ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / mm / filemap.c
blobb7d860390f34779836aaec1182fdd60c7a71a82f
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
41 * FIXME: remove all knowledge of the buffer layer from the core VM
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_mutex (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_mutex
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * inode_wb_list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_mutex
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_mutex
114 * Delete a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __delete_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
123 * if we're uptodate, flush out into the cleancache, otherwise
124 * invalidate any existing cleancache entries. We can't leave
125 * stale data around in the cleancache once our page is gone
127 if (PageUptodate(page) && PageMappedToDisk(page))
128 cleancache_put_page(page);
129 else
130 cleancache_flush_page(mapping, page);
132 radix_tree_delete(&mapping->page_tree, page->index);
133 page->mapping = NULL;
134 mapping->nrpages--;
135 __dec_zone_page_state(page, NR_FILE_PAGES);
136 if (PageSwapBacked(page))
137 __dec_zone_page_state(page, NR_SHMEM);
138 BUG_ON(page_mapped(page));
141 * Some filesystems seem to re-dirty the page even after
142 * the VM has canceled the dirty bit (eg ext3 journaling).
144 * Fix it up by doing a final dirty accounting check after
145 * having removed the page entirely.
147 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148 dec_zone_page_state(page, NR_FILE_DIRTY);
149 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
154 * delete_from_page_cache - delete page from page cache
155 * @page: the page which the kernel is trying to remove from page cache
157 * This must be called only on pages that have been verified to be in the page
158 * cache and locked. It will never put the page into the free list, the caller
159 * has a reference on the page.
161 void delete_from_page_cache(struct page *page)
163 struct address_space *mapping = page->mapping;
164 void (*freepage)(struct page *);
166 BUG_ON(!PageLocked(page));
168 freepage = mapping->a_ops->freepage;
169 spin_lock_irq(&mapping->tree_lock);
170 __delete_from_page_cache(page);
171 spin_unlock_irq(&mapping->tree_lock);
172 mem_cgroup_uncharge_cache_page(page);
174 if (freepage)
175 freepage(page);
176 page_cache_release(page);
178 EXPORT_SYMBOL(delete_from_page_cache);
180 static int sleep_on_page(void *word)
182 io_schedule();
183 return 0;
186 static int sleep_on_page_killable(void *word)
188 sleep_on_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
221 ret = do_writepages(mapping, &wbc);
222 return ret;
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * filemap_fdatawait_range - wait for writeback to complete
259 * @mapping: address space structure to wait for
260 * @start_byte: offset in bytes where the range starts
261 * @end_byte: offset in bytes where the range ends (inclusive)
263 * Walk the list of under-writeback pages of the given address space
264 * in the given range and wait for all of them.
266 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267 loff_t end_byte)
269 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
271 struct pagevec pvec;
272 int nr_pages;
273 int ret = 0;
275 if (end_byte < start_byte)
276 return 0;
278 pagevec_init(&pvec, 0);
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (TestClearPageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
308 EXPORT_SYMBOL(filemap_fdatawait_range);
311 * filemap_fdatawait - wait for all under-writeback pages to complete
312 * @mapping: address space structure to wait for
314 * Walk the list of under-writeback pages of the given address space
315 * and wait for all of them.
317 int filemap_fdatawait(struct address_space *mapping)
319 loff_t i_size = i_size_read(mapping->host);
321 if (i_size == 0)
322 return 0;
324 return filemap_fdatawait_range(mapping, 0, i_size - 1);
326 EXPORT_SYMBOL(filemap_fdatawait);
328 int filemap_write_and_wait(struct address_space *mapping)
330 int err = 0;
332 if (mapping->nrpages) {
333 err = filemap_fdatawrite(mapping);
335 * Even if the above returned error, the pages may be
336 * written partially (e.g. -ENOSPC), so we wait for it.
337 * But the -EIO is special case, it may indicate the worst
338 * thing (e.g. bug) happened, so we avoid waiting for it.
340 if (err != -EIO) {
341 int err2 = filemap_fdatawait(mapping);
342 if (!err)
343 err = err2;
346 return err;
348 EXPORT_SYMBOL(filemap_write_and_wait);
351 * filemap_write_and_wait_range - write out & wait on a file range
352 * @mapping: the address_space for the pages
353 * @lstart: offset in bytes where the range starts
354 * @lend: offset in bytes where the range ends (inclusive)
356 * Write out and wait upon file offsets lstart->lend, inclusive.
358 * Note that `lend' is inclusive (describes the last byte to be written) so
359 * that this function can be used to write to the very end-of-file (end = -1).
361 int filemap_write_and_wait_range(struct address_space *mapping,
362 loff_t lstart, loff_t lend)
364 int err = 0;
366 if (mapping->nrpages) {
367 err = __filemap_fdatawrite_range(mapping, lstart, lend,
368 WB_SYNC_ALL);
369 /* See comment of filemap_write_and_wait() */
370 if (err != -EIO) {
371 int err2 = filemap_fdatawait_range(mapping,
372 lstart, lend);
373 if (!err)
374 err = err2;
377 return err;
379 EXPORT_SYMBOL(filemap_write_and_wait_range);
382 * replace_page_cache_page - replace a pagecache page with a new one
383 * @old: page to be replaced
384 * @new: page to replace with
385 * @gfp_mask: allocation mode
387 * This function replaces a page in the pagecache with a new one. On
388 * success it acquires the pagecache reference for the new page and
389 * drops it for the old page. Both the old and new pages must be
390 * locked. This function does not add the new page to the LRU, the
391 * caller must do that.
393 * The remove + add is atomic. The only way this function can fail is
394 * memory allocation failure.
396 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
398 int error;
400 VM_BUG_ON(!PageLocked(old));
401 VM_BUG_ON(!PageLocked(new));
402 VM_BUG_ON(new->mapping);
404 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
405 if (!error) {
406 struct address_space *mapping = old->mapping;
407 void (*freepage)(struct page *);
409 pgoff_t offset = old->index;
410 freepage = mapping->a_ops->freepage;
412 page_cache_get(new);
413 new->mapping = mapping;
414 new->index = offset;
416 spin_lock_irq(&mapping->tree_lock);
417 __delete_from_page_cache(old);
418 error = radix_tree_insert(&mapping->page_tree, offset, new);
419 BUG_ON(error);
420 mapping->nrpages++;
421 __inc_zone_page_state(new, NR_FILE_PAGES);
422 if (PageSwapBacked(new))
423 __inc_zone_page_state(new, NR_SHMEM);
424 spin_unlock_irq(&mapping->tree_lock);
425 /* mem_cgroup codes must not be called under tree_lock */
426 mem_cgroup_replace_page_cache(old, new);
427 radix_tree_preload_end();
428 if (freepage)
429 freepage(old);
430 page_cache_release(old);
433 return error;
435 EXPORT_SYMBOL_GPL(replace_page_cache_page);
438 * add_to_page_cache_locked - add a locked page to the pagecache
439 * @page: page to add
440 * @mapping: the page's address_space
441 * @offset: page index
442 * @gfp_mask: page allocation mode
444 * This function is used to add a page to the pagecache. It must be locked.
445 * This function does not add the page to the LRU. The caller must do that.
447 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
448 pgoff_t offset, gfp_t gfp_mask)
450 int error;
452 VM_BUG_ON(!PageLocked(page));
454 error = mem_cgroup_cache_charge(page, current->mm,
455 gfp_mask & GFP_RECLAIM_MASK);
456 if (error)
457 goto out;
459 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
460 if (error == 0) {
461 page_cache_get(page);
462 page->mapping = mapping;
463 page->index = offset;
465 spin_lock_irq(&mapping->tree_lock);
466 error = radix_tree_insert(&mapping->page_tree, offset, page);
467 if (likely(!error)) {
468 mapping->nrpages++;
469 __inc_zone_page_state(page, NR_FILE_PAGES);
470 if (PageSwapBacked(page))
471 __inc_zone_page_state(page, NR_SHMEM);
472 spin_unlock_irq(&mapping->tree_lock);
473 } else {
474 page->mapping = NULL;
475 spin_unlock_irq(&mapping->tree_lock);
476 mem_cgroup_uncharge_cache_page(page);
477 page_cache_release(page);
479 radix_tree_preload_end();
480 } else
481 mem_cgroup_uncharge_cache_page(page);
482 out:
483 return error;
485 EXPORT_SYMBOL(add_to_page_cache_locked);
487 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
488 pgoff_t offset, gfp_t gfp_mask)
490 int ret;
493 * Splice_read and readahead add shmem/tmpfs pages into the page cache
494 * before shmem_readpage has a chance to mark them as SwapBacked: they
495 * need to go on the anon lru below, and mem_cgroup_cache_charge
496 * (called in add_to_page_cache) needs to know where they're going too.
498 if (mapping_cap_swap_backed(mapping))
499 SetPageSwapBacked(page);
501 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
502 if (ret == 0) {
503 if (page_is_file_cache(page))
504 lru_cache_add_file(page);
505 else
506 lru_cache_add_anon(page);
508 return ret;
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
515 int n;
516 struct page *page;
518 if (cpuset_do_page_mem_spread()) {
519 get_mems_allowed();
520 n = cpuset_mem_spread_node();
521 page = alloc_pages_exact_node(n, gfp, 0);
522 put_mems_allowed();
523 return page;
525 return alloc_pages(gfp, 0);
527 EXPORT_SYMBOL(__page_cache_alloc);
528 #endif
531 * In order to wait for pages to become available there must be
532 * waitqueues associated with pages. By using a hash table of
533 * waitqueues where the bucket discipline is to maintain all
534 * waiters on the same queue and wake all when any of the pages
535 * become available, and for the woken contexts to check to be
536 * sure the appropriate page became available, this saves space
537 * at a cost of "thundering herd" phenomena during rare hash
538 * collisions.
540 static wait_queue_head_t *page_waitqueue(struct page *page)
542 const struct zone *zone = page_zone(page);
544 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
547 static inline void wake_up_page(struct page *page, int bit)
549 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
552 void wait_on_page_bit(struct page *page, int bit_nr)
554 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
556 if (test_bit(bit_nr, &page->flags))
557 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
558 TASK_UNINTERRUPTIBLE);
560 EXPORT_SYMBOL(wait_on_page_bit);
562 int wait_on_page_bit_killable(struct page *page, int bit_nr)
564 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
566 if (!test_bit(bit_nr, &page->flags))
567 return 0;
569 return __wait_on_bit(page_waitqueue(page), &wait,
570 sleep_on_page_killable, TASK_KILLABLE);
574 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
575 * @page: Page defining the wait queue of interest
576 * @waiter: Waiter to add to the queue
578 * Add an arbitrary @waiter to the wait queue for the nominated @page.
580 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
582 wait_queue_head_t *q = page_waitqueue(page);
583 unsigned long flags;
585 spin_lock_irqsave(&q->lock, flags);
586 __add_wait_queue(q, waiter);
587 spin_unlock_irqrestore(&q->lock, flags);
589 EXPORT_SYMBOL_GPL(add_page_wait_queue);
592 * unlock_page - unlock a locked page
593 * @page: the page
595 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
596 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
597 * mechananism between PageLocked pages and PageWriteback pages is shared.
598 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
600 * The mb is necessary to enforce ordering between the clear_bit and the read
601 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
603 void unlock_page(struct page *page)
605 VM_BUG_ON(!PageLocked(page));
606 clear_bit_unlock(PG_locked, &page->flags);
607 smp_mb__after_clear_bit();
608 wake_up_page(page, PG_locked);
610 EXPORT_SYMBOL(unlock_page);
613 * end_page_writeback - end writeback against a page
614 * @page: the page
616 void end_page_writeback(struct page *page)
618 if (TestClearPageReclaim(page))
619 rotate_reclaimable_page(page);
621 if (!test_clear_page_writeback(page))
622 BUG();
624 smp_mb__after_clear_bit();
625 wake_up_page(page, PG_writeback);
627 EXPORT_SYMBOL(end_page_writeback);
630 * __lock_page - get a lock on the page, assuming we need to sleep to get it
631 * @page: the page to lock
633 void __lock_page(struct page *page)
635 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
637 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
638 TASK_UNINTERRUPTIBLE);
640 EXPORT_SYMBOL(__lock_page);
642 int __lock_page_killable(struct page *page)
644 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
646 return __wait_on_bit_lock(page_waitqueue(page), &wait,
647 sleep_on_page_killable, TASK_KILLABLE);
649 EXPORT_SYMBOL_GPL(__lock_page_killable);
651 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
652 unsigned int flags)
654 if (flags & FAULT_FLAG_ALLOW_RETRY) {
656 * CAUTION! In this case, mmap_sem is not released
657 * even though return 0.
659 if (flags & FAULT_FLAG_RETRY_NOWAIT)
660 return 0;
662 up_read(&mm->mmap_sem);
663 if (flags & FAULT_FLAG_KILLABLE)
664 wait_on_page_locked_killable(page);
665 else
666 wait_on_page_locked(page);
667 return 0;
668 } else {
669 if (flags & FAULT_FLAG_KILLABLE) {
670 int ret;
672 ret = __lock_page_killable(page);
673 if (ret) {
674 up_read(&mm->mmap_sem);
675 return 0;
677 } else
678 __lock_page(page);
679 return 1;
684 * find_get_page - find and get a page reference
685 * @mapping: the address_space to search
686 * @offset: the page index
688 * Is there a pagecache struct page at the given (mapping, offset) tuple?
689 * If yes, increment its refcount and return it; if no, return NULL.
691 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
693 void **pagep;
694 struct page *page;
696 rcu_read_lock();
697 repeat:
698 page = NULL;
699 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
700 if (pagep) {
701 page = radix_tree_deref_slot(pagep);
702 if (unlikely(!page))
703 goto out;
704 if (radix_tree_deref_retry(page))
705 goto repeat;
707 if (!page_cache_get_speculative(page))
708 goto repeat;
711 * Has the page moved?
712 * This is part of the lockless pagecache protocol. See
713 * include/linux/pagemap.h for details.
715 if (unlikely(page != *pagep)) {
716 page_cache_release(page);
717 goto repeat;
720 out:
721 rcu_read_unlock();
723 return page;
725 EXPORT_SYMBOL(find_get_page);
728 * find_lock_page - locate, pin and lock a pagecache page
729 * @mapping: the address_space to search
730 * @offset: the page index
732 * Locates the desired pagecache page, locks it, increments its reference
733 * count and returns its address.
735 * Returns zero if the page was not present. find_lock_page() may sleep.
737 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
739 struct page *page;
741 repeat:
742 page = find_get_page(mapping, offset);
743 if (page) {
744 lock_page(page);
745 /* Has the page been truncated? */
746 if (unlikely(page->mapping != mapping)) {
747 unlock_page(page);
748 page_cache_release(page);
749 goto repeat;
751 VM_BUG_ON(page->index != offset);
753 return page;
755 EXPORT_SYMBOL(find_lock_page);
758 * find_or_create_page - locate or add a pagecache page
759 * @mapping: the page's address_space
760 * @index: the page's index into the mapping
761 * @gfp_mask: page allocation mode
763 * Locates a page in the pagecache. If the page is not present, a new page
764 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
765 * LRU list. The returned page is locked and has its reference count
766 * incremented.
768 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
769 * allocation!
771 * find_or_create_page() returns the desired page's address, or zero on
772 * memory exhaustion.
774 struct page *find_or_create_page(struct address_space *mapping,
775 pgoff_t index, gfp_t gfp_mask)
777 struct page *page;
778 int err;
779 repeat:
780 page = find_lock_page(mapping, index);
781 if (!page) {
782 page = __page_cache_alloc(gfp_mask);
783 if (!page)
784 return NULL;
786 * We want a regular kernel memory (not highmem or DMA etc)
787 * allocation for the radix tree nodes, but we need to honour
788 * the context-specific requirements the caller has asked for.
789 * GFP_RECLAIM_MASK collects those requirements.
791 err = add_to_page_cache_lru(page, mapping, index,
792 (gfp_mask & GFP_RECLAIM_MASK));
793 if (unlikely(err)) {
794 page_cache_release(page);
795 page = NULL;
796 if (err == -EEXIST)
797 goto repeat;
800 return page;
802 EXPORT_SYMBOL(find_or_create_page);
805 * find_get_pages - gang pagecache lookup
806 * @mapping: The address_space to search
807 * @start: The starting page index
808 * @nr_pages: The maximum number of pages
809 * @pages: Where the resulting pages are placed
811 * find_get_pages() will search for and return a group of up to
812 * @nr_pages pages in the mapping. The pages are placed at @pages.
813 * find_get_pages() takes a reference against the returned pages.
815 * The search returns a group of mapping-contiguous pages with ascending
816 * indexes. There may be holes in the indices due to not-present pages.
818 * find_get_pages() returns the number of pages which were found.
820 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
821 unsigned int nr_pages, struct page **pages)
823 unsigned int i;
824 unsigned int ret;
825 unsigned int nr_found;
827 rcu_read_lock();
828 restart:
829 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
830 (void ***)pages, start, nr_pages);
831 ret = 0;
832 for (i = 0; i < nr_found; i++) {
833 struct page *page;
834 repeat:
835 page = radix_tree_deref_slot((void **)pages[i]);
836 if (unlikely(!page))
837 continue;
840 * This can only trigger when the entry at index 0 moves out
841 * of or back to the root: none yet gotten, safe to restart.
843 if (radix_tree_deref_retry(page)) {
844 WARN_ON(start | i);
845 goto restart;
848 if (!page_cache_get_speculative(page))
849 goto repeat;
851 /* Has the page moved? */
852 if (unlikely(page != *((void **)pages[i]))) {
853 page_cache_release(page);
854 goto repeat;
857 pages[ret] = page;
858 ret++;
862 * If all entries were removed before we could secure them,
863 * try again, because callers stop trying once 0 is returned.
865 if (unlikely(!ret && nr_found))
866 goto restart;
867 rcu_read_unlock();
868 return ret;
872 * find_get_pages_contig - gang contiguous pagecache lookup
873 * @mapping: The address_space to search
874 * @index: The starting page index
875 * @nr_pages: The maximum number of pages
876 * @pages: Where the resulting pages are placed
878 * find_get_pages_contig() works exactly like find_get_pages(), except
879 * that the returned number of pages are guaranteed to be contiguous.
881 * find_get_pages_contig() returns the number of pages which were found.
883 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
884 unsigned int nr_pages, struct page **pages)
886 unsigned int i;
887 unsigned int ret;
888 unsigned int nr_found;
890 rcu_read_lock();
891 restart:
892 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
893 (void ***)pages, index, nr_pages);
894 ret = 0;
895 for (i = 0; i < nr_found; i++) {
896 struct page *page;
897 repeat:
898 page = radix_tree_deref_slot((void **)pages[i]);
899 if (unlikely(!page))
900 continue;
903 * This can only trigger when the entry at index 0 moves out
904 * of or back to the root: none yet gotten, safe to restart.
906 if (radix_tree_deref_retry(page))
907 goto restart;
909 if (!page_cache_get_speculative(page))
910 goto repeat;
912 /* Has the page moved? */
913 if (unlikely(page != *((void **)pages[i]))) {
914 page_cache_release(page);
915 goto repeat;
919 * must check mapping and index after taking the ref.
920 * otherwise we can get both false positives and false
921 * negatives, which is just confusing to the caller.
923 if (page->mapping == NULL || page->index != index) {
924 page_cache_release(page);
925 break;
928 pages[ret] = page;
929 ret++;
930 index++;
932 rcu_read_unlock();
933 return ret;
935 EXPORT_SYMBOL(find_get_pages_contig);
938 * find_get_pages_tag - find and return pages that match @tag
939 * @mapping: the address_space to search
940 * @index: the starting page index
941 * @tag: the tag index
942 * @nr_pages: the maximum number of pages
943 * @pages: where the resulting pages are placed
945 * Like find_get_pages, except we only return pages which are tagged with
946 * @tag. We update @index to index the next page for the traversal.
948 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
949 int tag, unsigned int nr_pages, struct page **pages)
951 unsigned int i;
952 unsigned int ret;
953 unsigned int nr_found;
955 rcu_read_lock();
956 restart:
957 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
958 (void ***)pages, *index, nr_pages, tag);
959 ret = 0;
960 for (i = 0; i < nr_found; i++) {
961 struct page *page;
962 repeat:
963 page = radix_tree_deref_slot((void **)pages[i]);
964 if (unlikely(!page))
965 continue;
968 * This can only trigger when the entry at index 0 moves out
969 * of or back to the root: none yet gotten, safe to restart.
971 if (radix_tree_deref_retry(page))
972 goto restart;
974 if (!page_cache_get_speculative(page))
975 goto repeat;
977 /* Has the page moved? */
978 if (unlikely(page != *((void **)pages[i]))) {
979 page_cache_release(page);
980 goto repeat;
983 pages[ret] = page;
984 ret++;
988 * If all entries were removed before we could secure them,
989 * try again, because callers stop trying once 0 is returned.
991 if (unlikely(!ret && nr_found))
992 goto restart;
993 rcu_read_unlock();
995 if (ret)
996 *index = pages[ret - 1]->index + 1;
998 return ret;
1000 EXPORT_SYMBOL(find_get_pages_tag);
1003 * grab_cache_page_nowait - returns locked page at given index in given cache
1004 * @mapping: target address_space
1005 * @index: the page index
1007 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1008 * This is intended for speculative data generators, where the data can
1009 * be regenerated if the page couldn't be grabbed. This routine should
1010 * be safe to call while holding the lock for another page.
1012 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1013 * and deadlock against the caller's locked page.
1015 struct page *
1016 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1018 struct page *page = find_get_page(mapping, index);
1020 if (page) {
1021 if (trylock_page(page))
1022 return page;
1023 page_cache_release(page);
1024 return NULL;
1026 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1027 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1028 page_cache_release(page);
1029 page = NULL;
1031 return page;
1033 EXPORT_SYMBOL(grab_cache_page_nowait);
1036 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1037 * a _large_ part of the i/o request. Imagine the worst scenario:
1039 * ---R__________________________________________B__________
1040 * ^ reading here ^ bad block(assume 4k)
1042 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1043 * => failing the whole request => read(R) => read(R+1) =>
1044 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1045 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1046 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1048 * It is going insane. Fix it by quickly scaling down the readahead size.
1050 static void shrink_readahead_size_eio(struct file *filp,
1051 struct file_ra_state *ra)
1053 ra->ra_pages /= 4;
1057 * do_generic_file_read - generic file read routine
1058 * @filp: the file to read
1059 * @ppos: current file position
1060 * @desc: read_descriptor
1061 * @actor: read method
1063 * This is a generic file read routine, and uses the
1064 * mapping->a_ops->readpage() function for the actual low-level stuff.
1066 * This is really ugly. But the goto's actually try to clarify some
1067 * of the logic when it comes to error handling etc.
1069 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1070 read_descriptor_t *desc, read_actor_t actor)
1072 struct address_space *mapping = filp->f_mapping;
1073 struct inode *inode = mapping->host;
1074 struct file_ra_state *ra = &filp->f_ra;
1075 pgoff_t index;
1076 pgoff_t last_index;
1077 pgoff_t prev_index;
1078 unsigned long offset; /* offset into pagecache page */
1079 unsigned int prev_offset;
1080 int error;
1082 index = *ppos >> PAGE_CACHE_SHIFT;
1083 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1084 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1085 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1086 offset = *ppos & ~PAGE_CACHE_MASK;
1088 for (;;) {
1089 struct page *page;
1090 pgoff_t end_index;
1091 loff_t isize;
1092 unsigned long nr, ret;
1094 cond_resched();
1095 find_page:
1096 page = find_get_page(mapping, index);
1097 if (!page) {
1098 page_cache_sync_readahead(mapping,
1099 ra, filp,
1100 index, last_index - index);
1101 page = find_get_page(mapping, index);
1102 if (unlikely(page == NULL))
1103 goto no_cached_page;
1105 if (PageReadahead(page)) {
1106 page_cache_async_readahead(mapping,
1107 ra, filp, page,
1108 index, last_index - index);
1110 if (!PageUptodate(page)) {
1111 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1112 !mapping->a_ops->is_partially_uptodate)
1113 goto page_not_up_to_date;
1114 if (!trylock_page(page))
1115 goto page_not_up_to_date;
1116 /* Did it get truncated before we got the lock? */
1117 if (!page->mapping)
1118 goto page_not_up_to_date_locked;
1119 if (!mapping->a_ops->is_partially_uptodate(page,
1120 desc, offset))
1121 goto page_not_up_to_date_locked;
1122 unlock_page(page);
1124 page_ok:
1126 * i_size must be checked after we know the page is Uptodate.
1128 * Checking i_size after the check allows us to calculate
1129 * the correct value for "nr", which means the zero-filled
1130 * part of the page is not copied back to userspace (unless
1131 * another truncate extends the file - this is desired though).
1134 isize = i_size_read(inode);
1135 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1136 if (unlikely(!isize || index > end_index)) {
1137 page_cache_release(page);
1138 goto out;
1141 /* nr is the maximum number of bytes to copy from this page */
1142 nr = PAGE_CACHE_SIZE;
1143 if (index == end_index) {
1144 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1145 if (nr <= offset) {
1146 page_cache_release(page);
1147 goto out;
1150 nr = nr - offset;
1152 /* If users can be writing to this page using arbitrary
1153 * virtual addresses, take care about potential aliasing
1154 * before reading the page on the kernel side.
1156 if (mapping_writably_mapped(mapping))
1157 flush_dcache_page(page);
1160 * When a sequential read accesses a page several times,
1161 * only mark it as accessed the first time.
1163 if (prev_index != index || offset != prev_offset)
1164 mark_page_accessed(page);
1165 prev_index = index;
1168 * Ok, we have the page, and it's up-to-date, so
1169 * now we can copy it to user space...
1171 * The actor routine returns how many bytes were actually used..
1172 * NOTE! This may not be the same as how much of a user buffer
1173 * we filled up (we may be padding etc), so we can only update
1174 * "pos" here (the actor routine has to update the user buffer
1175 * pointers and the remaining count).
1177 ret = actor(desc, page, offset, nr);
1178 offset += ret;
1179 index += offset >> PAGE_CACHE_SHIFT;
1180 offset &= ~PAGE_CACHE_MASK;
1181 prev_offset = offset;
1183 page_cache_release(page);
1184 if (ret == nr && desc->count)
1185 continue;
1186 goto out;
1188 page_not_up_to_date:
1189 /* Get exclusive access to the page ... */
1190 error = lock_page_killable(page);
1191 if (unlikely(error))
1192 goto readpage_error;
1194 page_not_up_to_date_locked:
1195 /* Did it get truncated before we got the lock? */
1196 if (!page->mapping) {
1197 unlock_page(page);
1198 page_cache_release(page);
1199 continue;
1202 /* Did somebody else fill it already? */
1203 if (PageUptodate(page)) {
1204 unlock_page(page);
1205 goto page_ok;
1208 readpage:
1210 * A previous I/O error may have been due to temporary
1211 * failures, eg. multipath errors.
1212 * PG_error will be set again if readpage fails.
1214 ClearPageError(page);
1215 /* Start the actual read. The read will unlock the page. */
1216 error = mapping->a_ops->readpage(filp, page);
1218 if (unlikely(error)) {
1219 if (error == AOP_TRUNCATED_PAGE) {
1220 page_cache_release(page);
1221 goto find_page;
1223 goto readpage_error;
1226 if (!PageUptodate(page)) {
1227 error = lock_page_killable(page);
1228 if (unlikely(error))
1229 goto readpage_error;
1230 if (!PageUptodate(page)) {
1231 if (page->mapping == NULL) {
1233 * invalidate_mapping_pages got it
1235 unlock_page(page);
1236 page_cache_release(page);
1237 goto find_page;
1239 unlock_page(page);
1240 shrink_readahead_size_eio(filp, ra);
1241 error = -EIO;
1242 goto readpage_error;
1244 unlock_page(page);
1247 goto page_ok;
1249 readpage_error:
1250 /* UHHUH! A synchronous read error occurred. Report it */
1251 desc->error = error;
1252 page_cache_release(page);
1253 goto out;
1255 no_cached_page:
1257 * Ok, it wasn't cached, so we need to create a new
1258 * page..
1260 page = page_cache_alloc_cold(mapping);
1261 if (!page) {
1262 desc->error = -ENOMEM;
1263 goto out;
1265 error = add_to_page_cache_lru(page, mapping,
1266 index, GFP_KERNEL);
1267 if (error) {
1268 page_cache_release(page);
1269 if (error == -EEXIST)
1270 goto find_page;
1271 desc->error = error;
1272 goto out;
1274 goto readpage;
1277 out:
1278 ra->prev_pos = prev_index;
1279 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1280 ra->prev_pos |= prev_offset;
1282 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1283 file_accessed(filp);
1286 int file_read_actor(read_descriptor_t *desc, struct page *page,
1287 unsigned long offset, unsigned long size)
1289 char *kaddr;
1290 unsigned long left, count = desc->count;
1292 if (size > count)
1293 size = count;
1296 * Faults on the destination of a read are common, so do it before
1297 * taking the kmap.
1299 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1300 kaddr = kmap_atomic(page, KM_USER0);
1301 left = __copy_to_user_inatomic(desc->arg.buf,
1302 kaddr + offset, size);
1303 kunmap_atomic(kaddr, KM_USER0);
1304 if (left == 0)
1305 goto success;
1308 /* Do it the slow way */
1309 kaddr = kmap(page);
1310 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1311 kunmap(page);
1313 if (left) {
1314 size -= left;
1315 desc->error = -EFAULT;
1317 success:
1318 desc->count = count - size;
1319 desc->written += size;
1320 desc->arg.buf += size;
1321 return size;
1325 * Performs necessary checks before doing a write
1326 * @iov: io vector request
1327 * @nr_segs: number of segments in the iovec
1328 * @count: number of bytes to write
1329 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1331 * Adjust number of segments and amount of bytes to write (nr_segs should be
1332 * properly initialized first). Returns appropriate error code that caller
1333 * should return or zero in case that write should be allowed.
1335 int generic_segment_checks(const struct iovec *iov,
1336 unsigned long *nr_segs, size_t *count, int access_flags)
1338 unsigned long seg;
1339 size_t cnt = 0;
1340 for (seg = 0; seg < *nr_segs; seg++) {
1341 const struct iovec *iv = &iov[seg];
1344 * If any segment has a negative length, or the cumulative
1345 * length ever wraps negative then return -EINVAL.
1347 cnt += iv->iov_len;
1348 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1349 return -EINVAL;
1350 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1351 continue;
1352 if (seg == 0)
1353 return -EFAULT;
1354 *nr_segs = seg;
1355 cnt -= iv->iov_len; /* This segment is no good */
1356 break;
1358 *count = cnt;
1359 return 0;
1361 EXPORT_SYMBOL(generic_segment_checks);
1364 * generic_file_aio_read - generic filesystem read routine
1365 * @iocb: kernel I/O control block
1366 * @iov: io vector request
1367 * @nr_segs: number of segments in the iovec
1368 * @pos: current file position
1370 * This is the "read()" routine for all filesystems
1371 * that can use the page cache directly.
1373 ssize_t
1374 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1375 unsigned long nr_segs, loff_t pos)
1377 struct file *filp = iocb->ki_filp;
1378 ssize_t retval;
1379 unsigned long seg = 0;
1380 size_t count;
1381 loff_t *ppos = &iocb->ki_pos;
1383 count = 0;
1384 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1385 if (retval)
1386 return retval;
1388 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1389 if (filp->f_flags & O_DIRECT) {
1390 loff_t size;
1391 struct address_space *mapping;
1392 struct inode *inode;
1394 mapping = filp->f_mapping;
1395 inode = mapping->host;
1396 if (!count)
1397 goto out; /* skip atime */
1398 size = i_size_read(inode);
1399 if (pos < size) {
1400 retval = filemap_write_and_wait_range(mapping, pos,
1401 pos + iov_length(iov, nr_segs) - 1);
1402 if (!retval) {
1403 struct blk_plug plug;
1405 blk_start_plug(&plug);
1406 retval = mapping->a_ops->direct_IO(READ, iocb,
1407 iov, pos, nr_segs);
1408 blk_finish_plug(&plug);
1410 if (retval > 0) {
1411 *ppos = pos + retval;
1412 count -= retval;
1416 * Btrfs can have a short DIO read if we encounter
1417 * compressed extents, so if there was an error, or if
1418 * we've already read everything we wanted to, or if
1419 * there was a short read because we hit EOF, go ahead
1420 * and return. Otherwise fallthrough to buffered io for
1421 * the rest of the read.
1423 if (retval < 0 || !count || *ppos >= size) {
1424 file_accessed(filp);
1425 goto out;
1430 count = retval;
1431 for (seg = 0; seg < nr_segs; seg++) {
1432 read_descriptor_t desc;
1433 loff_t offset = 0;
1436 * If we did a short DIO read we need to skip the section of the
1437 * iov that we've already read data into.
1439 if (count) {
1440 if (count > iov[seg].iov_len) {
1441 count -= iov[seg].iov_len;
1442 continue;
1444 offset = count;
1445 count = 0;
1448 desc.written = 0;
1449 desc.arg.buf = iov[seg].iov_base + offset;
1450 desc.count = iov[seg].iov_len - offset;
1451 if (desc.count == 0)
1452 continue;
1453 desc.error = 0;
1454 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1455 retval += desc.written;
1456 if (desc.error) {
1457 retval = retval ?: desc.error;
1458 break;
1460 if (desc.count > 0)
1461 break;
1463 out:
1464 return retval;
1466 EXPORT_SYMBOL(generic_file_aio_read);
1468 static ssize_t
1469 do_readahead(struct address_space *mapping, struct file *filp,
1470 pgoff_t index, unsigned long nr)
1472 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1473 return -EINVAL;
1475 force_page_cache_readahead(mapping, filp, index, nr);
1476 return 0;
1479 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1481 ssize_t ret;
1482 struct file *file;
1484 ret = -EBADF;
1485 file = fget(fd);
1486 if (file) {
1487 if (file->f_mode & FMODE_READ) {
1488 struct address_space *mapping = file->f_mapping;
1489 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1490 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1491 unsigned long len = end - start + 1;
1492 ret = do_readahead(mapping, file, start, len);
1494 fput(file);
1496 return ret;
1498 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1499 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1501 return SYSC_readahead((int) fd, offset, (size_t) count);
1503 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1504 #endif
1506 #ifdef CONFIG_MMU
1508 * page_cache_read - adds requested page to the page cache if not already there
1509 * @file: file to read
1510 * @offset: page index
1512 * This adds the requested page to the page cache if it isn't already there,
1513 * and schedules an I/O to read in its contents from disk.
1515 static int page_cache_read(struct file *file, pgoff_t offset)
1517 struct address_space *mapping = file->f_mapping;
1518 struct page *page;
1519 int ret;
1521 do {
1522 page = page_cache_alloc_cold(mapping);
1523 if (!page)
1524 return -ENOMEM;
1526 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1527 if (ret == 0)
1528 ret = mapping->a_ops->readpage(file, page);
1529 else if (ret == -EEXIST)
1530 ret = 0; /* losing race to add is OK */
1532 page_cache_release(page);
1534 } while (ret == AOP_TRUNCATED_PAGE);
1536 return ret;
1539 #define MMAP_LOTSAMISS (100)
1542 * Synchronous readahead happens when we don't even find
1543 * a page in the page cache at all.
1545 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1546 struct file_ra_state *ra,
1547 struct file *file,
1548 pgoff_t offset)
1550 unsigned long ra_pages;
1551 struct address_space *mapping = file->f_mapping;
1553 /* If we don't want any read-ahead, don't bother */
1554 if (VM_RandomReadHint(vma))
1555 return;
1556 if (!ra->ra_pages)
1557 return;
1559 if (VM_SequentialReadHint(vma)) {
1560 page_cache_sync_readahead(mapping, ra, file, offset,
1561 ra->ra_pages);
1562 return;
1565 /* Avoid banging the cache line if not needed */
1566 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1567 ra->mmap_miss++;
1570 * Do we miss much more than hit in this file? If so,
1571 * stop bothering with read-ahead. It will only hurt.
1573 if (ra->mmap_miss > MMAP_LOTSAMISS)
1574 return;
1577 * mmap read-around
1579 ra_pages = max_sane_readahead(ra->ra_pages);
1580 ra->start = max_t(long, 0, offset - ra_pages / 2);
1581 ra->size = ra_pages;
1582 ra->async_size = ra_pages / 4;
1583 ra_submit(ra, mapping, file);
1587 * Asynchronous readahead happens when we find the page and PG_readahead,
1588 * so we want to possibly extend the readahead further..
1590 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1591 struct file_ra_state *ra,
1592 struct file *file,
1593 struct page *page,
1594 pgoff_t offset)
1596 struct address_space *mapping = file->f_mapping;
1598 /* If we don't want any read-ahead, don't bother */
1599 if (VM_RandomReadHint(vma))
1600 return;
1601 if (ra->mmap_miss > 0)
1602 ra->mmap_miss--;
1603 if (PageReadahead(page))
1604 page_cache_async_readahead(mapping, ra, file,
1605 page, offset, ra->ra_pages);
1609 * filemap_fault - read in file data for page fault handling
1610 * @vma: vma in which the fault was taken
1611 * @vmf: struct vm_fault containing details of the fault
1613 * filemap_fault() is invoked via the vma operations vector for a
1614 * mapped memory region to read in file data during a page fault.
1616 * The goto's are kind of ugly, but this streamlines the normal case of having
1617 * it in the page cache, and handles the special cases reasonably without
1618 * having a lot of duplicated code.
1620 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1622 int error;
1623 struct file *file = vma->vm_file;
1624 struct address_space *mapping = file->f_mapping;
1625 struct file_ra_state *ra = &file->f_ra;
1626 struct inode *inode = mapping->host;
1627 pgoff_t offset = vmf->pgoff;
1628 struct page *page;
1629 pgoff_t size;
1630 int ret = 0;
1632 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1633 if (offset >= size)
1634 return VM_FAULT_SIGBUS;
1637 * Do we have something in the page cache already?
1639 page = find_get_page(mapping, offset);
1640 if (likely(page)) {
1642 * We found the page, so try async readahead before
1643 * waiting for the lock.
1645 do_async_mmap_readahead(vma, ra, file, page, offset);
1646 } else {
1647 /* No page in the page cache at all */
1648 do_sync_mmap_readahead(vma, ra, file, offset);
1649 count_vm_event(PGMAJFAULT);
1650 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1651 ret = VM_FAULT_MAJOR;
1652 retry_find:
1653 page = find_get_page(mapping, offset);
1654 if (!page)
1655 goto no_cached_page;
1658 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1659 page_cache_release(page);
1660 return ret | VM_FAULT_RETRY;
1663 /* Did it get truncated? */
1664 if (unlikely(page->mapping != mapping)) {
1665 unlock_page(page);
1666 put_page(page);
1667 goto retry_find;
1669 VM_BUG_ON(page->index != offset);
1672 * We have a locked page in the page cache, now we need to check
1673 * that it's up-to-date. If not, it is going to be due to an error.
1675 if (unlikely(!PageUptodate(page)))
1676 goto page_not_uptodate;
1679 * Found the page and have a reference on it.
1680 * We must recheck i_size under page lock.
1682 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1683 if (unlikely(offset >= size)) {
1684 unlock_page(page);
1685 page_cache_release(page);
1686 return VM_FAULT_SIGBUS;
1689 vmf->page = page;
1690 return ret | VM_FAULT_LOCKED;
1692 no_cached_page:
1694 * We're only likely to ever get here if MADV_RANDOM is in
1695 * effect.
1697 error = page_cache_read(file, offset);
1700 * The page we want has now been added to the page cache.
1701 * In the unlikely event that someone removed it in the
1702 * meantime, we'll just come back here and read it again.
1704 if (error >= 0)
1705 goto retry_find;
1708 * An error return from page_cache_read can result if the
1709 * system is low on memory, or a problem occurs while trying
1710 * to schedule I/O.
1712 if (error == -ENOMEM)
1713 return VM_FAULT_OOM;
1714 return VM_FAULT_SIGBUS;
1716 page_not_uptodate:
1718 * Umm, take care of errors if the page isn't up-to-date.
1719 * Try to re-read it _once_. We do this synchronously,
1720 * because there really aren't any performance issues here
1721 * and we need to check for errors.
1723 ClearPageError(page);
1724 error = mapping->a_ops->readpage(file, page);
1725 if (!error) {
1726 wait_on_page_locked(page);
1727 if (!PageUptodate(page))
1728 error = -EIO;
1730 page_cache_release(page);
1732 if (!error || error == AOP_TRUNCATED_PAGE)
1733 goto retry_find;
1735 /* Things didn't work out. Return zero to tell the mm layer so. */
1736 shrink_readahead_size_eio(file, ra);
1737 return VM_FAULT_SIGBUS;
1739 EXPORT_SYMBOL(filemap_fault);
1741 const struct vm_operations_struct generic_file_vm_ops = {
1742 .fault = filemap_fault,
1745 /* This is used for a general mmap of a disk file */
1747 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1749 struct address_space *mapping = file->f_mapping;
1751 if (!mapping->a_ops->readpage)
1752 return -ENOEXEC;
1753 file_accessed(file);
1754 vma->vm_ops = &generic_file_vm_ops;
1755 vma->vm_flags |= VM_CAN_NONLINEAR;
1756 return 0;
1760 * This is for filesystems which do not implement ->writepage.
1762 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1764 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1765 return -EINVAL;
1766 return generic_file_mmap(file, vma);
1768 #else
1769 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1771 return -ENOSYS;
1773 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1775 return -ENOSYS;
1777 #endif /* CONFIG_MMU */
1779 EXPORT_SYMBOL(generic_file_mmap);
1780 EXPORT_SYMBOL(generic_file_readonly_mmap);
1782 static struct page *__read_cache_page(struct address_space *mapping,
1783 pgoff_t index,
1784 int (*filler)(void *,struct page*),
1785 void *data,
1786 gfp_t gfp)
1788 struct page *page;
1789 int err;
1790 repeat:
1791 page = find_get_page(mapping, index);
1792 if (!page) {
1793 page = __page_cache_alloc(gfp | __GFP_COLD);
1794 if (!page)
1795 return ERR_PTR(-ENOMEM);
1796 err = add_to_page_cache_lru(page, mapping, index, gfp);
1797 if (unlikely(err)) {
1798 page_cache_release(page);
1799 if (err == -EEXIST)
1800 goto repeat;
1801 /* Presumably ENOMEM for radix tree node */
1802 return ERR_PTR(err);
1804 err = filler(data, page);
1805 if (err < 0) {
1806 page_cache_release(page);
1807 page = ERR_PTR(err);
1810 return page;
1813 static struct page *do_read_cache_page(struct address_space *mapping,
1814 pgoff_t index,
1815 int (*filler)(void *,struct page*),
1816 void *data,
1817 gfp_t gfp)
1820 struct page *page;
1821 int err;
1823 retry:
1824 page = __read_cache_page(mapping, index, filler, data, gfp);
1825 if (IS_ERR(page))
1826 return page;
1827 if (PageUptodate(page))
1828 goto out;
1830 lock_page(page);
1831 if (!page->mapping) {
1832 unlock_page(page);
1833 page_cache_release(page);
1834 goto retry;
1836 if (PageUptodate(page)) {
1837 unlock_page(page);
1838 goto out;
1840 err = filler(data, page);
1841 if (err < 0) {
1842 page_cache_release(page);
1843 return ERR_PTR(err);
1845 out:
1846 mark_page_accessed(page);
1847 return page;
1851 * read_cache_page_async - read into page cache, fill it if needed
1852 * @mapping: the page's address_space
1853 * @index: the page index
1854 * @filler: function to perform the read
1855 * @data: destination for read data
1857 * Same as read_cache_page, but don't wait for page to become unlocked
1858 * after submitting it to the filler.
1860 * Read into the page cache. If a page already exists, and PageUptodate() is
1861 * not set, try to fill the page but don't wait for it to become unlocked.
1863 * If the page does not get brought uptodate, return -EIO.
1865 struct page *read_cache_page_async(struct address_space *mapping,
1866 pgoff_t index,
1867 int (*filler)(void *,struct page*),
1868 void *data)
1870 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1872 EXPORT_SYMBOL(read_cache_page_async);
1874 static struct page *wait_on_page_read(struct page *page)
1876 if (!IS_ERR(page)) {
1877 wait_on_page_locked(page);
1878 if (!PageUptodate(page)) {
1879 page_cache_release(page);
1880 page = ERR_PTR(-EIO);
1883 return page;
1887 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1888 * @mapping: the page's address_space
1889 * @index: the page index
1890 * @gfp: the page allocator flags to use if allocating
1892 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1893 * any new page allocations done using the specified allocation flags.
1895 * If the page does not get brought uptodate, return -EIO.
1897 struct page *read_cache_page_gfp(struct address_space *mapping,
1898 pgoff_t index,
1899 gfp_t gfp)
1901 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1903 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1905 EXPORT_SYMBOL(read_cache_page_gfp);
1908 * read_cache_page - read into page cache, fill it if needed
1909 * @mapping: the page's address_space
1910 * @index: the page index
1911 * @filler: function to perform the read
1912 * @data: destination for read data
1914 * Read into the page cache. If a page already exists, and PageUptodate() is
1915 * not set, try to fill the page then wait for it to become unlocked.
1917 * If the page does not get brought uptodate, return -EIO.
1919 struct page *read_cache_page(struct address_space *mapping,
1920 pgoff_t index,
1921 int (*filler)(void *,struct page*),
1922 void *data)
1924 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1926 EXPORT_SYMBOL(read_cache_page);
1929 * The logic we want is
1931 * if suid or (sgid and xgrp)
1932 * remove privs
1934 int should_remove_suid(struct dentry *dentry)
1936 mode_t mode = dentry->d_inode->i_mode;
1937 int kill = 0;
1939 /* suid always must be killed */
1940 if (unlikely(mode & S_ISUID))
1941 kill = ATTR_KILL_SUID;
1944 * sgid without any exec bits is just a mandatory locking mark; leave
1945 * it alone. If some exec bits are set, it's a real sgid; kill it.
1947 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1948 kill |= ATTR_KILL_SGID;
1950 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1951 return kill;
1953 return 0;
1955 EXPORT_SYMBOL(should_remove_suid);
1957 static int __remove_suid(struct dentry *dentry, int kill)
1959 struct iattr newattrs;
1961 newattrs.ia_valid = ATTR_FORCE | kill;
1962 return notify_change(dentry, &newattrs);
1965 int file_remove_suid(struct file *file)
1967 struct dentry *dentry = file->f_path.dentry;
1968 struct inode *inode = dentry->d_inode;
1969 int killsuid;
1970 int killpriv;
1971 int error = 0;
1973 /* Fast path for nothing security related */
1974 if (IS_NOSEC(inode))
1975 return 0;
1977 killsuid = should_remove_suid(dentry);
1978 killpriv = security_inode_need_killpriv(dentry);
1980 if (killpriv < 0)
1981 return killpriv;
1982 if (killpriv)
1983 error = security_inode_killpriv(dentry);
1984 if (!error && killsuid)
1985 error = __remove_suid(dentry, killsuid);
1986 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1987 inode->i_flags |= S_NOSEC;
1989 return error;
1991 EXPORT_SYMBOL(file_remove_suid);
1993 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1994 const struct iovec *iov, size_t base, size_t bytes)
1996 size_t copied = 0, left = 0;
1998 while (bytes) {
1999 char __user *buf = iov->iov_base + base;
2000 int copy = min(bytes, iov->iov_len - base);
2002 base = 0;
2003 left = __copy_from_user_inatomic(vaddr, buf, copy);
2004 copied += copy;
2005 bytes -= copy;
2006 vaddr += copy;
2007 iov++;
2009 if (unlikely(left))
2010 break;
2012 return copied - left;
2016 * Copy as much as we can into the page and return the number of bytes which
2017 * were successfully copied. If a fault is encountered then return the number of
2018 * bytes which were copied.
2020 size_t iov_iter_copy_from_user_atomic(struct page *page,
2021 struct iov_iter *i, unsigned long offset, size_t bytes)
2023 char *kaddr;
2024 size_t copied;
2026 BUG_ON(!in_atomic());
2027 kaddr = kmap_atomic(page, KM_USER0);
2028 if (likely(i->nr_segs == 1)) {
2029 int left;
2030 char __user *buf = i->iov->iov_base + i->iov_offset;
2031 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2032 copied = bytes - left;
2033 } else {
2034 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2035 i->iov, i->iov_offset, bytes);
2037 kunmap_atomic(kaddr, KM_USER0);
2039 return copied;
2041 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2044 * This has the same sideeffects and return value as
2045 * iov_iter_copy_from_user_atomic().
2046 * The difference is that it attempts to resolve faults.
2047 * Page must not be locked.
2049 size_t iov_iter_copy_from_user(struct page *page,
2050 struct iov_iter *i, unsigned long offset, size_t bytes)
2052 char *kaddr;
2053 size_t copied;
2055 kaddr = kmap(page);
2056 if (likely(i->nr_segs == 1)) {
2057 int left;
2058 char __user *buf = i->iov->iov_base + i->iov_offset;
2059 left = __copy_from_user(kaddr + offset, buf, bytes);
2060 copied = bytes - left;
2061 } else {
2062 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2063 i->iov, i->iov_offset, bytes);
2065 kunmap(page);
2066 return copied;
2068 EXPORT_SYMBOL(iov_iter_copy_from_user);
2070 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2072 BUG_ON(i->count < bytes);
2074 if (likely(i->nr_segs == 1)) {
2075 i->iov_offset += bytes;
2076 i->count -= bytes;
2077 } else {
2078 const struct iovec *iov = i->iov;
2079 size_t base = i->iov_offset;
2082 * The !iov->iov_len check ensures we skip over unlikely
2083 * zero-length segments (without overruning the iovec).
2085 while (bytes || unlikely(i->count && !iov->iov_len)) {
2086 int copy;
2088 copy = min(bytes, iov->iov_len - base);
2089 BUG_ON(!i->count || i->count < copy);
2090 i->count -= copy;
2091 bytes -= copy;
2092 base += copy;
2093 if (iov->iov_len == base) {
2094 iov++;
2095 base = 0;
2098 i->iov = iov;
2099 i->iov_offset = base;
2102 EXPORT_SYMBOL(iov_iter_advance);
2105 * Fault in the first iovec of the given iov_iter, to a maximum length
2106 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2107 * accessed (ie. because it is an invalid address).
2109 * writev-intensive code may want this to prefault several iovecs -- that
2110 * would be possible (callers must not rely on the fact that _only_ the
2111 * first iovec will be faulted with the current implementation).
2113 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2115 char __user *buf = i->iov->iov_base + i->iov_offset;
2116 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2117 return fault_in_pages_readable(buf, bytes);
2119 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2122 * Return the count of just the current iov_iter segment.
2124 size_t iov_iter_single_seg_count(struct iov_iter *i)
2126 const struct iovec *iov = i->iov;
2127 if (i->nr_segs == 1)
2128 return i->count;
2129 else
2130 return min(i->count, iov->iov_len - i->iov_offset);
2132 EXPORT_SYMBOL(iov_iter_single_seg_count);
2135 * Performs necessary checks before doing a write
2137 * Can adjust writing position or amount of bytes to write.
2138 * Returns appropriate error code that caller should return or
2139 * zero in case that write should be allowed.
2141 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2143 struct inode *inode = file->f_mapping->host;
2144 unsigned long limit = rlimit(RLIMIT_FSIZE);
2146 if (unlikely(*pos < 0))
2147 return -EINVAL;
2149 if (!isblk) {
2150 /* FIXME: this is for backwards compatibility with 2.4 */
2151 if (file->f_flags & O_APPEND)
2152 *pos = i_size_read(inode);
2154 if (limit != RLIM_INFINITY) {
2155 if (*pos >= limit) {
2156 send_sig(SIGXFSZ, current, 0);
2157 return -EFBIG;
2159 if (*count > limit - (typeof(limit))*pos) {
2160 *count = limit - (typeof(limit))*pos;
2166 * LFS rule
2168 if (unlikely(*pos + *count > MAX_NON_LFS &&
2169 !(file->f_flags & O_LARGEFILE))) {
2170 if (*pos >= MAX_NON_LFS) {
2171 return -EFBIG;
2173 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2174 *count = MAX_NON_LFS - (unsigned long)*pos;
2179 * Are we about to exceed the fs block limit ?
2181 * If we have written data it becomes a short write. If we have
2182 * exceeded without writing data we send a signal and return EFBIG.
2183 * Linus frestrict idea will clean these up nicely..
2185 if (likely(!isblk)) {
2186 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2187 if (*count || *pos > inode->i_sb->s_maxbytes) {
2188 return -EFBIG;
2190 /* zero-length writes at ->s_maxbytes are OK */
2193 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2194 *count = inode->i_sb->s_maxbytes - *pos;
2195 } else {
2196 #ifdef CONFIG_BLOCK
2197 loff_t isize;
2198 if (bdev_read_only(I_BDEV(inode)))
2199 return -EPERM;
2200 isize = i_size_read(inode);
2201 if (*pos >= isize) {
2202 if (*count || *pos > isize)
2203 return -ENOSPC;
2206 if (*pos + *count > isize)
2207 *count = isize - *pos;
2208 #else
2209 return -EPERM;
2210 #endif
2212 return 0;
2214 EXPORT_SYMBOL(generic_write_checks);
2216 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2217 loff_t pos, unsigned len, unsigned flags,
2218 struct page **pagep, void **fsdata)
2220 const struct address_space_operations *aops = mapping->a_ops;
2222 return aops->write_begin(file, mapping, pos, len, flags,
2223 pagep, fsdata);
2225 EXPORT_SYMBOL(pagecache_write_begin);
2227 int pagecache_write_end(struct file *file, struct address_space *mapping,
2228 loff_t pos, unsigned len, unsigned copied,
2229 struct page *page, void *fsdata)
2231 const struct address_space_operations *aops = mapping->a_ops;
2233 mark_page_accessed(page);
2234 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2236 EXPORT_SYMBOL(pagecache_write_end);
2238 ssize_t
2239 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2240 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2241 size_t count, size_t ocount)
2243 struct file *file = iocb->ki_filp;
2244 struct address_space *mapping = file->f_mapping;
2245 struct inode *inode = mapping->host;
2246 ssize_t written;
2247 size_t write_len;
2248 pgoff_t end;
2250 if (count != ocount)
2251 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2253 write_len = iov_length(iov, *nr_segs);
2254 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2256 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2257 if (written)
2258 goto out;
2261 * After a write we want buffered reads to be sure to go to disk to get
2262 * the new data. We invalidate clean cached page from the region we're
2263 * about to write. We do this *before* the write so that we can return
2264 * without clobbering -EIOCBQUEUED from ->direct_IO().
2266 if (mapping->nrpages) {
2267 written = invalidate_inode_pages2_range(mapping,
2268 pos >> PAGE_CACHE_SHIFT, end);
2270 * If a page can not be invalidated, return 0 to fall back
2271 * to buffered write.
2273 if (written) {
2274 if (written == -EBUSY)
2275 return 0;
2276 goto out;
2280 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2283 * Finally, try again to invalidate clean pages which might have been
2284 * cached by non-direct readahead, or faulted in by get_user_pages()
2285 * if the source of the write was an mmap'ed region of the file
2286 * we're writing. Either one is a pretty crazy thing to do,
2287 * so we don't support it 100%. If this invalidation
2288 * fails, tough, the write still worked...
2290 if (mapping->nrpages) {
2291 invalidate_inode_pages2_range(mapping,
2292 pos >> PAGE_CACHE_SHIFT, end);
2295 if (written > 0) {
2296 pos += written;
2297 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2298 i_size_write(inode, pos);
2299 mark_inode_dirty(inode);
2301 *ppos = pos;
2303 out:
2304 return written;
2306 EXPORT_SYMBOL(generic_file_direct_write);
2309 * Find or create a page at the given pagecache position. Return the locked
2310 * page. This function is specifically for buffered writes.
2312 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2313 pgoff_t index, unsigned flags)
2315 int status;
2316 struct page *page;
2317 gfp_t gfp_notmask = 0;
2318 if (flags & AOP_FLAG_NOFS)
2319 gfp_notmask = __GFP_FS;
2320 repeat:
2321 page = find_lock_page(mapping, index);
2322 if (page)
2323 goto found;
2325 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2326 if (!page)
2327 return NULL;
2328 status = add_to_page_cache_lru(page, mapping, index,
2329 GFP_KERNEL & ~gfp_notmask);
2330 if (unlikely(status)) {
2331 page_cache_release(page);
2332 if (status == -EEXIST)
2333 goto repeat;
2334 return NULL;
2336 found:
2337 wait_on_page_writeback(page);
2338 return page;
2340 EXPORT_SYMBOL(grab_cache_page_write_begin);
2342 static ssize_t generic_perform_write(struct file *file,
2343 struct iov_iter *i, loff_t pos)
2345 struct address_space *mapping = file->f_mapping;
2346 const struct address_space_operations *a_ops = mapping->a_ops;
2347 long status = 0;
2348 ssize_t written = 0;
2349 unsigned int flags = 0;
2352 * Copies from kernel address space cannot fail (NFSD is a big user).
2354 if (segment_eq(get_fs(), KERNEL_DS))
2355 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2357 do {
2358 struct page *page;
2359 unsigned long offset; /* Offset into pagecache page */
2360 unsigned long bytes; /* Bytes to write to page */
2361 size_t copied; /* Bytes copied from user */
2362 void *fsdata;
2364 offset = (pos & (PAGE_CACHE_SIZE - 1));
2365 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2366 iov_iter_count(i));
2368 again:
2371 * Bring in the user page that we will copy from _first_.
2372 * Otherwise there's a nasty deadlock on copying from the
2373 * same page as we're writing to, without it being marked
2374 * up-to-date.
2376 * Not only is this an optimisation, but it is also required
2377 * to check that the address is actually valid, when atomic
2378 * usercopies are used, below.
2380 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2381 status = -EFAULT;
2382 break;
2385 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2386 &page, &fsdata);
2387 if (unlikely(status))
2388 break;
2390 if (mapping_writably_mapped(mapping))
2391 flush_dcache_page(page);
2393 pagefault_disable();
2394 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2395 pagefault_enable();
2396 flush_dcache_page(page);
2398 mark_page_accessed(page);
2399 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2400 page, fsdata);
2401 if (unlikely(status < 0))
2402 break;
2403 copied = status;
2405 cond_resched();
2407 iov_iter_advance(i, copied);
2408 if (unlikely(copied == 0)) {
2410 * If we were unable to copy any data at all, we must
2411 * fall back to a single segment length write.
2413 * If we didn't fallback here, we could livelock
2414 * because not all segments in the iov can be copied at
2415 * once without a pagefault.
2417 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2418 iov_iter_single_seg_count(i));
2419 goto again;
2421 pos += copied;
2422 written += copied;
2424 balance_dirty_pages_ratelimited(mapping);
2426 } while (iov_iter_count(i));
2428 return written ? written : status;
2431 ssize_t
2432 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2433 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2434 size_t count, ssize_t written)
2436 struct file *file = iocb->ki_filp;
2437 ssize_t status;
2438 struct iov_iter i;
2440 iov_iter_init(&i, iov, nr_segs, count, written);
2441 status = generic_perform_write(file, &i, pos);
2443 if (likely(status >= 0)) {
2444 written += status;
2445 *ppos = pos + status;
2448 return written ? written : status;
2450 EXPORT_SYMBOL(generic_file_buffered_write);
2453 * __generic_file_aio_write - write data to a file
2454 * @iocb: IO state structure (file, offset, etc.)
2455 * @iov: vector with data to write
2456 * @nr_segs: number of segments in the vector
2457 * @ppos: position where to write
2459 * This function does all the work needed for actually writing data to a
2460 * file. It does all basic checks, removes SUID from the file, updates
2461 * modification times and calls proper subroutines depending on whether we
2462 * do direct IO or a standard buffered write.
2464 * It expects i_mutex to be grabbed unless we work on a block device or similar
2465 * object which does not need locking at all.
2467 * This function does *not* take care of syncing data in case of O_SYNC write.
2468 * A caller has to handle it. This is mainly due to the fact that we want to
2469 * avoid syncing under i_mutex.
2471 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2472 unsigned long nr_segs, loff_t *ppos)
2474 struct file *file = iocb->ki_filp;
2475 struct address_space * mapping = file->f_mapping;
2476 size_t ocount; /* original count */
2477 size_t count; /* after file limit checks */
2478 struct inode *inode = mapping->host;
2479 loff_t pos;
2480 ssize_t written;
2481 ssize_t err;
2483 ocount = 0;
2484 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2485 if (err)
2486 return err;
2488 count = ocount;
2489 pos = *ppos;
2491 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2493 /* We can write back this queue in page reclaim */
2494 current->backing_dev_info = mapping->backing_dev_info;
2495 written = 0;
2497 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2498 if (err)
2499 goto out;
2501 if (count == 0)
2502 goto out;
2504 err = file_remove_suid(file);
2505 if (err)
2506 goto out;
2508 file_update_time(file);
2510 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2511 if (unlikely(file->f_flags & O_DIRECT)) {
2512 loff_t endbyte;
2513 ssize_t written_buffered;
2515 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2516 ppos, count, ocount);
2517 if (written < 0 || written == count)
2518 goto out;
2520 * direct-io write to a hole: fall through to buffered I/O
2521 * for completing the rest of the request.
2523 pos += written;
2524 count -= written;
2525 written_buffered = generic_file_buffered_write(iocb, iov,
2526 nr_segs, pos, ppos, count,
2527 written);
2529 * If generic_file_buffered_write() retuned a synchronous error
2530 * then we want to return the number of bytes which were
2531 * direct-written, or the error code if that was zero. Note
2532 * that this differs from normal direct-io semantics, which
2533 * will return -EFOO even if some bytes were written.
2535 if (written_buffered < 0) {
2536 err = written_buffered;
2537 goto out;
2541 * We need to ensure that the page cache pages are written to
2542 * disk and invalidated to preserve the expected O_DIRECT
2543 * semantics.
2545 endbyte = pos + written_buffered - written - 1;
2546 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2547 if (err == 0) {
2548 written = written_buffered;
2549 invalidate_mapping_pages(mapping,
2550 pos >> PAGE_CACHE_SHIFT,
2551 endbyte >> PAGE_CACHE_SHIFT);
2552 } else {
2554 * We don't know how much we wrote, so just return
2555 * the number of bytes which were direct-written
2558 } else {
2559 written = generic_file_buffered_write(iocb, iov, nr_segs,
2560 pos, ppos, count, written);
2562 out:
2563 current->backing_dev_info = NULL;
2564 return written ? written : err;
2566 EXPORT_SYMBOL(__generic_file_aio_write);
2569 * generic_file_aio_write - write data to a file
2570 * @iocb: IO state structure
2571 * @iov: vector with data to write
2572 * @nr_segs: number of segments in the vector
2573 * @pos: position in file where to write
2575 * This is a wrapper around __generic_file_aio_write() to be used by most
2576 * filesystems. It takes care of syncing the file in case of O_SYNC file
2577 * and acquires i_mutex as needed.
2579 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2580 unsigned long nr_segs, loff_t pos)
2582 struct file *file = iocb->ki_filp;
2583 struct inode *inode = file->f_mapping->host;
2584 struct blk_plug plug;
2585 ssize_t ret;
2587 BUG_ON(iocb->ki_pos != pos);
2589 mutex_lock(&inode->i_mutex);
2590 blk_start_plug(&plug);
2591 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2592 mutex_unlock(&inode->i_mutex);
2594 if (ret > 0 || ret == -EIOCBQUEUED) {
2595 ssize_t err;
2597 err = generic_write_sync(file, pos, ret);
2598 if (err < 0 && ret > 0)
2599 ret = err;
2601 blk_finish_plug(&plug);
2602 return ret;
2604 EXPORT_SYMBOL(generic_file_aio_write);
2607 * try_to_release_page() - release old fs-specific metadata on a page
2609 * @page: the page which the kernel is trying to free
2610 * @gfp_mask: memory allocation flags (and I/O mode)
2612 * The address_space is to try to release any data against the page
2613 * (presumably at page->private). If the release was successful, return `1'.
2614 * Otherwise return zero.
2616 * This may also be called if PG_fscache is set on a page, indicating that the
2617 * page is known to the local caching routines.
2619 * The @gfp_mask argument specifies whether I/O may be performed to release
2620 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2623 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2625 struct address_space * const mapping = page->mapping;
2627 BUG_ON(!PageLocked(page));
2628 if (PageWriteback(page))
2629 return 0;
2631 if (mapping && mapping->a_ops->releasepage)
2632 return mapping->a_ops->releasepage(page, gfp_mask);
2633 return try_to_free_buffers(page);
2636 EXPORT_SYMBOL(try_to_release_page);