ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blob41d5b8f2bf92d3fd3fae9773f667a0bf1cb42381
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
41 kmem_zone_t *xfs_log_ticket_zone;
43 /* Local miscellaneous function prototypes */
44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
47 xfs_buftarg_t *log_target,
48 xfs_daddr_t blk_offset,
49 int num_bblks);
50 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void xlog_dealloc_log(xlog_t *log);
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int xlog_state_get_iclog_space(xlog_t *log,
58 int len,
59 xlog_in_core_t **iclog,
60 xlog_ticket_t *ticket,
61 int *continued_write,
62 int *logoffsetp);
63 STATIC int xlog_state_release_iclog(xlog_t *log,
64 xlog_in_core_t *iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t *log,
66 xlog_in_core_t *iclog,
67 int eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
70 /* local functions to manipulate grant head */
71 STATIC int xlog_grant_log_space(xlog_t *log,
72 xlog_ticket_t *xtic);
73 STATIC void xlog_grant_push_ail(struct log *log,
74 int need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
76 xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t *log,
78 xlog_ticket_t *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t *log,
80 xlog_ticket_t *ticket);
82 #if defined(DEBUG)
83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void xlog_verify_grant_tail(struct log *log);
85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 int count, boolean_t syncing);
87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
96 STATIC int xlog_iclogs_empty(xlog_t *log);
98 static void
99 xlog_grant_sub_space(
100 struct log *log,
101 atomic64_t *head,
102 int bytes)
104 int64_t head_val = atomic64_read(head);
105 int64_t new, old;
107 do {
108 int cycle, space;
110 xlog_crack_grant_head_val(head_val, &cycle, &space);
112 space -= bytes;
113 if (space < 0) {
114 space += log->l_logsize;
115 cycle--;
118 old = head_val;
119 new = xlog_assign_grant_head_val(cycle, space);
120 head_val = atomic64_cmpxchg(head, old, new);
121 } while (head_val != old);
124 static void
125 xlog_grant_add_space(
126 struct log *log,
127 atomic64_t *head,
128 int bytes)
130 int64_t head_val = atomic64_read(head);
131 int64_t new, old;
133 do {
134 int tmp;
135 int cycle, space;
137 xlog_crack_grant_head_val(head_val, &cycle, &space);
139 tmp = log->l_logsize - space;
140 if (tmp > bytes)
141 space += bytes;
142 else {
143 space = bytes - tmp;
144 cycle++;
147 old = head_val;
148 new = xlog_assign_grant_head_val(cycle, space);
149 head_val = atomic64_cmpxchg(head, old, new);
150 } while (head_val != old);
153 static void
154 xlog_tic_reset_res(xlog_ticket_t *tic)
156 tic->t_res_num = 0;
157 tic->t_res_arr_sum = 0;
158 tic->t_res_num_ophdrs = 0;
161 static void
162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
164 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 /* add to overflow and start again */
166 tic->t_res_o_flow += tic->t_res_arr_sum;
167 tic->t_res_num = 0;
168 tic->t_res_arr_sum = 0;
171 tic->t_res_arr[tic->t_res_num].r_len = len;
172 tic->t_res_arr[tic->t_res_num].r_type = type;
173 tic->t_res_arr_sum += len;
174 tic->t_res_num++;
178 * NOTES:
180 * 1. currblock field gets updated at startup and after in-core logs
181 * marked as with WANT_SYNC.
185 * This routine is called when a user of a log manager ticket is done with
186 * the reservation. If the ticket was ever used, then a commit record for
187 * the associated transaction is written out as a log operation header with
188 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
189 * a given ticket. If the ticket was one with a permanent reservation, then
190 * a few operations are done differently. Permanent reservation tickets by
191 * default don't release the reservation. They just commit the current
192 * transaction with the belief that the reservation is still needed. A flag
193 * must be passed in before permanent reservations are actually released.
194 * When these type of tickets are not released, they need to be set into
195 * the inited state again. By doing this, a start record will be written
196 * out when the next write occurs.
198 xfs_lsn_t
199 xfs_log_done(
200 struct xfs_mount *mp,
201 struct xlog_ticket *ticket,
202 struct xlog_in_core **iclog,
203 uint flags)
205 struct log *log = mp->m_log;
206 xfs_lsn_t lsn = 0;
208 if (XLOG_FORCED_SHUTDOWN(log) ||
210 * If nothing was ever written, don't write out commit record.
211 * If we get an error, just continue and give back the log ticket.
213 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 lsn = (xfs_lsn_t) -1;
216 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 flags |= XFS_LOG_REL_PERM_RESERV;
222 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 (flags & XFS_LOG_REL_PERM_RESERV)) {
224 trace_xfs_log_done_nonperm(log, ticket);
227 * Release ticket if not permanent reservation or a specific
228 * request has been made to release a permanent reservation.
230 xlog_ungrant_log_space(log, ticket);
231 xfs_log_ticket_put(ticket);
232 } else {
233 trace_xfs_log_done_perm(log, ticket);
235 xlog_regrant_reserve_log_space(log, ticket);
236 /* If this ticket was a permanent reservation and we aren't
237 * trying to release it, reset the inited flags; so next time
238 * we write, a start record will be written out.
240 ticket->t_flags |= XLOG_TIC_INITED;
243 return lsn;
247 * Attaches a new iclog I/O completion callback routine during
248 * transaction commit. If the log is in error state, a non-zero
249 * return code is handed back and the caller is responsible for
250 * executing the callback at an appropriate time.
253 xfs_log_notify(
254 struct xfs_mount *mp,
255 struct xlog_in_core *iclog,
256 xfs_log_callback_t *cb)
258 int abortflg;
260 spin_lock(&iclog->ic_callback_lock);
261 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 if (!abortflg) {
263 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 cb->cb_next = NULL;
266 *(iclog->ic_callback_tail) = cb;
267 iclog->ic_callback_tail = &(cb->cb_next);
269 spin_unlock(&iclog->ic_callback_lock);
270 return abortflg;
274 xfs_log_release_iclog(
275 struct xfs_mount *mp,
276 struct xlog_in_core *iclog)
278 if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 return EIO;
283 return 0;
287 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
288 * to the reservation.
289 * 2. Potentially, push buffers at tail of log to disk.
291 * Each reservation is going to reserve extra space for a log record header.
292 * When writes happen to the on-disk log, we don't subtract the length of the
293 * log record header from any reservation. By wasting space in each
294 * reservation, we prevent over allocation problems.
297 xfs_log_reserve(
298 struct xfs_mount *mp,
299 int unit_bytes,
300 int cnt,
301 struct xlog_ticket **ticket,
302 __uint8_t client,
303 uint flags,
304 uint t_type)
306 struct log *log = mp->m_log;
307 struct xlog_ticket *internal_ticket;
308 int retval = 0;
310 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
312 if (XLOG_FORCED_SHUTDOWN(log))
313 return XFS_ERROR(EIO);
315 XFS_STATS_INC(xs_try_logspace);
318 if (*ticket != NULL) {
319 ASSERT(flags & XFS_LOG_PERM_RESERV);
320 internal_ticket = *ticket;
323 * this is a new transaction on the ticket, so we need to
324 * change the transaction ID so that the next transaction has a
325 * different TID in the log. Just add one to the existing tid
326 * so that we can see chains of rolling transactions in the log
327 * easily.
329 internal_ticket->t_tid++;
331 trace_xfs_log_reserve(log, internal_ticket);
333 xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 retval = xlog_regrant_write_log_space(log, internal_ticket);
335 } else {
336 /* may sleep if need to allocate more tickets */
337 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 client, flags,
339 KM_SLEEP|KM_MAYFAIL);
340 if (!internal_ticket)
341 return XFS_ERROR(ENOMEM);
342 internal_ticket->t_trans_type = t_type;
343 *ticket = internal_ticket;
345 trace_xfs_log_reserve(log, internal_ticket);
347 xlog_grant_push_ail(log,
348 (internal_ticket->t_unit_res *
349 internal_ticket->t_cnt));
350 retval = xlog_grant_log_space(log, internal_ticket);
353 return retval;
354 } /* xfs_log_reserve */
358 * Mount a log filesystem
360 * mp - ubiquitous xfs mount point structure
361 * log_target - buftarg of on-disk log device
362 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
363 * num_bblocks - Number of BBSIZE blocks in on-disk log
365 * Return error or zero.
368 xfs_log_mount(
369 xfs_mount_t *mp,
370 xfs_buftarg_t *log_target,
371 xfs_daddr_t blk_offset,
372 int num_bblks)
374 int error;
376 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 xfs_notice(mp, "Mounting Filesystem");
378 else {
379 xfs_notice(mp,
380 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
381 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
384 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
385 if (IS_ERR(mp->m_log)) {
386 error = -PTR_ERR(mp->m_log);
387 goto out;
391 * Initialize the AIL now we have a log.
393 error = xfs_trans_ail_init(mp);
394 if (error) {
395 xfs_warn(mp, "AIL initialisation failed: error %d", error);
396 goto out_free_log;
398 mp->m_log->l_ailp = mp->m_ail;
401 * skip log recovery on a norecovery mount. pretend it all
402 * just worked.
404 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
405 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
407 if (readonly)
408 mp->m_flags &= ~XFS_MOUNT_RDONLY;
410 error = xlog_recover(mp->m_log);
412 if (readonly)
413 mp->m_flags |= XFS_MOUNT_RDONLY;
414 if (error) {
415 xfs_warn(mp, "log mount/recovery failed: error %d",
416 error);
417 goto out_destroy_ail;
421 /* Normal transactions can now occur */
422 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
425 * Now the log has been fully initialised and we know were our
426 * space grant counters are, we can initialise the permanent ticket
427 * needed for delayed logging to work.
429 xlog_cil_init_post_recovery(mp->m_log);
431 return 0;
433 out_destroy_ail:
434 xfs_trans_ail_destroy(mp);
435 out_free_log:
436 xlog_dealloc_log(mp->m_log);
437 out:
438 return error;
442 * Finish the recovery of the file system. This is separate from
443 * the xfs_log_mount() call, because it depends on the code in
444 * xfs_mountfs() to read in the root and real-time bitmap inodes
445 * between calling xfs_log_mount() and here.
447 * mp - ubiquitous xfs mount point structure
450 xfs_log_mount_finish(xfs_mount_t *mp)
452 int error;
454 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 error = xlog_recover_finish(mp->m_log);
456 else {
457 error = 0;
458 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
461 return error;
465 * Final log writes as part of unmount.
467 * Mark the filesystem clean as unmount happens. Note that during relocation
468 * this routine needs to be executed as part of source-bag while the
469 * deallocation must not be done until source-end.
473 * Unmount record used to have a string "Unmount filesystem--" in the
474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475 * We just write the magic number now since that particular field isn't
476 * currently architecture converted and "nUmount" is a bit foo.
477 * As far as I know, there weren't any dependencies on the old behaviour.
481 xfs_log_unmount_write(xfs_mount_t *mp)
483 xlog_t *log = mp->m_log;
484 xlog_in_core_t *iclog;
485 #ifdef DEBUG
486 xlog_in_core_t *first_iclog;
487 #endif
488 xlog_ticket_t *tic = NULL;
489 xfs_lsn_t lsn;
490 int error;
493 * Don't write out unmount record on read-only mounts.
494 * Or, if we are doing a forced umount (typically because of IO errors).
496 if (mp->m_flags & XFS_MOUNT_RDONLY)
497 return 0;
499 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
502 #ifdef DEBUG
503 first_iclog = iclog = log->l_iclog;
504 do {
505 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 ASSERT(iclog->ic_offset == 0);
509 iclog = iclog->ic_next;
510 } while (iclog != first_iclog);
511 #endif
512 if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 error = xfs_log_reserve(mp, 600, 1, &tic,
514 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 if (!error) {
516 /* the data section must be 32 bit size aligned */
517 struct {
518 __uint16_t magic;
519 __uint16_t pad1;
520 __uint32_t pad2; /* may as well make it 64 bits */
521 } magic = {
522 .magic = XLOG_UNMOUNT_TYPE,
524 struct xfs_log_iovec reg = {
525 .i_addr = &magic,
526 .i_len = sizeof(magic),
527 .i_type = XLOG_REG_TYPE_UNMOUNT,
529 struct xfs_log_vec vec = {
530 .lv_niovecs = 1,
531 .lv_iovecp = &reg,
534 /* remove inited flag */
535 tic->t_flags = 0;
536 error = xlog_write(log, &vec, tic, &lsn,
537 NULL, XLOG_UNMOUNT_TRANS);
539 * At this point, we're umounting anyway,
540 * so there's no point in transitioning log state
541 * to IOERROR. Just continue...
545 if (error)
546 xfs_alert(mp, "%s: unmount record failed", __func__);
549 spin_lock(&log->l_icloglock);
550 iclog = log->l_iclog;
551 atomic_inc(&iclog->ic_refcnt);
552 xlog_state_want_sync(log, iclog);
553 spin_unlock(&log->l_icloglock);
554 error = xlog_state_release_iclog(log, iclog);
556 spin_lock(&log->l_icloglock);
557 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
558 iclog->ic_state == XLOG_STATE_DIRTY)) {
559 if (!XLOG_FORCED_SHUTDOWN(log)) {
560 xlog_wait(&iclog->ic_force_wait,
561 &log->l_icloglock);
562 } else {
563 spin_unlock(&log->l_icloglock);
565 } else {
566 spin_unlock(&log->l_icloglock);
568 if (tic) {
569 trace_xfs_log_umount_write(log, tic);
570 xlog_ungrant_log_space(log, tic);
571 xfs_log_ticket_put(tic);
573 } else {
575 * We're already in forced_shutdown mode, couldn't
576 * even attempt to write out the unmount transaction.
578 * Go through the motions of sync'ing and releasing
579 * the iclog, even though no I/O will actually happen,
580 * we need to wait for other log I/Os that may already
581 * be in progress. Do this as a separate section of
582 * code so we'll know if we ever get stuck here that
583 * we're in this odd situation of trying to unmount
584 * a file system that went into forced_shutdown as
585 * the result of an unmount..
587 spin_lock(&log->l_icloglock);
588 iclog = log->l_iclog;
589 atomic_inc(&iclog->ic_refcnt);
591 xlog_state_want_sync(log, iclog);
592 spin_unlock(&log->l_icloglock);
593 error = xlog_state_release_iclog(log, iclog);
595 spin_lock(&log->l_icloglock);
597 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
598 || iclog->ic_state == XLOG_STATE_DIRTY
599 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
601 xlog_wait(&iclog->ic_force_wait,
602 &log->l_icloglock);
603 } else {
604 spin_unlock(&log->l_icloglock);
608 return error;
609 } /* xfs_log_unmount_write */
612 * Deallocate log structures for unmount/relocation.
614 * We need to stop the aild from running before we destroy
615 * and deallocate the log as the aild references the log.
617 void
618 xfs_log_unmount(xfs_mount_t *mp)
620 xfs_trans_ail_destroy(mp);
621 xlog_dealloc_log(mp->m_log);
624 void
625 xfs_log_item_init(
626 struct xfs_mount *mp,
627 struct xfs_log_item *item,
628 int type,
629 struct xfs_item_ops *ops)
631 item->li_mountp = mp;
632 item->li_ailp = mp->m_ail;
633 item->li_type = type;
634 item->li_ops = ops;
635 item->li_lv = NULL;
637 INIT_LIST_HEAD(&item->li_ail);
638 INIT_LIST_HEAD(&item->li_cil);
642 * Write region vectors to log. The write happens using the space reservation
643 * of the ticket (tic). It is not a requirement that all writes for a given
644 * transaction occur with one call to xfs_log_write(). However, it is important
645 * to note that the transaction reservation code makes an assumption about the
646 * number of log headers a transaction requires that may be violated if you
647 * don't pass all the transaction vectors in one call....
650 xfs_log_write(
651 struct xfs_mount *mp,
652 struct xfs_log_iovec reg[],
653 int nentries,
654 struct xlog_ticket *tic,
655 xfs_lsn_t *start_lsn)
657 struct log *log = mp->m_log;
658 int error;
659 struct xfs_log_vec vec = {
660 .lv_niovecs = nentries,
661 .lv_iovecp = reg,
664 if (XLOG_FORCED_SHUTDOWN(log))
665 return XFS_ERROR(EIO);
667 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
668 if (error)
669 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
670 return error;
673 void
674 xfs_log_move_tail(xfs_mount_t *mp,
675 xfs_lsn_t tail_lsn)
677 xlog_ticket_t *tic;
678 xlog_t *log = mp->m_log;
679 int need_bytes, free_bytes;
681 if (XLOG_FORCED_SHUTDOWN(log))
682 return;
684 if (tail_lsn == 0)
685 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
687 /* tail_lsn == 1 implies that we weren't passed a valid value. */
688 if (tail_lsn != 1)
689 atomic64_set(&log->l_tail_lsn, tail_lsn);
691 if (!list_empty_careful(&log->l_writeq)) {
692 #ifdef DEBUG
693 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
694 panic("Recovery problem");
695 #endif
696 spin_lock(&log->l_grant_write_lock);
697 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
698 list_for_each_entry(tic, &log->l_writeq, t_queue) {
699 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
701 if (free_bytes < tic->t_unit_res && tail_lsn != 1)
702 break;
703 tail_lsn = 0;
704 free_bytes -= tic->t_unit_res;
705 trace_xfs_log_regrant_write_wake_up(log, tic);
706 wake_up(&tic->t_wait);
708 spin_unlock(&log->l_grant_write_lock);
711 if (!list_empty_careful(&log->l_reserveq)) {
712 #ifdef DEBUG
713 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
714 panic("Recovery problem");
715 #endif
716 spin_lock(&log->l_grant_reserve_lock);
717 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
718 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
719 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
720 need_bytes = tic->t_unit_res*tic->t_cnt;
721 else
722 need_bytes = tic->t_unit_res;
723 if (free_bytes < need_bytes && tail_lsn != 1)
724 break;
725 tail_lsn = 0;
726 free_bytes -= need_bytes;
727 trace_xfs_log_grant_wake_up(log, tic);
728 wake_up(&tic->t_wait);
730 spin_unlock(&log->l_grant_reserve_lock);
735 * Determine if we have a transaction that has gone to disk
736 * that needs to be covered. To begin the transition to the idle state
737 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
738 * If we are then in a state where covering is needed, the caller is informed
739 * that dummy transactions are required to move the log into the idle state.
741 * Because this is called as part of the sync process, we should also indicate
742 * that dummy transactions should be issued in anything but the covered or
743 * idle states. This ensures that the log tail is accurately reflected in
744 * the log at the end of the sync, hence if a crash occurrs avoids replay
745 * of transactions where the metadata is already on disk.
748 xfs_log_need_covered(xfs_mount_t *mp)
750 int needed = 0;
751 xlog_t *log = mp->m_log;
753 if (!xfs_fs_writable(mp))
754 return 0;
756 spin_lock(&log->l_icloglock);
757 switch (log->l_covered_state) {
758 case XLOG_STATE_COVER_DONE:
759 case XLOG_STATE_COVER_DONE2:
760 case XLOG_STATE_COVER_IDLE:
761 break;
762 case XLOG_STATE_COVER_NEED:
763 case XLOG_STATE_COVER_NEED2:
764 if (!xfs_ail_min_lsn(log->l_ailp) &&
765 xlog_iclogs_empty(log)) {
766 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
767 log->l_covered_state = XLOG_STATE_COVER_DONE;
768 else
769 log->l_covered_state = XLOG_STATE_COVER_DONE2;
771 /* FALLTHRU */
772 default:
773 needed = 1;
774 break;
776 spin_unlock(&log->l_icloglock);
777 return needed;
780 /******************************************************************************
782 * local routines
784 ******************************************************************************
787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
788 * The log manager must keep track of the last LR which was committed
789 * to disk. The lsn of this LR will become the new tail_lsn whenever
790 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
791 * the situation where stuff could be written into the log but nothing
792 * was ever in the AIL when asked. Eventually, we panic since the
793 * tail hits the head.
795 * We may be holding the log iclog lock upon entering this routine.
797 xfs_lsn_t
798 xlog_assign_tail_lsn(
799 struct xfs_mount *mp)
801 xfs_lsn_t tail_lsn;
802 struct log *log = mp->m_log;
804 tail_lsn = xfs_ail_min_lsn(mp->m_ail);
805 if (!tail_lsn)
806 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
808 atomic64_set(&log->l_tail_lsn, tail_lsn);
809 return tail_lsn;
813 * Return the space in the log between the tail and the head. The head
814 * is passed in the cycle/bytes formal parms. In the special case where
815 * the reserve head has wrapped passed the tail, this calculation is no
816 * longer valid. In this case, just return 0 which means there is no space
817 * in the log. This works for all places where this function is called
818 * with the reserve head. Of course, if the write head were to ever
819 * wrap the tail, we should blow up. Rather than catch this case here,
820 * we depend on other ASSERTions in other parts of the code. XXXmiken
822 * This code also handles the case where the reservation head is behind
823 * the tail. The details of this case are described below, but the end
824 * result is that we return the size of the log as the amount of space left.
826 STATIC int
827 xlog_space_left(
828 struct log *log,
829 atomic64_t *head)
831 int free_bytes;
832 int tail_bytes;
833 int tail_cycle;
834 int head_cycle;
835 int head_bytes;
837 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
838 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
839 tail_bytes = BBTOB(tail_bytes);
840 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
841 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
842 else if (tail_cycle + 1 < head_cycle)
843 return 0;
844 else if (tail_cycle < head_cycle) {
845 ASSERT(tail_cycle == (head_cycle - 1));
846 free_bytes = tail_bytes - head_bytes;
847 } else {
849 * The reservation head is behind the tail.
850 * In this case we just want to return the size of the
851 * log as the amount of space left.
853 xfs_alert(log->l_mp,
854 "xlog_space_left: head behind tail\n"
855 " tail_cycle = %d, tail_bytes = %d\n"
856 " GH cycle = %d, GH bytes = %d",
857 tail_cycle, tail_bytes, head_cycle, head_bytes);
858 ASSERT(0);
859 free_bytes = log->l_logsize;
861 return free_bytes;
866 * Log function which is called when an io completes.
868 * The log manager needs its own routine, in order to control what
869 * happens with the buffer after the write completes.
871 void
872 xlog_iodone(xfs_buf_t *bp)
874 xlog_in_core_t *iclog;
875 xlog_t *l;
876 int aborted;
878 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
879 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
880 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
881 aborted = 0;
882 l = iclog->ic_log;
885 * Race to shutdown the filesystem if we see an error.
887 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
888 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
889 xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
890 XFS_BUF_STALE(bp);
891 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
893 * This flag will be propagated to the trans-committed
894 * callback routines to let them know that the log-commit
895 * didn't succeed.
897 aborted = XFS_LI_ABORTED;
898 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
899 aborted = XFS_LI_ABORTED;
902 /* log I/O is always issued ASYNC */
903 ASSERT(XFS_BUF_ISASYNC(bp));
904 xlog_state_done_syncing(iclog, aborted);
906 * do not reference the buffer (bp) here as we could race
907 * with it being freed after writing the unmount record to the
908 * log.
911 } /* xlog_iodone */
914 * Return size of each in-core log record buffer.
916 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
918 * If the filesystem blocksize is too large, we may need to choose a
919 * larger size since the directory code currently logs entire blocks.
922 STATIC void
923 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
924 xlog_t *log)
926 int size;
927 int xhdrs;
929 if (mp->m_logbufs <= 0)
930 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
931 else
932 log->l_iclog_bufs = mp->m_logbufs;
935 * Buffer size passed in from mount system call.
937 if (mp->m_logbsize > 0) {
938 size = log->l_iclog_size = mp->m_logbsize;
939 log->l_iclog_size_log = 0;
940 while (size != 1) {
941 log->l_iclog_size_log++;
942 size >>= 1;
945 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
946 /* # headers = size / 32k
947 * one header holds cycles from 32k of data
950 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
951 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
952 xhdrs++;
953 log->l_iclog_hsize = xhdrs << BBSHIFT;
954 log->l_iclog_heads = xhdrs;
955 } else {
956 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
957 log->l_iclog_hsize = BBSIZE;
958 log->l_iclog_heads = 1;
960 goto done;
963 /* All machines use 32kB buffers by default. */
964 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
965 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
967 /* the default log size is 16k or 32k which is one header sector */
968 log->l_iclog_hsize = BBSIZE;
969 log->l_iclog_heads = 1;
971 done:
972 /* are we being asked to make the sizes selected above visible? */
973 if (mp->m_logbufs == 0)
974 mp->m_logbufs = log->l_iclog_bufs;
975 if (mp->m_logbsize == 0)
976 mp->m_logbsize = log->l_iclog_size;
977 } /* xlog_get_iclog_buffer_size */
981 * This routine initializes some of the log structure for a given mount point.
982 * Its primary purpose is to fill in enough, so recovery can occur. However,
983 * some other stuff may be filled in too.
985 STATIC xlog_t *
986 xlog_alloc_log(xfs_mount_t *mp,
987 xfs_buftarg_t *log_target,
988 xfs_daddr_t blk_offset,
989 int num_bblks)
991 xlog_t *log;
992 xlog_rec_header_t *head;
993 xlog_in_core_t **iclogp;
994 xlog_in_core_t *iclog, *prev_iclog=NULL;
995 xfs_buf_t *bp;
996 int i;
997 int error = ENOMEM;
998 uint log2_size = 0;
1000 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1001 if (!log) {
1002 xfs_warn(mp, "Log allocation failed: No memory!");
1003 goto out;
1006 log->l_mp = mp;
1007 log->l_targ = log_target;
1008 log->l_logsize = BBTOB(num_bblks);
1009 log->l_logBBstart = blk_offset;
1010 log->l_logBBsize = num_bblks;
1011 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1012 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1014 log->l_prev_block = -1;
1015 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1016 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1017 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1018 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1019 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1020 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1021 INIT_LIST_HEAD(&log->l_reserveq);
1022 INIT_LIST_HEAD(&log->l_writeq);
1023 spin_lock_init(&log->l_grant_reserve_lock);
1024 spin_lock_init(&log->l_grant_write_lock);
1026 error = EFSCORRUPTED;
1027 if (xfs_sb_version_hassector(&mp->m_sb)) {
1028 log2_size = mp->m_sb.sb_logsectlog;
1029 if (log2_size < BBSHIFT) {
1030 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1031 log2_size, BBSHIFT);
1032 goto out_free_log;
1035 log2_size -= BBSHIFT;
1036 if (log2_size > mp->m_sectbb_log) {
1037 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1038 log2_size, mp->m_sectbb_log);
1039 goto out_free_log;
1042 /* for larger sector sizes, must have v2 or external log */
1043 if (log2_size && log->l_logBBstart > 0 &&
1044 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1045 xfs_warn(mp,
1046 "log sector size (0x%x) invalid for configuration.",
1047 log2_size);
1048 goto out_free_log;
1051 log->l_sectBBsize = 1 << log2_size;
1053 xlog_get_iclog_buffer_size(mp, log);
1055 error = ENOMEM;
1056 bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1057 if (!bp)
1058 goto out_free_log;
1059 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1060 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1061 ASSERT(XFS_BUF_ISBUSY(bp));
1062 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1063 log->l_xbuf = bp;
1065 spin_lock_init(&log->l_icloglock);
1066 init_waitqueue_head(&log->l_flush_wait);
1068 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1069 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1071 iclogp = &log->l_iclog;
1073 * The amount of memory to allocate for the iclog structure is
1074 * rather funky due to the way the structure is defined. It is
1075 * done this way so that we can use different sizes for machines
1076 * with different amounts of memory. See the definition of
1077 * xlog_in_core_t in xfs_log_priv.h for details.
1079 ASSERT(log->l_iclog_size >= 4096);
1080 for (i=0; i < log->l_iclog_bufs; i++) {
1081 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1082 if (!*iclogp)
1083 goto out_free_iclog;
1085 iclog = *iclogp;
1086 iclog->ic_prev = prev_iclog;
1087 prev_iclog = iclog;
1089 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1090 log->l_iclog_size, 0);
1091 if (!bp)
1092 goto out_free_iclog;
1093 if (!XFS_BUF_CPSEMA(bp))
1094 ASSERT(0);
1095 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1096 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1097 iclog->ic_bp = bp;
1098 iclog->ic_data = bp->b_addr;
1099 #ifdef DEBUG
1100 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1101 #endif
1102 head = &iclog->ic_header;
1103 memset(head, 0, sizeof(xlog_rec_header_t));
1104 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1105 head->h_version = cpu_to_be32(
1106 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107 head->h_size = cpu_to_be32(log->l_iclog_size);
1108 /* new fields */
1109 head->h_fmt = cpu_to_be32(XLOG_FMT);
1110 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1112 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1113 iclog->ic_state = XLOG_STATE_ACTIVE;
1114 iclog->ic_log = log;
1115 atomic_set(&iclog->ic_refcnt, 0);
1116 spin_lock_init(&iclog->ic_callback_lock);
1117 iclog->ic_callback_tail = &(iclog->ic_callback);
1118 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1120 ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1121 ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1122 init_waitqueue_head(&iclog->ic_force_wait);
1123 init_waitqueue_head(&iclog->ic_write_wait);
1125 iclogp = &iclog->ic_next;
1127 *iclogp = log->l_iclog; /* complete ring */
1128 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1130 error = xlog_cil_init(log);
1131 if (error)
1132 goto out_free_iclog;
1133 return log;
1135 out_free_iclog:
1136 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1137 prev_iclog = iclog->ic_next;
1138 if (iclog->ic_bp)
1139 xfs_buf_free(iclog->ic_bp);
1140 kmem_free(iclog);
1142 spinlock_destroy(&log->l_icloglock);
1143 xfs_buf_free(log->l_xbuf);
1144 out_free_log:
1145 kmem_free(log);
1146 out:
1147 return ERR_PTR(-error);
1148 } /* xlog_alloc_log */
1152 * Write out the commit record of a transaction associated with the given
1153 * ticket. Return the lsn of the commit record.
1155 STATIC int
1156 xlog_commit_record(
1157 struct log *log,
1158 struct xlog_ticket *ticket,
1159 struct xlog_in_core **iclog,
1160 xfs_lsn_t *commitlsnp)
1162 struct xfs_mount *mp = log->l_mp;
1163 int error;
1164 struct xfs_log_iovec reg = {
1165 .i_addr = NULL,
1166 .i_len = 0,
1167 .i_type = XLOG_REG_TYPE_COMMIT,
1169 struct xfs_log_vec vec = {
1170 .lv_niovecs = 1,
1171 .lv_iovecp = &reg,
1174 ASSERT_ALWAYS(iclog);
1175 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1176 XLOG_COMMIT_TRANS);
1177 if (error)
1178 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1179 return error;
1183 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1184 * log space. This code pushes on the lsn which would supposedly free up
1185 * the 25% which we want to leave free. We may need to adopt a policy which
1186 * pushes on an lsn which is further along in the log once we reach the high
1187 * water mark. In this manner, we would be creating a low water mark.
1189 STATIC void
1190 xlog_grant_push_ail(
1191 struct log *log,
1192 int need_bytes)
1194 xfs_lsn_t threshold_lsn = 0;
1195 xfs_lsn_t last_sync_lsn;
1196 int free_blocks;
1197 int free_bytes;
1198 int threshold_block;
1199 int threshold_cycle;
1200 int free_threshold;
1202 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1204 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1205 free_blocks = BTOBBT(free_bytes);
1208 * Set the threshold for the minimum number of free blocks in the
1209 * log to the maximum of what the caller needs, one quarter of the
1210 * log, and 256 blocks.
1212 free_threshold = BTOBB(need_bytes);
1213 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1214 free_threshold = MAX(free_threshold, 256);
1215 if (free_blocks >= free_threshold)
1216 return;
1218 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1219 &threshold_block);
1220 threshold_block += free_threshold;
1221 if (threshold_block >= log->l_logBBsize) {
1222 threshold_block -= log->l_logBBsize;
1223 threshold_cycle += 1;
1225 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1226 threshold_block);
1228 * Don't pass in an lsn greater than the lsn of the last
1229 * log record known to be on disk. Use a snapshot of the last sync lsn
1230 * so that it doesn't change between the compare and the set.
1232 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1233 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1234 threshold_lsn = last_sync_lsn;
1237 * Get the transaction layer to kick the dirty buffers out to
1238 * disk asynchronously. No point in trying to do this if
1239 * the filesystem is shutting down.
1241 if (!XLOG_FORCED_SHUTDOWN(log))
1242 xfs_ail_push(log->l_ailp, threshold_lsn);
1246 * The bdstrat callback function for log bufs. This gives us a central
1247 * place to trap bufs in case we get hit by a log I/O error and need to
1248 * shutdown. Actually, in practice, even when we didn't get a log error,
1249 * we transition the iclogs to IOERROR state *after* flushing all existing
1250 * iclogs to disk. This is because we don't want anymore new transactions to be
1251 * started or completed afterwards.
1253 STATIC int
1254 xlog_bdstrat(
1255 struct xfs_buf *bp)
1257 struct xlog_in_core *iclog;
1259 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1260 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1261 XFS_BUF_ERROR(bp, EIO);
1262 XFS_BUF_STALE(bp);
1263 xfs_buf_ioend(bp, 0);
1265 * It would seem logical to return EIO here, but we rely on
1266 * the log state machine to propagate I/O errors instead of
1267 * doing it here.
1269 return 0;
1272 bp->b_flags |= _XBF_RUN_QUEUES;
1273 xfs_buf_iorequest(bp);
1274 return 0;
1278 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1279 * fashion. Previously, we should have moved the current iclog
1280 * ptr in the log to point to the next available iclog. This allows further
1281 * write to continue while this code syncs out an iclog ready to go.
1282 * Before an in-core log can be written out, the data section must be scanned
1283 * to save away the 1st word of each BBSIZE block into the header. We replace
1284 * it with the current cycle count. Each BBSIZE block is tagged with the
1285 * cycle count because there in an implicit assumption that drives will
1286 * guarantee that entire 512 byte blocks get written at once. In other words,
1287 * we can't have part of a 512 byte block written and part not written. By
1288 * tagging each block, we will know which blocks are valid when recovering
1289 * after an unclean shutdown.
1291 * This routine is single threaded on the iclog. No other thread can be in
1292 * this routine with the same iclog. Changing contents of iclog can there-
1293 * fore be done without grabbing the state machine lock. Updating the global
1294 * log will require grabbing the lock though.
1296 * The entire log manager uses a logical block numbering scheme. Only
1297 * log_sync (and then only bwrite()) know about the fact that the log may
1298 * not start with block zero on a given device. The log block start offset
1299 * is added immediately before calling bwrite().
1302 STATIC int
1303 xlog_sync(xlog_t *log,
1304 xlog_in_core_t *iclog)
1306 xfs_caddr_t dptr; /* pointer to byte sized element */
1307 xfs_buf_t *bp;
1308 int i;
1309 uint count; /* byte count of bwrite */
1310 uint count_init; /* initial count before roundup */
1311 int roundoff; /* roundoff to BB or stripe */
1312 int split = 0; /* split write into two regions */
1313 int error;
1314 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1316 XFS_STATS_INC(xs_log_writes);
1317 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1319 /* Add for LR header */
1320 count_init = log->l_iclog_hsize + iclog->ic_offset;
1322 /* Round out the log write size */
1323 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1324 /* we have a v2 stripe unit to use */
1325 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1326 } else {
1327 count = BBTOB(BTOBB(count_init));
1329 roundoff = count - count_init;
1330 ASSERT(roundoff >= 0);
1331 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1332 roundoff < log->l_mp->m_sb.sb_logsunit)
1334 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1335 roundoff < BBTOB(1)));
1337 /* move grant heads by roundoff in sync */
1338 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1339 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1341 /* put cycle number in every block */
1342 xlog_pack_data(log, iclog, roundoff);
1344 /* real byte length */
1345 if (v2) {
1346 iclog->ic_header.h_len =
1347 cpu_to_be32(iclog->ic_offset + roundoff);
1348 } else {
1349 iclog->ic_header.h_len =
1350 cpu_to_be32(iclog->ic_offset);
1353 bp = iclog->ic_bp;
1354 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1355 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1356 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1358 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1360 /* Do we need to split this write into 2 parts? */
1361 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1362 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1363 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1364 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1365 } else {
1366 iclog->ic_bwritecnt = 1;
1368 XFS_BUF_SET_COUNT(bp, count);
1369 XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */
1370 XFS_BUF_ZEROFLAGS(bp);
1371 XFS_BUF_BUSY(bp);
1372 XFS_BUF_ASYNC(bp);
1373 bp->b_flags |= XBF_LOG_BUFFER;
1375 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1377 * If we have an external log device, flush the data device
1378 * before flushing the log to make sure all meta data
1379 * written back from the AIL actually made it to disk
1380 * before writing out the new log tail LSN in the log buffer.
1382 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1383 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1384 XFS_BUF_ORDERED(bp);
1387 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1388 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1390 xlog_verify_iclog(log, iclog, count, B_TRUE);
1392 /* account for log which doesn't start at block #0 */
1393 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1395 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1396 * is shutting down.
1398 XFS_BUF_WRITE(bp);
1400 if ((error = xlog_bdstrat(bp))) {
1401 xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1402 XFS_BUF_ADDR(bp));
1403 return error;
1405 if (split) {
1406 bp = iclog->ic_log->l_xbuf;
1407 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1408 (unsigned long)1);
1409 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1410 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1411 XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1412 (__psint_t)count), split);
1413 XFS_BUF_SET_FSPRIVATE(bp, iclog);
1414 XFS_BUF_ZEROFLAGS(bp);
1415 XFS_BUF_BUSY(bp);
1416 XFS_BUF_ASYNC(bp);
1417 bp->b_flags |= XBF_LOG_BUFFER;
1418 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1419 XFS_BUF_ORDERED(bp);
1420 dptr = XFS_BUF_PTR(bp);
1422 * Bump the cycle numbers at the start of each block
1423 * since this part of the buffer is at the start of
1424 * a new cycle. Watch out for the header magic number
1425 * case, though.
1427 for (i = 0; i < split; i += BBSIZE) {
1428 be32_add_cpu((__be32 *)dptr, 1);
1429 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1430 be32_add_cpu((__be32 *)dptr, 1);
1431 dptr += BBSIZE;
1434 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1435 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1437 /* account for internal log which doesn't start at block #0 */
1438 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1439 XFS_BUF_WRITE(bp);
1440 if ((error = xlog_bdstrat(bp))) {
1441 xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1442 bp, XFS_BUF_ADDR(bp));
1443 return error;
1446 return 0;
1447 } /* xlog_sync */
1451 * Deallocate a log structure
1453 STATIC void
1454 xlog_dealloc_log(xlog_t *log)
1456 xlog_in_core_t *iclog, *next_iclog;
1457 int i;
1459 xlog_cil_destroy(log);
1462 * always need to ensure that the extra buffer does not point to memory
1463 * owned by another log buffer before we free it.
1465 xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1466 xfs_buf_free(log->l_xbuf);
1468 iclog = log->l_iclog;
1469 for (i=0; i<log->l_iclog_bufs; i++) {
1470 xfs_buf_free(iclog->ic_bp);
1471 next_iclog = iclog->ic_next;
1472 kmem_free(iclog);
1473 iclog = next_iclog;
1475 spinlock_destroy(&log->l_icloglock);
1477 log->l_mp->m_log = NULL;
1478 kmem_free(log);
1479 } /* xlog_dealloc_log */
1482 * Update counters atomically now that memcpy is done.
1484 /* ARGSUSED */
1485 static inline void
1486 xlog_state_finish_copy(xlog_t *log,
1487 xlog_in_core_t *iclog,
1488 int record_cnt,
1489 int copy_bytes)
1491 spin_lock(&log->l_icloglock);
1493 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1494 iclog->ic_offset += copy_bytes;
1496 spin_unlock(&log->l_icloglock);
1497 } /* xlog_state_finish_copy */
1503 * print out info relating to regions written which consume
1504 * the reservation
1506 void
1507 xlog_print_tic_res(
1508 struct xfs_mount *mp,
1509 struct xlog_ticket *ticket)
1511 uint i;
1512 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1514 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1515 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1516 "bformat",
1517 "bchunk",
1518 "efi_format",
1519 "efd_format",
1520 "iformat",
1521 "icore",
1522 "iext",
1523 "ibroot",
1524 "ilocal",
1525 "iattr_ext",
1526 "iattr_broot",
1527 "iattr_local",
1528 "qformat",
1529 "dquot",
1530 "quotaoff",
1531 "LR header",
1532 "unmount",
1533 "commit",
1534 "trans header"
1536 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1537 "SETATTR_NOT_SIZE",
1538 "SETATTR_SIZE",
1539 "INACTIVE",
1540 "CREATE",
1541 "CREATE_TRUNC",
1542 "TRUNCATE_FILE",
1543 "REMOVE",
1544 "LINK",
1545 "RENAME",
1546 "MKDIR",
1547 "RMDIR",
1548 "SYMLINK",
1549 "SET_DMATTRS",
1550 "GROWFS",
1551 "STRAT_WRITE",
1552 "DIOSTRAT",
1553 "WRITE_SYNC",
1554 "WRITEID",
1555 "ADDAFORK",
1556 "ATTRINVAL",
1557 "ATRUNCATE",
1558 "ATTR_SET",
1559 "ATTR_RM",
1560 "ATTR_FLAG",
1561 "CLEAR_AGI_BUCKET",
1562 "QM_SBCHANGE",
1563 "DUMMY1",
1564 "DUMMY2",
1565 "QM_QUOTAOFF",
1566 "QM_DQALLOC",
1567 "QM_SETQLIM",
1568 "QM_DQCLUSTER",
1569 "QM_QINOCREATE",
1570 "QM_QUOTAOFF_END",
1571 "SB_UNIT",
1572 "FSYNC_TS",
1573 "GROWFSRT_ALLOC",
1574 "GROWFSRT_ZERO",
1575 "GROWFSRT_FREE",
1576 "SWAPEXT"
1579 xfs_warn(mp,
1580 "xfs_log_write: reservation summary:\n"
1581 " trans type = %s (%u)\n"
1582 " unit res = %d bytes\n"
1583 " current res = %d bytes\n"
1584 " total reg = %u bytes (o/flow = %u bytes)\n"
1585 " ophdrs = %u (ophdr space = %u bytes)\n"
1586 " ophdr + reg = %u bytes\n"
1587 " num regions = %u\n",
1588 ((ticket->t_trans_type <= 0 ||
1589 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1590 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1591 ticket->t_trans_type,
1592 ticket->t_unit_res,
1593 ticket->t_curr_res,
1594 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1595 ticket->t_res_num_ophdrs, ophdr_spc,
1596 ticket->t_res_arr_sum +
1597 ticket->t_res_o_flow + ophdr_spc,
1598 ticket->t_res_num);
1600 for (i = 0; i < ticket->t_res_num; i++) {
1601 uint r_type = ticket->t_res_arr[i].r_type;
1602 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1603 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1604 "bad-rtype" : res_type_str[r_type-1]),
1605 ticket->t_res_arr[i].r_len);
1608 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1609 "xfs_log_write: reservation ran out. Need to up reservation");
1610 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1614 * Calculate the potential space needed by the log vector. Each region gets
1615 * its own xlog_op_header_t and may need to be double word aligned.
1617 static int
1618 xlog_write_calc_vec_length(
1619 struct xlog_ticket *ticket,
1620 struct xfs_log_vec *log_vector)
1622 struct xfs_log_vec *lv;
1623 int headers = 0;
1624 int len = 0;
1625 int i;
1627 /* acct for start rec of xact */
1628 if (ticket->t_flags & XLOG_TIC_INITED)
1629 headers++;
1631 for (lv = log_vector; lv; lv = lv->lv_next) {
1632 headers += lv->lv_niovecs;
1634 for (i = 0; i < lv->lv_niovecs; i++) {
1635 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1637 len += vecp->i_len;
1638 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1642 ticket->t_res_num_ophdrs += headers;
1643 len += headers * sizeof(struct xlog_op_header);
1645 return len;
1649 * If first write for transaction, insert start record We can't be trying to
1650 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1652 static int
1653 xlog_write_start_rec(
1654 struct xlog_op_header *ophdr,
1655 struct xlog_ticket *ticket)
1657 if (!(ticket->t_flags & XLOG_TIC_INITED))
1658 return 0;
1660 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1661 ophdr->oh_clientid = ticket->t_clientid;
1662 ophdr->oh_len = 0;
1663 ophdr->oh_flags = XLOG_START_TRANS;
1664 ophdr->oh_res2 = 0;
1666 ticket->t_flags &= ~XLOG_TIC_INITED;
1668 return sizeof(struct xlog_op_header);
1671 static xlog_op_header_t *
1672 xlog_write_setup_ophdr(
1673 struct log *log,
1674 struct xlog_op_header *ophdr,
1675 struct xlog_ticket *ticket,
1676 uint flags)
1678 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1679 ophdr->oh_clientid = ticket->t_clientid;
1680 ophdr->oh_res2 = 0;
1682 /* are we copying a commit or unmount record? */
1683 ophdr->oh_flags = flags;
1686 * We've seen logs corrupted with bad transaction client ids. This
1687 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1688 * and shut down the filesystem.
1690 switch (ophdr->oh_clientid) {
1691 case XFS_TRANSACTION:
1692 case XFS_VOLUME:
1693 case XFS_LOG:
1694 break;
1695 default:
1696 xfs_warn(log->l_mp,
1697 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1698 ophdr->oh_clientid, ticket);
1699 return NULL;
1702 return ophdr;
1706 * Set up the parameters of the region copy into the log. This has
1707 * to handle region write split across multiple log buffers - this
1708 * state is kept external to this function so that this code can
1709 * can be written in an obvious, self documenting manner.
1711 static int
1712 xlog_write_setup_copy(
1713 struct xlog_ticket *ticket,
1714 struct xlog_op_header *ophdr,
1715 int space_available,
1716 int space_required,
1717 int *copy_off,
1718 int *copy_len,
1719 int *last_was_partial_copy,
1720 int *bytes_consumed)
1722 int still_to_copy;
1724 still_to_copy = space_required - *bytes_consumed;
1725 *copy_off = *bytes_consumed;
1727 if (still_to_copy <= space_available) {
1728 /* write of region completes here */
1729 *copy_len = still_to_copy;
1730 ophdr->oh_len = cpu_to_be32(*copy_len);
1731 if (*last_was_partial_copy)
1732 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1733 *last_was_partial_copy = 0;
1734 *bytes_consumed = 0;
1735 return 0;
1738 /* partial write of region, needs extra log op header reservation */
1739 *copy_len = space_available;
1740 ophdr->oh_len = cpu_to_be32(*copy_len);
1741 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1742 if (*last_was_partial_copy)
1743 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1744 *bytes_consumed += *copy_len;
1745 (*last_was_partial_copy)++;
1747 /* account for new log op header */
1748 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1749 ticket->t_res_num_ophdrs++;
1751 return sizeof(struct xlog_op_header);
1754 static int
1755 xlog_write_copy_finish(
1756 struct log *log,
1757 struct xlog_in_core *iclog,
1758 uint flags,
1759 int *record_cnt,
1760 int *data_cnt,
1761 int *partial_copy,
1762 int *partial_copy_len,
1763 int log_offset,
1764 struct xlog_in_core **commit_iclog)
1766 if (*partial_copy) {
1768 * This iclog has already been marked WANT_SYNC by
1769 * xlog_state_get_iclog_space.
1771 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1772 *record_cnt = 0;
1773 *data_cnt = 0;
1774 return xlog_state_release_iclog(log, iclog);
1777 *partial_copy = 0;
1778 *partial_copy_len = 0;
1780 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1781 /* no more space in this iclog - push it. */
1782 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1783 *record_cnt = 0;
1784 *data_cnt = 0;
1786 spin_lock(&log->l_icloglock);
1787 xlog_state_want_sync(log, iclog);
1788 spin_unlock(&log->l_icloglock);
1790 if (!commit_iclog)
1791 return xlog_state_release_iclog(log, iclog);
1792 ASSERT(flags & XLOG_COMMIT_TRANS);
1793 *commit_iclog = iclog;
1796 return 0;
1800 * Write some region out to in-core log
1802 * This will be called when writing externally provided regions or when
1803 * writing out a commit record for a given transaction.
1805 * General algorithm:
1806 * 1. Find total length of this write. This may include adding to the
1807 * lengths passed in.
1808 * 2. Check whether we violate the tickets reservation.
1809 * 3. While writing to this iclog
1810 * A. Reserve as much space in this iclog as can get
1811 * B. If this is first write, save away start lsn
1812 * C. While writing this region:
1813 * 1. If first write of transaction, write start record
1814 * 2. Write log operation header (header per region)
1815 * 3. Find out if we can fit entire region into this iclog
1816 * 4. Potentially, verify destination memcpy ptr
1817 * 5. Memcpy (partial) region
1818 * 6. If partial copy, release iclog; otherwise, continue
1819 * copying more regions into current iclog
1820 * 4. Mark want sync bit (in simulation mode)
1821 * 5. Release iclog for potential flush to on-disk log.
1823 * ERRORS:
1824 * 1. Panic if reservation is overrun. This should never happen since
1825 * reservation amounts are generated internal to the filesystem.
1826 * NOTES:
1827 * 1. Tickets are single threaded data structures.
1828 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1829 * syncing routine. When a single log_write region needs to span
1830 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1831 * on all log operation writes which don't contain the end of the
1832 * region. The XLOG_END_TRANS bit is used for the in-core log
1833 * operation which contains the end of the continued log_write region.
1834 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1835 * we don't really know exactly how much space will be used. As a result,
1836 * we don't update ic_offset until the end when we know exactly how many
1837 * bytes have been written out.
1840 xlog_write(
1841 struct log *log,
1842 struct xfs_log_vec *log_vector,
1843 struct xlog_ticket *ticket,
1844 xfs_lsn_t *start_lsn,
1845 struct xlog_in_core **commit_iclog,
1846 uint flags)
1848 struct xlog_in_core *iclog = NULL;
1849 struct xfs_log_iovec *vecp;
1850 struct xfs_log_vec *lv;
1851 int len;
1852 int index;
1853 int partial_copy = 0;
1854 int partial_copy_len = 0;
1855 int contwr = 0;
1856 int record_cnt = 0;
1857 int data_cnt = 0;
1858 int error;
1860 *start_lsn = 0;
1862 len = xlog_write_calc_vec_length(ticket, log_vector);
1863 if (log->l_cilp) {
1865 * Region headers and bytes are already accounted for.
1866 * We only need to take into account start records and
1867 * split regions in this function.
1869 if (ticket->t_flags & XLOG_TIC_INITED)
1870 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1873 * Commit record headers need to be accounted for. These
1874 * come in as separate writes so are easy to detect.
1876 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1877 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1878 } else
1879 ticket->t_curr_res -= len;
1881 if (ticket->t_curr_res < 0)
1882 xlog_print_tic_res(log->l_mp, ticket);
1884 index = 0;
1885 lv = log_vector;
1886 vecp = lv->lv_iovecp;
1887 while (lv && index < lv->lv_niovecs) {
1888 void *ptr;
1889 int log_offset;
1891 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1892 &contwr, &log_offset);
1893 if (error)
1894 return error;
1896 ASSERT(log_offset <= iclog->ic_size - 1);
1897 ptr = iclog->ic_datap + log_offset;
1899 /* start_lsn is the first lsn written to. That's all we need. */
1900 if (!*start_lsn)
1901 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1904 * This loop writes out as many regions as can fit in the amount
1905 * of space which was allocated by xlog_state_get_iclog_space().
1907 while (lv && index < lv->lv_niovecs) {
1908 struct xfs_log_iovec *reg = &vecp[index];
1909 struct xlog_op_header *ophdr;
1910 int start_rec_copy;
1911 int copy_len;
1912 int copy_off;
1914 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1915 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1917 start_rec_copy = xlog_write_start_rec(ptr, ticket);
1918 if (start_rec_copy) {
1919 record_cnt++;
1920 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1921 start_rec_copy);
1924 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1925 if (!ophdr)
1926 return XFS_ERROR(EIO);
1928 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1929 sizeof(struct xlog_op_header));
1931 len += xlog_write_setup_copy(ticket, ophdr,
1932 iclog->ic_size-log_offset,
1933 reg->i_len,
1934 &copy_off, &copy_len,
1935 &partial_copy,
1936 &partial_copy_len);
1937 xlog_verify_dest_ptr(log, ptr);
1939 /* copy region */
1940 ASSERT(copy_len >= 0);
1941 memcpy(ptr, reg->i_addr + copy_off, copy_len);
1942 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1944 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1945 record_cnt++;
1946 data_cnt += contwr ? copy_len : 0;
1948 error = xlog_write_copy_finish(log, iclog, flags,
1949 &record_cnt, &data_cnt,
1950 &partial_copy,
1951 &partial_copy_len,
1952 log_offset,
1953 commit_iclog);
1954 if (error)
1955 return error;
1958 * if we had a partial copy, we need to get more iclog
1959 * space but we don't want to increment the region
1960 * index because there is still more is this region to
1961 * write.
1963 * If we completed writing this region, and we flushed
1964 * the iclog (indicated by resetting of the record
1965 * count), then we also need to get more log space. If
1966 * this was the last record, though, we are done and
1967 * can just return.
1969 if (partial_copy)
1970 break;
1972 if (++index == lv->lv_niovecs) {
1973 lv = lv->lv_next;
1974 index = 0;
1975 if (lv)
1976 vecp = lv->lv_iovecp;
1978 if (record_cnt == 0) {
1979 if (!lv)
1980 return 0;
1981 break;
1986 ASSERT(len == 0);
1988 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1989 if (!commit_iclog)
1990 return xlog_state_release_iclog(log, iclog);
1992 ASSERT(flags & XLOG_COMMIT_TRANS);
1993 *commit_iclog = iclog;
1994 return 0;
1998 /*****************************************************************************
2000 * State Machine functions
2002 *****************************************************************************
2005 /* Clean iclogs starting from the head. This ordering must be
2006 * maintained, so an iclog doesn't become ACTIVE beyond one that
2007 * is SYNCING. This is also required to maintain the notion that we use
2008 * a ordered wait queue to hold off would be writers to the log when every
2009 * iclog is trying to sync to disk.
2011 * State Change: DIRTY -> ACTIVE
2013 STATIC void
2014 xlog_state_clean_log(xlog_t *log)
2016 xlog_in_core_t *iclog;
2017 int changed = 0;
2019 iclog = log->l_iclog;
2020 do {
2021 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2022 iclog->ic_state = XLOG_STATE_ACTIVE;
2023 iclog->ic_offset = 0;
2024 ASSERT(iclog->ic_callback == NULL);
2026 * If the number of ops in this iclog indicate it just
2027 * contains the dummy transaction, we can
2028 * change state into IDLE (the second time around).
2029 * Otherwise we should change the state into
2030 * NEED a dummy.
2031 * We don't need to cover the dummy.
2033 if (!changed &&
2034 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2035 XLOG_COVER_OPS)) {
2036 changed = 1;
2037 } else {
2039 * We have two dirty iclogs so start over
2040 * This could also be num of ops indicates
2041 * this is not the dummy going out.
2043 changed = 2;
2045 iclog->ic_header.h_num_logops = 0;
2046 memset(iclog->ic_header.h_cycle_data, 0,
2047 sizeof(iclog->ic_header.h_cycle_data));
2048 iclog->ic_header.h_lsn = 0;
2049 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2050 /* do nothing */;
2051 else
2052 break; /* stop cleaning */
2053 iclog = iclog->ic_next;
2054 } while (iclog != log->l_iclog);
2056 /* log is locked when we are called */
2058 * Change state for the dummy log recording.
2059 * We usually go to NEED. But we go to NEED2 if the changed indicates
2060 * we are done writing the dummy record.
2061 * If we are done with the second dummy recored (DONE2), then
2062 * we go to IDLE.
2064 if (changed) {
2065 switch (log->l_covered_state) {
2066 case XLOG_STATE_COVER_IDLE:
2067 case XLOG_STATE_COVER_NEED:
2068 case XLOG_STATE_COVER_NEED2:
2069 log->l_covered_state = XLOG_STATE_COVER_NEED;
2070 break;
2072 case XLOG_STATE_COVER_DONE:
2073 if (changed == 1)
2074 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2075 else
2076 log->l_covered_state = XLOG_STATE_COVER_NEED;
2077 break;
2079 case XLOG_STATE_COVER_DONE2:
2080 if (changed == 1)
2081 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2082 else
2083 log->l_covered_state = XLOG_STATE_COVER_NEED;
2084 break;
2086 default:
2087 ASSERT(0);
2090 } /* xlog_state_clean_log */
2092 STATIC xfs_lsn_t
2093 xlog_get_lowest_lsn(
2094 xlog_t *log)
2096 xlog_in_core_t *lsn_log;
2097 xfs_lsn_t lowest_lsn, lsn;
2099 lsn_log = log->l_iclog;
2100 lowest_lsn = 0;
2101 do {
2102 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2103 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2104 if ((lsn && !lowest_lsn) ||
2105 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2106 lowest_lsn = lsn;
2109 lsn_log = lsn_log->ic_next;
2110 } while (lsn_log != log->l_iclog);
2111 return lowest_lsn;
2115 STATIC void
2116 xlog_state_do_callback(
2117 xlog_t *log,
2118 int aborted,
2119 xlog_in_core_t *ciclog)
2121 xlog_in_core_t *iclog;
2122 xlog_in_core_t *first_iclog; /* used to know when we've
2123 * processed all iclogs once */
2124 xfs_log_callback_t *cb, *cb_next;
2125 int flushcnt = 0;
2126 xfs_lsn_t lowest_lsn;
2127 int ioerrors; /* counter: iclogs with errors */
2128 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2129 int funcdidcallbacks; /* flag: function did callbacks */
2130 int repeats; /* for issuing console warnings if
2131 * looping too many times */
2132 int wake = 0;
2134 spin_lock(&log->l_icloglock);
2135 first_iclog = iclog = log->l_iclog;
2136 ioerrors = 0;
2137 funcdidcallbacks = 0;
2138 repeats = 0;
2140 do {
2142 * Scan all iclogs starting with the one pointed to by the
2143 * log. Reset this starting point each time the log is
2144 * unlocked (during callbacks).
2146 * Keep looping through iclogs until one full pass is made
2147 * without running any callbacks.
2149 first_iclog = log->l_iclog;
2150 iclog = log->l_iclog;
2151 loopdidcallbacks = 0;
2152 repeats++;
2154 do {
2156 /* skip all iclogs in the ACTIVE & DIRTY states */
2157 if (iclog->ic_state &
2158 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2159 iclog = iclog->ic_next;
2160 continue;
2164 * Between marking a filesystem SHUTDOWN and stopping
2165 * the log, we do flush all iclogs to disk (if there
2166 * wasn't a log I/O error). So, we do want things to
2167 * go smoothly in case of just a SHUTDOWN w/o a
2168 * LOG_IO_ERROR.
2170 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2172 * Can only perform callbacks in order. Since
2173 * this iclog is not in the DONE_SYNC/
2174 * DO_CALLBACK state, we skip the rest and
2175 * just try to clean up. If we set our iclog
2176 * to DO_CALLBACK, we will not process it when
2177 * we retry since a previous iclog is in the
2178 * CALLBACK and the state cannot change since
2179 * we are holding the l_icloglock.
2181 if (!(iclog->ic_state &
2182 (XLOG_STATE_DONE_SYNC |
2183 XLOG_STATE_DO_CALLBACK))) {
2184 if (ciclog && (ciclog->ic_state ==
2185 XLOG_STATE_DONE_SYNC)) {
2186 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2188 break;
2191 * We now have an iclog that is in either the
2192 * DO_CALLBACK or DONE_SYNC states. The other
2193 * states (WANT_SYNC, SYNCING, or CALLBACK were
2194 * caught by the above if and are going to
2195 * clean (i.e. we aren't doing their callbacks)
2196 * see the above if.
2200 * We will do one more check here to see if we
2201 * have chased our tail around.
2204 lowest_lsn = xlog_get_lowest_lsn(log);
2205 if (lowest_lsn &&
2206 XFS_LSN_CMP(lowest_lsn,
2207 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2208 iclog = iclog->ic_next;
2209 continue; /* Leave this iclog for
2210 * another thread */
2213 iclog->ic_state = XLOG_STATE_CALLBACK;
2217 * update the last_sync_lsn before we drop the
2218 * icloglock to ensure we are the only one that
2219 * can update it.
2221 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2222 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2223 atomic64_set(&log->l_last_sync_lsn,
2224 be64_to_cpu(iclog->ic_header.h_lsn));
2226 } else
2227 ioerrors++;
2229 spin_unlock(&log->l_icloglock);
2232 * Keep processing entries in the callback list until
2233 * we come around and it is empty. We need to
2234 * atomically see that the list is empty and change the
2235 * state to DIRTY so that we don't miss any more
2236 * callbacks being added.
2238 spin_lock(&iclog->ic_callback_lock);
2239 cb = iclog->ic_callback;
2240 while (cb) {
2241 iclog->ic_callback_tail = &(iclog->ic_callback);
2242 iclog->ic_callback = NULL;
2243 spin_unlock(&iclog->ic_callback_lock);
2245 /* perform callbacks in the order given */
2246 for (; cb; cb = cb_next) {
2247 cb_next = cb->cb_next;
2248 cb->cb_func(cb->cb_arg, aborted);
2250 spin_lock(&iclog->ic_callback_lock);
2251 cb = iclog->ic_callback;
2254 loopdidcallbacks++;
2255 funcdidcallbacks++;
2257 spin_lock(&log->l_icloglock);
2258 ASSERT(iclog->ic_callback == NULL);
2259 spin_unlock(&iclog->ic_callback_lock);
2260 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2261 iclog->ic_state = XLOG_STATE_DIRTY;
2264 * Transition from DIRTY to ACTIVE if applicable.
2265 * NOP if STATE_IOERROR.
2267 xlog_state_clean_log(log);
2269 /* wake up threads waiting in xfs_log_force() */
2270 wake_up_all(&iclog->ic_force_wait);
2272 iclog = iclog->ic_next;
2273 } while (first_iclog != iclog);
2275 if (repeats > 5000) {
2276 flushcnt += repeats;
2277 repeats = 0;
2278 xfs_warn(log->l_mp,
2279 "%s: possible infinite loop (%d iterations)",
2280 __func__, flushcnt);
2282 } while (!ioerrors && loopdidcallbacks);
2285 * make one last gasp attempt to see if iclogs are being left in
2286 * limbo..
2288 #ifdef DEBUG
2289 if (funcdidcallbacks) {
2290 first_iclog = iclog = log->l_iclog;
2291 do {
2292 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2294 * Terminate the loop if iclogs are found in states
2295 * which will cause other threads to clean up iclogs.
2297 * SYNCING - i/o completion will go through logs
2298 * DONE_SYNC - interrupt thread should be waiting for
2299 * l_icloglock
2300 * IOERROR - give up hope all ye who enter here
2302 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2303 iclog->ic_state == XLOG_STATE_SYNCING ||
2304 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2305 iclog->ic_state == XLOG_STATE_IOERROR )
2306 break;
2307 iclog = iclog->ic_next;
2308 } while (first_iclog != iclog);
2310 #endif
2312 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2313 wake = 1;
2314 spin_unlock(&log->l_icloglock);
2316 if (wake)
2317 wake_up_all(&log->l_flush_wait);
2322 * Finish transitioning this iclog to the dirty state.
2324 * Make sure that we completely execute this routine only when this is
2325 * the last call to the iclog. There is a good chance that iclog flushes,
2326 * when we reach the end of the physical log, get turned into 2 separate
2327 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2328 * routine. By using the reference count bwritecnt, we guarantee that only
2329 * the second completion goes through.
2331 * Callbacks could take time, so they are done outside the scope of the
2332 * global state machine log lock.
2334 STATIC void
2335 xlog_state_done_syncing(
2336 xlog_in_core_t *iclog,
2337 int aborted)
2339 xlog_t *log = iclog->ic_log;
2341 spin_lock(&log->l_icloglock);
2343 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2344 iclog->ic_state == XLOG_STATE_IOERROR);
2345 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2346 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2350 * If we got an error, either on the first buffer, or in the case of
2351 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2352 * and none should ever be attempted to be written to disk
2353 * again.
2355 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2356 if (--iclog->ic_bwritecnt == 1) {
2357 spin_unlock(&log->l_icloglock);
2358 return;
2360 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2364 * Someone could be sleeping prior to writing out the next
2365 * iclog buffer, we wake them all, one will get to do the
2366 * I/O, the others get to wait for the result.
2368 wake_up_all(&iclog->ic_write_wait);
2369 spin_unlock(&log->l_icloglock);
2370 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2371 } /* xlog_state_done_syncing */
2375 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2376 * sleep. We wait on the flush queue on the head iclog as that should be
2377 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2378 * we will wait here and all new writes will sleep until a sync completes.
2380 * The in-core logs are used in a circular fashion. They are not used
2381 * out-of-order even when an iclog past the head is free.
2383 * return:
2384 * * log_offset where xlog_write() can start writing into the in-core
2385 * log's data space.
2386 * * in-core log pointer to which xlog_write() should write.
2387 * * boolean indicating this is a continued write to an in-core log.
2388 * If this is the last write, then the in-core log's offset field
2389 * needs to be incremented, depending on the amount of data which
2390 * is copied.
2392 STATIC int
2393 xlog_state_get_iclog_space(xlog_t *log,
2394 int len,
2395 xlog_in_core_t **iclogp,
2396 xlog_ticket_t *ticket,
2397 int *continued_write,
2398 int *logoffsetp)
2400 int log_offset;
2401 xlog_rec_header_t *head;
2402 xlog_in_core_t *iclog;
2403 int error;
2405 restart:
2406 spin_lock(&log->l_icloglock);
2407 if (XLOG_FORCED_SHUTDOWN(log)) {
2408 spin_unlock(&log->l_icloglock);
2409 return XFS_ERROR(EIO);
2412 iclog = log->l_iclog;
2413 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2414 XFS_STATS_INC(xs_log_noiclogs);
2416 /* Wait for log writes to have flushed */
2417 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2418 goto restart;
2421 head = &iclog->ic_header;
2423 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2424 log_offset = iclog->ic_offset;
2426 /* On the 1st write to an iclog, figure out lsn. This works
2427 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2428 * committing to. If the offset is set, that's how many blocks
2429 * must be written.
2431 if (log_offset == 0) {
2432 ticket->t_curr_res -= log->l_iclog_hsize;
2433 xlog_tic_add_region(ticket,
2434 log->l_iclog_hsize,
2435 XLOG_REG_TYPE_LRHEADER);
2436 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2437 head->h_lsn = cpu_to_be64(
2438 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2439 ASSERT(log->l_curr_block >= 0);
2442 /* If there is enough room to write everything, then do it. Otherwise,
2443 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2444 * bit is on, so this will get flushed out. Don't update ic_offset
2445 * until you know exactly how many bytes get copied. Therefore, wait
2446 * until later to update ic_offset.
2448 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2449 * can fit into remaining data section.
2451 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2452 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2455 * If I'm the only one writing to this iclog, sync it to disk.
2456 * We need to do an atomic compare and decrement here to avoid
2457 * racing with concurrent atomic_dec_and_lock() calls in
2458 * xlog_state_release_iclog() when there is more than one
2459 * reference to the iclog.
2461 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2462 /* we are the only one */
2463 spin_unlock(&log->l_icloglock);
2464 error = xlog_state_release_iclog(log, iclog);
2465 if (error)
2466 return error;
2467 } else {
2468 spin_unlock(&log->l_icloglock);
2470 goto restart;
2473 /* Do we have enough room to write the full amount in the remainder
2474 * of this iclog? Or must we continue a write on the next iclog and
2475 * mark this iclog as completely taken? In the case where we switch
2476 * iclogs (to mark it taken), this particular iclog will release/sync
2477 * to disk in xlog_write().
2479 if (len <= iclog->ic_size - iclog->ic_offset) {
2480 *continued_write = 0;
2481 iclog->ic_offset += len;
2482 } else {
2483 *continued_write = 1;
2484 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2486 *iclogp = iclog;
2488 ASSERT(iclog->ic_offset <= iclog->ic_size);
2489 spin_unlock(&log->l_icloglock);
2491 *logoffsetp = log_offset;
2492 return 0;
2493 } /* xlog_state_get_iclog_space */
2496 * Atomically get the log space required for a log ticket.
2498 * Once a ticket gets put onto the reserveq, it will only return after
2499 * the needed reservation is satisfied.
2501 * This function is structured so that it has a lock free fast path. This is
2502 * necessary because every new transaction reservation will come through this
2503 * path. Hence any lock will be globally hot if we take it unconditionally on
2504 * every pass.
2506 * As tickets are only ever moved on and off the reserveq under the
2507 * l_grant_reserve_lock, we only need to take that lock if we are going
2508 * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2509 * ticket was never added to the reserveq because the t_queue list head will be
2510 * empty and we hold the only reference to it so it can safely be checked
2511 * unlocked.
2513 STATIC int
2514 xlog_grant_log_space(xlog_t *log,
2515 xlog_ticket_t *tic)
2517 int free_bytes;
2518 int need_bytes;
2520 #ifdef DEBUG
2521 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2522 panic("grant Recovery problem");
2523 #endif
2525 trace_xfs_log_grant_enter(log, tic);
2527 need_bytes = tic->t_unit_res;
2528 if (tic->t_flags & XFS_LOG_PERM_RESERV)
2529 need_bytes *= tic->t_ocnt;
2531 /* something is already sleeping; insert new transaction at end */
2532 if (!list_empty_careful(&log->l_reserveq)) {
2533 spin_lock(&log->l_grant_reserve_lock);
2534 /* recheck the queue now we are locked */
2535 if (list_empty(&log->l_reserveq)) {
2536 spin_unlock(&log->l_grant_reserve_lock);
2537 goto redo;
2539 list_add_tail(&tic->t_queue, &log->l_reserveq);
2541 trace_xfs_log_grant_sleep1(log, tic);
2544 * Gotta check this before going to sleep, while we're
2545 * holding the grant lock.
2547 if (XLOG_FORCED_SHUTDOWN(log))
2548 goto error_return;
2550 XFS_STATS_INC(xs_sleep_logspace);
2551 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2554 * If we got an error, and the filesystem is shutting down,
2555 * we'll catch it down below. So just continue...
2557 trace_xfs_log_grant_wake1(log, tic);
2560 redo:
2561 if (XLOG_FORCED_SHUTDOWN(log))
2562 goto error_return_unlocked;
2564 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2565 if (free_bytes < need_bytes) {
2566 spin_lock(&log->l_grant_reserve_lock);
2567 if (list_empty(&tic->t_queue))
2568 list_add_tail(&tic->t_queue, &log->l_reserveq);
2570 trace_xfs_log_grant_sleep2(log, tic);
2572 if (XLOG_FORCED_SHUTDOWN(log))
2573 goto error_return;
2575 xlog_grant_push_ail(log, need_bytes);
2577 XFS_STATS_INC(xs_sleep_logspace);
2578 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2580 trace_xfs_log_grant_wake2(log, tic);
2581 goto redo;
2584 if (!list_empty(&tic->t_queue)) {
2585 spin_lock(&log->l_grant_reserve_lock);
2586 list_del_init(&tic->t_queue);
2587 spin_unlock(&log->l_grant_reserve_lock);
2590 /* we've got enough space */
2591 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2592 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2593 trace_xfs_log_grant_exit(log, tic);
2594 xlog_verify_grant_tail(log);
2595 return 0;
2597 error_return_unlocked:
2598 spin_lock(&log->l_grant_reserve_lock);
2599 error_return:
2600 list_del_init(&tic->t_queue);
2601 spin_unlock(&log->l_grant_reserve_lock);
2602 trace_xfs_log_grant_error(log, tic);
2605 * If we are failing, make sure the ticket doesn't have any
2606 * current reservations. We don't want to add this back when
2607 * the ticket/transaction gets cancelled.
2609 tic->t_curr_res = 0;
2610 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2611 return XFS_ERROR(EIO);
2612 } /* xlog_grant_log_space */
2616 * Replenish the byte reservation required by moving the grant write head.
2618 * Similar to xlog_grant_log_space, the function is structured to have a lock
2619 * free fast path.
2621 STATIC int
2622 xlog_regrant_write_log_space(xlog_t *log,
2623 xlog_ticket_t *tic)
2625 int free_bytes, need_bytes;
2627 tic->t_curr_res = tic->t_unit_res;
2628 xlog_tic_reset_res(tic);
2630 if (tic->t_cnt > 0)
2631 return 0;
2633 #ifdef DEBUG
2634 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2635 panic("regrant Recovery problem");
2636 #endif
2638 trace_xfs_log_regrant_write_enter(log, tic);
2639 if (XLOG_FORCED_SHUTDOWN(log))
2640 goto error_return_unlocked;
2642 /* If there are other waiters on the queue then give them a
2643 * chance at logspace before us. Wake up the first waiters,
2644 * if we do not wake up all the waiters then go to sleep waiting
2645 * for more free space, otherwise try to get some space for
2646 * this transaction.
2648 need_bytes = tic->t_unit_res;
2649 if (!list_empty_careful(&log->l_writeq)) {
2650 struct xlog_ticket *ntic;
2652 spin_lock(&log->l_grant_write_lock);
2653 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2654 list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2655 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2657 if (free_bytes < ntic->t_unit_res)
2658 break;
2659 free_bytes -= ntic->t_unit_res;
2660 wake_up(&ntic->t_wait);
2663 if (ntic != list_first_entry(&log->l_writeq,
2664 struct xlog_ticket, t_queue)) {
2665 if (list_empty(&tic->t_queue))
2666 list_add_tail(&tic->t_queue, &log->l_writeq);
2667 trace_xfs_log_regrant_write_sleep1(log, tic);
2669 xlog_grant_push_ail(log, need_bytes);
2671 XFS_STATS_INC(xs_sleep_logspace);
2672 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2673 trace_xfs_log_regrant_write_wake1(log, tic);
2674 } else
2675 spin_unlock(&log->l_grant_write_lock);
2678 redo:
2679 if (XLOG_FORCED_SHUTDOWN(log))
2680 goto error_return_unlocked;
2682 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2683 if (free_bytes < need_bytes) {
2684 spin_lock(&log->l_grant_write_lock);
2685 if (list_empty(&tic->t_queue))
2686 list_add_tail(&tic->t_queue, &log->l_writeq);
2688 if (XLOG_FORCED_SHUTDOWN(log))
2689 goto error_return;
2691 xlog_grant_push_ail(log, need_bytes);
2693 XFS_STATS_INC(xs_sleep_logspace);
2694 trace_xfs_log_regrant_write_sleep2(log, tic);
2695 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2697 trace_xfs_log_regrant_write_wake2(log, tic);
2698 goto redo;
2701 if (!list_empty(&tic->t_queue)) {
2702 spin_lock(&log->l_grant_write_lock);
2703 list_del_init(&tic->t_queue);
2704 spin_unlock(&log->l_grant_write_lock);
2707 /* we've got enough space */
2708 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2709 trace_xfs_log_regrant_write_exit(log, tic);
2710 xlog_verify_grant_tail(log);
2711 return 0;
2714 error_return_unlocked:
2715 spin_lock(&log->l_grant_write_lock);
2716 error_return:
2717 list_del_init(&tic->t_queue);
2718 spin_unlock(&log->l_grant_write_lock);
2719 trace_xfs_log_regrant_write_error(log, tic);
2722 * If we are failing, make sure the ticket doesn't have any
2723 * current reservations. We don't want to add this back when
2724 * the ticket/transaction gets cancelled.
2726 tic->t_curr_res = 0;
2727 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2728 return XFS_ERROR(EIO);
2729 } /* xlog_regrant_write_log_space */
2732 /* The first cnt-1 times through here we don't need to
2733 * move the grant write head because the permanent
2734 * reservation has reserved cnt times the unit amount.
2735 * Release part of current permanent unit reservation and
2736 * reset current reservation to be one units worth. Also
2737 * move grant reservation head forward.
2739 STATIC void
2740 xlog_regrant_reserve_log_space(xlog_t *log,
2741 xlog_ticket_t *ticket)
2743 trace_xfs_log_regrant_reserve_enter(log, ticket);
2745 if (ticket->t_cnt > 0)
2746 ticket->t_cnt--;
2748 xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2749 ticket->t_curr_res);
2750 xlog_grant_sub_space(log, &log->l_grant_write_head,
2751 ticket->t_curr_res);
2752 ticket->t_curr_res = ticket->t_unit_res;
2753 xlog_tic_reset_res(ticket);
2755 trace_xfs_log_regrant_reserve_sub(log, ticket);
2757 /* just return if we still have some of the pre-reserved space */
2758 if (ticket->t_cnt > 0)
2759 return;
2761 xlog_grant_add_space(log, &log->l_grant_reserve_head,
2762 ticket->t_unit_res);
2764 trace_xfs_log_regrant_reserve_exit(log, ticket);
2766 ticket->t_curr_res = ticket->t_unit_res;
2767 xlog_tic_reset_res(ticket);
2768 } /* xlog_regrant_reserve_log_space */
2772 * Give back the space left from a reservation.
2774 * All the information we need to make a correct determination of space left
2775 * is present. For non-permanent reservations, things are quite easy. The
2776 * count should have been decremented to zero. We only need to deal with the
2777 * space remaining in the current reservation part of the ticket. If the
2778 * ticket contains a permanent reservation, there may be left over space which
2779 * needs to be released. A count of N means that N-1 refills of the current
2780 * reservation can be done before we need to ask for more space. The first
2781 * one goes to fill up the first current reservation. Once we run out of
2782 * space, the count will stay at zero and the only space remaining will be
2783 * in the current reservation field.
2785 STATIC void
2786 xlog_ungrant_log_space(xlog_t *log,
2787 xlog_ticket_t *ticket)
2789 int bytes;
2791 if (ticket->t_cnt > 0)
2792 ticket->t_cnt--;
2794 trace_xfs_log_ungrant_enter(log, ticket);
2795 trace_xfs_log_ungrant_sub(log, ticket);
2798 * If this is a permanent reservation ticket, we may be able to free
2799 * up more space based on the remaining count.
2801 bytes = ticket->t_curr_res;
2802 if (ticket->t_cnt > 0) {
2803 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2804 bytes += ticket->t_unit_res*ticket->t_cnt;
2807 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2808 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2810 trace_xfs_log_ungrant_exit(log, ticket);
2812 xfs_log_move_tail(log->l_mp, 1);
2813 } /* xlog_ungrant_log_space */
2817 * Flush iclog to disk if this is the last reference to the given iclog and
2818 * the WANT_SYNC bit is set.
2820 * When this function is entered, the iclog is not necessarily in the
2821 * WANT_SYNC state. It may be sitting around waiting to get filled.
2825 STATIC int
2826 xlog_state_release_iclog(
2827 xlog_t *log,
2828 xlog_in_core_t *iclog)
2830 int sync = 0; /* do we sync? */
2832 if (iclog->ic_state & XLOG_STATE_IOERROR)
2833 return XFS_ERROR(EIO);
2835 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2836 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2837 return 0;
2839 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2840 spin_unlock(&log->l_icloglock);
2841 return XFS_ERROR(EIO);
2843 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2844 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2846 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2847 /* update tail before writing to iclog */
2848 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2849 sync++;
2850 iclog->ic_state = XLOG_STATE_SYNCING;
2851 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2852 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2853 /* cycle incremented when incrementing curr_block */
2855 spin_unlock(&log->l_icloglock);
2858 * We let the log lock go, so it's possible that we hit a log I/O
2859 * error or some other SHUTDOWN condition that marks the iclog
2860 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2861 * this iclog has consistent data, so we ignore IOERROR
2862 * flags after this point.
2864 if (sync)
2865 return xlog_sync(log, iclog);
2866 return 0;
2867 } /* xlog_state_release_iclog */
2871 * This routine will mark the current iclog in the ring as WANT_SYNC
2872 * and move the current iclog pointer to the next iclog in the ring.
2873 * When this routine is called from xlog_state_get_iclog_space(), the
2874 * exact size of the iclog has not yet been determined. All we know is
2875 * that every data block. We have run out of space in this log record.
2877 STATIC void
2878 xlog_state_switch_iclogs(xlog_t *log,
2879 xlog_in_core_t *iclog,
2880 int eventual_size)
2882 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2883 if (!eventual_size)
2884 eventual_size = iclog->ic_offset;
2885 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2886 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2887 log->l_prev_block = log->l_curr_block;
2888 log->l_prev_cycle = log->l_curr_cycle;
2890 /* roll log?: ic_offset changed later */
2891 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2893 /* Round up to next log-sunit */
2894 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2895 log->l_mp->m_sb.sb_logsunit > 1) {
2896 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2897 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2900 if (log->l_curr_block >= log->l_logBBsize) {
2901 log->l_curr_cycle++;
2902 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2903 log->l_curr_cycle++;
2904 log->l_curr_block -= log->l_logBBsize;
2905 ASSERT(log->l_curr_block >= 0);
2907 ASSERT(iclog == log->l_iclog);
2908 log->l_iclog = iclog->ic_next;
2909 } /* xlog_state_switch_iclogs */
2912 * Write out all data in the in-core log as of this exact moment in time.
2914 * Data may be written to the in-core log during this call. However,
2915 * we don't guarantee this data will be written out. A change from past
2916 * implementation means this routine will *not* write out zero length LRs.
2918 * Basically, we try and perform an intelligent scan of the in-core logs.
2919 * If we determine there is no flushable data, we just return. There is no
2920 * flushable data if:
2922 * 1. the current iclog is active and has no data; the previous iclog
2923 * is in the active or dirty state.
2924 * 2. the current iclog is drity, and the previous iclog is in the
2925 * active or dirty state.
2927 * We may sleep if:
2929 * 1. the current iclog is not in the active nor dirty state.
2930 * 2. the current iclog dirty, and the previous iclog is not in the
2931 * active nor dirty state.
2932 * 3. the current iclog is active, and there is another thread writing
2933 * to this particular iclog.
2934 * 4. a) the current iclog is active and has no other writers
2935 * b) when we return from flushing out this iclog, it is still
2936 * not in the active nor dirty state.
2939 _xfs_log_force(
2940 struct xfs_mount *mp,
2941 uint flags,
2942 int *log_flushed)
2944 struct log *log = mp->m_log;
2945 struct xlog_in_core *iclog;
2946 xfs_lsn_t lsn;
2948 XFS_STATS_INC(xs_log_force);
2950 if (log->l_cilp)
2951 xlog_cil_force(log);
2953 spin_lock(&log->l_icloglock);
2955 iclog = log->l_iclog;
2956 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2957 spin_unlock(&log->l_icloglock);
2958 return XFS_ERROR(EIO);
2961 /* If the head iclog is not active nor dirty, we just attach
2962 * ourselves to the head and go to sleep.
2964 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2965 iclog->ic_state == XLOG_STATE_DIRTY) {
2967 * If the head is dirty or (active and empty), then
2968 * we need to look at the previous iclog. If the previous
2969 * iclog is active or dirty we are done. There is nothing
2970 * to sync out. Otherwise, we attach ourselves to the
2971 * previous iclog and go to sleep.
2973 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2974 (atomic_read(&iclog->ic_refcnt) == 0
2975 && iclog->ic_offset == 0)) {
2976 iclog = iclog->ic_prev;
2977 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2978 iclog->ic_state == XLOG_STATE_DIRTY)
2979 goto no_sleep;
2980 else
2981 goto maybe_sleep;
2982 } else {
2983 if (atomic_read(&iclog->ic_refcnt) == 0) {
2984 /* We are the only one with access to this
2985 * iclog. Flush it out now. There should
2986 * be a roundoff of zero to show that someone
2987 * has already taken care of the roundoff from
2988 * the previous sync.
2990 atomic_inc(&iclog->ic_refcnt);
2991 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2992 xlog_state_switch_iclogs(log, iclog, 0);
2993 spin_unlock(&log->l_icloglock);
2995 if (xlog_state_release_iclog(log, iclog))
2996 return XFS_ERROR(EIO);
2998 if (log_flushed)
2999 *log_flushed = 1;
3000 spin_lock(&log->l_icloglock);
3001 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3002 iclog->ic_state != XLOG_STATE_DIRTY)
3003 goto maybe_sleep;
3004 else
3005 goto no_sleep;
3006 } else {
3007 /* Someone else is writing to this iclog.
3008 * Use its call to flush out the data. However,
3009 * the other thread may not force out this LR,
3010 * so we mark it WANT_SYNC.
3012 xlog_state_switch_iclogs(log, iclog, 0);
3013 goto maybe_sleep;
3018 /* By the time we come around again, the iclog could've been filled
3019 * which would give it another lsn. If we have a new lsn, just
3020 * return because the relevant data has been flushed.
3022 maybe_sleep:
3023 if (flags & XFS_LOG_SYNC) {
3025 * We must check if we're shutting down here, before
3026 * we wait, while we're holding the l_icloglock.
3027 * Then we check again after waking up, in case our
3028 * sleep was disturbed by a bad news.
3030 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3031 spin_unlock(&log->l_icloglock);
3032 return XFS_ERROR(EIO);
3034 XFS_STATS_INC(xs_log_force_sleep);
3035 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3037 * No need to grab the log lock here since we're
3038 * only deciding whether or not to return EIO
3039 * and the memory read should be atomic.
3041 if (iclog->ic_state & XLOG_STATE_IOERROR)
3042 return XFS_ERROR(EIO);
3043 if (log_flushed)
3044 *log_flushed = 1;
3045 } else {
3047 no_sleep:
3048 spin_unlock(&log->l_icloglock);
3050 return 0;
3054 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3055 * about errors or whether the log was flushed or not. This is the normal
3056 * interface to use when trying to unpin items or move the log forward.
3058 void
3059 xfs_log_force(
3060 xfs_mount_t *mp,
3061 uint flags)
3063 int error;
3065 error = _xfs_log_force(mp, flags, NULL);
3066 if (error)
3067 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3071 * Force the in-core log to disk for a specific LSN.
3073 * Find in-core log with lsn.
3074 * If it is in the DIRTY state, just return.
3075 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3076 * state and go to sleep or return.
3077 * If it is in any other state, go to sleep or return.
3079 * Synchronous forces are implemented with a signal variable. All callers
3080 * to force a given lsn to disk will wait on a the sv attached to the
3081 * specific in-core log. When given in-core log finally completes its
3082 * write to disk, that thread will wake up all threads waiting on the
3083 * sv.
3086 _xfs_log_force_lsn(
3087 struct xfs_mount *mp,
3088 xfs_lsn_t lsn,
3089 uint flags,
3090 int *log_flushed)
3092 struct log *log = mp->m_log;
3093 struct xlog_in_core *iclog;
3094 int already_slept = 0;
3096 ASSERT(lsn != 0);
3098 XFS_STATS_INC(xs_log_force);
3100 if (log->l_cilp) {
3101 lsn = xlog_cil_force_lsn(log, lsn);
3102 if (lsn == NULLCOMMITLSN)
3103 return 0;
3106 try_again:
3107 spin_lock(&log->l_icloglock);
3108 iclog = log->l_iclog;
3109 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3110 spin_unlock(&log->l_icloglock);
3111 return XFS_ERROR(EIO);
3114 do {
3115 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3116 iclog = iclog->ic_next;
3117 continue;
3120 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3121 spin_unlock(&log->l_icloglock);
3122 return 0;
3125 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3127 * We sleep here if we haven't already slept (e.g.
3128 * this is the first time we've looked at the correct
3129 * iclog buf) and the buffer before us is going to
3130 * be sync'ed. The reason for this is that if we
3131 * are doing sync transactions here, by waiting for
3132 * the previous I/O to complete, we can allow a few
3133 * more transactions into this iclog before we close
3134 * it down.
3136 * Otherwise, we mark the buffer WANT_SYNC, and bump
3137 * up the refcnt so we can release the log (which
3138 * drops the ref count). The state switch keeps new
3139 * transaction commits from using this buffer. When
3140 * the current commits finish writing into the buffer,
3141 * the refcount will drop to zero and the buffer will
3142 * go out then.
3144 if (!already_slept &&
3145 (iclog->ic_prev->ic_state &
3146 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3147 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3149 XFS_STATS_INC(xs_log_force_sleep);
3151 xlog_wait(&iclog->ic_prev->ic_write_wait,
3152 &log->l_icloglock);
3153 if (log_flushed)
3154 *log_flushed = 1;
3155 already_slept = 1;
3156 goto try_again;
3158 atomic_inc(&iclog->ic_refcnt);
3159 xlog_state_switch_iclogs(log, iclog, 0);
3160 spin_unlock(&log->l_icloglock);
3161 if (xlog_state_release_iclog(log, iclog))
3162 return XFS_ERROR(EIO);
3163 if (log_flushed)
3164 *log_flushed = 1;
3165 spin_lock(&log->l_icloglock);
3168 if ((flags & XFS_LOG_SYNC) && /* sleep */
3169 !(iclog->ic_state &
3170 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3172 * Don't wait on completion if we know that we've
3173 * gotten a log write error.
3175 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3176 spin_unlock(&log->l_icloglock);
3177 return XFS_ERROR(EIO);
3179 XFS_STATS_INC(xs_log_force_sleep);
3180 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3182 * No need to grab the log lock here since we're
3183 * only deciding whether or not to return EIO
3184 * and the memory read should be atomic.
3186 if (iclog->ic_state & XLOG_STATE_IOERROR)
3187 return XFS_ERROR(EIO);
3189 if (log_flushed)
3190 *log_flushed = 1;
3191 } else { /* just return */
3192 spin_unlock(&log->l_icloglock);
3195 return 0;
3196 } while (iclog != log->l_iclog);
3198 spin_unlock(&log->l_icloglock);
3199 return 0;
3203 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3204 * about errors or whether the log was flushed or not. This is the normal
3205 * interface to use when trying to unpin items or move the log forward.
3207 void
3208 xfs_log_force_lsn(
3209 xfs_mount_t *mp,
3210 xfs_lsn_t lsn,
3211 uint flags)
3213 int error;
3215 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3216 if (error)
3217 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3221 * Called when we want to mark the current iclog as being ready to sync to
3222 * disk.
3224 STATIC void
3225 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3227 assert_spin_locked(&log->l_icloglock);
3229 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3230 xlog_state_switch_iclogs(log, iclog, 0);
3231 } else {
3232 ASSERT(iclog->ic_state &
3233 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3238 /*****************************************************************************
3240 * TICKET functions
3242 *****************************************************************************
3246 * Free a used ticket when its refcount falls to zero.
3248 void
3249 xfs_log_ticket_put(
3250 xlog_ticket_t *ticket)
3252 ASSERT(atomic_read(&ticket->t_ref) > 0);
3253 if (atomic_dec_and_test(&ticket->t_ref))
3254 kmem_zone_free(xfs_log_ticket_zone, ticket);
3257 xlog_ticket_t *
3258 xfs_log_ticket_get(
3259 xlog_ticket_t *ticket)
3261 ASSERT(atomic_read(&ticket->t_ref) > 0);
3262 atomic_inc(&ticket->t_ref);
3263 return ticket;
3267 * Allocate and initialise a new log ticket.
3269 xlog_ticket_t *
3270 xlog_ticket_alloc(
3271 struct log *log,
3272 int unit_bytes,
3273 int cnt,
3274 char client,
3275 uint xflags,
3276 int alloc_flags)
3278 struct xlog_ticket *tic;
3279 uint num_headers;
3280 int iclog_space;
3282 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3283 if (!tic)
3284 return NULL;
3287 * Permanent reservations have up to 'cnt'-1 active log operations
3288 * in the log. A unit in this case is the amount of space for one
3289 * of these log operations. Normal reservations have a cnt of 1
3290 * and their unit amount is the total amount of space required.
3292 * The following lines of code account for non-transaction data
3293 * which occupy space in the on-disk log.
3295 * Normal form of a transaction is:
3296 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3297 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3299 * We need to account for all the leadup data and trailer data
3300 * around the transaction data.
3301 * And then we need to account for the worst case in terms of using
3302 * more space.
3303 * The worst case will happen if:
3304 * - the placement of the transaction happens to be such that the
3305 * roundoff is at its maximum
3306 * - the transaction data is synced before the commit record is synced
3307 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3308 * Therefore the commit record is in its own Log Record.
3309 * This can happen as the commit record is called with its
3310 * own region to xlog_write().
3311 * This then means that in the worst case, roundoff can happen for
3312 * the commit-rec as well.
3313 * The commit-rec is smaller than padding in this scenario and so it is
3314 * not added separately.
3317 /* for trans header */
3318 unit_bytes += sizeof(xlog_op_header_t);
3319 unit_bytes += sizeof(xfs_trans_header_t);
3321 /* for start-rec */
3322 unit_bytes += sizeof(xlog_op_header_t);
3325 * for LR headers - the space for data in an iclog is the size minus
3326 * the space used for the headers. If we use the iclog size, then we
3327 * undercalculate the number of headers required.
3329 * Furthermore - the addition of op headers for split-recs might
3330 * increase the space required enough to require more log and op
3331 * headers, so take that into account too.
3333 * IMPORTANT: This reservation makes the assumption that if this
3334 * transaction is the first in an iclog and hence has the LR headers
3335 * accounted to it, then the remaining space in the iclog is
3336 * exclusively for this transaction. i.e. if the transaction is larger
3337 * than the iclog, it will be the only thing in that iclog.
3338 * Fundamentally, this means we must pass the entire log vector to
3339 * xlog_write to guarantee this.
3341 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3342 num_headers = howmany(unit_bytes, iclog_space);
3344 /* for split-recs - ophdrs added when data split over LRs */
3345 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3347 /* add extra header reservations if we overrun */
3348 while (!num_headers ||
3349 howmany(unit_bytes, iclog_space) > num_headers) {
3350 unit_bytes += sizeof(xlog_op_header_t);
3351 num_headers++;
3353 unit_bytes += log->l_iclog_hsize * num_headers;
3355 /* for commit-rec LR header - note: padding will subsume the ophdr */
3356 unit_bytes += log->l_iclog_hsize;
3358 /* for roundoff padding for transaction data and one for commit record */
3359 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3360 log->l_mp->m_sb.sb_logsunit > 1) {
3361 /* log su roundoff */
3362 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3363 } else {
3364 /* BB roundoff */
3365 unit_bytes += 2*BBSIZE;
3368 atomic_set(&tic->t_ref, 1);
3369 INIT_LIST_HEAD(&tic->t_queue);
3370 tic->t_unit_res = unit_bytes;
3371 tic->t_curr_res = unit_bytes;
3372 tic->t_cnt = cnt;
3373 tic->t_ocnt = cnt;
3374 tic->t_tid = random32();
3375 tic->t_clientid = client;
3376 tic->t_flags = XLOG_TIC_INITED;
3377 tic->t_trans_type = 0;
3378 if (xflags & XFS_LOG_PERM_RESERV)
3379 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3380 init_waitqueue_head(&tic->t_wait);
3382 xlog_tic_reset_res(tic);
3384 return tic;
3388 /******************************************************************************
3390 * Log debug routines
3392 ******************************************************************************
3394 #if defined(DEBUG)
3396 * Make sure that the destination ptr is within the valid data region of
3397 * one of the iclogs. This uses backup pointers stored in a different
3398 * part of the log in case we trash the log structure.
3400 void
3401 xlog_verify_dest_ptr(
3402 struct log *log,
3403 char *ptr)
3405 int i;
3406 int good_ptr = 0;
3408 for (i = 0; i < log->l_iclog_bufs; i++) {
3409 if (ptr >= log->l_iclog_bak[i] &&
3410 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3411 good_ptr++;
3414 if (!good_ptr)
3415 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3419 * Check to make sure the grant write head didn't just over lap the tail. If
3420 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3421 * the cycles differ by exactly one and check the byte count.
3423 * This check is run unlocked, so can give false positives. Rather than assert
3424 * on failures, use a warn-once flag and a panic tag to allow the admin to
3425 * determine if they want to panic the machine when such an error occurs. For
3426 * debug kernels this will have the same effect as using an assert but, unlinke
3427 * an assert, it can be turned off at runtime.
3429 STATIC void
3430 xlog_verify_grant_tail(
3431 struct log *log)
3433 int tail_cycle, tail_blocks;
3434 int cycle, space;
3436 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3437 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3438 if (tail_cycle != cycle) {
3439 if (cycle - 1 != tail_cycle &&
3440 !(log->l_flags & XLOG_TAIL_WARN)) {
3441 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3442 "%s: cycle - 1 != tail_cycle", __func__);
3443 log->l_flags |= XLOG_TAIL_WARN;
3446 if (space > BBTOB(tail_blocks) &&
3447 !(log->l_flags & XLOG_TAIL_WARN)) {
3448 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3449 "%s: space > BBTOB(tail_blocks)", __func__);
3450 log->l_flags |= XLOG_TAIL_WARN;
3455 /* check if it will fit */
3456 STATIC void
3457 xlog_verify_tail_lsn(xlog_t *log,
3458 xlog_in_core_t *iclog,
3459 xfs_lsn_t tail_lsn)
3461 int blocks;
3463 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3464 blocks =
3465 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3466 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3467 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3468 } else {
3469 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3471 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3472 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3474 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3475 if (blocks < BTOBB(iclog->ic_offset) + 1)
3476 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3478 } /* xlog_verify_tail_lsn */
3481 * Perform a number of checks on the iclog before writing to disk.
3483 * 1. Make sure the iclogs are still circular
3484 * 2. Make sure we have a good magic number
3485 * 3. Make sure we don't have magic numbers in the data
3486 * 4. Check fields of each log operation header for:
3487 * A. Valid client identifier
3488 * B. tid ptr value falls in valid ptr space (user space code)
3489 * C. Length in log record header is correct according to the
3490 * individual operation headers within record.
3491 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3492 * log, check the preceding blocks of the physical log to make sure all
3493 * the cycle numbers agree with the current cycle number.
3495 STATIC void
3496 xlog_verify_iclog(xlog_t *log,
3497 xlog_in_core_t *iclog,
3498 int count,
3499 boolean_t syncing)
3501 xlog_op_header_t *ophead;
3502 xlog_in_core_t *icptr;
3503 xlog_in_core_2_t *xhdr;
3504 xfs_caddr_t ptr;
3505 xfs_caddr_t base_ptr;
3506 __psint_t field_offset;
3507 __uint8_t clientid;
3508 int len, i, j, k, op_len;
3509 int idx;
3511 /* check validity of iclog pointers */
3512 spin_lock(&log->l_icloglock);
3513 icptr = log->l_iclog;
3514 for (i=0; i < log->l_iclog_bufs; i++) {
3515 if (icptr == NULL)
3516 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3517 icptr = icptr->ic_next;
3519 if (icptr != log->l_iclog)
3520 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3521 spin_unlock(&log->l_icloglock);
3523 /* check log magic numbers */
3524 if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3525 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3527 ptr = (xfs_caddr_t) &iclog->ic_header;
3528 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3529 ptr += BBSIZE) {
3530 if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3531 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3532 __func__);
3535 /* check fields */
3536 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3537 ptr = iclog->ic_datap;
3538 base_ptr = ptr;
3539 ophead = (xlog_op_header_t *)ptr;
3540 xhdr = iclog->ic_data;
3541 for (i = 0; i < len; i++) {
3542 ophead = (xlog_op_header_t *)ptr;
3544 /* clientid is only 1 byte */
3545 field_offset = (__psint_t)
3546 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3547 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3548 clientid = ophead->oh_clientid;
3549 } else {
3550 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3551 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3552 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3553 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3554 clientid = xlog_get_client_id(
3555 xhdr[j].hic_xheader.xh_cycle_data[k]);
3556 } else {
3557 clientid = xlog_get_client_id(
3558 iclog->ic_header.h_cycle_data[idx]);
3561 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3562 xfs_warn(log->l_mp,
3563 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3564 __func__, clientid, ophead,
3565 (unsigned long)field_offset);
3567 /* check length */
3568 field_offset = (__psint_t)
3569 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3570 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3571 op_len = be32_to_cpu(ophead->oh_len);
3572 } else {
3573 idx = BTOBBT((__psint_t)&ophead->oh_len -
3574 (__psint_t)iclog->ic_datap);
3575 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3576 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3577 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3578 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3579 } else {
3580 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3583 ptr += sizeof(xlog_op_header_t) + op_len;
3585 } /* xlog_verify_iclog */
3586 #endif
3589 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3591 STATIC int
3592 xlog_state_ioerror(
3593 xlog_t *log)
3595 xlog_in_core_t *iclog, *ic;
3597 iclog = log->l_iclog;
3598 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3600 * Mark all the incore logs IOERROR.
3601 * From now on, no log flushes will result.
3603 ic = iclog;
3604 do {
3605 ic->ic_state = XLOG_STATE_IOERROR;
3606 ic = ic->ic_next;
3607 } while (ic != iclog);
3608 return 0;
3611 * Return non-zero, if state transition has already happened.
3613 return 1;
3617 * This is called from xfs_force_shutdown, when we're forcibly
3618 * shutting down the filesystem, typically because of an IO error.
3619 * Our main objectives here are to make sure that:
3620 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3621 * parties to find out, 'atomically'.
3622 * b. those who're sleeping on log reservations, pinned objects and
3623 * other resources get woken up, and be told the bad news.
3624 * c. nothing new gets queued up after (a) and (b) are done.
3625 * d. if !logerror, flush the iclogs to disk, then seal them off
3626 * for business.
3628 * Note: for delayed logging the !logerror case needs to flush the regions
3629 * held in memory out to the iclogs before flushing them to disk. This needs
3630 * to be done before the log is marked as shutdown, otherwise the flush to the
3631 * iclogs will fail.
3634 xfs_log_force_umount(
3635 struct xfs_mount *mp,
3636 int logerror)
3638 xlog_ticket_t *tic;
3639 xlog_t *log;
3640 int retval;
3642 log = mp->m_log;
3645 * If this happens during log recovery, don't worry about
3646 * locking; the log isn't open for business yet.
3648 if (!log ||
3649 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3650 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3651 if (mp->m_sb_bp)
3652 XFS_BUF_DONE(mp->m_sb_bp);
3653 return 0;
3657 * Somebody could've already done the hard work for us.
3658 * No need to get locks for this.
3660 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3661 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3662 return 1;
3664 retval = 0;
3667 * Flush the in memory commit item list before marking the log as
3668 * being shut down. We need to do it in this order to ensure all the
3669 * completed transactions are flushed to disk with the xfs_log_force()
3670 * call below.
3672 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3673 xlog_cil_force(log);
3676 * mark the filesystem and the as in a shutdown state and wake
3677 * everybody up to tell them the bad news.
3679 spin_lock(&log->l_icloglock);
3680 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3681 if (mp->m_sb_bp)
3682 XFS_BUF_DONE(mp->m_sb_bp);
3685 * This flag is sort of redundant because of the mount flag, but
3686 * it's good to maintain the separation between the log and the rest
3687 * of XFS.
3689 log->l_flags |= XLOG_IO_ERROR;
3692 * If we hit a log error, we want to mark all the iclogs IOERROR
3693 * while we're still holding the loglock.
3695 if (logerror)
3696 retval = xlog_state_ioerror(log);
3697 spin_unlock(&log->l_icloglock);
3700 * We don't want anybody waiting for log reservations after this. That
3701 * means we have to wake up everybody queued up on reserveq as well as
3702 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3703 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3704 * action is protected by the grant locks.
3706 spin_lock(&log->l_grant_reserve_lock);
3707 list_for_each_entry(tic, &log->l_reserveq, t_queue)
3708 wake_up(&tic->t_wait);
3709 spin_unlock(&log->l_grant_reserve_lock);
3711 spin_lock(&log->l_grant_write_lock);
3712 list_for_each_entry(tic, &log->l_writeq, t_queue)
3713 wake_up(&tic->t_wait);
3714 spin_unlock(&log->l_grant_write_lock);
3716 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3717 ASSERT(!logerror);
3719 * Force the incore logs to disk before shutting the
3720 * log down completely.
3722 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3724 spin_lock(&log->l_icloglock);
3725 retval = xlog_state_ioerror(log);
3726 spin_unlock(&log->l_icloglock);
3729 * Wake up everybody waiting on xfs_log_force.
3730 * Callback all log item committed functions as if the
3731 * log writes were completed.
3733 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3735 #ifdef XFSERRORDEBUG
3737 xlog_in_core_t *iclog;
3739 spin_lock(&log->l_icloglock);
3740 iclog = log->l_iclog;
3741 do {
3742 ASSERT(iclog->ic_callback == 0);
3743 iclog = iclog->ic_next;
3744 } while (iclog != log->l_iclog);
3745 spin_unlock(&log->l_icloglock);
3747 #endif
3748 /* return non-zero if log IOERROR transition had already happened */
3749 return retval;
3752 STATIC int
3753 xlog_iclogs_empty(xlog_t *log)
3755 xlog_in_core_t *iclog;
3757 iclog = log->l_iclog;
3758 do {
3759 /* endianness does not matter here, zero is zero in
3760 * any language.
3762 if (iclog->ic_header.h_num_logops)
3763 return 0;
3764 iclog = iclog->ic_next;
3765 } while (iclog != log->l_iclog);
3766 return 1;