2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
42 static const struct vm_operations_struct xfs_file_vm_ops
;
45 * Locking primitives for read and write IO paths to ensure we consistently use
46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 if (type
& XFS_IOLOCK_EXCL
)
54 mutex_lock(&VFS_I(ip
)->i_mutex
);
63 xfs_iunlock(ip
, type
);
64 if (type
& XFS_IOLOCK_EXCL
)
65 mutex_unlock(&VFS_I(ip
)->i_mutex
);
73 xfs_ilock_demote(ip
, type
);
74 if (type
& XFS_IOLOCK_EXCL
)
75 mutex_unlock(&VFS_I(ip
)->i_mutex
);
81 * xfs_iozero clears the specified range of buffer supplied,
82 * and marks all the affected blocks as valid and modified. If
83 * an affected block is not allocated, it will be allocated. If
84 * an affected block is not completely overwritten, and is not
85 * valid before the operation, it will be read from disk before
86 * being partially zeroed.
90 struct xfs_inode
*ip
, /* inode */
91 loff_t pos
, /* offset in file */
92 size_t count
) /* size of data to zero */
95 struct address_space
*mapping
;
98 mapping
= VFS_I(ip
)->i_mapping
;
100 unsigned offset
, bytes
;
103 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
104 bytes
= PAGE_CACHE_SIZE
- offset
;
108 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
109 AOP_FLAG_UNINTERRUPTIBLE
,
114 zero_user(page
, offset
, bytes
);
116 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
118 WARN_ON(status
<= 0); /* can't return less than zero! */
132 struct inode
*inode
= file
->f_mapping
->host
;
133 struct xfs_inode
*ip
= XFS_I(inode
);
134 struct xfs_mount
*mp
= ip
->i_mount
;
135 struct xfs_trans
*tp
;
139 trace_xfs_file_fsync(ip
);
141 if (XFS_FORCED_SHUTDOWN(mp
))
142 return -XFS_ERROR(EIO
);
144 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
148 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
150 * If we have an RT and/or log subvolume we need to make sure
151 * to flush the write cache the device used for file data
152 * first. This is to ensure newly written file data make
153 * it to disk before logging the new inode size in case of
154 * an extending write.
156 if (XFS_IS_REALTIME_INODE(ip
))
157 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
158 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
159 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
163 * We always need to make sure that the required inode state is safe on
164 * disk. The inode might be clean but we still might need to force the
165 * log because of committed transactions that haven't hit the disk yet.
166 * Likewise, there could be unflushed non-transactional changes to the
167 * inode core that have to go to disk and this requires us to issue
168 * a synchronous transaction to capture these changes correctly.
170 * This code relies on the assumption that if the i_update_core field
171 * of the inode is clear and the inode is unpinned then it is clean
172 * and no action is required.
174 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
177 * First check if the VFS inode is marked dirty. All the dirtying
178 * of non-transactional updates no goes through mark_inode_dirty*,
179 * which allows us to distinguish beteeen pure timestamp updates
180 * and i_size updates which need to be caught for fdatasync.
181 * After that also theck for the dirty state in the XFS inode, which
182 * might gets cleared when the inode gets written out via the AIL
183 * or xfs_iflush_cluster.
185 if (((inode
->i_state
& I_DIRTY_DATASYNC
) ||
186 ((inode
->i_state
& I_DIRTY_SYNC
) && !datasync
)) &&
189 * Kick off a transaction to log the inode core to get the
190 * updates. The sync transaction will also force the log.
192 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
193 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
194 error
= xfs_trans_reserve(tp
, 0,
195 XFS_FSYNC_TS_LOG_RES(mp
), 0, 0, 0);
197 xfs_trans_cancel(tp
, 0);
200 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
203 * Note - it's possible that we might have pushed ourselves out
204 * of the way during trans_reserve which would flush the inode.
205 * But there's no guarantee that the inode buffer has actually
206 * gone out yet (it's delwri). Plus the buffer could be pinned
207 * anyway if it's part of an inode in another recent
208 * transaction. So we play it safe and fire off the
209 * transaction anyway.
211 xfs_trans_ijoin(tp
, ip
);
212 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
213 xfs_trans_set_sync(tp
);
214 error
= _xfs_trans_commit(tp
, 0, &log_flushed
);
216 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
219 * Timestamps/size haven't changed since last inode flush or
220 * inode transaction commit. That means either nothing got
221 * written or a transaction committed which caught the updates.
222 * If the latter happened and the transaction hasn't hit the
223 * disk yet, the inode will be still be pinned. If it is,
226 if (xfs_ipincount(ip
)) {
227 error
= _xfs_log_force_lsn(mp
,
228 ip
->i_itemp
->ili_last_lsn
,
229 XFS_LOG_SYNC
, &log_flushed
);
231 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
235 * If we only have a single device, and the log force about was
236 * a no-op we might have to flush the data device cache here.
237 * This can only happen for fdatasync/O_DSYNC if we were overwriting
238 * an already allocated file and thus do not have any metadata to
241 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
242 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
243 !XFS_IS_REALTIME_INODE(ip
) &&
245 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
253 const struct iovec
*iovp
,
254 unsigned long nr_segs
,
257 struct file
*file
= iocb
->ki_filp
;
258 struct inode
*inode
= file
->f_mapping
->host
;
259 struct xfs_inode
*ip
= XFS_I(inode
);
260 struct xfs_mount
*mp
= ip
->i_mount
;
267 XFS_STATS_INC(xs_read_calls
);
269 BUG_ON(iocb
->ki_pos
!= pos
);
271 if (unlikely(file
->f_flags
& O_DIRECT
))
272 ioflags
|= IO_ISDIRECT
;
273 if (file
->f_mode
& FMODE_NOCMTIME
)
276 /* START copy & waste from filemap.c */
277 for (seg
= 0; seg
< nr_segs
; seg
++) {
278 const struct iovec
*iv
= &iovp
[seg
];
281 * If any segment has a negative length, or the cumulative
282 * length ever wraps negative then return -EINVAL.
285 if (unlikely((ssize_t
)(size
|iv
->iov_len
) < 0))
286 return XFS_ERROR(-EINVAL
);
288 /* END copy & waste from filemap.c */
290 if (unlikely(ioflags
& IO_ISDIRECT
)) {
291 xfs_buftarg_t
*target
=
292 XFS_IS_REALTIME_INODE(ip
) ?
293 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
294 if ((iocb
->ki_pos
& target
->bt_smask
) ||
295 (size
& target
->bt_smask
)) {
296 if (iocb
->ki_pos
== ip
->i_size
)
298 return -XFS_ERROR(EINVAL
);
302 n
= XFS_MAXIOFFSET(mp
) - iocb
->ki_pos
;
303 if (n
<= 0 || size
== 0)
309 if (XFS_FORCED_SHUTDOWN(mp
))
313 * Locking is a bit tricky here. If we take an exclusive lock
314 * for direct IO, we effectively serialise all new concurrent
315 * read IO to this file and block it behind IO that is currently in
316 * progress because IO in progress holds the IO lock shared. We only
317 * need to hold the lock exclusive to blow away the page cache, so
318 * only take lock exclusively if the page cache needs invalidation.
319 * This allows the normal direct IO case of no page cache pages to
320 * proceeed concurrently without serialisation.
322 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
323 if ((ioflags
& IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
324 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
325 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
327 if (inode
->i_mapping
->nrpages
) {
328 ret
= -xfs_flushinval_pages(ip
,
329 (iocb
->ki_pos
& PAGE_CACHE_MASK
),
330 -1, FI_REMAPF_LOCKED
);
332 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
336 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
339 trace_xfs_file_read(ip
, size
, iocb
->ki_pos
, ioflags
);
341 ret
= generic_file_aio_read(iocb
, iovp
, nr_segs
, iocb
->ki_pos
);
343 XFS_STATS_ADD(xs_read_bytes
, ret
);
345 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
350 xfs_file_splice_read(
353 struct pipe_inode_info
*pipe
,
357 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
361 XFS_STATS_INC(xs_read_calls
);
363 if (infilp
->f_mode
& FMODE_NOCMTIME
)
366 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
369 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
371 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
373 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
375 XFS_STATS_ADD(xs_read_bytes
, ret
);
377 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
382 xfs_aio_write_isize_update(
385 ssize_t bytes_written
)
387 struct xfs_inode
*ip
= XFS_I(inode
);
388 xfs_fsize_t isize
= i_size_read(inode
);
390 if (bytes_written
> 0)
391 XFS_STATS_ADD(xs_write_bytes
, bytes_written
);
393 if (unlikely(bytes_written
< 0 && bytes_written
!= -EFAULT
&&
397 if (*ppos
> ip
->i_size
) {
398 xfs_rw_ilock(ip
, XFS_ILOCK_EXCL
);
399 if (*ppos
> ip
->i_size
)
401 xfs_rw_iunlock(ip
, XFS_ILOCK_EXCL
);
406 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
407 * part of the I/O may have been written to disk before the error occurred. In
408 * this case the on-disk file size may have been adjusted beyond the in-memory
409 * file size and now needs to be truncated back.
412 xfs_aio_write_newsize_update(
413 struct xfs_inode
*ip
)
415 if (ip
->i_new_size
) {
416 xfs_rw_ilock(ip
, XFS_ILOCK_EXCL
);
418 if (ip
->i_d
.di_size
> ip
->i_size
)
419 ip
->i_d
.di_size
= ip
->i_size
;
420 xfs_rw_iunlock(ip
, XFS_ILOCK_EXCL
);
425 * xfs_file_splice_write() does not use xfs_rw_ilock() because
426 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
427 * couuld cause lock inversions between the aio_write path and the splice path
428 * if someone is doing concurrent splice(2) based writes and write(2) based
429 * writes to the same inode. The only real way to fix this is to re-implement
430 * the generic code here with correct locking orders.
433 xfs_file_splice_write(
434 struct pipe_inode_info
*pipe
,
435 struct file
*outfilp
,
440 struct inode
*inode
= outfilp
->f_mapping
->host
;
441 struct xfs_inode
*ip
= XFS_I(inode
);
442 xfs_fsize_t new_size
;
446 XFS_STATS_INC(xs_write_calls
);
448 if (outfilp
->f_mode
& FMODE_NOCMTIME
)
451 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
454 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
456 new_size
= *ppos
+ count
;
458 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
459 if (new_size
> ip
->i_size
)
460 ip
->i_new_size
= new_size
;
461 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
463 trace_xfs_file_splice_write(ip
, count
, *ppos
, ioflags
);
465 ret
= generic_file_splice_write(pipe
, outfilp
, ppos
, count
, flags
);
467 xfs_aio_write_isize_update(inode
, ppos
, ret
);
468 xfs_aio_write_newsize_update(ip
);
469 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
474 * This routine is called to handle zeroing any space in the last
475 * block of the file that is beyond the EOF. We do this since the
476 * size is being increased without writing anything to that block
477 * and we don't want anyone to read the garbage on the disk.
479 STATIC
int /* error (positive) */
485 xfs_fileoff_t last_fsb
;
486 xfs_mount_t
*mp
= ip
->i_mount
;
491 xfs_bmbt_irec_t imap
;
493 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
495 zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
496 if (zero_offset
== 0) {
498 * There are no extra bytes in the last block on disk to
504 last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
506 error
= xfs_bmapi(NULL
, ip
, last_fsb
, 1, 0, NULL
, 0, &imap
,
513 * If the block underlying isize is just a hole, then there
514 * is nothing to zero.
516 if (imap
.br_startblock
== HOLESTARTBLOCK
) {
520 * Zero the part of the last block beyond the EOF, and write it
521 * out sync. We need to drop the ilock while we do this so we
522 * don't deadlock when the buffer cache calls back to us.
524 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
526 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
527 if (isize
+ zero_len
> offset
)
528 zero_len
= offset
- isize
;
529 error
= xfs_iozero(ip
, isize
, zero_len
);
531 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
537 * Zero any on disk space between the current EOF and the new,
538 * larger EOF. This handles the normal case of zeroing the remainder
539 * of the last block in the file and the unusual case of zeroing blocks
540 * out beyond the size of the file. This second case only happens
541 * with fixed size extents and when the system crashes before the inode
542 * size was updated but after blocks were allocated. If fill is set,
543 * then any holes in the range are filled and zeroed. If not, the holes
544 * are left alone as holes.
547 int /* error (positive) */
550 xfs_off_t offset
, /* starting I/O offset */
551 xfs_fsize_t isize
) /* current inode size */
553 xfs_mount_t
*mp
= ip
->i_mount
;
554 xfs_fileoff_t start_zero_fsb
;
555 xfs_fileoff_t end_zero_fsb
;
556 xfs_fileoff_t zero_count_fsb
;
557 xfs_fileoff_t last_fsb
;
558 xfs_fileoff_t zero_off
;
559 xfs_fsize_t zero_len
;
562 xfs_bmbt_irec_t imap
;
564 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
565 ASSERT(offset
> isize
);
568 * First handle zeroing the block on which isize resides.
569 * We only zero a part of that block so it is handled specially.
571 error
= xfs_zero_last_block(ip
, offset
, isize
);
573 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
578 * Calculate the range between the new size and the old
579 * where blocks needing to be zeroed may exist. To get the
580 * block where the last byte in the file currently resides,
581 * we need to subtract one from the size and truncate back
582 * to a block boundary. We subtract 1 in case the size is
583 * exactly on a block boundary.
585 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
586 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
587 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
588 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
589 if (last_fsb
== end_zero_fsb
) {
591 * The size was only incremented on its last block.
592 * We took care of that above, so just return.
597 ASSERT(start_zero_fsb
<= end_zero_fsb
);
598 while (start_zero_fsb
<= end_zero_fsb
) {
600 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
601 error
= xfs_bmapi(NULL
, ip
, start_zero_fsb
, zero_count_fsb
,
602 0, NULL
, 0, &imap
, &nimaps
, NULL
);
604 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
609 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
610 imap
.br_startblock
== HOLESTARTBLOCK
) {
612 * This loop handles initializing pages that were
613 * partially initialized by the code below this
614 * loop. It basically zeroes the part of the page
615 * that sits on a hole and sets the page as P_HOLE
616 * and calls remapf if it is a mapped file.
618 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
619 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
624 * There are blocks we need to zero.
625 * Drop the inode lock while we're doing the I/O.
626 * We'll still have the iolock to protect us.
628 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
630 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
631 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
633 if ((zero_off
+ zero_len
) > offset
)
634 zero_len
= offset
- zero_off
;
636 error
= xfs_iozero(ip
, zero_off
, zero_len
);
641 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
642 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
644 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
650 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
656 * Common pre-write limit and setup checks.
658 * Returns with iolock held according to @iolock.
661 xfs_file_aio_write_checks(
667 struct inode
*inode
= file
->f_mapping
->host
;
668 struct xfs_inode
*ip
= XFS_I(inode
);
669 xfs_fsize_t new_size
;
672 xfs_rw_ilock(ip
, XFS_ILOCK_EXCL
);
673 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
675 xfs_rw_iunlock(ip
, XFS_ILOCK_EXCL
| *iolock
);
680 new_size
= *pos
+ *count
;
681 if (new_size
> ip
->i_size
)
682 ip
->i_new_size
= new_size
;
684 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
)))
685 file_update_time(file
);
688 * If the offset is beyond the size of the file, we need to zero any
689 * blocks that fall between the existing EOF and the start of this
692 if (*pos
> ip
->i_size
)
693 error
= -xfs_zero_eof(ip
, *pos
, ip
->i_size
);
695 xfs_rw_iunlock(ip
, XFS_ILOCK_EXCL
);
700 * If we're writing the file then make sure to clear the setuid and
701 * setgid bits if the process is not being run by root. This keeps
702 * people from modifying setuid and setgid binaries.
704 return file_remove_suid(file
);
709 * xfs_file_dio_aio_write - handle direct IO writes
711 * Lock the inode appropriately to prepare for and issue a direct IO write.
712 * By separating it from the buffered write path we remove all the tricky to
713 * follow locking changes and looping.
715 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
716 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
717 * pages are flushed out.
719 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
720 * allowing them to be done in parallel with reads and other direct IO writes.
721 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
722 * needs to do sub-block zeroing and that requires serialisation against other
723 * direct IOs to the same block. In this case we need to serialise the
724 * submission of the unaligned IOs so that we don't get racing block zeroing in
725 * the dio layer. To avoid the problem with aio, we also need to wait for
726 * outstanding IOs to complete so that unwritten extent conversion is completed
727 * before we try to map the overlapping block. This is currently implemented by
728 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
730 * Returns with locks held indicated by @iolock and errors indicated by
731 * negative return values.
734 xfs_file_dio_aio_write(
736 const struct iovec
*iovp
,
737 unsigned long nr_segs
,
742 struct file
*file
= iocb
->ki_filp
;
743 struct address_space
*mapping
= file
->f_mapping
;
744 struct inode
*inode
= mapping
->host
;
745 struct xfs_inode
*ip
= XFS_I(inode
);
746 struct xfs_mount
*mp
= ip
->i_mount
;
748 size_t count
= ocount
;
749 int unaligned_io
= 0;
750 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
751 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
754 if ((pos
& target
->bt_smask
) || (count
& target
->bt_smask
))
755 return -XFS_ERROR(EINVAL
);
757 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
760 if (unaligned_io
|| mapping
->nrpages
|| pos
> ip
->i_size
)
761 *iolock
= XFS_IOLOCK_EXCL
;
763 *iolock
= XFS_IOLOCK_SHARED
;
764 xfs_rw_ilock(ip
, *iolock
);
766 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, iolock
);
771 * Recheck if there are cached pages that need invalidate after we got
772 * the iolock to protect against other threads adding new pages while
773 * we were waiting for the iolock.
775 if (mapping
->nrpages
&& *iolock
== XFS_IOLOCK_SHARED
) {
776 xfs_rw_iunlock(ip
, *iolock
);
777 *iolock
= XFS_IOLOCK_EXCL
;
778 xfs_rw_ilock(ip
, *iolock
);
781 if (mapping
->nrpages
) {
782 ret
= -xfs_flushinval_pages(ip
, (pos
& PAGE_CACHE_MASK
), -1,
789 * If we are doing unaligned IO, wait for all other IO to drain,
790 * otherwise demote the lock if we had to flush cached pages
794 else if (*iolock
== XFS_IOLOCK_EXCL
) {
795 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
796 *iolock
= XFS_IOLOCK_SHARED
;
799 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
800 ret
= generic_file_direct_write(iocb
, iovp
,
801 &nr_segs
, pos
, &iocb
->ki_pos
, count
, ocount
);
803 /* No fallback to buffered IO on errors for XFS. */
804 ASSERT(ret
< 0 || ret
== count
);
809 xfs_file_buffered_aio_write(
811 const struct iovec
*iovp
,
812 unsigned long nr_segs
,
817 struct file
*file
= iocb
->ki_filp
;
818 struct address_space
*mapping
= file
->f_mapping
;
819 struct inode
*inode
= mapping
->host
;
820 struct xfs_inode
*ip
= XFS_I(inode
);
823 size_t count
= ocount
;
825 *iolock
= XFS_IOLOCK_EXCL
;
826 xfs_rw_ilock(ip
, *iolock
);
828 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, iolock
);
832 /* We can write back this queue in page reclaim */
833 current
->backing_dev_info
= mapping
->backing_dev_info
;
836 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
837 ret
= generic_file_buffered_write(iocb
, iovp
, nr_segs
,
838 pos
, &iocb
->ki_pos
, count
, ret
);
840 * if we just got an ENOSPC, flush the inode now we aren't holding any
841 * page locks and retry *once*
843 if (ret
== -ENOSPC
&& !enospc
) {
844 ret
= -xfs_flush_pages(ip
, 0, -1, 0, FI_NONE
);
850 current
->backing_dev_info
= NULL
;
857 const struct iovec
*iovp
,
858 unsigned long nr_segs
,
861 struct file
*file
= iocb
->ki_filp
;
862 struct address_space
*mapping
= file
->f_mapping
;
863 struct inode
*inode
= mapping
->host
;
864 struct xfs_inode
*ip
= XFS_I(inode
);
869 XFS_STATS_INC(xs_write_calls
);
871 BUG_ON(iocb
->ki_pos
!= pos
);
873 ret
= generic_segment_checks(iovp
, &nr_segs
, &ocount
, VERIFY_READ
);
880 xfs_wait_for_freeze(ip
->i_mount
, SB_FREEZE_WRITE
);
882 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
885 if (unlikely(file
->f_flags
& O_DIRECT
))
886 ret
= xfs_file_dio_aio_write(iocb
, iovp
, nr_segs
, pos
,
889 ret
= xfs_file_buffered_aio_write(iocb
, iovp
, nr_segs
, pos
,
892 xfs_aio_write_isize_update(inode
, &iocb
->ki_pos
, ret
);
897 /* Handle various SYNC-type writes */
898 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(inode
)) {
899 loff_t end
= pos
+ ret
- 1;
902 xfs_rw_iunlock(ip
, iolock
);
903 error
= filemap_write_and_wait_range(mapping
, pos
, end
);
904 xfs_rw_ilock(ip
, iolock
);
906 error2
= -xfs_file_fsync(file
,
907 (file
->f_flags
& __O_SYNC
) ? 0 : 1);
915 xfs_aio_write_newsize_update(ip
);
916 xfs_rw_iunlock(ip
, iolock
);
927 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
931 xfs_inode_t
*ip
= XFS_I(inode
);
932 int cmd
= XFS_IOC_RESVSP
;
933 int attr_flags
= XFS_ATTR_NOLOCK
;
935 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
942 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
944 if (mode
& FALLOC_FL_PUNCH_HOLE
)
945 cmd
= XFS_IOC_UNRESVSP
;
947 /* check the new inode size is valid before allocating */
948 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
949 offset
+ len
> i_size_read(inode
)) {
950 new_size
= offset
+ len
;
951 error
= inode_newsize_ok(inode
, new_size
);
956 if (file
->f_flags
& O_DSYNC
)
957 attr_flags
|= XFS_ATTR_SYNC
;
959 error
= -xfs_change_file_space(ip
, cmd
, &bf
, 0, attr_flags
);
963 /* Change file size if needed */
967 iattr
.ia_valid
= ATTR_SIZE
;
968 iattr
.ia_size
= new_size
;
969 error
= -xfs_setattr(ip
, &iattr
, XFS_ATTR_NOLOCK
);
973 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
983 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
985 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
995 struct xfs_inode
*ip
= XFS_I(inode
);
999 error
= xfs_file_open(inode
, file
);
1004 * If there are any blocks, read-ahead block 0 as we're almost
1005 * certain to have the next operation be a read there.
1007 mode
= xfs_ilock_map_shared(ip
);
1008 if (ip
->i_d
.di_nextents
> 0)
1009 xfs_da_reada_buf(NULL
, ip
, 0, XFS_DATA_FORK
);
1010 xfs_iunlock(ip
, mode
);
1016 struct inode
*inode
,
1019 return -xfs_release(XFS_I(inode
));
1028 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1029 xfs_inode_t
*ip
= XFS_I(inode
);
1034 * The Linux API doesn't pass down the total size of the buffer
1035 * we read into down to the filesystem. With the filldir concept
1036 * it's not needed for correct information, but the XFS dir2 leaf
1037 * code wants an estimate of the buffer size to calculate it's
1038 * readahead window and size the buffers used for mapping to
1041 * Try to give it an estimate that's good enough, maybe at some
1042 * point we can change the ->readdir prototype to include the
1043 * buffer size. For now we use the current glibc buffer size.
1045 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
1047 error
= xfs_readdir(ip
, dirent
, bufsize
,
1048 (xfs_off_t
*)&filp
->f_pos
, filldir
);
1057 struct vm_area_struct
*vma
)
1059 vma
->vm_ops
= &xfs_file_vm_ops
;
1060 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1062 file_accessed(filp
);
1067 * mmap()d file has taken write protection fault and is being made
1068 * writable. We can set the page state up correctly for a writable
1069 * page, which means we can do correct delalloc accounting (ENOSPC
1070 * checking!) and unwritten extent mapping.
1073 xfs_vm_page_mkwrite(
1074 struct vm_area_struct
*vma
,
1075 struct vm_fault
*vmf
)
1077 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
1080 const struct file_operations xfs_file_operations
= {
1081 .llseek
= generic_file_llseek
,
1082 .read
= do_sync_read
,
1083 .write
= do_sync_write
,
1084 .aio_read
= xfs_file_aio_read
,
1085 .aio_write
= xfs_file_aio_write
,
1086 .splice_read
= xfs_file_splice_read
,
1087 .splice_write
= xfs_file_splice_write
,
1088 .unlocked_ioctl
= xfs_file_ioctl
,
1089 #ifdef CONFIG_COMPAT
1090 .compat_ioctl
= xfs_file_compat_ioctl
,
1092 .mmap
= xfs_file_mmap
,
1093 .open
= xfs_file_open
,
1094 .release
= xfs_file_release
,
1095 .fsync
= xfs_file_fsync
,
1096 .fallocate
= xfs_file_fallocate
,
1099 const struct file_operations xfs_dir_file_operations
= {
1100 .open
= xfs_dir_open
,
1101 .read
= generic_read_dir
,
1102 .readdir
= xfs_file_readdir
,
1103 .llseek
= generic_file_llseek
,
1104 .unlocked_ioctl
= xfs_file_ioctl
,
1105 #ifdef CONFIG_COMPAT
1106 .compat_ioctl
= xfs_file_compat_ioctl
,
1108 .fsync
= xfs_file_fsync
,
1111 static const struct vm_operations_struct xfs_file_vm_ops
= {
1112 .fault
= filemap_fault
,
1113 .page_mkwrite
= xfs_vm_page_mkwrite
,