);
1007 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1008 ret
= file_remove_suid(out
);
1010 file_update_time(out
);
1011 ret
= splice_from_pipe_feed(pipe
, &sd
, pipe_to_file
);
1013 mutex_unlock(&inode
->i_mutex
);
1015 splice_from_pipe_end(pipe
, &sd
);
1020 ret
= sd
.num_spliced
;
1023 unsigned long nr_pages
;
1026 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1028 err
= generic_write_sync(out
, *ppos
, ret
);
1033 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
1039 EXPORT_SYMBOL(generic_file_splice_write
);
1041 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1042 struct splice_desc
*sd
)
1047 data
= buf
->ops
->map(pipe
, buf
, 0);
1048 ret
= kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, sd
->pos
);
1049 buf
->ops
->unmap(pipe
, buf
, data
);
1054 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1055 struct file
*out
, loff_t
*ppos
,
1056 size_t len
, unsigned int flags
)
1060 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1068 * generic_splice_sendpage - splice data from a pipe to a socket
1069 * @pipe: pipe to splice from
1070 * @out: socket to write to
1071 * @ppos: position in @out
1072 * @len: number of bytes to splice
1073 * @flags: splice modifier flags
1076 * Will send @len bytes from the pipe to a network socket. No data copying
1080 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1081 loff_t
*ppos
, size_t len
, unsigned int flags
)
1083 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1086 EXPORT_SYMBOL(generic_splice_sendpage
);
1089 * Attempt to initiate a splice from pipe to file.
1091 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1092 loff_t
*ppos
, size_t len
, unsigned int flags
)
1094 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1095 loff_t
*, size_t, unsigned int);
1098 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1101 if (unlikely(out
->f_flags
& O_APPEND
))
1104 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
1105 if (unlikely(ret
< 0))
1108 if (out
->f_op
&& out
->f_op
->splice_write
)
1109 splice_write
= out
->f_op
->splice_write
;
1111 splice_write
= default_file_splice_write
;
1113 return splice_write(pipe
, out
, ppos
, len
, flags
);
1117 * Attempt to initiate a splice from a file to a pipe.
1119 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1120 struct pipe_inode_info
*pipe
, size_t len
,
1123 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1124 struct pipe_inode_info
*, size_t, unsigned int);
1127 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1130 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1131 if (unlikely(ret
< 0))
1134 if (in
->f_op
&& in
->f_op
->splice_read
)
1135 splice_read
= in
->f_op
->splice_read
;
1137 splice_read
= default_file_splice_read
;
1139 return splice_read(in
, ppos
, pipe
, len
, flags
);
1143 * splice_direct_to_actor - splices data directly between two non-pipes
1144 * @in: file to splice from
1145 * @sd: actor information on where to splice to
1146 * @actor: handles the data splicing
1149 * This is a special case helper to splice directly between two
1150 * points, without requiring an explicit pipe. Internally an allocated
1151 * pipe is cached in the process, and reused during the lifetime of
1155 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1156 splice_direct_actor
*actor
)
1158 struct pipe_inode_info
*pipe
;
1165 * We require the input being a regular file, as we don't want to
1166 * randomly drop data for eg socket -> socket splicing. Use the
1167 * piped splicing for that!
1169 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
1170 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1174 * neither in nor out is a pipe, setup an internal pipe attached to
1175 * 'out' and transfer the wanted data from 'in' to 'out' through that
1177 pipe
= current
->splice_pipe
;
1178 if (unlikely(!pipe
)) {
1179 pipe
= alloc_pipe_info(NULL
);
1184 * We don't have an immediate reader, but we'll read the stuff
1185 * out of the pipe right after the splice_to_pipe(). So set
1186 * PIPE_READERS appropriately.
1190 current
->splice_pipe
= pipe
;
1198 len
= sd
->total_len
;
1202 * Don't block on output, we have to drain the direct pipe.
1204 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1208 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1210 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1211 if (unlikely(ret
<= 0))
1215 sd
->total_len
= read_len
;
1218 * NOTE: nonblocking mode only applies to the input. We
1219 * must not do the output in nonblocking mode as then we
1220 * could get stuck data in the internal pipe:
1222 ret
= actor(pipe
, sd
);
1223 if (unlikely(ret
<= 0)) {
1232 if (ret
< read_len
) {
1233 sd
->pos
= prev_pos
+ ret
;
1239 pipe
->nrbufs
= pipe
->curbuf
= 0;
1245 * If we did an incomplete transfer we must release
1246 * the pipe buffers in question:
1248 for (i
= 0; i
< pipe
->buffers
; i
++) {
1249 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1252 buf
->ops
->release(pipe
, buf
);
1262 EXPORT_SYMBOL(splice_direct_to_actor
);
1264 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1265 struct splice_desc
*sd
)
1267 struct file
*file
= sd
->u
.file
;
1269 return do_splice_from(pipe
, file
, &file
->f_pos
, sd
->total_len
,
1274 * do_splice_direct - splices data directly between two files
1275 * @in: file to splice from
1276 * @ppos: input file offset
1277 * @out: file to splice to
1278 * @len: number of bytes to splice
1279 * @flags: splice modifier flags
1282 * For use by do_sendfile(). splice can easily emulate sendfile, but
1283 * doing it in the application would incur an extra system call
1284 * (splice in + splice out, as compared to just sendfile()). So this helper
1285 * can splice directly through a process-private pipe.
1288 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1289 size_t len
, unsigned int flags
)
1291 struct splice_desc sd
= {
1300 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1307 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1308 struct pipe_inode_info
*opipe
,
1309 size_t len
, unsigned int flags
);
1312 * Determine where to splice to/from.
1314 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1315 struct file
*out
, loff_t __user
*off_out
,
1316 size_t len
, unsigned int flags
)
1318 struct pipe_inode_info
*ipipe
;
1319 struct pipe_inode_info
*opipe
;
1320 loff_t offset
, *off
;
1323 ipipe
= get_pipe_info(in
);
1324 opipe
= get_pipe_info(out
);
1326 if (ipipe
&& opipe
) {
1327 if (off_in
|| off_out
)
1330 if (!(in
->f_mode
& FMODE_READ
))
1333 if (!(out
->f_mode
& FMODE_WRITE
))
1336 /* Splicing to self would be fun, but... */
1340 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1347 if (!(out
->f_mode
& FMODE_PWRITE
))
1349 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1355 ret
= do_splice_from(ipipe
, out
, off
, len
, flags
);
1357 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1367 if (!(in
->f_mode
& FMODE_PREAD
))
1369 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1375 ret
= do_splice_to(in
, off
, opipe
, len
, flags
);
1377 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1387 * Map an iov into an array of pages and offset/length tupples. With the
1388 * partial_page structure, we can map several non-contiguous ranges into
1389 * our ones pages[] map instead of splitting that operation into pieces.
1390 * Could easily be exported as a generic helper for other users, in which
1391 * case one would probably want to add a 'max_nr_pages' parameter as well.
1393 static int get_iovec_page_array(const struct iovec __user
*iov
,
1394 unsigned int nr_vecs
, struct page
**pages
,
1395 struct partial_page
*partial
, int aligned
,
1396 unsigned int pipe_buffers
)
1398 int buffers
= 0, error
= 0;
1401 unsigned long off
, npages
;
1408 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1411 base
= entry
.iov_base
;
1412 len
= entry
.iov_len
;
1415 * Sanity check this iovec. 0 read succeeds.
1421 if (!access_ok(VERIFY_READ
, base
, len
))
1425 * Get this base offset and number of pages, then map
1426 * in the user pages.
1428 off
= (unsigned long) base
& ~PAGE_MASK
;
1431 * If asked for alignment, the offset must be zero and the
1432 * length a multiple of the PAGE_SIZE.
1435 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1438 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1439 if (npages
> pipe_buffers
- buffers
)
1440 npages
= pipe_buffers
- buffers
;
1442 error
= get_user_pages_fast((unsigned long)base
, npages
,
1443 0, &pages
[buffers
]);
1445 if (unlikely(error
<= 0))
1449 * Fill this contiguous range into the partial page map.
1451 for (i
= 0; i
< error
; i
++) {
1452 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1454 partial
[buffers
].offset
= off
;
1455 partial
[buffers
].len
= plen
;
1463 * We didn't complete this iov, stop here since it probably
1464 * means we have to move some of this into a pipe to
1465 * be able to continue.
1471 * Don't continue if we mapped fewer pages than we asked for,
1472 * or if we mapped the max number of pages that we have
1475 if (error
< npages
|| buffers
== pipe_buffers
)
1488 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1489 struct splice_desc
*sd
)
1495 * See if we can use the atomic maps, by prefaulting in the
1496 * pages and doing an atomic copy
1498 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1499 src
= buf
->ops
->map(pipe
, buf
, 1);
1500 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1502 buf
->ops
->unmap(pipe
, buf
, src
);
1510 * No dice, use slow non-atomic map and copy
1512 src
= buf
->ops
->map(pipe
, buf
, 0);
1515 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1518 buf
->ops
->unmap(pipe
, buf
, src
);
1521 sd
->u
.userptr
+= ret
;
1526 * For lack of a better implementation, implement vmsplice() to userspace
1527 * as a simple copy of the pipes pages to the user iov.
1529 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1530 unsigned long nr_segs
, unsigned int flags
)
1532 struct pipe_inode_info
*pipe
;
1533 struct splice_desc sd
;
1538 pipe
= get_pipe_info(file
);
1550 * Get user address base and length for this iovec.
1552 error
= get_user(base
, &iov
->iov_base
);
1553 if (unlikely(error
))
1555 error
= get_user(len
, &iov
->iov_len
);
1556 if (unlikely(error
))
1560 * Sanity check this iovec. 0 read succeeds.
1564 if (unlikely(!base
)) {
1569 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1577 sd
.u
.userptr
= base
;
1580 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1606 * vmsplice splices a user address range into a pipe. It can be thought of
1607 * as splice-from-memory, where the regular splice is splice-from-file (or
1608 * to file). In both cases the output is a pipe, naturally.
1610 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1611 unsigned long nr_segs
, unsigned int flags
)
1613 struct pipe_inode_info
*pipe
;
1614 struct page
*pages
[PIPE_DEF_BUFFERS
];
1615 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1616 struct splice_pipe_desc spd
= {
1620 .ops
= &user_page_pipe_buf_ops
,
1621 .spd_release
= spd_release_page
,
1625 pipe
= get_pipe_info(file
);
1629 if (splice_grow_spd(pipe
, &spd
))
1632 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, spd
.pages
,
1633 spd
.partial
, flags
& SPLICE_F_GIFT
,
1635 if (spd
.nr_pages
<= 0)
1638 ret
= splice_to_pipe(pipe
, &spd
);
1640 splice_shrink_spd(pipe
, &spd
);
1645 * Note that vmsplice only really supports true splicing _from_ user memory
1646 * to a pipe, not the other way around. Splicing from user memory is a simple
1647 * operation that can be supported without any funky alignment restrictions
1648 * or nasty vm tricks. We simply map in the user memory and fill them into
1649 * a pipe. The reverse isn't quite as easy, though. There are two possible
1650 * solutions for that:
1652 * - memcpy() the data internally, at which point we might as well just
1653 * do a regular read() on the buffer anyway.
1654 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1655 * has restriction limitations on both ends of the pipe).
1657 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1660 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1661 unsigned long, nr_segs
, unsigned int, flags
)
1667 if (unlikely(nr_segs
> UIO_MAXIOV
))
1669 else if (unlikely(!nr_segs
))
1673 file
= fget_light(fd
, &fput
);
1675 if (file
->f_mode
& FMODE_WRITE
)
1676 error
= vmsplice_to_pipe(file
, iov
, nr_segs
, flags
);
1677 else if (file
->f_mode
& FMODE_READ
)
1678 error
= vmsplice_to_user(file
, iov
, nr_segs
, flags
);
1680 fput_light(file
, fput
);
1686 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1687 int, fd_out
, loff_t __user
*, off_out
,
1688 size_t, len
, unsigned int, flags
)
1691 struct file
*in
, *out
;
1692 int fput_in
, fput_out
;
1698 in
= fget_light(fd_in
, &fput_in
);
1700 if (in
->f_mode
& FMODE_READ
) {
1701 out
= fget_light(fd_out
, &fput_out
);
1703 if (out
->f_mode
& FMODE_WRITE
)
1704 error
= do_splice(in
, off_in
,
1707 fput_light(out
, fput_out
);
1711 fput_light(in
, fput_in
);
1718 * Make sure there's data to read. Wait for input if we can, otherwise
1719 * return an appropriate error.
1721 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1726 * Check ->nrbufs without the inode lock first. This function
1727 * is speculative anyways, so missing one is ok.
1735 while (!pipe
->nrbufs
) {
1736 if (signal_pending(current
)) {
1742 if (!pipe
->waiting_writers
) {
1743 if (flags
& SPLICE_F_NONBLOCK
) {
1756 * Make sure there's writeable room. Wait for room if we can, otherwise
1757 * return an appropriate error.
1759 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1764 * Check ->nrbufs without the inode lock first. This function
1765 * is speculative anyways, so missing one is ok.
1767 if (pipe
->nrbufs
< pipe
->buffers
)
1773 while (pipe
->nrbufs
>= pipe
->buffers
) {
1774 if (!pipe
->readers
) {
1775 send_sig(SIGPIPE
, current
, 0);
1779 if (flags
& SPLICE_F_NONBLOCK
) {
1783 if (signal_pending(current
)) {
1787 pipe
->waiting_writers
++;
1789 pipe
->waiting_writers
--;
1797 * Splice contents of ipipe to opipe.
1799 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1800 struct pipe_inode_info
*opipe
,
1801 size_t len
, unsigned int flags
)
1803 struct pipe_buffer
*ibuf
, *obuf
;
1805 bool input_wakeup
= false;
1809 ret
= ipipe_prep(ipipe
, flags
);
1813 ret
= opipe_prep(opipe
, flags
);
1818 * Potential ABBA deadlock, work around it by ordering lock
1819 * grabbing by pipe info address. Otherwise two different processes
1820 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 pipe_double_lock(ipipe
, opipe
);
1825 if (!opipe
->readers
) {
1826 send_sig(SIGPIPE
, current
, 0);
1832 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1836 * Cannot make any progress, because either the input
1837 * pipe is empty or the output pipe is full.
1839 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
) {
1840 /* Already processed some buffers, break */
1844 if (flags
& SPLICE_F_NONBLOCK
) {
1850 * We raced with another reader/writer and haven't
1851 * managed to process any buffers. A zero return
1852 * value means EOF, so retry instead.
1859 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1860 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1861 obuf
= opipe
->bufs
+ nbuf
;
1863 if (len
>= ibuf
->len
) {
1865 * Simply move the whole buffer from ipipe to opipe
1870 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) & (ipipe
->buffers
- 1);
1872 input_wakeup
= true;
1875 * Get a reference to this pipe buffer,
1876 * so we can copy the contents over.
1878 ibuf
->ops
->get(ipipe
, ibuf
);
1882 * Don't inherit the gift flag, we need to
1883 * prevent multiple steals of this page.
1885 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1889 ibuf
->offset
+= obuf
->len
;
1890 ibuf
->len
-= obuf
->len
;
1900 * If we put data in the output pipe, wakeup any potential readers.
1903 wakeup_pipe_readers(opipe
);
1906 wakeup_pipe_writers(ipipe
);
1912 * Link contents of ipipe to opipe.
1914 static int link_pipe(struct pipe_inode_info
*ipipe
,
1915 struct pipe_inode_info
*opipe
,
1916 size_t len
, unsigned int flags
)
1918 struct pipe_buffer
*ibuf
, *obuf
;
1919 int ret
= 0, i
= 0, nbuf
;
1922 * Potential ABBA deadlock, work around it by ordering lock
1923 * grabbing by pipe info address. Otherwise two different processes
1924 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 pipe_double_lock(ipipe
, opipe
);
1929 if (!opipe
->readers
) {
1930 send_sig(SIGPIPE
, current
, 0);
1937 * If we have iterated all input buffers or ran out of
1938 * output room, break.
1940 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
)
1943 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (ipipe
->buffers
-1));
1944 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1947 * Get a reference to this pipe buffer,
1948 * so we can copy the contents over.
1950 ibuf
->ops
->get(ipipe
, ibuf
);
1952 obuf
= opipe
->bufs
+ nbuf
;
1956 * Don't inherit the gift flag, we need to
1957 * prevent multiple steals of this page.
1959 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1961 if (obuf
->len
> len
)
1971 * return EAGAIN if we have the potential of some data in the
1972 * future, otherwise just return 0
1974 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
1981 * If we put data in the output pipe, wakeup any potential readers.
1984 wakeup_pipe_readers(opipe
);
1990 * This is a tee(1) implementation that works on pipes. It doesn't copy
1991 * any data, it simply references the 'in' pages on the 'out' pipe.
1992 * The 'flags' used are the SPLICE_F_* variants, currently the only
1993 * applicable one is SPLICE_F_NONBLOCK.
1995 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1998 struct pipe_inode_info
*ipipe
= get_pipe_info(in
);
1999 struct pipe_inode_info
*opipe
= get_pipe_info(out
);
2003 * Duplicate the contents of ipipe to opipe without actually
2006 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
2008 * Keep going, unless we encounter an error. The ipipe/opipe
2009 * ordering doesn't really matter.
2011 ret
= ipipe_prep(ipipe
, flags
);
2013 ret
= opipe_prep(opipe
, flags
);
2015 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
2022 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2031 in
= fget_light(fdin
, &fput_in
);
2033 if (in
->f_mode
& FMODE_READ
) {
2035 struct file
*out
= fget_light(fdout
, &fput_out
);
2038 if (out
->f_mode
& FMODE_WRITE
)
2039 error
= do_tee(in
, out
, len
, flags
);
2040 fput_light(out
, fput_out
);
2043 fput_light(in
, fput_in
);