ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / xfs / linux-2.6 / xfs_sync.c
blob2f277a04d67d9f84a35a4cb3f27cc69b1e418488
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
43 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
51 #define XFS_LOOKUP_BATCH 32
53 STATIC int
54 xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
57 struct inode *inode = VFS_I(ip);
59 ASSERT(rcu_read_lock_held());
62 * check for stale RCU freed inode
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
92 /* inode is valid */
93 return 0;
95 out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
100 STATIC int
101 xfs_inode_ag_walk(
102 struct xfs_mount *mp,
103 struct xfs_perag *pag,
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
106 int flags)
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
111 int done;
112 int nr_found;
114 restart:
115 done = 0;
116 skipped = 0;
117 first_index = 0;
118 nr_found = 0;
119 do {
120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 int error = 0;
122 int i;
124 rcu_read_lock();
125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
128 if (!nr_found) {
129 rcu_read_unlock();
130 break;
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
162 /* unlock now we've grabbed the inodes. */
163 rcu_read_unlock();
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
178 /* bail out if the filesystem is corrupted. */
179 if (error == EFSCORRUPTED)
180 break;
182 } while (nr_found && !done);
184 if (skipped) {
185 delay(1);
186 goto restart;
188 return last_error;
192 xfs_inode_ag_iterator(
193 struct xfs_mount *mp,
194 int (*execute)(struct xfs_inode *ip,
195 struct xfs_perag *pag, int flags),
196 int flags)
198 struct xfs_perag *pag;
199 int error = 0;
200 int last_error = 0;
201 xfs_agnumber_t ag;
203 ag = 0;
204 while ((pag = xfs_perag_get(mp, ag))) {
205 ag = pag->pag_agno + 1;
206 error = xfs_inode_ag_walk(mp, pag, execute, flags);
207 xfs_perag_put(pag);
208 if (error) {
209 last_error = error;
210 if (error == EFSCORRUPTED)
211 break;
214 return XFS_ERROR(last_error);
217 STATIC int
218 xfs_sync_inode_data(
219 struct xfs_inode *ip,
220 struct xfs_perag *pag,
221 int flags)
223 struct inode *inode = VFS_I(ip);
224 struct address_space *mapping = inode->i_mapping;
225 int error = 0;
227 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
228 goto out_wait;
230 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
231 if (flags & SYNC_TRYLOCK)
232 goto out_wait;
233 xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
237 0 : XBF_ASYNC, FI_NONE);
238 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
240 out_wait:
241 if (flags & SYNC_WAIT)
242 xfs_ioend_wait(ip);
243 return error;
246 STATIC int
247 xfs_sync_inode_attr(
248 struct xfs_inode *ip,
249 struct xfs_perag *pag,
250 int flags)
252 int error = 0;
254 xfs_ilock(ip, XFS_ILOCK_SHARED);
255 if (xfs_inode_clean(ip))
256 goto out_unlock;
257 if (!xfs_iflock_nowait(ip)) {
258 if (!(flags & SYNC_WAIT))
259 goto out_unlock;
260 xfs_iflock(ip);
263 if (xfs_inode_clean(ip)) {
264 xfs_ifunlock(ip);
265 goto out_unlock;
268 error = xfs_iflush(ip, flags);
271 * We don't want to try again on non-blocking flushes that can't run
272 * again immediately. If an inode really must be written, then that's
273 * what the SYNC_WAIT flag is for.
275 if (error == EAGAIN) {
276 ASSERT(!(flags & SYNC_WAIT));
277 error = 0;
280 out_unlock:
281 xfs_iunlock(ip, XFS_ILOCK_SHARED);
282 return error;
286 * Write out pagecache data for the whole filesystem.
288 STATIC int
289 xfs_sync_data(
290 struct xfs_mount *mp,
291 int flags)
293 int error;
295 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
297 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
298 if (error)
299 return XFS_ERROR(error);
301 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
302 return 0;
306 * Write out inode metadata (attributes) for the whole filesystem.
308 STATIC int
309 xfs_sync_attr(
310 struct xfs_mount *mp,
311 int flags)
313 ASSERT((flags & ~SYNC_WAIT) == 0);
315 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
318 STATIC int
319 xfs_sync_fsdata(
320 struct xfs_mount *mp)
322 struct xfs_buf *bp;
325 * If the buffer is pinned then push on the log so we won't get stuck
326 * waiting in the write for someone, maybe ourselves, to flush the log.
328 * Even though we just pushed the log above, we did not have the
329 * superblock buffer locked at that point so it can become pinned in
330 * between there and here.
332 bp = xfs_getsb(mp, 0);
333 if (XFS_BUF_ISPINNED(bp))
334 xfs_log_force(mp, 0);
336 return xfs_bwrite(mp, bp);
340 xfs_log_dirty_inode(
341 struct xfs_inode *ip,
342 struct xfs_perag *pag,
343 int flags)
345 struct xfs_mount *mp = ip->i_mount;
346 struct xfs_trans *tp;
347 int error;
349 if (!ip->i_update_core)
350 return 0;
352 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
353 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
354 if (error) {
355 xfs_trans_cancel(tp, 0);
356 return error;
359 xfs_ilock(ip, XFS_ILOCK_EXCL);
360 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
361 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
362 return xfs_trans_commit(tp, 0);
366 * When remounting a filesystem read-only or freezing the filesystem, we have
367 * two phases to execute. This first phase is syncing the data before we
368 * quiesce the filesystem, and the second is flushing all the inodes out after
369 * we've waited for all the transactions created by the first phase to
370 * complete. The second phase ensures that the inodes are written to their
371 * location on disk rather than just existing in transactions in the log. This
372 * means after a quiesce there is no log replay required to write the inodes to
373 * disk (this is the main difference between a sync and a quiesce).
376 * First stage of freeze - no writers will make progress now we are here,
377 * so we flush delwri and delalloc buffers here, then wait for all I/O to
378 * complete. Data is frozen at that point. Metadata is not frozen,
379 * transactions can still occur here so don't bother flushing the buftarg
380 * because it'll just get dirty again.
383 xfs_quiesce_data(
384 struct xfs_mount *mp)
386 int error, error2 = 0;
388 /* push non-blocking */
389 xfs_sync_data(mp, 0);
390 xfs_qm_sync(mp, SYNC_TRYLOCK);
392 /* push and block till complete */
393 xfs_sync_data(mp, SYNC_WAIT);
396 * Log all pending size and timestamp updates. The vfs writeback
397 * code is supposed to do this, but due to its overagressive
398 * livelock detection it will skip inodes where appending writes
399 * were written out in the first non-blocking sync phase if their
400 * completion took long enough that it happened after taking the
401 * timestamp for the cut-off in the blocking phase.
403 xfs_inode_ag_iterator(mp, xfs_log_dirty_inode, 0);
405 xfs_qm_sync(mp, SYNC_WAIT);
407 /* write superblock and hoover up shutdown errors */
408 error = xfs_sync_fsdata(mp);
410 /* make sure all delwri buffers are written out */
411 xfs_flush_buftarg(mp->m_ddev_targp, 1);
413 /* mark the log as covered if needed */
414 if (xfs_log_need_covered(mp))
415 error2 = xfs_fs_log_dummy(mp);
417 /* flush data-only devices */
418 if (mp->m_rtdev_targp)
419 XFS_bflush(mp->m_rtdev_targp);
421 return error ? error : error2;
424 STATIC void
425 xfs_quiesce_fs(
426 struct xfs_mount *mp)
428 int count = 0, pincount;
430 xfs_reclaim_inodes(mp, 0);
431 xfs_flush_buftarg(mp->m_ddev_targp, 0);
434 * This loop must run at least twice. The first instance of the loop
435 * will flush most meta data but that will generate more meta data
436 * (typically directory updates). Which then must be flushed and
437 * logged before we can write the unmount record. We also so sync
438 * reclaim of inodes to catch any that the above delwri flush skipped.
440 do {
441 xfs_reclaim_inodes(mp, SYNC_WAIT);
442 xfs_sync_attr(mp, SYNC_WAIT);
443 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
444 if (!pincount) {
445 delay(50);
446 count++;
448 } while (count < 2);
452 * Second stage of a quiesce. The data is already synced, now we have to take
453 * care of the metadata. New transactions are already blocked, so we need to
454 * wait for any remaining transactions to drain out before proceeding.
456 void
457 xfs_quiesce_attr(
458 struct xfs_mount *mp)
460 int error = 0;
462 /* wait for all modifications to complete */
463 while (atomic_read(&mp->m_active_trans) > 0)
464 delay(100);
466 /* flush inodes and push all remaining buffers out to disk */
467 xfs_quiesce_fs(mp);
470 * Just warn here till VFS can correctly support
471 * read-only remount without racing.
473 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
475 /* Push the superblock and write an unmount record */
476 error = xfs_log_sbcount(mp, 1);
477 if (error)
478 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
479 "Frozen image may not be consistent.");
480 xfs_log_unmount_write(mp);
481 xfs_unmountfs_writesb(mp);
484 static void
485 xfs_syncd_queue_sync(
486 struct xfs_mount *mp)
488 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
489 msecs_to_jiffies(xfs_syncd_centisecs * 10));
493 * Every sync period we need to unpin all items, reclaim inodes and sync
494 * disk quotas. We might need to cover the log to indicate that the
495 * filesystem is idle and not frozen.
497 STATIC void
498 xfs_sync_worker(
499 struct work_struct *work)
501 struct xfs_mount *mp = container_of(to_delayed_work(work),
502 struct xfs_mount, m_sync_work);
503 int error;
505 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
506 /* dgc: errors ignored here */
507 if (mp->m_super->s_frozen == SB_UNFROZEN &&
508 xfs_log_need_covered(mp))
509 error = xfs_fs_log_dummy(mp);
510 else
511 xfs_log_force(mp, 0);
512 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
514 /* start pushing all the metadata that is currently dirty */
515 xfs_ail_push_all(mp->m_ail);
518 /* queue us up again */
519 xfs_syncd_queue_sync(mp);
523 * Queue a new inode reclaim pass if there are reclaimable inodes and there
524 * isn't a reclaim pass already in progress. By default it runs every 5s based
525 * on the xfs syncd work default of 30s. Perhaps this should have it's own
526 * tunable, but that can be done if this method proves to be ineffective or too
527 * aggressive.
529 static void
530 xfs_syncd_queue_reclaim(
531 struct xfs_mount *mp)
535 * We can have inodes enter reclaim after we've shut down the syncd
536 * workqueue during unmount, so don't allow reclaim work to be queued
537 * during unmount.
539 if (!(mp->m_super->s_flags & MS_ACTIVE))
540 return;
542 rcu_read_lock();
543 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
544 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
545 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
547 rcu_read_unlock();
551 * This is a fast pass over the inode cache to try to get reclaim moving on as
552 * many inodes as possible in a short period of time. It kicks itself every few
553 * seconds, as well as being kicked by the inode cache shrinker when memory
554 * goes low. It scans as quickly as possible avoiding locked inodes or those
555 * already being flushed, and once done schedules a future pass.
557 STATIC void
558 xfs_reclaim_worker(
559 struct work_struct *work)
561 struct xfs_mount *mp = container_of(to_delayed_work(work),
562 struct xfs_mount, m_reclaim_work);
564 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
565 xfs_syncd_queue_reclaim(mp);
569 * Flush delayed allocate data, attempting to free up reserved space
570 * from existing allocations. At this point a new allocation attempt
571 * has failed with ENOSPC and we are in the process of scratching our
572 * heads, looking about for more room.
574 * Queue a new data flush if there isn't one already in progress and
575 * wait for completion of the flush. This means that we only ever have one
576 * inode flush in progress no matter how many ENOSPC events are occurring and
577 * so will prevent the system from bogging down due to every concurrent
578 * ENOSPC event scanning all the active inodes in the system for writeback.
580 void
581 xfs_flush_inodes(
582 struct xfs_inode *ip)
584 struct xfs_mount *mp = ip->i_mount;
586 queue_work(xfs_syncd_wq, &mp->m_flush_work);
587 flush_work_sync(&mp->m_flush_work);
590 STATIC void
591 xfs_flush_worker(
592 struct work_struct *work)
594 struct xfs_mount *mp = container_of(work,
595 struct xfs_mount, m_flush_work);
597 xfs_sync_data(mp, SYNC_TRYLOCK);
598 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
602 xfs_syncd_init(
603 struct xfs_mount *mp)
605 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
606 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
607 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
609 xfs_syncd_queue_sync(mp);
610 xfs_syncd_queue_reclaim(mp);
612 return 0;
615 void
616 xfs_syncd_stop(
617 struct xfs_mount *mp)
619 cancel_delayed_work_sync(&mp->m_sync_work);
620 cancel_delayed_work_sync(&mp->m_reclaim_work);
621 cancel_work_sync(&mp->m_flush_work);
624 void
625 __xfs_inode_set_reclaim_tag(
626 struct xfs_perag *pag,
627 struct xfs_inode *ip)
629 radix_tree_tag_set(&pag->pag_ici_root,
630 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
631 XFS_ICI_RECLAIM_TAG);
633 if (!pag->pag_ici_reclaimable) {
634 /* propagate the reclaim tag up into the perag radix tree */
635 spin_lock(&ip->i_mount->m_perag_lock);
636 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
637 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
638 XFS_ICI_RECLAIM_TAG);
639 spin_unlock(&ip->i_mount->m_perag_lock);
641 /* schedule periodic background inode reclaim */
642 xfs_syncd_queue_reclaim(ip->i_mount);
644 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
645 -1, _RET_IP_);
647 pag->pag_ici_reclaimable++;
651 * We set the inode flag atomically with the radix tree tag.
652 * Once we get tag lookups on the radix tree, this inode flag
653 * can go away.
655 void
656 xfs_inode_set_reclaim_tag(
657 xfs_inode_t *ip)
659 struct xfs_mount *mp = ip->i_mount;
660 struct xfs_perag *pag;
662 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
663 spin_lock(&pag->pag_ici_lock);
664 spin_lock(&ip->i_flags_lock);
665 __xfs_inode_set_reclaim_tag(pag, ip);
666 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
667 spin_unlock(&ip->i_flags_lock);
668 spin_unlock(&pag->pag_ici_lock);
669 xfs_perag_put(pag);
672 STATIC void
673 __xfs_inode_clear_reclaim(
674 xfs_perag_t *pag,
675 xfs_inode_t *ip)
677 pag->pag_ici_reclaimable--;
678 if (!pag->pag_ici_reclaimable) {
679 /* clear the reclaim tag from the perag radix tree */
680 spin_lock(&ip->i_mount->m_perag_lock);
681 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
682 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
683 XFS_ICI_RECLAIM_TAG);
684 spin_unlock(&ip->i_mount->m_perag_lock);
685 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
686 -1, _RET_IP_);
690 void
691 __xfs_inode_clear_reclaim_tag(
692 xfs_mount_t *mp,
693 xfs_perag_t *pag,
694 xfs_inode_t *ip)
696 radix_tree_tag_clear(&pag->pag_ici_root,
697 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
698 __xfs_inode_clear_reclaim(pag, ip);
702 * Grab the inode for reclaim exclusively.
703 * Return 0 if we grabbed it, non-zero otherwise.
705 STATIC int
706 xfs_reclaim_inode_grab(
707 struct xfs_inode *ip,
708 int flags)
710 ASSERT(rcu_read_lock_held());
712 /* quick check for stale RCU freed inode */
713 if (!ip->i_ino)
714 return 1;
717 * do some unlocked checks first to avoid unnecessary lock traffic.
718 * The first is a flush lock check, the second is a already in reclaim
719 * check. Only do these checks if we are not going to block on locks.
721 if ((flags & SYNC_TRYLOCK) &&
722 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
723 return 1;
727 * The radix tree lock here protects a thread in xfs_iget from racing
728 * with us starting reclaim on the inode. Once we have the
729 * XFS_IRECLAIM flag set it will not touch us.
731 * Due to RCU lookup, we may find inodes that have been freed and only
732 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
733 * aren't candidates for reclaim at all, so we must check the
734 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
736 spin_lock(&ip->i_flags_lock);
737 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
738 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
739 /* not a reclaim candidate. */
740 spin_unlock(&ip->i_flags_lock);
741 return 1;
743 __xfs_iflags_set(ip, XFS_IRECLAIM);
744 spin_unlock(&ip->i_flags_lock);
745 return 0;
749 * Inodes in different states need to be treated differently, and the return
750 * value of xfs_iflush is not sufficient to get this right. The following table
751 * lists the inode states and the reclaim actions necessary for non-blocking
752 * reclaim:
755 * inode state iflush ret required action
756 * --------------- ---------- ---------------
757 * bad - reclaim
758 * shutdown EIO unpin and reclaim
759 * clean, unpinned 0 reclaim
760 * stale, unpinned 0 reclaim
761 * clean, pinned(*) 0 requeue
762 * stale, pinned EAGAIN requeue
763 * dirty, delwri ok 0 requeue
764 * dirty, delwri blocked EAGAIN requeue
765 * dirty, sync flush 0 reclaim
767 * (*) dgc: I don't think the clean, pinned state is possible but it gets
768 * handled anyway given the order of checks implemented.
770 * As can be seen from the table, the return value of xfs_iflush() is not
771 * sufficient to correctly decide the reclaim action here. The checks in
772 * xfs_iflush() might look like duplicates, but they are not.
774 * Also, because we get the flush lock first, we know that any inode that has
775 * been flushed delwri has had the flush completed by the time we check that
776 * the inode is clean. The clean inode check needs to be done before flushing
777 * the inode delwri otherwise we would loop forever requeuing clean inodes as
778 * we cannot tell apart a successful delwri flush and a clean inode from the
779 * return value of xfs_iflush().
781 * Note that because the inode is flushed delayed write by background
782 * writeback, the flush lock may already be held here and waiting on it can
783 * result in very long latencies. Hence for sync reclaims, where we wait on the
784 * flush lock, the caller should push out delayed write inodes first before
785 * trying to reclaim them to minimise the amount of time spent waiting. For
786 * background relaim, we just requeue the inode for the next pass.
788 * Hence the order of actions after gaining the locks should be:
789 * bad => reclaim
790 * shutdown => unpin and reclaim
791 * pinned, delwri => requeue
792 * pinned, sync => unpin
793 * stale => reclaim
794 * clean => reclaim
795 * dirty, delwri => flush and requeue
796 * dirty, sync => flush, wait and reclaim
798 STATIC int
799 xfs_reclaim_inode(
800 struct xfs_inode *ip,
801 struct xfs_perag *pag,
802 int sync_mode)
804 int error;
806 restart:
807 error = 0;
808 xfs_ilock(ip, XFS_ILOCK_EXCL);
809 if (!xfs_iflock_nowait(ip)) {
810 if (!(sync_mode & SYNC_WAIT))
811 goto out;
814 * If we only have a single dirty inode in a cluster there is
815 * a fair chance that the AIL push may have pushed it into
816 * the buffer, but xfsbufd won't touch it until 30 seconds
817 * from now, and thus we will lock up here.
819 * Promote the inode buffer to the front of the delwri list
820 * and wake up xfsbufd now.
822 xfs_promote_inode(ip);
823 xfs_iflock(ip);
826 if (is_bad_inode(VFS_I(ip)))
827 goto reclaim;
828 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
829 xfs_iunpin_wait(ip);
830 goto reclaim;
832 if (xfs_ipincount(ip)) {
833 if (!(sync_mode & SYNC_WAIT)) {
834 xfs_ifunlock(ip);
835 goto out;
837 xfs_iunpin_wait(ip);
839 if (xfs_iflags_test(ip, XFS_ISTALE))
840 goto reclaim;
841 if (xfs_inode_clean(ip))
842 goto reclaim;
845 * Now we have an inode that needs flushing.
847 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
848 * reclaim as we can deadlock with inode cluster removal.
849 * xfs_ifree_cluster() can lock the inode buffer before it locks the
850 * ip->i_lock, and we are doing the exact opposite here. As a result,
851 * doing a blocking xfs_itobp() to get the cluster buffer will result
852 * in an ABBA deadlock with xfs_ifree_cluster().
854 * As xfs_ifree_cluser() must gather all inodes that are active in the
855 * cache to mark them stale, if we hit this case we don't actually want
856 * to do IO here - we want the inode marked stale so we can simply
857 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
858 * just unlock the inode, back off and try again. Hopefully the next
859 * pass through will see the stale flag set on the inode.
861 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
862 if (sync_mode & SYNC_WAIT) {
863 if (error == EAGAIN) {
864 xfs_iunlock(ip, XFS_ILOCK_EXCL);
865 /* backoff longer than in xfs_ifree_cluster */
866 delay(2);
867 goto restart;
869 xfs_iflock(ip);
870 goto reclaim;
874 * When we have to flush an inode but don't have SYNC_WAIT set, we
875 * flush the inode out using a delwri buffer and wait for the next
876 * call into reclaim to find it in a clean state instead of waiting for
877 * it now. We also don't return errors here - if the error is transient
878 * then the next reclaim pass will flush the inode, and if the error
879 * is permanent then the next sync reclaim will reclaim the inode and
880 * pass on the error.
882 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
883 xfs_warn(ip->i_mount,
884 "inode 0x%llx background reclaim flush failed with %d",
885 (long long)ip->i_ino, error);
887 out:
888 xfs_iflags_clear(ip, XFS_IRECLAIM);
889 xfs_iunlock(ip, XFS_ILOCK_EXCL);
891 * We could return EAGAIN here to make reclaim rescan the inode tree in
892 * a short while. However, this just burns CPU time scanning the tree
893 * waiting for IO to complete and xfssyncd never goes back to the idle
894 * state. Instead, return 0 to let the next scheduled background reclaim
895 * attempt to reclaim the inode again.
897 return 0;
899 reclaim:
900 xfs_ifunlock(ip);
901 xfs_iunlock(ip, XFS_ILOCK_EXCL);
903 XFS_STATS_INC(xs_ig_reclaims);
905 * Remove the inode from the per-AG radix tree.
907 * Because radix_tree_delete won't complain even if the item was never
908 * added to the tree assert that it's been there before to catch
909 * problems with the inode life time early on.
911 spin_lock(&pag->pag_ici_lock);
912 if (!radix_tree_delete(&pag->pag_ici_root,
913 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
914 ASSERT(0);
915 __xfs_inode_clear_reclaim(pag, ip);
916 spin_unlock(&pag->pag_ici_lock);
919 * Here we do an (almost) spurious inode lock in order to coordinate
920 * with inode cache radix tree lookups. This is because the lookup
921 * can reference the inodes in the cache without taking references.
923 * We make that OK here by ensuring that we wait until the inode is
924 * unlocked after the lookup before we go ahead and free it. We get
925 * both the ilock and the iolock because the code may need to drop the
926 * ilock one but will still hold the iolock.
928 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
929 xfs_qm_dqdetach(ip);
930 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
932 xfs_inode_free(ip);
933 return error;
938 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
939 * corrupted, we still want to try to reclaim all the inodes. If we don't,
940 * then a shut down during filesystem unmount reclaim walk leak all the
941 * unreclaimed inodes.
944 xfs_reclaim_inodes_ag(
945 struct xfs_mount *mp,
946 int flags,
947 int *nr_to_scan)
949 struct xfs_perag *pag;
950 int error = 0;
951 int last_error = 0;
952 xfs_agnumber_t ag;
953 int trylock = flags & SYNC_TRYLOCK;
954 int skipped;
956 restart:
957 ag = 0;
958 skipped = 0;
959 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
960 unsigned long first_index = 0;
961 int done = 0;
962 int nr_found = 0;
964 ag = pag->pag_agno + 1;
966 if (trylock) {
967 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
968 skipped++;
969 xfs_perag_put(pag);
970 continue;
972 first_index = pag->pag_ici_reclaim_cursor;
973 } else
974 mutex_lock(&pag->pag_ici_reclaim_lock);
976 do {
977 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
978 int i;
980 rcu_read_lock();
981 nr_found = radix_tree_gang_lookup_tag(
982 &pag->pag_ici_root,
983 (void **)batch, first_index,
984 XFS_LOOKUP_BATCH,
985 XFS_ICI_RECLAIM_TAG);
986 if (!nr_found) {
987 done = 1;
988 rcu_read_unlock();
989 break;
993 * Grab the inodes before we drop the lock. if we found
994 * nothing, nr == 0 and the loop will be skipped.
996 for (i = 0; i < nr_found; i++) {
997 struct xfs_inode *ip = batch[i];
999 if (done || xfs_reclaim_inode_grab(ip, flags))
1000 batch[i] = NULL;
1003 * Update the index for the next lookup. Catch
1004 * overflows into the next AG range which can
1005 * occur if we have inodes in the last block of
1006 * the AG and we are currently pointing to the
1007 * last inode.
1009 * Because we may see inodes that are from the
1010 * wrong AG due to RCU freeing and
1011 * reallocation, only update the index if it
1012 * lies in this AG. It was a race that lead us
1013 * to see this inode, so another lookup from
1014 * the same index will not find it again.
1016 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1017 pag->pag_agno)
1018 continue;
1019 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1020 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1021 done = 1;
1024 /* unlock now we've grabbed the inodes. */
1025 rcu_read_unlock();
1027 for (i = 0; i < nr_found; i++) {
1028 if (!batch[i])
1029 continue;
1030 error = xfs_reclaim_inode(batch[i], pag, flags);
1031 if (error && last_error != EFSCORRUPTED)
1032 last_error = error;
1035 *nr_to_scan -= XFS_LOOKUP_BATCH;
1037 } while (nr_found && !done && *nr_to_scan > 0);
1039 if (trylock && !done)
1040 pag->pag_ici_reclaim_cursor = first_index;
1041 else
1042 pag->pag_ici_reclaim_cursor = 0;
1043 mutex_unlock(&pag->pag_ici_reclaim_lock);
1044 xfs_perag_put(pag);
1048 * if we skipped any AG, and we still have scan count remaining, do
1049 * another pass this time using blocking reclaim semantics (i.e
1050 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1051 * ensure that when we get more reclaimers than AGs we block rather
1052 * than spin trying to execute reclaim.
1054 if (trylock && skipped && *nr_to_scan > 0) {
1055 trylock = 0;
1056 goto restart;
1058 return XFS_ERROR(last_error);
1062 xfs_reclaim_inodes(
1063 xfs_mount_t *mp,
1064 int mode)
1066 int nr_to_scan = INT_MAX;
1068 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1072 * Inode cache shrinker.
1074 * When called we make sure that there is a background (fast) inode reclaim in
1075 * progress, while we will throttle the speed of reclaim via doiing synchronous
1076 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1077 * them to be cleaned, which we hope will not be very long due to the
1078 * background walker having already kicked the IO off on those dirty inodes.
1080 static int
1081 xfs_reclaim_inode_shrink(
1082 struct shrinker *shrink,
1083 struct shrink_control *sc)
1085 struct xfs_mount *mp;
1086 struct xfs_perag *pag;
1087 xfs_agnumber_t ag;
1088 int reclaimable;
1089 int nr_to_scan = sc->nr_to_scan;
1090 gfp_t gfp_mask = sc->gfp_mask;
1092 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
1093 if (nr_to_scan) {
1094 /* kick background reclaimer and push the AIL */
1095 xfs_syncd_queue_reclaim(mp);
1096 xfs_ail_push_all(mp->m_ail);
1098 if (!(gfp_mask & __GFP_FS))
1099 return -1;
1101 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT,
1102 &nr_to_scan);
1103 /* terminate if we don't exhaust the scan */
1104 if (nr_to_scan > 0)
1105 return -1;
1108 reclaimable = 0;
1109 ag = 0;
1110 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1111 ag = pag->pag_agno + 1;
1112 reclaimable += pag->pag_ici_reclaimable;
1113 xfs_perag_put(pag);
1115 return reclaimable;
1118 void
1119 xfs_inode_shrinker_register(
1120 struct xfs_mount *mp)
1122 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1123 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1124 register_shrinker(&mp->m_inode_shrink);
1127 void
1128 xfs_inode_shrinker_unregister(
1129 struct xfs_mount *mp)
1131 unregister_shrinker(&mp->m_inode_shrink);