ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / mm / hugetlb.c
blob00b0abb75c949f33cb85e7becb1eeebf4ed2a56b
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
76 static long region_add(struct list_head *head, long f, long t)
78 struct file_region *rg, *nrg, *trg;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
112 static long region_chg(struct list_head *head, long f, long t)
114 struct file_region *rg, *nrg;
115 long chg = 0;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
134 return t - f;
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
156 chg -= rg->to - rg->from;
158 return chg;
161 static long region_truncate(struct list_head *head, long end)
163 struct file_region *rg, *trg;
164 long chg = 0;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
188 return chg;
191 static long region_count(struct list_head *head, long f, long t)
193 struct file_region *rg;
194 long chg = 0;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
209 chg += seg_to - seg_from;
212 return chg;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
238 struct hstate *hstate;
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
243 hstate = hstate_vma(vma);
245 return 1UL << (hstate->order + PAGE_SHIFT);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
258 return vma_kernel_pagesize(vma);
260 #endif
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
292 return (unsigned long)vma->vm_private_data;
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
298 vma->vm_private_data = (void *)value;
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
306 static struct resv_map *resv_map_alloc(void)
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
315 return resv_map;
318 static void resv_map_release(struct kref *ref)
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
357 return (get_vma_private_data(vma) & flag) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
372 * Only the process that called mmap() has reserves for
373 * private mappings.
375 h->resv_huge_pages--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
397 static void copy_gigantic_page(struct page *dst, struct page *src)
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
414 void copy_huge_page(struct page *dst, struct page *src)
416 int i;
417 struct hstate *h = page_hstate(src);
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
433 int nid = page_to_nid(page);
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
441 struct page *page;
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
447 set_page_refcounted(page);
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
455 unsigned long address, int avoid_reserve)
457 struct page *page = NULL;
458 struct mempolicy *mpol;
459 nodemask_t *nodemask;
460 struct zonelist *zonelist;
461 struct zone *zone;
462 struct zoneref *z;
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
472 if (!vma_has_reserves(vma) &&
473 h->free_huge_pages - h->resv_huge_pages == 0)
474 goto err;
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 goto err;
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
491 err:
492 mpol_cond_put(mpol);
493 put_mems_allowed();
494 return page;
497 static void update_and_free_page(struct hstate *h, struct page *page)
499 int i;
501 VM_BUG_ON(h->order >= MAX_ORDER);
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508 1 << PG_private | 1<< PG_writeback);
510 set_compound_page_dtor(page, NULL);
511 set_page_refcounted(page);
512 arch_release_hugepage(page);
513 __free_pages(page, huge_page_order(h));
516 struct hstate *size_to_hstate(unsigned long size)
518 struct hstate *h;
520 for_each_hstate(h) {
521 if (huge_page_size(h) == size)
522 return h;
524 return NULL;
527 static void free_huge_page(struct page *page)
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
533 struct hstate *h = page_hstate(page);
534 int nid = page_to_nid(page);
535 struct address_space *mapping;
537 mapping = (struct address_space *) page_private(page);
538 set_page_private(page, 0);
539 page->mapping = NULL;
540 BUG_ON(page_count(page));
541 BUG_ON(page_mapcount(page));
542 INIT_LIST_HEAD(&page->lru);
544 spin_lock(&hugetlb_lock);
545 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546 update_and_free_page(h, page);
547 h->surplus_huge_pages--;
548 h->surplus_huge_pages_node[nid]--;
549 } else {
550 enqueue_huge_page(h, page);
552 spin_unlock(&hugetlb_lock);
553 if (mapping)
554 hugetlb_put_quota(mapping, 1);
557 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 set_compound_page_dtor(page, free_huge_page);
560 spin_lock(&hugetlb_lock);
561 h->nr_huge_pages++;
562 h->nr_huge_pages_node[nid]++;
563 spin_unlock(&hugetlb_lock);
564 put_page(page); /* free it into the hugepage allocator */
567 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 int i;
570 int nr_pages = 1 << order;
571 struct page *p = page + 1;
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page, order);
575 __SetPageHead(page);
576 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577 __SetPageTail(p);
578 set_page_count(p, 0);
579 p->first_page = page;
583 int PageHuge(struct page *page)
585 compound_page_dtor *dtor;
587 if (!PageCompound(page))
588 return 0;
590 page = compound_head(page);
591 dtor = get_compound_page_dtor(page);
593 return dtor == free_huge_page;
596 EXPORT_SYMBOL_GPL(PageHuge);
598 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
600 struct page *page;
602 if (h->order >= MAX_ORDER)
603 return NULL;
605 page = alloc_pages_exact_node(nid,
606 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607 __GFP_REPEAT|__GFP_NOWARN,
608 huge_page_order(h));
609 if (page) {
610 if (arch_prepare_hugepage(page)) {
611 __free_pages(page, huge_page_order(h));
612 return NULL;
614 prep_new_huge_page(h, page, nid);
617 return page;
621 * common helper functions for hstate_next_node_to_{alloc|free}.
622 * We may have allocated or freed a huge page based on a different
623 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624 * be outside of *nodes_allowed. Ensure that we use an allowed
625 * node for alloc or free.
627 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
629 nid = next_node(nid, *nodes_allowed);
630 if (nid == MAX_NUMNODES)
631 nid = first_node(*nodes_allowed);
632 VM_BUG_ON(nid >= MAX_NUMNODES);
634 return nid;
637 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
639 if (!node_isset(nid, *nodes_allowed))
640 nid = next_node_allowed(nid, nodes_allowed);
641 return nid;
645 * returns the previously saved node ["this node"] from which to
646 * allocate a persistent huge page for the pool and advance the
647 * next node from which to allocate, handling wrap at end of node
648 * mask.
650 static int hstate_next_node_to_alloc(struct hstate *h,
651 nodemask_t *nodes_allowed)
653 int nid;
655 VM_BUG_ON(!nodes_allowed);
657 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
660 return nid;
663 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
665 struct page *page;
666 int start_nid;
667 int next_nid;
668 int ret = 0;
670 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671 next_nid = start_nid;
673 do {
674 page = alloc_fresh_huge_page_node(h, next_nid);
675 if (page) {
676 ret = 1;
677 break;
679 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680 } while (next_nid != start_nid);
682 if (ret)
683 count_vm_event(HTLB_BUDDY_PGALLOC);
684 else
685 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
687 return ret;
691 * helper for free_pool_huge_page() - return the previously saved
692 * node ["this node"] from which to free a huge page. Advance the
693 * next node id whether or not we find a free huge page to free so
694 * that the next attempt to free addresses the next node.
696 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
698 int nid;
700 VM_BUG_ON(!nodes_allowed);
702 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
705 return nid;
709 * Free huge page from pool from next node to free.
710 * Attempt to keep persistent huge pages more or less
711 * balanced over allowed nodes.
712 * Called with hugetlb_lock locked.
714 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715 bool acct_surplus)
717 int start_nid;
718 int next_nid;
719 int ret = 0;
721 start_nid = hstate_next_node_to_free(h, nodes_allowed);
722 next_nid = start_nid;
724 do {
726 * If we're returning unused surplus pages, only examine
727 * nodes with surplus pages.
729 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730 !list_empty(&h->hugepage_freelists[next_nid])) {
731 struct page *page =
732 list_entry(h->hugepage_freelists[next_nid].next,
733 struct page, lru);
734 list_del(&page->lru);
735 h->free_huge_pages--;
736 h->free_huge_pages_node[next_nid]--;
737 if (acct_surplus) {
738 h->surplus_huge_pages--;
739 h->surplus_huge_pages_node[next_nid]--;
741 update_and_free_page(h, page);
742 ret = 1;
743 break;
745 next_nid = hstate_next_node_to_free(h, nodes_allowed);
746 } while (next_nid != start_nid);
748 return ret;
751 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
753 struct page *page;
754 unsigned int r_nid;
756 if (h->order >= MAX_ORDER)
757 return NULL;
760 * Assume we will successfully allocate the surplus page to
761 * prevent racing processes from causing the surplus to exceed
762 * overcommit
764 * This however introduces a different race, where a process B
765 * tries to grow the static hugepage pool while alloc_pages() is
766 * called by process A. B will only examine the per-node
767 * counters in determining if surplus huge pages can be
768 * converted to normal huge pages in adjust_pool_surplus(). A
769 * won't be able to increment the per-node counter, until the
770 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771 * no more huge pages can be converted from surplus to normal
772 * state (and doesn't try to convert again). Thus, we have a
773 * case where a surplus huge page exists, the pool is grown, and
774 * the surplus huge page still exists after, even though it
775 * should just have been converted to a normal huge page. This
776 * does not leak memory, though, as the hugepage will be freed
777 * once it is out of use. It also does not allow the counters to
778 * go out of whack in adjust_pool_surplus() as we don't modify
779 * the node values until we've gotten the hugepage and only the
780 * per-node value is checked there.
782 spin_lock(&hugetlb_lock);
783 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784 spin_unlock(&hugetlb_lock);
785 return NULL;
786 } else {
787 h->nr_huge_pages++;
788 h->surplus_huge_pages++;
790 spin_unlock(&hugetlb_lock);
792 if (nid == NUMA_NO_NODE)
793 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794 __GFP_REPEAT|__GFP_NOWARN,
795 huge_page_order(h));
796 else
797 page = alloc_pages_exact_node(nid,
798 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
801 if (page && arch_prepare_hugepage(page)) {
802 __free_pages(page, huge_page_order(h));
803 return NULL;
806 spin_lock(&hugetlb_lock);
807 if (page) {
808 r_nid = page_to_nid(page);
809 set_compound_page_dtor(page, free_huge_page);
811 * We incremented the global counters already
813 h->nr_huge_pages_node[r_nid]++;
814 h->surplus_huge_pages_node[r_nid]++;
815 __count_vm_event(HTLB_BUDDY_PGALLOC);
816 } else {
817 h->nr_huge_pages--;
818 h->surplus_huge_pages--;
819 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
821 spin_unlock(&hugetlb_lock);
823 return page;
827 * This allocation function is useful in the context where vma is irrelevant.
828 * E.g. soft-offlining uses this function because it only cares physical
829 * address of error page.
831 struct page *alloc_huge_page_node(struct hstate *h, int nid)
833 struct page *page;
835 spin_lock(&hugetlb_lock);
836 page = dequeue_huge_page_node(h, nid);
837 spin_unlock(&hugetlb_lock);
839 if (!page)
840 page = alloc_buddy_huge_page(h, nid);
842 return page;
846 * Increase the hugetlb pool such that it can accommodate a reservation
847 * of size 'delta'.
849 static int gather_surplus_pages(struct hstate *h, int delta)
851 struct list_head surplus_list;
852 struct page *page, *tmp;
853 int ret, i;
854 int needed, allocated;
856 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
857 if (needed <= 0) {
858 h->resv_huge_pages += delta;
859 return 0;
862 allocated = 0;
863 INIT_LIST_HEAD(&surplus_list);
865 ret = -ENOMEM;
866 retry:
867 spin_unlock(&hugetlb_lock);
868 for (i = 0; i < needed; i++) {
869 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
870 if (!page)
872 * We were not able to allocate enough pages to
873 * satisfy the entire reservation so we free what
874 * we've allocated so far.
876 goto free;
878 list_add(&page->lru, &surplus_list);
880 allocated += needed;
883 * After retaking hugetlb_lock, we need to recalculate 'needed'
884 * because either resv_huge_pages or free_huge_pages may have changed.
886 spin_lock(&hugetlb_lock);
887 needed = (h->resv_huge_pages + delta) -
888 (h->free_huge_pages + allocated);
889 if (needed > 0)
890 goto retry;
893 * The surplus_list now contains _at_least_ the number of extra pages
894 * needed to accommodate the reservation. Add the appropriate number
895 * of pages to the hugetlb pool and free the extras back to the buddy
896 * allocator. Commit the entire reservation here to prevent another
897 * process from stealing the pages as they are added to the pool but
898 * before they are reserved.
900 needed += allocated;
901 h->resv_huge_pages += delta;
902 ret = 0;
904 /* Free the needed pages to the hugetlb pool */
905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 if ((--needed) < 0)
907 break;
908 list_del(&page->lru);
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
913 put_page_testzero(page);
914 VM_BUG_ON(page_count(page));
915 enqueue_huge_page(h, page);
917 spin_unlock(&hugetlb_lock);
919 /* Free unnecessary surplus pages to the buddy allocator */
920 free:
921 if (!list_empty(&surplus_list)) {
922 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
923 list_del(&page->lru);
924 put_page(page);
927 spin_lock(&hugetlb_lock);
929 return ret;
933 * When releasing a hugetlb pool reservation, any surplus pages that were
934 * allocated to satisfy the reservation must be explicitly freed if they were
935 * never used.
936 * Called with hugetlb_lock held.
938 static void return_unused_surplus_pages(struct hstate *h,
939 unsigned long unused_resv_pages)
941 unsigned long nr_pages;
943 /* Uncommit the reservation */
944 h->resv_huge_pages -= unused_resv_pages;
946 /* Cannot return gigantic pages currently */
947 if (h->order >= MAX_ORDER)
948 return;
950 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
953 * We want to release as many surplus pages as possible, spread
954 * evenly across all nodes with memory. Iterate across these nodes
955 * until we can no longer free unreserved surplus pages. This occurs
956 * when the nodes with surplus pages have no free pages.
957 * free_pool_huge_page() will balance the the freed pages across the
958 * on-line nodes with memory and will handle the hstate accounting.
960 while (nr_pages--) {
961 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
962 break;
967 * Determine if the huge page at addr within the vma has an associated
968 * reservation. Where it does not we will need to logically increase
969 * reservation and actually increase quota before an allocation can occur.
970 * Where any new reservation would be required the reservation change is
971 * prepared, but not committed. Once the page has been quota'd allocated
972 * an instantiated the change should be committed via vma_commit_reservation.
973 * No action is required on failure.
975 static long vma_needs_reservation(struct hstate *h,
976 struct vm_area_struct *vma, unsigned long addr)
978 struct address_space *mapping = vma->vm_file->f_mapping;
979 struct inode *inode = mapping->host;
981 if (vma->vm_flags & VM_MAYSHARE) {
982 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983 return region_chg(&inode->i_mapping->private_list,
984 idx, idx + 1);
986 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
987 return 1;
989 } else {
990 long err;
991 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
992 struct resv_map *reservations = vma_resv_map(vma);
994 err = region_chg(&reservations->regions, idx, idx + 1);
995 if (err < 0)
996 return err;
997 return 0;
1000 static void vma_commit_reservation(struct hstate *h,
1001 struct vm_area_struct *vma, unsigned long addr)
1003 struct address_space *mapping = vma->vm_file->f_mapping;
1004 struct inode *inode = mapping->host;
1006 if (vma->vm_flags & VM_MAYSHARE) {
1007 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1010 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012 struct resv_map *reservations = vma_resv_map(vma);
1014 /* Mark this page used in the map. */
1015 region_add(&reservations->regions, idx, idx + 1);
1019 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1020 unsigned long addr, int avoid_reserve)
1022 struct hstate *h = hstate_vma(vma);
1023 struct page *page;
1024 struct address_space *mapping = vma->vm_file->f_mapping;
1025 struct inode *inode = mapping->host;
1026 long chg;
1029 * Processes that did not create the mapping will have no reserves and
1030 * will not have accounted against quota. Check that the quota can be
1031 * made before satisfying the allocation
1032 * MAP_NORESERVE mappings may also need pages and quota allocated
1033 * if no reserve mapping overlaps.
1035 chg = vma_needs_reservation(h, vma, addr);
1036 if (chg < 0)
1037 return ERR_PTR(-VM_FAULT_OOM);
1038 if (chg)
1039 if (hugetlb_get_quota(inode->i_mapping, chg))
1040 return ERR_PTR(-VM_FAULT_SIGBUS);
1042 spin_lock(&hugetlb_lock);
1043 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1044 spin_unlock(&hugetlb_lock);
1046 if (!page) {
1047 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1048 if (!page) {
1049 hugetlb_put_quota(inode->i_mapping, chg);
1050 return ERR_PTR(-VM_FAULT_SIGBUS);
1054 set_page_private(page, (unsigned long) mapping);
1056 vma_commit_reservation(h, vma, addr);
1058 return page;
1061 int __weak alloc_bootmem_huge_page(struct hstate *h)
1063 struct huge_bootmem_page *m;
1064 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1066 while (nr_nodes) {
1067 void *addr;
1069 addr = __alloc_bootmem_node_nopanic(
1070 NODE_DATA(hstate_next_node_to_alloc(h,
1071 &node_states[N_HIGH_MEMORY])),
1072 huge_page_size(h), huge_page_size(h), 0);
1074 if (addr) {
1076 * Use the beginning of the huge page to store the
1077 * huge_bootmem_page struct (until gather_bootmem
1078 * puts them into the mem_map).
1080 m = addr;
1081 goto found;
1083 nr_nodes--;
1085 return 0;
1087 found:
1088 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1089 /* Put them into a private list first because mem_map is not up yet */
1090 list_add(&m->list, &huge_boot_pages);
1091 m->hstate = h;
1092 return 1;
1095 static void prep_compound_huge_page(struct page *page, int order)
1097 if (unlikely(order > (MAX_ORDER - 1)))
1098 prep_compound_gigantic_page(page, order);
1099 else
1100 prep_compound_page(page, order);
1103 /* Put bootmem huge pages into the standard lists after mem_map is up */
1104 static void __init gather_bootmem_prealloc(void)
1106 struct huge_bootmem_page *m;
1108 list_for_each_entry(m, &huge_boot_pages, list) {
1109 struct page *page = virt_to_page(m);
1110 struct hstate *h = m->hstate;
1111 __ClearPageReserved(page);
1112 WARN_ON(page_count(page) != 1);
1113 prep_compound_huge_page(page, h->order);
1114 prep_new_huge_page(h, page, page_to_nid(page));
1116 * If we had gigantic hugepages allocated at boot time, we need
1117 * to restore the 'stolen' pages to totalram_pages in order to
1118 * fix confusing memory reports from free(1) and another
1119 * side-effects, like CommitLimit going negative.
1121 if (h->order > (MAX_ORDER - 1))
1122 totalram_pages += 1 << h->order;
1126 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1128 unsigned long i;
1130 for (i = 0; i < h->max_huge_pages; ++i) {
1131 if (h->order >= MAX_ORDER) {
1132 if (!alloc_bootmem_huge_page(h))
1133 break;
1134 } else if (!alloc_fresh_huge_page(h,
1135 &node_states[N_HIGH_MEMORY]))
1136 break;
1138 h->max_huge_pages = i;
1141 static void __init hugetlb_init_hstates(void)
1143 struct hstate *h;
1145 for_each_hstate(h) {
1146 /* oversize hugepages were init'ed in early boot */
1147 if (h->order < MAX_ORDER)
1148 hugetlb_hstate_alloc_pages(h);
1152 static char * __init memfmt(char *buf, unsigned long n)
1154 if (n >= (1UL << 30))
1155 sprintf(buf, "%lu GB", n >> 30);
1156 else if (n >= (1UL << 20))
1157 sprintf(buf, "%lu MB", n >> 20);
1158 else
1159 sprintf(buf, "%lu KB", n >> 10);
1160 return buf;
1163 static void __init report_hugepages(void)
1165 struct hstate *h;
1167 for_each_hstate(h) {
1168 char buf[32];
1169 printk(KERN_INFO "HugeTLB registered %s page size, "
1170 "pre-allocated %ld pages\n",
1171 memfmt(buf, huge_page_size(h)),
1172 h->free_huge_pages);
1176 #ifdef CONFIG_HIGHMEM
1177 static void try_to_free_low(struct hstate *h, unsigned long count,
1178 nodemask_t *nodes_allowed)
1180 int i;
1182 if (h->order >= MAX_ORDER)
1183 return;
1185 for_each_node_mask(i, *nodes_allowed) {
1186 struct page *page, *next;
1187 struct list_head *freel = &h->hugepage_freelists[i];
1188 list_for_each_entry_safe(page, next, freel, lru) {
1189 if (count >= h->nr_huge_pages)
1190 return;
1191 if (PageHighMem(page))
1192 continue;
1193 list_del(&page->lru);
1194 update_and_free_page(h, page);
1195 h->free_huge_pages--;
1196 h->free_huge_pages_node[page_to_nid(page)]--;
1200 #else
1201 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1202 nodemask_t *nodes_allowed)
1205 #endif
1208 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1209 * balanced by operating on them in a round-robin fashion.
1210 * Returns 1 if an adjustment was made.
1212 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1213 int delta)
1215 int start_nid, next_nid;
1216 int ret = 0;
1218 VM_BUG_ON(delta != -1 && delta != 1);
1220 if (delta < 0)
1221 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1222 else
1223 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1224 next_nid = start_nid;
1226 do {
1227 int nid = next_nid;
1228 if (delta < 0) {
1230 * To shrink on this node, there must be a surplus page
1232 if (!h->surplus_huge_pages_node[nid]) {
1233 next_nid = hstate_next_node_to_alloc(h,
1234 nodes_allowed);
1235 continue;
1238 if (delta > 0) {
1240 * Surplus cannot exceed the total number of pages
1242 if (h->surplus_huge_pages_node[nid] >=
1243 h->nr_huge_pages_node[nid]) {
1244 next_nid = hstate_next_node_to_free(h,
1245 nodes_allowed);
1246 continue;
1250 h->surplus_huge_pages += delta;
1251 h->surplus_huge_pages_node[nid] += delta;
1252 ret = 1;
1253 break;
1254 } while (next_nid != start_nid);
1256 return ret;
1259 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1260 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1261 nodemask_t *nodes_allowed)
1263 unsigned long min_count, ret;
1265 if (h->order >= MAX_ORDER)
1266 return h->max_huge_pages;
1269 * Increase the pool size
1270 * First take pages out of surplus state. Then make up the
1271 * remaining difference by allocating fresh huge pages.
1273 * We might race with alloc_buddy_huge_page() here and be unable
1274 * to convert a surplus huge page to a normal huge page. That is
1275 * not critical, though, it just means the overall size of the
1276 * pool might be one hugepage larger than it needs to be, but
1277 * within all the constraints specified by the sysctls.
1279 spin_lock(&hugetlb_lock);
1280 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1281 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1282 break;
1285 while (count > persistent_huge_pages(h)) {
1287 * If this allocation races such that we no longer need the
1288 * page, free_huge_page will handle it by freeing the page
1289 * and reducing the surplus.
1291 spin_unlock(&hugetlb_lock);
1292 ret = alloc_fresh_huge_page(h, nodes_allowed);
1293 spin_lock(&hugetlb_lock);
1294 if (!ret)
1295 goto out;
1297 /* Bail for signals. Probably ctrl-c from user */
1298 if (signal_pending(current))
1299 goto out;
1303 * Decrease the pool size
1304 * First return free pages to the buddy allocator (being careful
1305 * to keep enough around to satisfy reservations). Then place
1306 * pages into surplus state as needed so the pool will shrink
1307 * to the desired size as pages become free.
1309 * By placing pages into the surplus state independent of the
1310 * overcommit value, we are allowing the surplus pool size to
1311 * exceed overcommit. There are few sane options here. Since
1312 * alloc_buddy_huge_page() is checking the global counter,
1313 * though, we'll note that we're not allowed to exceed surplus
1314 * and won't grow the pool anywhere else. Not until one of the
1315 * sysctls are changed, or the surplus pages go out of use.
1317 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1318 min_count = max(count, min_count);
1319 try_to_free_low(h, min_count, nodes_allowed);
1320 while (min_count < persistent_huge_pages(h)) {
1321 if (!free_pool_huge_page(h, nodes_allowed, 0))
1322 break;
1324 while (count < persistent_huge_pages(h)) {
1325 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1326 break;
1328 out:
1329 ret = persistent_huge_pages(h);
1330 spin_unlock(&hugetlb_lock);
1331 return ret;
1334 #define HSTATE_ATTR_RO(_name) \
1335 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1337 #define HSTATE_ATTR(_name) \
1338 static struct kobj_attribute _name##_attr = \
1339 __ATTR(_name, 0644, _name##_show, _name##_store)
1341 static struct kobject *hugepages_kobj;
1342 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1344 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1346 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1348 int i;
1350 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1351 if (hstate_kobjs[i] == kobj) {
1352 if (nidp)
1353 *nidp = NUMA_NO_NODE;
1354 return &hstates[i];
1357 return kobj_to_node_hstate(kobj, nidp);
1360 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1361 struct kobj_attribute *attr, char *buf)
1363 struct hstate *h;
1364 unsigned long nr_huge_pages;
1365 int nid;
1367 h = kobj_to_hstate(kobj, &nid);
1368 if (nid == NUMA_NO_NODE)
1369 nr_huge_pages = h->nr_huge_pages;
1370 else
1371 nr_huge_pages = h->nr_huge_pages_node[nid];
1373 return sprintf(buf, "%lu\n", nr_huge_pages);
1376 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1377 struct kobject *kobj, struct kobj_attribute *attr,
1378 const char *buf, size_t len)
1380 int err;
1381 int nid;
1382 unsigned long count;
1383 struct hstate *h;
1384 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1386 err = strict_strtoul(buf, 10, &count);
1387 if (err)
1388 goto out;
1390 h = kobj_to_hstate(kobj, &nid);
1391 if (h->order >= MAX_ORDER) {
1392 err = -EINVAL;
1393 goto out;
1396 if (nid == NUMA_NO_NODE) {
1398 * global hstate attribute
1400 if (!(obey_mempolicy &&
1401 init_nodemask_of_mempolicy(nodes_allowed))) {
1402 NODEMASK_FREE(nodes_allowed);
1403 nodes_allowed = &node_states[N_HIGH_MEMORY];
1405 } else if (nodes_allowed) {
1407 * per node hstate attribute: adjust count to global,
1408 * but restrict alloc/free to the specified node.
1410 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1411 init_nodemask_of_node(nodes_allowed, nid);
1412 } else
1413 nodes_allowed = &node_states[N_HIGH_MEMORY];
1415 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1417 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1418 NODEMASK_FREE(nodes_allowed);
1420 return len;
1421 out:
1422 NODEMASK_FREE(nodes_allowed);
1423 return err;
1426 static ssize_t nr_hugepages_show(struct kobject *kobj,
1427 struct kobj_attribute *attr, char *buf)
1429 return nr_hugepages_show_common(kobj, attr, buf);
1432 static ssize_t nr_hugepages_store(struct kobject *kobj,
1433 struct kobj_attribute *attr, const char *buf, size_t len)
1435 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1437 HSTATE_ATTR(nr_hugepages);
1439 #ifdef CONFIG_NUMA
1442 * hstate attribute for optionally mempolicy-based constraint on persistent
1443 * huge page alloc/free.
1445 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1446 struct kobj_attribute *attr, char *buf)
1448 return nr_hugepages_show_common(kobj, attr, buf);
1451 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1452 struct kobj_attribute *attr, const char *buf, size_t len)
1454 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1456 HSTATE_ATTR(nr_hugepages_mempolicy);
1457 #endif
1460 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1461 struct kobj_attribute *attr, char *buf)
1463 struct hstate *h = kobj_to_hstate(kobj, NULL);
1464 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1467 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1468 struct kobj_attribute *attr, const char *buf, size_t count)
1470 int err;
1471 unsigned long input;
1472 struct hstate *h = kobj_to_hstate(kobj, NULL);
1474 if (h->order >= MAX_ORDER)
1475 return -EINVAL;
1477 err = strict_strtoul(buf, 10, &input);
1478 if (err)
1479 return err;
1481 spin_lock(&hugetlb_lock);
1482 h->nr_overcommit_huge_pages = input;
1483 spin_unlock(&hugetlb_lock);
1485 return count;
1487 HSTATE_ATTR(nr_overcommit_hugepages);
1489 static ssize_t free_hugepages_show(struct kobject *kobj,
1490 struct kobj_attribute *attr, char *buf)
1492 struct hstate *h;
1493 unsigned long free_huge_pages;
1494 int nid;
1496 h = kobj_to_hstate(kobj, &nid);
1497 if (nid == NUMA_NO_NODE)
1498 free_huge_pages = h->free_huge_pages;
1499 else
1500 free_huge_pages = h->free_huge_pages_node[nid];
1502 return sprintf(buf, "%lu\n", free_huge_pages);
1504 HSTATE_ATTR_RO(free_hugepages);
1506 static ssize_t resv_hugepages_show(struct kobject *kobj,
1507 struct kobj_attribute *attr, char *buf)
1509 struct hstate *h = kobj_to_hstate(kobj, NULL);
1510 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1512 HSTATE_ATTR_RO(resv_hugepages);
1514 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1515 struct kobj_attribute *attr, char *buf)
1517 struct hstate *h;
1518 unsigned long surplus_huge_pages;
1519 int nid;
1521 h = kobj_to_hstate(kobj, &nid);
1522 if (nid == NUMA_NO_NODE)
1523 surplus_huge_pages = h->surplus_huge_pages;
1524 else
1525 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1527 return sprintf(buf, "%lu\n", surplus_huge_pages);
1529 HSTATE_ATTR_RO(surplus_hugepages);
1531 static struct attribute *hstate_attrs[] = {
1532 &nr_hugepages_attr.attr,
1533 &nr_overcommit_hugepages_attr.attr,
1534 &free_hugepages_attr.attr,
1535 &resv_hugepages_attr.attr,
1536 &surplus_hugepages_attr.attr,
1537 #ifdef CONFIG_NUMA
1538 &nr_hugepages_mempolicy_attr.attr,
1539 #endif
1540 NULL,
1543 static struct attribute_group hstate_attr_group = {
1544 .attrs = hstate_attrs,
1547 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1548 struct kobject **hstate_kobjs,
1549 struct attribute_group *hstate_attr_group)
1551 int retval;
1552 int hi = h - hstates;
1554 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1555 if (!hstate_kobjs[hi])
1556 return -ENOMEM;
1558 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1559 if (retval)
1560 kobject_put(hstate_kobjs[hi]);
1562 return retval;
1565 static void __init hugetlb_sysfs_init(void)
1567 struct hstate *h;
1568 int err;
1570 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1571 if (!hugepages_kobj)
1572 return;
1574 for_each_hstate(h) {
1575 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1576 hstate_kobjs, &hstate_attr_group);
1577 if (err)
1578 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1579 h->name);
1583 #ifdef CONFIG_NUMA
1586 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1587 * with node sysdevs in node_devices[] using a parallel array. The array
1588 * index of a node sysdev or _hstate == node id.
1589 * This is here to avoid any static dependency of the node sysdev driver, in
1590 * the base kernel, on the hugetlb module.
1592 struct node_hstate {
1593 struct kobject *hugepages_kobj;
1594 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1596 struct node_hstate node_hstates[MAX_NUMNODES];
1599 * A subset of global hstate attributes for node sysdevs
1601 static struct attribute *per_node_hstate_attrs[] = {
1602 &nr_hugepages_attr.attr,
1603 &free_hugepages_attr.attr,
1604 &surplus_hugepages_attr.attr,
1605 NULL,
1608 static struct attribute_group per_node_hstate_attr_group = {
1609 .attrs = per_node_hstate_attrs,
1613 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1614 * Returns node id via non-NULL nidp.
1616 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1618 int nid;
1620 for (nid = 0; nid < nr_node_ids; nid++) {
1621 struct node_hstate *nhs = &node_hstates[nid];
1622 int i;
1623 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1624 if (nhs->hstate_kobjs[i] == kobj) {
1625 if (nidp)
1626 *nidp = nid;
1627 return &hstates[i];
1631 BUG();
1632 return NULL;
1636 * Unregister hstate attributes from a single node sysdev.
1637 * No-op if no hstate attributes attached.
1639 void hugetlb_unregister_node(struct node *node)
1641 struct hstate *h;
1642 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1644 if (!nhs->hugepages_kobj)
1645 return; /* no hstate attributes */
1647 for_each_hstate(h)
1648 if (nhs->hstate_kobjs[h - hstates]) {
1649 kobject_put(nhs->hstate_kobjs[h - hstates]);
1650 nhs->hstate_kobjs[h - hstates] = NULL;
1653 kobject_put(nhs->hugepages_kobj);
1654 nhs->hugepages_kobj = NULL;
1658 * hugetlb module exit: unregister hstate attributes from node sysdevs
1659 * that have them.
1661 static void hugetlb_unregister_all_nodes(void)
1663 int nid;
1666 * disable node sysdev registrations.
1668 register_hugetlbfs_with_node(NULL, NULL);
1671 * remove hstate attributes from any nodes that have them.
1673 for (nid = 0; nid < nr_node_ids; nid++)
1674 hugetlb_unregister_node(&node_devices[nid]);
1678 * Register hstate attributes for a single node sysdev.
1679 * No-op if attributes already registered.
1681 void hugetlb_register_node(struct node *node)
1683 struct hstate *h;
1684 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1685 int err;
1687 if (nhs->hugepages_kobj)
1688 return; /* already allocated */
1690 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1691 &node->sysdev.kobj);
1692 if (!nhs->hugepages_kobj)
1693 return;
1695 for_each_hstate(h) {
1696 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1697 nhs->hstate_kobjs,
1698 &per_node_hstate_attr_group);
1699 if (err) {
1700 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1701 " for node %d\n",
1702 h->name, node->sysdev.id);
1703 hugetlb_unregister_node(node);
1704 break;
1710 * hugetlb init time: register hstate attributes for all registered node
1711 * sysdevs of nodes that have memory. All on-line nodes should have
1712 * registered their associated sysdev by this time.
1714 static void hugetlb_register_all_nodes(void)
1716 int nid;
1718 for_each_node_state(nid, N_HIGH_MEMORY) {
1719 struct node *node = &node_devices[nid];
1720 if (node->sysdev.id == nid)
1721 hugetlb_register_node(node);
1725 * Let the node sysdev driver know we're here so it can
1726 * [un]register hstate attributes on node hotplug.
1728 register_hugetlbfs_with_node(hugetlb_register_node,
1729 hugetlb_unregister_node);
1731 #else /* !CONFIG_NUMA */
1733 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1735 BUG();
1736 if (nidp)
1737 *nidp = -1;
1738 return NULL;
1741 static void hugetlb_unregister_all_nodes(void) { }
1743 static void hugetlb_register_all_nodes(void) { }
1745 #endif
1747 static void __exit hugetlb_exit(void)
1749 struct hstate *h;
1751 hugetlb_unregister_all_nodes();
1753 for_each_hstate(h) {
1754 kobject_put(hstate_kobjs[h - hstates]);
1757 kobject_put(hugepages_kobj);
1759 module_exit(hugetlb_exit);
1761 static int __init hugetlb_init(void)
1763 /* Some platform decide whether they support huge pages at boot
1764 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1765 * there is no such support
1767 if (HPAGE_SHIFT == 0)
1768 return 0;
1770 if (!size_to_hstate(default_hstate_size)) {
1771 default_hstate_size = HPAGE_SIZE;
1772 if (!size_to_hstate(default_hstate_size))
1773 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1775 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1776 if (default_hstate_max_huge_pages)
1777 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1779 hugetlb_init_hstates();
1781 gather_bootmem_prealloc();
1783 report_hugepages();
1785 hugetlb_sysfs_init();
1787 hugetlb_register_all_nodes();
1789 return 0;
1791 module_init(hugetlb_init);
1793 /* Should be called on processing a hugepagesz=... option */
1794 void __init hugetlb_add_hstate(unsigned order)
1796 struct hstate *h;
1797 unsigned long i;
1799 if (size_to_hstate(PAGE_SIZE << order)) {
1800 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1801 return;
1803 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1804 BUG_ON(order == 0);
1805 h = &hstates[max_hstate++];
1806 h->order = order;
1807 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1808 h->nr_huge_pages = 0;
1809 h->free_huge_pages = 0;
1810 for (i = 0; i < MAX_NUMNODES; ++i)
1811 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1812 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1813 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1814 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1815 huge_page_size(h)/1024);
1817 parsed_hstate = h;
1820 static int __init hugetlb_nrpages_setup(char *s)
1822 unsigned long *mhp;
1823 static unsigned long *last_mhp;
1826 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1827 * so this hugepages= parameter goes to the "default hstate".
1829 if (!max_hstate)
1830 mhp = &default_hstate_max_huge_pages;
1831 else
1832 mhp = &parsed_hstate->max_huge_pages;
1834 if (mhp == last_mhp) {
1835 printk(KERN_WARNING "hugepages= specified twice without "
1836 "interleaving hugepagesz=, ignoring\n");
1837 return 1;
1840 if (sscanf(s, "%lu", mhp) <= 0)
1841 *mhp = 0;
1844 * Global state is always initialized later in hugetlb_init.
1845 * But we need to allocate >= MAX_ORDER hstates here early to still
1846 * use the bootmem allocator.
1848 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1849 hugetlb_hstate_alloc_pages(parsed_hstate);
1851 last_mhp = mhp;
1853 return 1;
1855 __setup("hugepages=", hugetlb_nrpages_setup);
1857 static int __init hugetlb_default_setup(char *s)
1859 default_hstate_size = memparse(s, &s);
1860 return 1;
1862 __setup("default_hugepagesz=", hugetlb_default_setup);
1864 static unsigned int cpuset_mems_nr(unsigned int *array)
1866 int node;
1867 unsigned int nr = 0;
1869 for_each_node_mask(node, cpuset_current_mems_allowed)
1870 nr += array[node];
1872 return nr;
1875 #ifdef CONFIG_SYSCTL
1876 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1877 struct ctl_table *table, int write,
1878 void __user *buffer, size_t *length, loff_t *ppos)
1880 struct hstate *h = &default_hstate;
1881 unsigned long tmp;
1882 int ret;
1884 tmp = h->max_huge_pages;
1886 if (write && h->order >= MAX_ORDER)
1887 return -EINVAL;
1889 table->data = &tmp;
1890 table->maxlen = sizeof(unsigned long);
1891 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1892 if (ret)
1893 goto out;
1895 if (write) {
1896 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1897 GFP_KERNEL | __GFP_NORETRY);
1898 if (!(obey_mempolicy &&
1899 init_nodemask_of_mempolicy(nodes_allowed))) {
1900 NODEMASK_FREE(nodes_allowed);
1901 nodes_allowed = &node_states[N_HIGH_MEMORY];
1903 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1905 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1906 NODEMASK_FREE(nodes_allowed);
1908 out:
1909 return ret;
1912 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1913 void __user *buffer, size_t *length, loff_t *ppos)
1916 return hugetlb_sysctl_handler_common(false, table, write,
1917 buffer, length, ppos);
1920 #ifdef CONFIG_NUMA
1921 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1922 void __user *buffer, size_t *length, loff_t *ppos)
1924 return hugetlb_sysctl_handler_common(true, table, write,
1925 buffer, length, ppos);
1927 #endif /* CONFIG_NUMA */
1929 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1930 void __user *buffer,
1931 size_t *length, loff_t *ppos)
1933 proc_dointvec(table, write, buffer, length, ppos);
1934 if (hugepages_treat_as_movable)
1935 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1936 else
1937 htlb_alloc_mask = GFP_HIGHUSER;
1938 return 0;
1941 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1942 void __user *buffer,
1943 size_t *length, loff_t *ppos)
1945 struct hstate *h = &default_hstate;
1946 unsigned long tmp;
1947 int ret;
1949 tmp = h->nr_overcommit_huge_pages;
1951 if (write && h->order >= MAX_ORDER)
1952 return -EINVAL;
1954 table->data = &tmp;
1955 table->maxlen = sizeof(unsigned long);
1956 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1957 if (ret)
1958 goto out;
1960 if (write) {
1961 spin_lock(&hugetlb_lock);
1962 h->nr_overcommit_huge_pages = tmp;
1963 spin_unlock(&hugetlb_lock);
1965 out:
1966 return ret;
1969 #endif /* CONFIG_SYSCTL */
1971 void hugetlb_report_meminfo(struct seq_file *m)
1973 struct hstate *h = &default_hstate;
1974 seq_printf(m,
1975 "HugePages_Total: %5lu\n"
1976 "HugePages_Free: %5lu\n"
1977 "HugePages_Rsvd: %5lu\n"
1978 "HugePages_Surp: %5lu\n"
1979 "Hugepagesize: %8lu kB\n",
1980 h->nr_huge_pages,
1981 h->free_huge_pages,
1982 h->resv_huge_pages,
1983 h->surplus_huge_pages,
1984 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1987 int hugetlb_report_node_meminfo(int nid, char *buf)
1989 struct hstate *h = &default_hstate;
1990 return sprintf(buf,
1991 "Node %d HugePages_Total: %5u\n"
1992 "Node %d HugePages_Free: %5u\n"
1993 "Node %d HugePages_Surp: %5u\n",
1994 nid, h->nr_huge_pages_node[nid],
1995 nid, h->free_huge_pages_node[nid],
1996 nid, h->surplus_huge_pages_node[nid]);
1999 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2000 unsigned long hugetlb_total_pages(void)
2002 struct hstate *h = &default_hstate;
2003 return h->nr_huge_pages * pages_per_huge_page(h);
2006 static int hugetlb_acct_memory(struct hstate *h, long delta)
2008 int ret = -ENOMEM;
2010 spin_lock(&hugetlb_lock);
2012 * When cpuset is configured, it breaks the strict hugetlb page
2013 * reservation as the accounting is done on a global variable. Such
2014 * reservation is completely rubbish in the presence of cpuset because
2015 * the reservation is not checked against page availability for the
2016 * current cpuset. Application can still potentially OOM'ed by kernel
2017 * with lack of free htlb page in cpuset that the task is in.
2018 * Attempt to enforce strict accounting with cpuset is almost
2019 * impossible (or too ugly) because cpuset is too fluid that
2020 * task or memory node can be dynamically moved between cpusets.
2022 * The change of semantics for shared hugetlb mapping with cpuset is
2023 * undesirable. However, in order to preserve some of the semantics,
2024 * we fall back to check against current free page availability as
2025 * a best attempt and hopefully to minimize the impact of changing
2026 * semantics that cpuset has.
2028 if (delta > 0) {
2029 if (gather_surplus_pages(h, delta) < 0)
2030 goto out;
2032 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2033 return_unused_surplus_pages(h, delta);
2034 goto out;
2038 ret = 0;
2039 if (delta < 0)
2040 return_unused_surplus_pages(h, (unsigned long) -delta);
2042 out:
2043 spin_unlock(&hugetlb_lock);
2044 return ret;
2047 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2049 struct resv_map *reservations = vma_resv_map(vma);
2052 * This new VMA should share its siblings reservation map if present.
2053 * The VMA will only ever have a valid reservation map pointer where
2054 * it is being copied for another still existing VMA. As that VMA
2055 * has a reference to the reservation map it cannot disappear until
2056 * after this open call completes. It is therefore safe to take a
2057 * new reference here without additional locking.
2059 if (reservations)
2060 kref_get(&reservations->refs);
2063 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2065 struct hstate *h = hstate_vma(vma);
2066 struct resv_map *reservations = vma_resv_map(vma);
2067 unsigned long reserve;
2068 unsigned long start;
2069 unsigned long end;
2071 if (reservations) {
2072 start = vma_hugecache_offset(h, vma, vma->vm_start);
2073 end = vma_hugecache_offset(h, vma, vma->vm_end);
2075 reserve = (end - start) -
2076 region_count(&reservations->regions, start, end);
2078 kref_put(&reservations->refs, resv_map_release);
2080 if (reserve) {
2081 hugetlb_acct_memory(h, -reserve);
2082 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2088 * We cannot handle pagefaults against hugetlb pages at all. They cause
2089 * handle_mm_fault() to try to instantiate regular-sized pages in the
2090 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2091 * this far.
2093 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2095 BUG();
2096 return 0;
2099 const struct vm_operations_struct hugetlb_vm_ops = {
2100 .fault = hugetlb_vm_op_fault,
2101 .open = hugetlb_vm_op_open,
2102 .close = hugetlb_vm_op_close,
2105 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2106 int writable)
2108 pte_t entry;
2110 if (writable) {
2111 entry =
2112 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2113 } else {
2114 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2116 entry = pte_mkyoung(entry);
2117 entry = pte_mkhuge(entry);
2119 return entry;
2122 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2123 unsigned long address, pte_t *ptep)
2125 pte_t entry;
2127 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2128 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2129 update_mmu_cache(vma, address, ptep);
2134 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2135 struct vm_area_struct *vma)
2137 pte_t *src_pte, *dst_pte, entry;
2138 struct page *ptepage;
2139 unsigned long addr;
2140 int cow;
2141 struct hstate *h = hstate_vma(vma);
2142 unsigned long sz = huge_page_size(h);
2144 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2146 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2147 src_pte = huge_pte_offset(src, addr);
2148 if (!src_pte)
2149 continue;
2150 dst_pte = huge_pte_alloc(dst, addr, sz);
2151 if (!dst_pte)
2152 goto nomem;
2154 /* If the pagetables are shared don't copy or take references */
2155 if (dst_pte == src_pte)
2156 continue;
2158 spin_lock(&dst->page_table_lock);
2159 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2160 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2161 if (cow)
2162 huge_ptep_set_wrprotect(src, addr, src_pte);
2163 entry = huge_ptep_get(src_pte);
2164 ptepage = pte_page(entry);
2165 get_page(ptepage);
2166 page_dup_rmap(ptepage);
2167 set_huge_pte_at(dst, addr, dst_pte, entry);
2169 spin_unlock(&src->page_table_lock);
2170 spin_unlock(&dst->page_table_lock);
2172 return 0;
2174 nomem:
2175 return -ENOMEM;
2178 static int is_hugetlb_entry_migration(pte_t pte)
2180 swp_entry_t swp;
2182 if (huge_pte_none(pte) || pte_present(pte))
2183 return 0;
2184 swp = pte_to_swp_entry(pte);
2185 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2186 return 1;
2187 } else
2188 return 0;
2191 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2193 swp_entry_t swp;
2195 if (huge_pte_none(pte) || pte_present(pte))
2196 return 0;
2197 swp = pte_to_swp_entry(pte);
2198 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2199 return 1;
2200 } else
2201 return 0;
2204 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2205 unsigned long end, struct page *ref_page)
2207 struct mm_struct *mm = vma->vm_mm;
2208 unsigned long address;
2209 pte_t *ptep;
2210 pte_t pte;
2211 struct page *page;
2212 struct page *tmp;
2213 struct hstate *h = hstate_vma(vma);
2214 unsigned long sz = huge_page_size(h);
2217 * A page gathering list, protected by per file i_mmap_mutex. The
2218 * lock is used to avoid list corruption from multiple unmapping
2219 * of the same page since we are using page->lru.
2221 LIST_HEAD(page_list);
2223 WARN_ON(!is_vm_hugetlb_page(vma));
2224 BUG_ON(start & ~huge_page_mask(h));
2225 BUG_ON(end & ~huge_page_mask(h));
2227 mmu_notifier_invalidate_range_start(mm, start, end);
2228 spin_lock(&mm->page_table_lock);
2229 for (address = start; address < end; address += sz) {
2230 ptep = huge_pte_offset(mm, address);
2231 if (!ptep)
2232 continue;
2234 if (huge_pmd_unshare(mm, &address, ptep))
2235 continue;
2238 * If a reference page is supplied, it is because a specific
2239 * page is being unmapped, not a range. Ensure the page we
2240 * are about to unmap is the actual page of interest.
2242 if (ref_page) {
2243 pte = huge_ptep_get(ptep);
2244 if (huge_pte_none(pte))
2245 continue;
2246 page = pte_page(pte);
2247 if (page != ref_page)
2248 continue;
2251 * Mark the VMA as having unmapped its page so that
2252 * future faults in this VMA will fail rather than
2253 * looking like data was lost
2255 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2258 pte = huge_ptep_get_and_clear(mm, address, ptep);
2259 if (huge_pte_none(pte))
2260 continue;
2263 * HWPoisoned hugepage is already unmapped and dropped reference
2265 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2266 continue;
2268 page = pte_page(pte);
2269 if (pte_dirty(pte))
2270 set_page_dirty(page);
2271 list_add(&page->lru, &page_list);
2273 spin_unlock(&mm->page_table_lock);
2274 flush_tlb_range(vma, start, end);
2275 mmu_notifier_invalidate_range_end(mm, start, end);
2276 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2277 page_remove_rmap(page);
2278 list_del(&page->lru);
2279 put_page(page);
2283 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2284 unsigned long end, struct page *ref_page)
2286 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2287 __unmap_hugepage_range(vma, start, end, ref_page);
2288 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2292 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2293 * mappping it owns the reserve page for. The intention is to unmap the page
2294 * from other VMAs and let the children be SIGKILLed if they are faulting the
2295 * same region.
2297 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2298 struct page *page, unsigned long address)
2300 struct hstate *h = hstate_vma(vma);
2301 struct vm_area_struct *iter_vma;
2302 struct address_space *mapping;
2303 struct prio_tree_iter iter;
2304 pgoff_t pgoff;
2307 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2308 * from page cache lookup which is in HPAGE_SIZE units.
2310 address = address & huge_page_mask(h);
2311 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2312 + (vma->vm_pgoff >> PAGE_SHIFT);
2313 mapping = (struct address_space *)page_private(page);
2316 * Take the mapping lock for the duration of the table walk. As
2317 * this mapping should be shared between all the VMAs,
2318 * __unmap_hugepage_range() is called as the lock is already held
2320 mutex_lock(&mapping->i_mmap_mutex);
2321 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2322 /* Do not unmap the current VMA */
2323 if (iter_vma == vma)
2324 continue;
2327 * Unmap the page from other VMAs without their own reserves.
2328 * They get marked to be SIGKILLed if they fault in these
2329 * areas. This is because a future no-page fault on this VMA
2330 * could insert a zeroed page instead of the data existing
2331 * from the time of fork. This would look like data corruption
2333 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2334 __unmap_hugepage_range(iter_vma,
2335 address, address + huge_page_size(h),
2336 page);
2338 mutex_unlock(&mapping->i_mmap_mutex);
2340 return 1;
2344 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2346 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2347 unsigned long address, pte_t *ptep, pte_t pte,
2348 struct page *pagecache_page)
2350 struct hstate *h = hstate_vma(vma);
2351 struct page *old_page, *new_page;
2352 int avoidcopy;
2353 int outside_reserve = 0;
2355 old_page = pte_page(pte);
2357 retry_avoidcopy:
2358 /* If no-one else is actually using this page, avoid the copy
2359 * and just make the page writable */
2360 avoidcopy = (page_mapcount(old_page) == 1);
2361 if (avoidcopy) {
2362 if (PageAnon(old_page))
2363 page_move_anon_rmap(old_page, vma, address);
2364 set_huge_ptep_writable(vma, address, ptep);
2365 return 0;
2369 * If the process that created a MAP_PRIVATE mapping is about to
2370 * perform a COW due to a shared page count, attempt to satisfy
2371 * the allocation without using the existing reserves. The pagecache
2372 * page is used to determine if the reserve at this address was
2373 * consumed or not. If reserves were used, a partial faulted mapping
2374 * at the time of fork() could consume its reserves on COW instead
2375 * of the full address range.
2377 if (!(vma->vm_flags & VM_MAYSHARE) &&
2378 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2379 old_page != pagecache_page)
2380 outside_reserve = 1;
2382 page_cache_get(old_page);
2384 /* Drop page_table_lock as buddy allocator may be called */
2385 spin_unlock(&mm->page_table_lock);
2386 new_page = alloc_huge_page(vma, address, outside_reserve);
2388 if (IS_ERR(new_page)) {
2389 page_cache_release(old_page);
2392 * If a process owning a MAP_PRIVATE mapping fails to COW,
2393 * it is due to references held by a child and an insufficient
2394 * huge page pool. To guarantee the original mappers
2395 * reliability, unmap the page from child processes. The child
2396 * may get SIGKILLed if it later faults.
2398 if (outside_reserve) {
2399 BUG_ON(huge_pte_none(pte));
2400 if (unmap_ref_private(mm, vma, old_page, address)) {
2401 BUG_ON(huge_pte_none(pte));
2402 spin_lock(&mm->page_table_lock);
2403 goto retry_avoidcopy;
2405 WARN_ON_ONCE(1);
2408 /* Caller expects lock to be held */
2409 spin_lock(&mm->page_table_lock);
2410 return -PTR_ERR(new_page);
2414 * When the original hugepage is shared one, it does not have
2415 * anon_vma prepared.
2417 if (unlikely(anon_vma_prepare(vma))) {
2418 page_cache_release(new_page);
2419 page_cache_release(old_page);
2420 /* Caller expects lock to be held */
2421 spin_lock(&mm->page_table_lock);
2422 return VM_FAULT_OOM;
2425 copy_user_huge_page(new_page, old_page, address, vma,
2426 pages_per_huge_page(h));
2427 __SetPageUptodate(new_page);
2430 * Retake the page_table_lock to check for racing updates
2431 * before the page tables are altered
2433 spin_lock(&mm->page_table_lock);
2434 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2435 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2436 /* Break COW */
2437 mmu_notifier_invalidate_range_start(mm,
2438 address & huge_page_mask(h),
2439 (address & huge_page_mask(h)) + huge_page_size(h));
2440 huge_ptep_clear_flush(vma, address, ptep);
2441 set_huge_pte_at(mm, address, ptep,
2442 make_huge_pte(vma, new_page, 1));
2443 page_remove_rmap(old_page);
2444 hugepage_add_new_anon_rmap(new_page, vma, address);
2445 /* Make the old page be freed below */
2446 new_page = old_page;
2447 mmu_notifier_invalidate_range_end(mm,
2448 address & huge_page_mask(h),
2449 (address & huge_page_mask(h)) + huge_page_size(h));
2451 page_cache_release(new_page);
2452 page_cache_release(old_page);
2453 return 0;
2456 /* Return the pagecache page at a given address within a VMA */
2457 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2458 struct vm_area_struct *vma, unsigned long address)
2460 struct address_space *mapping;
2461 pgoff_t idx;
2463 mapping = vma->vm_file->f_mapping;
2464 idx = vma_hugecache_offset(h, vma, address);
2466 return find_lock_page(mapping, idx);
2470 * Return whether there is a pagecache page to back given address within VMA.
2471 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2473 static bool hugetlbfs_pagecache_present(struct hstate *h,
2474 struct vm_area_struct *vma, unsigned long address)
2476 struct address_space *mapping;
2477 pgoff_t idx;
2478 struct page *page;
2480 mapping = vma->vm_file->f_mapping;
2481 idx = vma_hugecache_offset(h, vma, address);
2483 page = find_get_page(mapping, idx);
2484 if (page)
2485 put_page(page);
2486 return page != NULL;
2489 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2490 unsigned long address, pte_t *ptep, unsigned int flags)
2492 struct hstate *h = hstate_vma(vma);
2493 int ret = VM_FAULT_SIGBUS;
2494 pgoff_t idx;
2495 unsigned long size;
2496 struct page *page;
2497 struct address_space *mapping;
2498 pte_t new_pte;
2501 * Currently, we are forced to kill the process in the event the
2502 * original mapper has unmapped pages from the child due to a failed
2503 * COW. Warn that such a situation has occurred as it may not be obvious
2505 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2506 printk(KERN_WARNING
2507 "PID %d killed due to inadequate hugepage pool\n",
2508 current->pid);
2509 return ret;
2512 mapping = vma->vm_file->f_mapping;
2513 idx = vma_hugecache_offset(h, vma, address);
2516 * Use page lock to guard against racing truncation
2517 * before we get page_table_lock.
2519 retry:
2520 page = find_lock_page(mapping, idx);
2521 if (!page) {
2522 size = i_size_read(mapping->host) >> huge_page_shift(h);
2523 if (idx >= size)
2524 goto out;
2525 page = alloc_huge_page(vma, address, 0);
2526 if (IS_ERR(page)) {
2527 ret = -PTR_ERR(page);
2528 goto out;
2530 clear_huge_page(page, address, pages_per_huge_page(h));
2531 __SetPageUptodate(page);
2533 if (vma->vm_flags & VM_MAYSHARE) {
2534 int err;
2535 struct inode *inode = mapping->host;
2537 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2538 if (err) {
2539 put_page(page);
2540 if (err == -EEXIST)
2541 goto retry;
2542 goto out;
2545 spin_lock(&inode->i_lock);
2546 inode->i_blocks += blocks_per_huge_page(h);
2547 spin_unlock(&inode->i_lock);
2548 page_dup_rmap(page);
2549 } else {
2550 lock_page(page);
2551 if (unlikely(anon_vma_prepare(vma))) {
2552 ret = VM_FAULT_OOM;
2553 goto backout_unlocked;
2555 hugepage_add_new_anon_rmap(page, vma, address);
2557 } else {
2559 * If memory error occurs between mmap() and fault, some process
2560 * don't have hwpoisoned swap entry for errored virtual address.
2561 * So we need to block hugepage fault by PG_hwpoison bit check.
2563 if (unlikely(PageHWPoison(page))) {
2564 ret = VM_FAULT_HWPOISON |
2565 VM_FAULT_SET_HINDEX(h - hstates);
2566 goto backout_unlocked;
2568 page_dup_rmap(page);
2572 * If we are going to COW a private mapping later, we examine the
2573 * pending reservations for this page now. This will ensure that
2574 * any allocations necessary to record that reservation occur outside
2575 * the spinlock.
2577 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2578 if (vma_needs_reservation(h, vma, address) < 0) {
2579 ret = VM_FAULT_OOM;
2580 goto backout_unlocked;
2583 spin_lock(&mm->page_table_lock);
2584 size = i_size_read(mapping->host) >> huge_page_shift(h);
2585 if (idx >= size)
2586 goto backout;
2588 ret = 0;
2589 if (!huge_pte_none(huge_ptep_get(ptep)))
2590 goto backout;
2592 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2593 && (vma->vm_flags & VM_SHARED)));
2594 set_huge_pte_at(mm, address, ptep, new_pte);
2596 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2597 /* Optimization, do the COW without a second fault */
2598 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2601 spin_unlock(&mm->page_table_lock);
2602 unlock_page(page);
2603 out:
2604 return ret;
2606 backout:
2607 spin_unlock(&mm->page_table_lock);
2608 backout_unlocked:
2609 unlock_page(page);
2610 put_page(page);
2611 goto out;
2614 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2615 unsigned long address, unsigned int flags)
2617 pte_t *ptep;
2618 pte_t entry;
2619 int ret;
2620 struct page *page = NULL;
2621 struct page *pagecache_page = NULL;
2622 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2623 struct hstate *h = hstate_vma(vma);
2625 ptep = huge_pte_offset(mm, address);
2626 if (ptep) {
2627 entry = huge_ptep_get(ptep);
2628 if (unlikely(is_hugetlb_entry_migration(entry))) {
2629 migration_entry_wait(mm, (pmd_t *)ptep, address);
2630 return 0;
2631 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2632 return VM_FAULT_HWPOISON_LARGE |
2633 VM_FAULT_SET_HINDEX(h - hstates);
2636 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2637 if (!ptep)
2638 return VM_FAULT_OOM;
2641 * Serialize hugepage allocation and instantiation, so that we don't
2642 * get spurious allocation failures if two CPUs race to instantiate
2643 * the same page in the page cache.
2645 mutex_lock(&hugetlb_instantiation_mutex);
2646 entry = huge_ptep_get(ptep);
2647 if (huge_pte_none(entry)) {
2648 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2649 goto out_mutex;
2652 ret = 0;
2655 * If we are going to COW the mapping later, we examine the pending
2656 * reservations for this page now. This will ensure that any
2657 * allocations necessary to record that reservation occur outside the
2658 * spinlock. For private mappings, we also lookup the pagecache
2659 * page now as it is used to determine if a reservation has been
2660 * consumed.
2662 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2663 if (vma_needs_reservation(h, vma, address) < 0) {
2664 ret = VM_FAULT_OOM;
2665 goto out_mutex;
2668 if (!(vma->vm_flags & VM_MAYSHARE))
2669 pagecache_page = hugetlbfs_pagecache_page(h,
2670 vma, address);
2674 * hugetlb_cow() requires page locks of pte_page(entry) and
2675 * pagecache_page, so here we need take the former one
2676 * when page != pagecache_page or !pagecache_page.
2677 * Note that locking order is always pagecache_page -> page,
2678 * so no worry about deadlock.
2680 page = pte_page(entry);
2681 get_page(page);
2682 if (page != pagecache_page)
2683 lock_page(page);
2685 spin_lock(&mm->page_table_lock);
2686 /* Check for a racing update before calling hugetlb_cow */
2687 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2688 goto out_page_table_lock;
2691 if (flags & FAULT_FLAG_WRITE) {
2692 if (!pte_write(entry)) {
2693 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2694 pagecache_page);
2695 goto out_page_table_lock;
2697 entry = pte_mkdirty(entry);
2699 entry = pte_mkyoung(entry);
2700 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2701 flags & FAULT_FLAG_WRITE))
2702 update_mmu_cache(vma, address, ptep);
2704 out_page_table_lock:
2705 spin_unlock(&mm->page_table_lock);
2707 if (pagecache_page) {
2708 unlock_page(pagecache_page);
2709 put_page(pagecache_page);
2711 if (page != pagecache_page)
2712 unlock_page(page);
2713 put_page(page);
2715 out_mutex:
2716 mutex_unlock(&hugetlb_instantiation_mutex);
2718 return ret;
2721 /* Can be overriden by architectures */
2722 __attribute__((weak)) struct page *
2723 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2724 pud_t *pud, int write)
2726 BUG();
2727 return NULL;
2730 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2731 struct page **pages, struct vm_area_struct **vmas,
2732 unsigned long *position, int *length, int i,
2733 unsigned int flags)
2735 unsigned long pfn_offset;
2736 unsigned long vaddr = *position;
2737 int remainder = *length;
2738 struct hstate *h = hstate_vma(vma);
2740 spin_lock(&mm->page_table_lock);
2741 while (vaddr < vma->vm_end && remainder) {
2742 pte_t *pte;
2743 int absent;
2744 struct page *page;
2747 * Some archs (sparc64, sh*) have multiple pte_ts to
2748 * each hugepage. We have to make sure we get the
2749 * first, for the page indexing below to work.
2751 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2752 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2755 * When coredumping, it suits get_dump_page if we just return
2756 * an error where there's an empty slot with no huge pagecache
2757 * to back it. This way, we avoid allocating a hugepage, and
2758 * the sparse dumpfile avoids allocating disk blocks, but its
2759 * huge holes still show up with zeroes where they need to be.
2761 if (absent && (flags & FOLL_DUMP) &&
2762 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2763 remainder = 0;
2764 break;
2767 if (absent ||
2768 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2769 int ret;
2771 spin_unlock(&mm->page_table_lock);
2772 ret = hugetlb_fault(mm, vma, vaddr,
2773 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2774 spin_lock(&mm->page_table_lock);
2775 if (!(ret & VM_FAULT_ERROR))
2776 continue;
2778 remainder = 0;
2779 break;
2782 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2783 page = pte_page(huge_ptep_get(pte));
2784 same_page:
2785 if (pages) {
2786 pages[i] = mem_map_offset(page, pfn_offset);
2787 get_page(pages[i]);
2790 if (vmas)
2791 vmas[i] = vma;
2793 vaddr += PAGE_SIZE;
2794 ++pfn_offset;
2795 --remainder;
2796 ++i;
2797 if (vaddr < vma->vm_end && remainder &&
2798 pfn_offset < pages_per_huge_page(h)) {
2800 * We use pfn_offset to avoid touching the pageframes
2801 * of this compound page.
2803 goto same_page;
2806 spin_unlock(&mm->page_table_lock);
2807 *length = remainder;
2808 *position = vaddr;
2810 return i ? i : -EFAULT;
2813 void hugetlb_change_protection(struct vm_area_struct *vma,
2814 unsigned long address, unsigned long end, pgprot_t newprot)
2816 struct mm_struct *mm = vma->vm_mm;
2817 unsigned long start = address;
2818 pte_t *ptep;
2819 pte_t pte;
2820 struct hstate *h = hstate_vma(vma);
2822 BUG_ON(address >= end);
2823 flush_cache_range(vma, address, end);
2825 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2826 spin_lock(&mm->page_table_lock);
2827 for (; address < end; address += huge_page_size(h)) {
2828 ptep = huge_pte_offset(mm, address);
2829 if (!ptep)
2830 continue;
2831 if (huge_pmd_unshare(mm, &address, ptep))
2832 continue;
2833 if (!huge_pte_none(huge_ptep_get(ptep))) {
2834 pte = huge_ptep_get_and_clear(mm, address, ptep);
2835 pte = pte_mkhuge(pte_modify(pte, newprot));
2836 set_huge_pte_at(mm, address, ptep, pte);
2839 spin_unlock(&mm->page_table_lock);
2840 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2842 flush_tlb_range(vma, start, end);
2845 int hugetlb_reserve_pages(struct inode *inode,
2846 long from, long to,
2847 struct vm_area_struct *vma,
2848 vm_flags_t vm_flags)
2850 long ret, chg;
2851 struct hstate *h = hstate_inode(inode);
2854 * Only apply hugepage reservation if asked. At fault time, an
2855 * attempt will be made for VM_NORESERVE to allocate a page
2856 * and filesystem quota without using reserves
2858 if (vm_flags & VM_NORESERVE)
2859 return 0;
2862 * Shared mappings base their reservation on the number of pages that
2863 * are already allocated on behalf of the file. Private mappings need
2864 * to reserve the full area even if read-only as mprotect() may be
2865 * called to make the mapping read-write. Assume !vma is a shm mapping
2867 if (!vma || vma->vm_flags & VM_MAYSHARE)
2868 chg = region_chg(&inode->i_mapping->private_list, from, to);
2869 else {
2870 struct resv_map *resv_map = resv_map_alloc();
2871 if (!resv_map)
2872 return -ENOMEM;
2874 chg = to - from;
2876 set_vma_resv_map(vma, resv_map);
2877 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2880 if (chg < 0)
2881 return chg;
2883 /* There must be enough filesystem quota for the mapping */
2884 if (hugetlb_get_quota(inode->i_mapping, chg))
2885 return -ENOSPC;
2888 * Check enough hugepages are available for the reservation.
2889 * Hand back the quota if there are not
2891 ret = hugetlb_acct_memory(h, chg);
2892 if (ret < 0) {
2893 hugetlb_put_quota(inode->i_mapping, chg);
2894 return ret;
2898 * Account for the reservations made. Shared mappings record regions
2899 * that have reservations as they are shared by multiple VMAs.
2900 * When the last VMA disappears, the region map says how much
2901 * the reservation was and the page cache tells how much of
2902 * the reservation was consumed. Private mappings are per-VMA and
2903 * only the consumed reservations are tracked. When the VMA
2904 * disappears, the original reservation is the VMA size and the
2905 * consumed reservations are stored in the map. Hence, nothing
2906 * else has to be done for private mappings here
2908 if (!vma || vma->vm_flags & VM_MAYSHARE)
2909 region_add(&inode->i_mapping->private_list, from, to);
2910 return 0;
2913 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2915 struct hstate *h = hstate_inode(inode);
2916 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2918 spin_lock(&inode->i_lock);
2919 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2920 spin_unlock(&inode->i_lock);
2922 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2923 hugetlb_acct_memory(h, -(chg - freed));
2926 #ifdef CONFIG_MEMORY_FAILURE
2928 /* Should be called in hugetlb_lock */
2929 static int is_hugepage_on_freelist(struct page *hpage)
2931 struct page *page;
2932 struct page *tmp;
2933 struct hstate *h = page_hstate(hpage);
2934 int nid = page_to_nid(hpage);
2936 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2937 if (page == hpage)
2938 return 1;
2939 return 0;
2943 * This function is called from memory failure code.
2944 * Assume the caller holds page lock of the head page.
2946 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2948 struct hstate *h = page_hstate(hpage);
2949 int nid = page_to_nid(hpage);
2950 int ret = -EBUSY;
2952 spin_lock(&hugetlb_lock);
2953 if (is_hugepage_on_freelist(hpage)) {
2954 list_del(&hpage->lru);
2955 set_page_refcounted(hpage);
2956 h->free_huge_pages--;
2957 h->free_huge_pages_node[nid]--;
2958 ret = 0;
2960 spin_unlock(&hugetlb_lock);
2961 return ret;
2963 #endif