1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly
;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata
= 1;
70 static int really_do_swap_account __initdata
= 0;
74 #define do_swap_account (0)
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index
{
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS
,
94 enum mem_cgroup_events_index
{
95 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS
,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target
{
109 MEM_CGROUP_TARGET_THRESH
,
110 MEM_CGROUP_TARGET_SOFTLIMIT
,
111 MEM_CGROUP_TARGET_NUMAINFO
,
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
118 struct mem_cgroup_stat_cpu
{
119 long count
[MEM_CGROUP_STAT_NSTATS
];
120 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
121 unsigned long targets
[MEM_CGROUP_NTARGETS
];
125 * per-zone information in memory controller.
127 struct mem_cgroup_per_zone
{
129 * spin_lock to protect the per cgroup LRU
131 struct list_head lists
[NR_LRU_LISTS
];
132 unsigned long count
[NR_LRU_LISTS
];
134 struct zone_reclaim_stat reclaim_stat
;
135 struct rb_node tree_node
; /* RB tree node */
136 unsigned long long usage_in_excess
;/* Set to the value by which */
137 /* the soft limit is exceeded*/
139 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
140 /* use container_of */
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145 struct mem_cgroup_per_node
{
146 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
149 struct mem_cgroup_lru_info
{
150 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
158 struct mem_cgroup_tree_per_zone
{
159 struct rb_root rb_root
;
163 struct mem_cgroup_tree_per_node
{
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
167 struct mem_cgroup_tree
{
168 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
173 struct mem_cgroup_threshold
{
174 struct eventfd_ctx
*eventfd
;
179 struct mem_cgroup_threshold_ary
{
180 /* An array index points to threshold just below usage. */
181 int current_threshold
;
182 /* Size of entries[] */
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries
[0];
188 struct mem_cgroup_thresholds
{
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary
*primary
;
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
196 struct mem_cgroup_threshold_ary
*spare
;
200 struct mem_cgroup_eventfd_list
{
201 struct list_head list
;
202 struct eventfd_ctx
*eventfd
;
205 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
206 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
220 struct cgroup_subsys_state css
;
222 * the counter to account for memory usage
224 struct res_counter res
;
226 * the counter to account for mem+swap usage.
228 struct res_counter memsw
;
230 * Per cgroup active and inactive list, similar to the
231 * per zone LRU lists.
233 struct mem_cgroup_lru_info info
;
235 * While reclaiming in a hierarchy, we cache the last child we
238 int last_scanned_child
;
239 int last_scanned_node
;
241 nodemask_t scan_nodes
;
242 atomic_t numainfo_events
;
243 atomic_t numainfo_updating
;
246 * Should the accounting and control be hierarchical, per subtree?
252 unsigned int swappiness
;
253 /* OOM-Killer disable */
254 int oom_kill_disable
;
256 /* set when res.limit == memsw.limit */
257 bool memsw_is_minimum
;
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock
;
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds
;
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds
;
268 /* For oom notifier event fd */
269 struct list_head oom_notify
;
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
275 unsigned long move_charge_at_immigrate
;
279 struct mem_cgroup_stat_cpu
*stat
;
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
284 struct mem_cgroup_stat_cpu nocpu_base
;
285 spinlock_t pcp_counter_lock
;
288 /* Stuffs for move charges at task migration. */
290 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
291 * left-shifted bitmap of these types.
294 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
295 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
299 /* "mc" and its members are protected by cgroup_mutex */
300 static struct move_charge_struct
{
301 spinlock_t lock
; /* for from, to */
302 struct mem_cgroup
*from
;
303 struct mem_cgroup
*to
;
304 unsigned long precharge
;
305 unsigned long moved_charge
;
306 unsigned long moved_swap
;
307 struct task_struct
*moving_task
; /* a task moving charges */
308 wait_queue_head_t waitq
; /* a waitq for other context */
310 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
311 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
314 static bool move_anon(void)
316 return test_bit(MOVE_CHARGE_TYPE_ANON
,
317 &mc
.to
->move_charge_at_immigrate
);
320 static bool move_file(void)
322 return test_bit(MOVE_CHARGE_TYPE_FILE
,
323 &mc
.to
->move_charge_at_immigrate
);
327 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
328 * limit reclaim to prevent infinite loops, if they ever occur.
330 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
331 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
335 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
336 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
337 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
338 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
339 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
343 /* for encoding cft->private value on file */
346 #define _OOM_TYPE (2)
347 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
348 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
349 #define MEMFILE_ATTR(val) ((val) & 0xffff)
350 /* Used for OOM nofiier */
351 #define OOM_CONTROL (0)
354 * Reclaim flags for mem_cgroup_hierarchical_reclaim
356 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
357 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
358 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
359 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
360 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
361 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
363 static void mem_cgroup_get(struct mem_cgroup
*mem
);
364 static void mem_cgroup_put(struct mem_cgroup
*mem
);
365 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
366 static void drain_all_stock_async(struct mem_cgroup
*mem
);
368 static struct mem_cgroup_per_zone
*
369 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
371 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
374 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
379 static struct mem_cgroup_per_zone
*
380 page_cgroup_zoneinfo(struct mem_cgroup
*mem
, struct page
*page
)
382 int nid
= page_to_nid(page
);
383 int zid
= page_zonenum(page
);
385 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
388 static struct mem_cgroup_tree_per_zone
*
389 soft_limit_tree_node_zone(int nid
, int zid
)
391 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
394 static struct mem_cgroup_tree_per_zone
*
395 soft_limit_tree_from_page(struct page
*page
)
397 int nid
= page_to_nid(page
);
398 int zid
= page_zonenum(page
);
400 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
404 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
405 struct mem_cgroup_per_zone
*mz
,
406 struct mem_cgroup_tree_per_zone
*mctz
,
407 unsigned long long new_usage_in_excess
)
409 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
410 struct rb_node
*parent
= NULL
;
411 struct mem_cgroup_per_zone
*mz_node
;
416 mz
->usage_in_excess
= new_usage_in_excess
;
417 if (!mz
->usage_in_excess
)
421 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
423 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
426 * We can't avoid mem cgroups that are over their soft
427 * limit by the same amount
429 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
432 rb_link_node(&mz
->tree_node
, parent
, p
);
433 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
438 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
439 struct mem_cgroup_per_zone
*mz
,
440 struct mem_cgroup_tree_per_zone
*mctz
)
444 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
449 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
450 struct mem_cgroup_per_zone
*mz
,
451 struct mem_cgroup_tree_per_zone
*mctz
)
453 spin_lock(&mctz
->lock
);
454 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
455 spin_unlock(&mctz
->lock
);
459 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
461 unsigned long long excess
;
462 struct mem_cgroup_per_zone
*mz
;
463 struct mem_cgroup_tree_per_zone
*mctz
;
464 int nid
= page_to_nid(page
);
465 int zid
= page_zonenum(page
);
466 mctz
= soft_limit_tree_from_page(page
);
469 * Necessary to update all ancestors when hierarchy is used.
470 * because their event counter is not touched.
472 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
473 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
474 excess
= res_counter_soft_limit_excess(&mem
->res
);
476 * We have to update the tree if mz is on RB-tree or
477 * mem is over its softlimit.
479 if (excess
|| mz
->on_tree
) {
480 spin_lock(&mctz
->lock
);
481 /* if on-tree, remove it */
483 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
485 * Insert again. mz->usage_in_excess will be updated.
486 * If excess is 0, no tree ops.
488 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
489 spin_unlock(&mctz
->lock
);
494 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
497 struct mem_cgroup_per_zone
*mz
;
498 struct mem_cgroup_tree_per_zone
*mctz
;
500 for_each_node_state(node
, N_POSSIBLE
) {
501 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
502 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
503 mctz
= soft_limit_tree_node_zone(node
, zone
);
504 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
509 static struct mem_cgroup_per_zone
*
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
512 struct rb_node
*rightmost
= NULL
;
513 struct mem_cgroup_per_zone
*mz
;
517 rightmost
= rb_last(&mctz
->rb_root
);
519 goto done
; /* Nothing to reclaim from */
521 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
527 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
528 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
529 !css_tryget(&mz
->mem
->css
))
535 static struct mem_cgroup_per_zone
*
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
538 struct mem_cgroup_per_zone
*mz
;
540 spin_lock(&mctz
->lock
);
541 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
542 spin_unlock(&mctz
->lock
);
547 * Implementation Note: reading percpu statistics for memcg.
549 * Both of vmstat[] and percpu_counter has threshold and do periodic
550 * synchronization to implement "quick" read. There are trade-off between
551 * reading cost and precision of value. Then, we may have a chance to implement
552 * a periodic synchronizion of counter in memcg's counter.
554 * But this _read() function is used for user interface now. The user accounts
555 * memory usage by memory cgroup and he _always_ requires exact value because
556 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
557 * have to visit all online cpus and make sum. So, for now, unnecessary
558 * synchronization is not implemented. (just implemented for cpu hotplug)
560 * If there are kernel internal actions which can make use of some not-exact
561 * value, and reading all cpu value can be performance bottleneck in some
562 * common workload, threashold and synchonization as vmstat[] should be
565 static long mem_cgroup_read_stat(struct mem_cgroup
*mem
,
566 enum mem_cgroup_stat_index idx
)
572 for_each_online_cpu(cpu
)
573 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
574 #ifdef CONFIG_HOTPLUG_CPU
575 spin_lock(&mem
->pcp_counter_lock
);
576 val
+= mem
->nocpu_base
.count
[idx
];
577 spin_unlock(&mem
->pcp_counter_lock
);
583 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
586 int val
= (charge
) ? 1 : -1;
587 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
590 void mem_cgroup_pgfault(struct mem_cgroup
*mem
, int val
)
592 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
595 void mem_cgroup_pgmajfault(struct mem_cgroup
*mem
, int val
)
597 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
600 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*mem
,
601 enum mem_cgroup_events_index idx
)
603 unsigned long val
= 0;
606 for_each_online_cpu(cpu
)
607 val
+= per_cpu(mem
->stat
->events
[idx
], cpu
);
608 #ifdef CONFIG_HOTPLUG_CPU
609 spin_lock(&mem
->pcp_counter_lock
);
610 val
+= mem
->nocpu_base
.events
[idx
];
611 spin_unlock(&mem
->pcp_counter_lock
);
616 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
617 bool file
, int nr_pages
)
622 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
624 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
626 /* pagein of a big page is an event. So, ignore page size */
628 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
630 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
631 nr_pages
= -nr_pages
; /* for event */
634 __this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
640 mem_cgroup_get_zonestat_node(struct mem_cgroup
*mem
, int nid
, enum lru_list idx
)
642 struct mem_cgroup_per_zone
*mz
;
646 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
647 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
648 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
652 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
658 for_each_online_node(nid
)
659 total
+= mem_cgroup_get_zonestat_node(mem
, nid
, idx
);
663 static bool __memcg_event_check(struct mem_cgroup
*mem
, int target
)
665 unsigned long val
, next
;
667 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
668 next
= this_cpu_read(mem
->stat
->targets
[target
]);
669 /* from time_after() in jiffies.h */
670 return ((long)next
- (long)val
< 0);
673 static void __mem_cgroup_target_update(struct mem_cgroup
*mem
, int target
)
675 unsigned long val
, next
;
677 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
680 case MEM_CGROUP_TARGET_THRESH
:
681 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
683 case MEM_CGROUP_TARGET_SOFTLIMIT
:
684 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
686 case MEM_CGROUP_TARGET_NUMAINFO
:
687 next
= val
+ NUMAINFO_EVENTS_TARGET
;
693 this_cpu_write(mem
->stat
->targets
[target
], next
);
697 * Check events in order.
700 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
702 /* threshold event is triggered in finer grain than soft limit */
703 if (unlikely(__memcg_event_check(mem
, MEM_CGROUP_TARGET_THRESH
))) {
704 mem_cgroup_threshold(mem
);
705 __mem_cgroup_target_update(mem
, MEM_CGROUP_TARGET_THRESH
);
706 if (unlikely(__memcg_event_check(mem
,
707 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
708 mem_cgroup_update_tree(mem
, page
);
709 __mem_cgroup_target_update(mem
,
710 MEM_CGROUP_TARGET_SOFTLIMIT
);
713 if (unlikely(__memcg_event_check(mem
,
714 MEM_CGROUP_TARGET_NUMAINFO
))) {
715 atomic_inc(&mem
->numainfo_events
);
716 __mem_cgroup_target_update(mem
,
717 MEM_CGROUP_TARGET_NUMAINFO
);
723 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
725 return container_of(cgroup_subsys_state(cont
,
726 mem_cgroup_subsys_id
), struct mem_cgroup
,
730 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
733 * mm_update_next_owner() may clear mm->owner to NULL
734 * if it races with swapoff, page migration, etc.
735 * So this can be called with p == NULL.
740 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
741 struct mem_cgroup
, css
);
744 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
746 struct mem_cgroup
*mem
= NULL
;
751 * Because we have no locks, mm->owner's may be being moved to other
752 * cgroup. We use css_tryget() here even if this looks
753 * pessimistic (rather than adding locks here).
757 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
760 } while (!css_tryget(&mem
->css
));
765 /* The caller has to guarantee "mem" exists before calling this */
766 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
768 struct cgroup_subsys_state
*css
;
771 if (!mem
) /* ROOT cgroup has the smallest ID */
772 return root_mem_cgroup
; /*css_put/get against root is ignored*/
773 if (!mem
->use_hierarchy
) {
774 if (css_tryget(&mem
->css
))
780 * searching a memory cgroup which has the smallest ID under given
781 * ROOT cgroup. (ID >= 1)
783 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
784 if (css
&& css_tryget(css
))
785 mem
= container_of(css
, struct mem_cgroup
, css
);
792 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
793 struct mem_cgroup
*root
,
796 int nextid
= css_id(&iter
->css
) + 1;
799 struct cgroup_subsys_state
*css
;
801 hierarchy_used
= iter
->use_hierarchy
;
804 /* If no ROOT, walk all, ignore hierarchy */
805 if (!cond
|| (root
&& !hierarchy_used
))
809 root
= root_mem_cgroup
;
815 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
817 if (css
&& css_tryget(css
))
818 iter
= container_of(css
, struct mem_cgroup
, css
);
820 /* If css is NULL, no more cgroups will be found */
822 } while (css
&& !iter
);
827 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
828 * be careful that "break" loop is not allowed. We have reference count.
829 * Instead of that modify "cond" to be false and "continue" to exit the loop.
831 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
832 for (iter = mem_cgroup_start_loop(root);\
834 iter = mem_cgroup_get_next(iter, root, cond))
836 #define for_each_mem_cgroup_tree(iter, root) \
837 for_each_mem_cgroup_tree_cond(iter, root, true)
839 #define for_each_mem_cgroup_all(iter) \
840 for_each_mem_cgroup_tree_cond(iter, NULL, true)
843 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
845 return (mem
== root_mem_cgroup
);
848 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
850 struct mem_cgroup
*mem
;
856 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
862 mem_cgroup_pgmajfault(mem
, 1);
865 mem_cgroup_pgfault(mem
, 1);
873 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
876 * Following LRU functions are allowed to be used without PCG_LOCK.
877 * Operations are called by routine of global LRU independently from memcg.
878 * What we have to take care of here is validness of pc->mem_cgroup.
880 * Changes to pc->mem_cgroup happens when
883 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
884 * It is added to LRU before charge.
885 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
886 * When moving account, the page is not on LRU. It's isolated.
889 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
891 struct page_cgroup
*pc
;
892 struct mem_cgroup_per_zone
*mz
;
894 if (mem_cgroup_disabled())
896 pc
= lookup_page_cgroup(page
);
897 /* can happen while we handle swapcache. */
898 if (!TestClearPageCgroupAcctLRU(pc
))
900 VM_BUG_ON(!pc
->mem_cgroup
);
902 * We don't check PCG_USED bit. It's cleared when the "page" is finally
903 * removed from global LRU.
905 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
906 /* huge page split is done under lru_lock. so, we have no races. */
907 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
908 if (mem_cgroup_is_root(pc
->mem_cgroup
))
910 VM_BUG_ON(list_empty(&pc
->lru
));
911 list_del_init(&pc
->lru
);
914 void mem_cgroup_del_lru(struct page
*page
)
916 mem_cgroup_del_lru_list(page
, page_lru(page
));
920 * Writeback is about to end against a page which has been marked for immediate
921 * reclaim. If it still appears to be reclaimable, move it to the tail of the
924 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
926 struct mem_cgroup_per_zone
*mz
;
927 struct page_cgroup
*pc
;
928 enum lru_list lru
= page_lru(page
);
930 if (mem_cgroup_disabled())
933 pc
= lookup_page_cgroup(page
);
934 /* unused or root page is not rotated. */
935 if (!PageCgroupUsed(pc
))
937 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
939 if (mem_cgroup_is_root(pc
->mem_cgroup
))
941 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
942 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
945 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
947 struct mem_cgroup_per_zone
*mz
;
948 struct page_cgroup
*pc
;
950 if (mem_cgroup_disabled())
953 pc
= lookup_page_cgroup(page
);
954 /* unused or root page is not rotated. */
955 if (!PageCgroupUsed(pc
))
957 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
959 if (mem_cgroup_is_root(pc
->mem_cgroup
))
961 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
962 list_move(&pc
->lru
, &mz
->lists
[lru
]);
965 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
967 struct page_cgroup
*pc
;
968 struct mem_cgroup_per_zone
*mz
;
970 if (mem_cgroup_disabled())
972 pc
= lookup_page_cgroup(page
);
973 VM_BUG_ON(PageCgroupAcctLRU(pc
));
974 if (!PageCgroupUsed(pc
))
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
978 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
979 /* huge page split is done under lru_lock. so, we have no races. */
980 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
981 SetPageCgroupAcctLRU(pc
);
982 if (mem_cgroup_is_root(pc
->mem_cgroup
))
984 list_add(&pc
->lru
, &mz
->lists
[lru
]);
988 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
989 * while it's linked to lru because the page may be reused after it's fully
990 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
991 * It's done under lock_page and expected that zone->lru_lock isnever held.
993 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
996 struct zone
*zone
= page_zone(page
);
997 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1000 * Doing this check without taking ->lru_lock seems wrong but this
1001 * is safe. Because if page_cgroup's USED bit is unset, the page
1002 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1003 * set, the commit after this will fail, anyway.
1004 * This all charge/uncharge is done under some mutual execustion.
1005 * So, we don't need to taking care of changes in USED bit.
1007 if (likely(!PageLRU(page
)))
1010 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1012 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1013 * is guarded by lock_page() because the page is SwapCache.
1015 if (!PageCgroupUsed(pc
))
1016 mem_cgroup_del_lru_list(page
, page_lru(page
));
1017 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1020 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1022 unsigned long flags
;
1023 struct zone
*zone
= page_zone(page
);
1024 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1026 /* taking care of that the page is added to LRU while we commit it */
1027 if (likely(!PageLRU(page
)))
1029 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1030 /* link when the page is linked to LRU but page_cgroup isn't */
1031 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1032 mem_cgroup_add_lru_list(page
, page_lru(page
));
1033 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1037 void mem_cgroup_move_lists(struct page
*page
,
1038 enum lru_list from
, enum lru_list to
)
1040 if (mem_cgroup_disabled())
1042 mem_cgroup_del_lru_list(page
, from
);
1043 mem_cgroup_add_lru_list(page
, to
);
1046 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
1049 struct mem_cgroup
*curr
= NULL
;
1050 struct task_struct
*p
;
1052 p
= find_lock_task_mm(task
);
1055 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1060 * We should check use_hierarchy of "mem" not "curr". Because checking
1061 * use_hierarchy of "curr" here make this function true if hierarchy is
1062 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1063 * hierarchy(even if use_hierarchy is disabled in "mem").
1065 if (mem
->use_hierarchy
)
1066 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
1068 ret
= (curr
== mem
);
1069 css_put(&curr
->css
);
1073 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
1075 unsigned long active
;
1076 unsigned long inactive
;
1078 unsigned long inactive_ratio
;
1080 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
1081 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
1083 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1085 inactive_ratio
= int_sqrt(10 * gb
);
1089 if (present_pages
) {
1090 present_pages
[0] = inactive
;
1091 present_pages
[1] = active
;
1094 return inactive_ratio
;
1097 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
1099 unsigned long active
;
1100 unsigned long inactive
;
1101 unsigned long present_pages
[2];
1102 unsigned long inactive_ratio
;
1104 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1106 inactive
= present_pages
[0];
1107 active
= present_pages
[1];
1109 if (inactive
* inactive_ratio
< active
)
1115 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1117 unsigned long active
;
1118 unsigned long inactive
;
1120 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
1121 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1123 return (active
> inactive
);
1126 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
,
1130 int nid
= zone_to_nid(zone
);
1131 int zid
= zone_idx(zone
);
1132 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1134 return MEM_CGROUP_ZSTAT(mz
, lru
);
1137 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup
*memcg
,
1142 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_FILE
) +
1143 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_FILE
);
1148 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup
*memcg
,
1153 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_ANON
) +
1154 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_ANON
);
1158 #if MAX_NUMNODES > 1
1159 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup
*memcg
)
1164 for_each_node_state(nid
, N_HIGH_MEMORY
)
1165 total
+= mem_cgroup_node_nr_file_lru_pages(memcg
, nid
);
1170 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup
*memcg
)
1175 for_each_node_state(nid
, N_HIGH_MEMORY
)
1176 total
+= mem_cgroup_node_nr_anon_lru_pages(memcg
, nid
);
1181 static unsigned long
1182 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
, int nid
)
1184 return mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_UNEVICTABLE
);
1187 static unsigned long
1188 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
)
1193 for_each_node_state(nid
, N_HIGH_MEMORY
)
1194 total
+= mem_cgroup_node_nr_unevictable_lru_pages(memcg
, nid
);
1199 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
1206 total
+= mem_cgroup_get_zonestat_node(memcg
, nid
, l
);
1211 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
)
1216 for_each_node_state(nid
, N_HIGH_MEMORY
)
1217 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
);
1221 #endif /* CONFIG_NUMA */
1223 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1226 int nid
= zone_to_nid(zone
);
1227 int zid
= zone_idx(zone
);
1228 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1230 return &mz
->reclaim_stat
;
1233 struct zone_reclaim_stat
*
1234 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1236 struct page_cgroup
*pc
;
1237 struct mem_cgroup_per_zone
*mz
;
1239 if (mem_cgroup_disabled())
1242 pc
= lookup_page_cgroup(page
);
1243 if (!PageCgroupUsed(pc
))
1245 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1247 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1248 return &mz
->reclaim_stat
;
1251 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1252 struct list_head
*dst
,
1253 unsigned long *scanned
, int order
,
1254 int mode
, struct zone
*z
,
1255 struct mem_cgroup
*mem_cont
,
1256 int active
, int file
)
1258 unsigned long nr_taken
= 0;
1262 struct list_head
*src
;
1263 struct page_cgroup
*pc
, *tmp
;
1264 int nid
= zone_to_nid(z
);
1265 int zid
= zone_idx(z
);
1266 struct mem_cgroup_per_zone
*mz
;
1267 int lru
= LRU_FILE
* file
+ active
;
1271 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1272 src
= &mz
->lists
[lru
];
1275 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1276 if (scan
>= nr_to_scan
)
1279 if (unlikely(!PageCgroupUsed(pc
)))
1282 page
= lookup_cgroup_page(pc
);
1284 if (unlikely(!PageLRU(page
)))
1288 ret
= __isolate_lru_page(page
, mode
, file
);
1291 list_move(&page
->lru
, dst
);
1292 mem_cgroup_del_lru(page
);
1293 nr_taken
+= hpage_nr_pages(page
);
1296 /* we don't affect global LRU but rotate in our LRU */
1297 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1306 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1312 #define mem_cgroup_from_res_counter(counter, member) \
1313 container_of(counter, struct mem_cgroup, member)
1316 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317 * @mem: the memory cgroup
1319 * Returns the maximum amount of memory @mem can be charged with, in
1322 static unsigned long mem_cgroup_margin(struct mem_cgroup
*mem
)
1324 unsigned long long margin
;
1326 margin
= res_counter_margin(&mem
->res
);
1327 if (do_swap_account
)
1328 margin
= min(margin
, res_counter_margin(&mem
->memsw
));
1329 return margin
>> PAGE_SHIFT
;
1332 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1334 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1337 if (cgrp
->parent
== NULL
)
1338 return vm_swappiness
;
1340 return memcg
->swappiness
;
1343 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1348 spin_lock(&mem
->pcp_counter_lock
);
1349 for_each_online_cpu(cpu
)
1350 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1351 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1352 spin_unlock(&mem
->pcp_counter_lock
);
1358 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1365 spin_lock(&mem
->pcp_counter_lock
);
1366 for_each_online_cpu(cpu
)
1367 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1368 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1369 spin_unlock(&mem
->pcp_counter_lock
);
1373 * 2 routines for checking "mem" is under move_account() or not.
1375 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1376 * for avoiding race in accounting. If true,
1377 * pc->mem_cgroup may be overwritten.
1379 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1380 * under hierarchy of moving cgroups. This is for
1381 * waiting at hith-memory prressure caused by "move".
1384 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1386 VM_BUG_ON(!rcu_read_lock_held());
1387 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1390 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1392 struct mem_cgroup
*from
;
1393 struct mem_cgroup
*to
;
1396 * Unlike task_move routines, we access mc.to, mc.from not under
1397 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1399 spin_lock(&mc
.lock
);
1404 if (from
== mem
|| to
== mem
1405 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1406 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1409 spin_unlock(&mc
.lock
);
1413 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1415 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1416 if (mem_cgroup_under_move(mem
)) {
1418 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1419 /* moving charge context might have finished. */
1422 finish_wait(&mc
.waitq
, &wait
);
1430 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1431 * @memcg: The memory cgroup that went over limit
1432 * @p: Task that is going to be killed
1434 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1439 struct cgroup
*task_cgrp
;
1440 struct cgroup
*mem_cgrp
;
1442 * Need a buffer in BSS, can't rely on allocations. The code relies
1443 * on the assumption that OOM is serialized for memory controller.
1444 * If this assumption is broken, revisit this code.
1446 static char memcg_name
[PATH_MAX
];
1455 mem_cgrp
= memcg
->css
.cgroup
;
1456 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1458 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1461 * Unfortunately, we are unable to convert to a useful name
1462 * But we'll still print out the usage information
1469 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1472 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1480 * Continues from above, so we don't need an KERN_ level
1482 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1485 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1486 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1487 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1488 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1489 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1491 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1492 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1493 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1497 * This function returns the number of memcg under hierarchy tree. Returns
1498 * 1(self count) if no children.
1500 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1503 struct mem_cgroup
*iter
;
1505 for_each_mem_cgroup_tree(iter
, mem
)
1511 * Return the memory (and swap, if configured) limit for a memcg.
1513 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1518 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1519 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1521 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1523 * If memsw is finite and limits the amount of swap space available
1524 * to this memcg, return that limit.
1526 return min(limit
, memsw
);
1530 * Visit the first child (need not be the first child as per the ordering
1531 * of the cgroup list, since we track last_scanned_child) of @mem and use
1532 * that to reclaim free pages from.
1534 static struct mem_cgroup
*
1535 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1537 struct mem_cgroup
*ret
= NULL
;
1538 struct cgroup_subsys_state
*css
;
1541 if (!root_mem
->use_hierarchy
) {
1542 css_get(&root_mem
->css
);
1548 nextid
= root_mem
->last_scanned_child
+ 1;
1549 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1551 if (css
&& css_tryget(css
))
1552 ret
= container_of(css
, struct mem_cgroup
, css
);
1555 /* Updates scanning parameter */
1557 /* this means start scan from ID:1 */
1558 root_mem
->last_scanned_child
= 0;
1560 root_mem
->last_scanned_child
= found
;
1567 * test_mem_cgroup_node_reclaimable
1568 * @mem: the target memcg
1569 * @nid: the node ID to be checked.
1570 * @noswap : specify true here if the user wants flle only information.
1572 * This function returns whether the specified memcg contains any
1573 * reclaimable pages on a node. Returns true if there are any reclaimable
1574 * pages in the node.
1576 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*mem
,
1577 int nid
, bool noswap
)
1579 if (mem_cgroup_node_nr_file_lru_pages(mem
, nid
))
1581 if (noswap
|| !total_swap_pages
)
1583 if (mem_cgroup_node_nr_anon_lru_pages(mem
, nid
))
1588 #if MAX_NUMNODES > 1
1591 * Always updating the nodemask is not very good - even if we have an empty
1592 * list or the wrong list here, we can start from some node and traverse all
1593 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1596 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*mem
)
1600 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1601 * pagein/pageout changes since the last update.
1603 if (!atomic_read(&mem
->numainfo_events
))
1605 if (atomic_inc_return(&mem
->numainfo_updating
) > 1)
1608 /* make a nodemask where this memcg uses memory from */
1609 mem
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1611 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1613 if (!test_mem_cgroup_node_reclaimable(mem
, nid
, false))
1614 node_clear(nid
, mem
->scan_nodes
);
1617 atomic_set(&mem
->numainfo_events
, 0);
1618 atomic_set(&mem
->numainfo_updating
, 0);
1622 * Selecting a node where we start reclaim from. Because what we need is just
1623 * reducing usage counter, start from anywhere is O,K. Considering
1624 * memory reclaim from current node, there are pros. and cons.
1626 * Freeing memory from current node means freeing memory from a node which
1627 * we'll use or we've used. So, it may make LRU bad. And if several threads
1628 * hit limits, it will see a contention on a node. But freeing from remote
1629 * node means more costs for memory reclaim because of memory latency.
1631 * Now, we use round-robin. Better algorithm is welcomed.
1633 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1637 mem_cgroup_may_update_nodemask(mem
);
1638 node
= mem
->last_scanned_node
;
1640 node
= next_node(node
, mem
->scan_nodes
);
1641 if (node
== MAX_NUMNODES
)
1642 node
= first_node(mem
->scan_nodes
);
1644 * We call this when we hit limit, not when pages are added to LRU.
1645 * No LRU may hold pages because all pages are UNEVICTABLE or
1646 * memcg is too small and all pages are not on LRU. In that case,
1647 * we use curret node.
1649 if (unlikely(node
== MAX_NUMNODES
))
1650 node
= numa_node_id();
1652 mem
->last_scanned_node
= node
;
1657 * Check all nodes whether it contains reclaimable pages or not.
1658 * For quick scan, we make use of scan_nodes. This will allow us to skip
1659 * unused nodes. But scan_nodes is lazily updated and may not cotain
1660 * enough new information. We need to do double check.
1662 bool mem_cgroup_reclaimable(struct mem_cgroup
*mem
, bool noswap
)
1667 * quick check...making use of scan_node.
1668 * We can skip unused nodes.
1670 if (!nodes_empty(mem
->scan_nodes
)) {
1671 for (nid
= first_node(mem
->scan_nodes
);
1673 nid
= next_node(nid
, mem
->scan_nodes
)) {
1675 if (test_mem_cgroup_node_reclaimable(mem
, nid
, noswap
))
1680 * Check rest of nodes.
1682 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1683 if (node_isset(nid
, mem
->scan_nodes
))
1685 if (test_mem_cgroup_node_reclaimable(mem
, nid
, noswap
))
1692 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1697 bool mem_cgroup_reclaimable(struct mem_cgroup
*mem
, bool noswap
)
1699 return test_mem_cgroup_node_reclaimable(mem
, 0, noswap
);
1704 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1705 * we reclaimed from, so that we don't end up penalizing one child extensively
1706 * based on its position in the children list.
1708 * root_mem is the original ancestor that we've been reclaim from.
1710 * We give up and return to the caller when we visit root_mem twice.
1711 * (other groups can be removed while we're walking....)
1713 * If shrink==true, for avoiding to free too much, this returns immedieately.
1715 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1718 unsigned long reclaim_options
,
1719 unsigned long *total_scanned
)
1721 struct mem_cgroup
*victim
;
1724 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1725 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1726 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1727 unsigned long excess
;
1728 unsigned long nr_scanned
;
1730 excess
= res_counter_soft_limit_excess(&root_mem
->res
) >> PAGE_SHIFT
;
1732 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1733 if (!check_soft
&& !shrink
&& root_mem
->memsw_is_minimum
)
1737 victim
= mem_cgroup_select_victim(root_mem
);
1738 if (victim
== root_mem
) {
1741 * We are not draining per cpu cached charges during
1742 * soft limit reclaim because global reclaim doesn't
1743 * care about charges. It tries to free some memory and
1744 * charges will not give any.
1746 if (!check_soft
&& loop
>= 1)
1747 drain_all_stock_async(root_mem
);
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1754 if (!check_soft
|| !total
) {
1755 css_put(&victim
->css
);
1759 * We want to do more targeted reclaim.
1760 * excess >> 2 is not to excessive so as to
1761 * reclaim too much, nor too less that we keep
1762 * coming back to reclaim from this cgroup
1764 if (total
>= (excess
>> 2) ||
1765 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1766 css_put(&victim
->css
);
1771 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1772 /* this cgroup's local usage == 0 */
1773 css_put(&victim
->css
);
1776 /* we use swappiness of local cgroup */
1778 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1779 noswap
, get_swappiness(victim
), zone
,
1781 *total_scanned
+= nr_scanned
;
1783 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1784 noswap
, get_swappiness(victim
));
1785 css_put(&victim
->css
);
1787 * At shrinking usage, we can't check we should stop here or
1788 * reclaim more. It's depends on callers. last_scanned_child
1789 * will work enough for keeping fairness under tree.
1795 if (!res_counter_soft_limit_excess(&root_mem
->res
))
1797 } else if (mem_cgroup_margin(root_mem
))
1804 * Check OOM-Killer is already running under our hierarchy.
1805 * If someone is running, return false.
1807 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1809 int x
, lock_count
= 0;
1810 struct mem_cgroup
*iter
;
1812 for_each_mem_cgroup_tree(iter
, mem
) {
1813 x
= atomic_inc_return(&iter
->oom_lock
);
1814 lock_count
= max(x
, lock_count
);
1817 if (lock_count
== 1)
1822 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1824 struct mem_cgroup
*iter
;
1827 * When a new child is created while the hierarchy is under oom,
1828 * mem_cgroup_oom_lock() may not be called. We have to use
1829 * atomic_add_unless() here.
1831 for_each_mem_cgroup_tree(iter
, mem
)
1832 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1837 static DEFINE_MUTEX(memcg_oom_mutex
);
1838 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1840 struct oom_wait_info
{
1841 struct mem_cgroup
*mem
;
1845 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1846 unsigned mode
, int sync
, void *arg
)
1848 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1849 struct oom_wait_info
*oom_wait_info
;
1851 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1853 if (oom_wait_info
->mem
== wake_mem
)
1855 /* if no hierarchy, no match */
1856 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1859 * Both of oom_wait_info->mem and wake_mem are stable under us.
1860 * Then we can use css_is_ancestor without taking care of RCU.
1862 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1863 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1867 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1870 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1872 /* for filtering, pass "mem" as argument. */
1873 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1876 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1878 if (mem
&& atomic_read(&mem
->oom_lock
))
1879 memcg_wakeup_oom(mem
);
1883 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1885 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1887 struct oom_wait_info owait
;
1888 bool locked
, need_to_kill
;
1891 owait
.wait
.flags
= 0;
1892 owait
.wait
.func
= memcg_oom_wake_function
;
1893 owait
.wait
.private = current
;
1894 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1895 need_to_kill
= true;
1896 /* At first, try to OOM lock hierarchy under mem.*/
1897 mutex_lock(&memcg_oom_mutex
);
1898 locked
= mem_cgroup_oom_lock(mem
);
1900 * Even if signal_pending(), we can't quit charge() loop without
1901 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902 * under OOM is always welcomed, use TASK_KILLABLE here.
1904 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1905 if (!locked
|| mem
->oom_kill_disable
)
1906 need_to_kill
= false;
1908 mem_cgroup_oom_notify(mem
);
1909 mutex_unlock(&memcg_oom_mutex
);
1912 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1913 mem_cgroup_out_of_memory(mem
, mask
);
1916 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1918 mutex_lock(&memcg_oom_mutex
);
1919 mem_cgroup_oom_unlock(mem
);
1920 memcg_wakeup_oom(mem
);
1921 mutex_unlock(&memcg_oom_mutex
);
1923 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1925 /* Give chance to dying process */
1926 schedule_timeout(1);
1931 * Currently used to update mapped file statistics, but the routine can be
1932 * generalized to update other statistics as well.
1934 * Notes: Race condition
1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937 * it tends to be costly. But considering some conditions, we doesn't need
1938 * to do so _always_.
1940 * Considering "charge", lock_page_cgroup() is not required because all
1941 * file-stat operations happen after a page is attached to radix-tree. There
1942 * are no race with "charge".
1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946 * if there are race with "uncharge". Statistics itself is properly handled
1949 * Considering "move", this is an only case we see a race. To make the race
1950 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1951 * possibility of race condition. If there is, we take a lock.
1954 void mem_cgroup_update_page_stat(struct page
*page
,
1955 enum mem_cgroup_page_stat_item idx
, int val
)
1957 struct mem_cgroup
*mem
;
1958 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1959 bool need_unlock
= false;
1960 unsigned long uninitialized_var(flags
);
1966 mem
= pc
->mem_cgroup
;
1967 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1969 /* pc->mem_cgroup is unstable ? */
1970 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1971 /* take a lock against to access pc->mem_cgroup */
1972 move_lock_page_cgroup(pc
, &flags
);
1974 mem
= pc
->mem_cgroup
;
1975 if (!mem
|| !PageCgroupUsed(pc
))
1980 case MEMCG_NR_FILE_MAPPED
:
1982 SetPageCgroupFileMapped(pc
);
1983 else if (!page_mapped(page
))
1984 ClearPageCgroupFileMapped(pc
);
1985 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1991 this_cpu_add(mem
->stat
->count
[idx
], val
);
1994 if (unlikely(need_unlock
))
1995 move_unlock_page_cgroup(pc
, &flags
);
1999 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
2002 * size of first charge trial. "32" comes from vmscan.c's magic value.
2003 * TODO: maybe necessary to use big numbers in big irons.
2005 #define CHARGE_BATCH 32U
2006 struct memcg_stock_pcp
{
2007 struct mem_cgroup
*cached
; /* this never be root cgroup */
2008 unsigned int nr_pages
;
2009 struct work_struct work
;
2010 unsigned long flags
;
2011 #define FLUSHING_CACHED_CHARGE (0)
2013 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2014 static DEFINE_MUTEX(percpu_charge_mutex
);
2017 * Try to consume stocked charge on this cpu. If success, one page is consumed
2018 * from local stock and true is returned. If the stock is 0 or charges from a
2019 * cgroup which is not current target, returns false. This stock will be
2022 static bool consume_stock(struct mem_cgroup
*mem
)
2024 struct memcg_stock_pcp
*stock
;
2027 stock
= &get_cpu_var(memcg_stock
);
2028 if (mem
== stock
->cached
&& stock
->nr_pages
)
2030 else /* need to call res_counter_charge */
2032 put_cpu_var(memcg_stock
);
2037 * Returns stocks cached in percpu to res_counter and reset cached information.
2039 static void drain_stock(struct memcg_stock_pcp
*stock
)
2041 struct mem_cgroup
*old
= stock
->cached
;
2043 if (stock
->nr_pages
) {
2044 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2046 res_counter_uncharge(&old
->res
, bytes
);
2047 if (do_swap_account
)
2048 res_counter_uncharge(&old
->memsw
, bytes
);
2049 stock
->nr_pages
= 0;
2051 stock
->cached
= NULL
;
2055 * This must be called under preempt disabled or must be called by
2056 * a thread which is pinned to local cpu.
2058 static void drain_local_stock(struct work_struct
*dummy
)
2060 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2062 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2066 * Cache charges(val) which is from res_counter, to local per_cpu area.
2067 * This will be consumed by consume_stock() function, later.
2069 static void refill_stock(struct mem_cgroup
*mem
, unsigned int nr_pages
)
2071 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2073 if (stock
->cached
!= mem
) { /* reset if necessary */
2075 stock
->cached
= mem
;
2077 stock
->nr_pages
+= nr_pages
;
2078 put_cpu_var(memcg_stock
);
2082 * Tries to drain stocked charges in other cpus. This function is asynchronous
2083 * and just put a work per cpu for draining localy on each cpu. Caller can
2084 * expects some charges will be back to res_counter later but cannot wait for
2087 static void drain_all_stock_async(struct mem_cgroup
*root_mem
)
2091 * If someone calls draining, avoid adding more kworker runs.
2093 if (!mutex_trylock(&percpu_charge_mutex
))
2095 /* Notify other cpus that system-wide "drain" is running */
2098 * Get a hint for avoiding draining charges on the current cpu,
2099 * which must be exhausted by our charging. It is not required that
2100 * this be a precise check, so we use raw_smp_processor_id() instead of
2101 * getcpu()/putcpu().
2103 curcpu
= raw_smp_processor_id();
2104 for_each_online_cpu(cpu
) {
2105 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2106 struct mem_cgroup
*mem
;
2111 mem
= stock
->cached
;
2114 if (mem
!= root_mem
) {
2115 if (!root_mem
->use_hierarchy
)
2117 /* check whether "mem" is under tree of "root_mem" */
2118 if (!css_is_ancestor(&mem
->css
, &root_mem
->css
))
2121 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2122 schedule_work_on(cpu
, &stock
->work
);
2125 mutex_unlock(&percpu_charge_mutex
);
2126 /* We don't wait for flush_work */
2129 /* This is a synchronous drain interface. */
2130 static void drain_all_stock_sync(void)
2132 /* called when force_empty is called */
2133 mutex_lock(&percpu_charge_mutex
);
2134 schedule_on_each_cpu(drain_local_stock
);
2135 mutex_unlock(&percpu_charge_mutex
);
2139 * This function drains percpu counter value from DEAD cpu and
2140 * move it to local cpu. Note that this function can be preempted.
2142 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
2146 spin_lock(&mem
->pcp_counter_lock
);
2147 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2148 long x
= per_cpu(mem
->stat
->count
[i
], cpu
);
2150 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
2151 mem
->nocpu_base
.count
[i
] += x
;
2153 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2154 unsigned long x
= per_cpu(mem
->stat
->events
[i
], cpu
);
2156 per_cpu(mem
->stat
->events
[i
], cpu
) = 0;
2157 mem
->nocpu_base
.events
[i
] += x
;
2159 /* need to clear ON_MOVE value, works as a kind of lock. */
2160 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2161 spin_unlock(&mem
->pcp_counter_lock
);
2164 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
2166 int idx
= MEM_CGROUP_ON_MOVE
;
2168 spin_lock(&mem
->pcp_counter_lock
);
2169 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
2170 spin_unlock(&mem
->pcp_counter_lock
);
2173 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2174 unsigned long action
,
2177 int cpu
= (unsigned long)hcpu
;
2178 struct memcg_stock_pcp
*stock
;
2179 struct mem_cgroup
*iter
;
2181 if ((action
== CPU_ONLINE
)) {
2182 for_each_mem_cgroup_all(iter
)
2183 synchronize_mem_cgroup_on_move(iter
, cpu
);
2187 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2190 for_each_mem_cgroup_all(iter
)
2191 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2193 stock
= &per_cpu(memcg_stock
, cpu
);
2199 /* See __mem_cgroup_try_charge() for details */
2201 CHARGE_OK
, /* success */
2202 CHARGE_RETRY
, /* need to retry but retry is not bad */
2203 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2204 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2205 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2208 static int mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
2209 unsigned int nr_pages
, bool oom_check
)
2211 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2212 struct mem_cgroup
*mem_over_limit
;
2213 struct res_counter
*fail_res
;
2214 unsigned long flags
= 0;
2217 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
2220 if (!do_swap_account
)
2222 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
2226 res_counter_uncharge(&mem
->res
, csize
);
2227 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2228 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2230 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2232 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2233 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2235 * Never reclaim on behalf of optional batching, retry with a
2236 * single page instead.
2238 if (nr_pages
== CHARGE_BATCH
)
2239 return CHARGE_RETRY
;
2241 if (!(gfp_mask
& __GFP_WAIT
))
2242 return CHARGE_WOULDBLOCK
;
2244 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2245 gfp_mask
, flags
, NULL
);
2246 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2247 return CHARGE_RETRY
;
2249 * Even though the limit is exceeded at this point, reclaim
2250 * may have been able to free some pages. Retry the charge
2251 * before killing the task.
2253 * Only for regular pages, though: huge pages are rather
2254 * unlikely to succeed so close to the limit, and we fall back
2255 * to regular pages anyway in case of failure.
2257 if (nr_pages
== 1 && ret
)
2258 return CHARGE_RETRY
;
2261 * At task move, charge accounts can be doubly counted. So, it's
2262 * better to wait until the end of task_move if something is going on.
2264 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2265 return CHARGE_RETRY
;
2267 /* If we don't need to call oom-killer at el, return immediately */
2269 return CHARGE_NOMEM
;
2271 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2272 return CHARGE_OOM_DIE
;
2274 return CHARGE_RETRY
;
2278 * Unlike exported interface, "oom" parameter is added. if oom==true,
2279 * oom-killer can be invoked.
2281 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2283 unsigned int nr_pages
,
2284 struct mem_cgroup
**memcg
,
2287 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2288 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2289 struct mem_cgroup
*mem
= NULL
;
2293 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2294 * in system level. So, allow to go ahead dying process in addition to
2297 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2298 || fatal_signal_pending(current
)))
2302 * We always charge the cgroup the mm_struct belongs to.
2303 * The mm_struct's mem_cgroup changes on task migration if the
2304 * thread group leader migrates. It's possible that mm is not
2305 * set, if so charge the init_mm (happens for pagecache usage).
2310 if (*memcg
) { /* css should be a valid one */
2312 VM_BUG_ON(css_is_removed(&mem
->css
));
2313 if (mem_cgroup_is_root(mem
))
2315 if (nr_pages
== 1 && consume_stock(mem
))
2319 struct task_struct
*p
;
2322 p
= rcu_dereference(mm
->owner
);
2324 * Because we don't have task_lock(), "p" can exit.
2325 * In that case, "mem" can point to root or p can be NULL with
2326 * race with swapoff. Then, we have small risk of mis-accouning.
2327 * But such kind of mis-account by race always happens because
2328 * we don't have cgroup_mutex(). It's overkill and we allo that
2330 * (*) swapoff at el will charge against mm-struct not against
2331 * task-struct. So, mm->owner can be NULL.
2333 mem
= mem_cgroup_from_task(p
);
2334 if (!mem
|| mem_cgroup_is_root(mem
)) {
2338 if (nr_pages
== 1 && consume_stock(mem
)) {
2340 * It seems dagerous to access memcg without css_get().
2341 * But considering how consume_stok works, it's not
2342 * necessary. If consume_stock success, some charges
2343 * from this memcg are cached on this cpu. So, we
2344 * don't need to call css_get()/css_tryget() before
2345 * calling consume_stock().
2350 /* after here, we may be blocked. we need to get refcnt */
2351 if (!css_tryget(&mem
->css
)) {
2361 /* If killed, bypass charge */
2362 if (fatal_signal_pending(current
)) {
2368 if (oom
&& !nr_oom_retries
) {
2370 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2373 ret
= mem_cgroup_do_charge(mem
, gfp_mask
, batch
, oom_check
);
2377 case CHARGE_RETRY
: /* not in OOM situation but retry */
2382 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2385 case CHARGE_NOMEM
: /* OOM routine works */
2390 /* If oom, we never return -ENOMEM */
2393 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2397 } while (ret
!= CHARGE_OK
);
2399 if (batch
> nr_pages
)
2400 refill_stock(mem
, batch
- nr_pages
);
2414 * Somemtimes we have to undo a charge we got by try_charge().
2415 * This function is for that and do uncharge, put css's refcnt.
2416 * gotten by try_charge().
2418 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2419 unsigned int nr_pages
)
2421 if (!mem_cgroup_is_root(mem
)) {
2422 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2424 res_counter_uncharge(&mem
->res
, bytes
);
2425 if (do_swap_account
)
2426 res_counter_uncharge(&mem
->memsw
, bytes
);
2431 * A helper function to get mem_cgroup from ID. must be called under
2432 * rcu_read_lock(). The caller must check css_is_removed() or some if
2433 * it's concern. (dropping refcnt from swap can be called against removed
2436 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2438 struct cgroup_subsys_state
*css
;
2440 /* ID 0 is unused ID */
2443 css
= css_lookup(&mem_cgroup_subsys
, id
);
2446 return container_of(css
, struct mem_cgroup
, css
);
2449 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2451 struct mem_cgroup
*mem
= NULL
;
2452 struct page_cgroup
*pc
;
2456 VM_BUG_ON(!PageLocked(page
));
2458 pc
= lookup_page_cgroup(page
);
2459 lock_page_cgroup(pc
);
2460 if (PageCgroupUsed(pc
)) {
2461 mem
= pc
->mem_cgroup
;
2462 if (mem
&& !css_tryget(&mem
->css
))
2464 } else if (PageSwapCache(page
)) {
2465 ent
.val
= page_private(page
);
2466 id
= lookup_swap_cgroup(ent
);
2468 mem
= mem_cgroup_lookup(id
);
2469 if (mem
&& !css_tryget(&mem
->css
))
2473 unlock_page_cgroup(pc
);
2477 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2479 unsigned int nr_pages
,
2480 struct page_cgroup
*pc
,
2481 enum charge_type ctype
)
2483 lock_page_cgroup(pc
);
2484 if (unlikely(PageCgroupUsed(pc
))) {
2485 unlock_page_cgroup(pc
);
2486 __mem_cgroup_cancel_charge(mem
, nr_pages
);
2490 * we don't need page_cgroup_lock about tail pages, becase they are not
2491 * accessed by any other context at this point.
2493 pc
->mem_cgroup
= mem
;
2495 * We access a page_cgroup asynchronously without lock_page_cgroup().
2496 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2497 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2498 * before USED bit, we need memory barrier here.
2499 * See mem_cgroup_add_lru_list(), etc.
2503 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2504 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2505 SetPageCgroupCache(pc
);
2506 SetPageCgroupUsed(pc
);
2508 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2509 ClearPageCgroupCache(pc
);
2510 SetPageCgroupUsed(pc
);
2516 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2517 unlock_page_cgroup(pc
);
2519 * "charge_statistics" updated event counter. Then, check it.
2520 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2521 * if they exceeds softlimit.
2523 memcg_check_events(mem
, page
);
2526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2528 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2529 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2531 * Because tail pages are not marked as "used", set it. We're under
2532 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2534 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2536 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2537 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2538 unsigned long flags
;
2540 if (mem_cgroup_disabled())
2543 * We have no races with charge/uncharge but will have races with
2544 * page state accounting.
2546 move_lock_page_cgroup(head_pc
, &flags
);
2548 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2549 smp_wmb(); /* see __commit_charge() */
2550 if (PageCgroupAcctLRU(head_pc
)) {
2552 struct mem_cgroup_per_zone
*mz
;
2555 * LRU flags cannot be copied because we need to add tail
2556 *.page to LRU by generic call and our hook will be called.
2557 * We hold lru_lock, then, reduce counter directly.
2559 lru
= page_lru(head
);
2560 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2561 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2563 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2564 move_unlock_page_cgroup(head_pc
, &flags
);
2569 * mem_cgroup_move_account - move account of the page
2571 * @nr_pages: number of regular pages (>1 for huge pages)
2572 * @pc: page_cgroup of the page.
2573 * @from: mem_cgroup which the page is moved from.
2574 * @to: mem_cgroup which the page is moved to. @from != @to.
2575 * @uncharge: whether we should call uncharge and css_put against @from.
2577 * The caller must confirm following.
2578 * - page is not on LRU (isolate_page() is useful.)
2579 * - compound_lock is held when nr_pages > 1
2581 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2582 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2583 * true, this function does "uncharge" from old cgroup, but it doesn't if
2584 * @uncharge is false, so a caller should do "uncharge".
2586 static int mem_cgroup_move_account(struct page
*page
,
2587 unsigned int nr_pages
,
2588 struct page_cgroup
*pc
,
2589 struct mem_cgroup
*from
,
2590 struct mem_cgroup
*to
,
2593 unsigned long flags
;
2596 VM_BUG_ON(from
== to
);
2597 VM_BUG_ON(PageLRU(page
));
2599 * The page is isolated from LRU. So, collapse function
2600 * will not handle this page. But page splitting can happen.
2601 * Do this check under compound_page_lock(). The caller should
2605 if (nr_pages
> 1 && !PageTransHuge(page
))
2608 lock_page_cgroup(pc
);
2611 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2614 move_lock_page_cgroup(pc
, &flags
);
2616 if (PageCgroupFileMapped(pc
)) {
2617 /* Update mapped_file data for mem_cgroup */
2619 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2620 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2623 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2625 /* This is not "cancel", but cancel_charge does all we need. */
2626 __mem_cgroup_cancel_charge(from
, nr_pages
);
2628 /* caller should have done css_get */
2629 pc
->mem_cgroup
= to
;
2630 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2632 * We charges against "to" which may not have any tasks. Then, "to"
2633 * can be under rmdir(). But in current implementation, caller of
2634 * this function is just force_empty() and move charge, so it's
2635 * guaranteed that "to" is never removed. So, we don't check rmdir
2638 move_unlock_page_cgroup(pc
, &flags
);
2641 unlock_page_cgroup(pc
);
2645 memcg_check_events(to
, page
);
2646 memcg_check_events(from
, page
);
2652 * move charges to its parent.
2655 static int mem_cgroup_move_parent(struct page
*page
,
2656 struct page_cgroup
*pc
,
2657 struct mem_cgroup
*child
,
2660 struct cgroup
*cg
= child
->css
.cgroup
;
2661 struct cgroup
*pcg
= cg
->parent
;
2662 struct mem_cgroup
*parent
;
2663 unsigned int nr_pages
;
2664 unsigned long uninitialized_var(flags
);
2672 if (!get_page_unless_zero(page
))
2674 if (isolate_lru_page(page
))
2677 nr_pages
= hpage_nr_pages(page
);
2679 parent
= mem_cgroup_from_cont(pcg
);
2680 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2685 flags
= compound_lock_irqsave(page
);
2687 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2689 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2692 compound_unlock_irqrestore(page
, flags
);
2694 putback_lru_page(page
);
2702 * Charge the memory controller for page usage.
2704 * 0 if the charge was successful
2705 * < 0 if the cgroup is over its limit
2707 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2708 gfp_t gfp_mask
, enum charge_type ctype
)
2710 struct mem_cgroup
*mem
= NULL
;
2711 unsigned int nr_pages
= 1;
2712 struct page_cgroup
*pc
;
2716 if (PageTransHuge(page
)) {
2717 nr_pages
<<= compound_order(page
);
2718 VM_BUG_ON(!PageTransHuge(page
));
2720 * Never OOM-kill a process for a huge page. The
2721 * fault handler will fall back to regular pages.
2726 pc
= lookup_page_cgroup(page
);
2727 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2729 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &mem
, oom
);
2733 __mem_cgroup_commit_charge(mem
, page
, nr_pages
, pc
, ctype
);
2737 int mem_cgroup_newpage_charge(struct page
*page
,
2738 struct mm_struct
*mm
, gfp_t gfp_mask
)
2740 if (mem_cgroup_disabled())
2743 * If already mapped, we don't have to account.
2744 * If page cache, page->mapping has address_space.
2745 * But page->mapping may have out-of-use anon_vma pointer,
2746 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2749 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2753 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2754 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2758 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2759 enum charge_type ctype
);
2762 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*mem
,
2763 enum charge_type ctype
)
2765 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2767 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2768 * is already on LRU. It means the page may on some other page_cgroup's
2769 * LRU. Take care of it.
2771 mem_cgroup_lru_del_before_commit(page
);
2772 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
2773 mem_cgroup_lru_add_after_commit(page
);
2777 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2780 struct mem_cgroup
*mem
= NULL
;
2783 if (mem_cgroup_disabled())
2785 if (PageCompound(page
))
2788 * Corner case handling. This is called from add_to_page_cache()
2789 * in usual. But some FS (shmem) precharges this page before calling it
2790 * and call add_to_page_cache() with GFP_NOWAIT.
2792 * For GFP_NOWAIT case, the page may be pre-charged before calling
2793 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2794 * charge twice. (It works but has to pay a bit larger cost.)
2795 * And when the page is SwapCache, it should take swap information
2796 * into account. This is under lock_page() now.
2798 if (!(gfp_mask
& __GFP_WAIT
)) {
2799 struct page_cgroup
*pc
;
2801 pc
= lookup_page_cgroup(page
);
2804 lock_page_cgroup(pc
);
2805 if (PageCgroupUsed(pc
)) {
2806 unlock_page_cgroup(pc
);
2809 unlock_page_cgroup(pc
);
2815 if (page_is_file_cache(page
)) {
2816 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &mem
, true);
2821 * FUSE reuses pages without going through the final
2822 * put that would remove them from the LRU list, make
2823 * sure that they get relinked properly.
2825 __mem_cgroup_commit_charge_lrucare(page
, mem
,
2826 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2830 if (PageSwapCache(page
)) {
2831 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2833 __mem_cgroup_commit_charge_swapin(page
, mem
,
2834 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2836 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2837 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2843 * While swap-in, try_charge -> commit or cancel, the page is locked.
2844 * And when try_charge() successfully returns, one refcnt to memcg without
2845 * struct page_cgroup is acquired. This refcnt will be consumed by
2846 * "commit()" or removed by "cancel()"
2848 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2850 gfp_t mask
, struct mem_cgroup
**ptr
)
2852 struct mem_cgroup
*mem
;
2857 if (mem_cgroup_disabled())
2860 if (!do_swap_account
)
2863 * A racing thread's fault, or swapoff, may have already updated
2864 * the pte, and even removed page from swap cache: in those cases
2865 * do_swap_page()'s pte_same() test will fail; but there's also a
2866 * KSM case which does need to charge the page.
2868 if (!PageSwapCache(page
))
2870 mem
= try_get_mem_cgroup_from_page(page
);
2874 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2880 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2884 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2885 enum charge_type ctype
)
2887 if (mem_cgroup_disabled())
2891 cgroup_exclude_rmdir(&ptr
->css
);
2893 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2895 * Now swap is on-memory. This means this page may be
2896 * counted both as mem and swap....double count.
2897 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2898 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2899 * may call delete_from_swap_cache() before reach here.
2901 if (do_swap_account
&& PageSwapCache(page
)) {
2902 swp_entry_t ent
= {.val
= page_private(page
)};
2904 struct mem_cgroup
*memcg
;
2906 id
= swap_cgroup_record(ent
, 0);
2908 memcg
= mem_cgroup_lookup(id
);
2911 * This recorded memcg can be obsolete one. So, avoid
2912 * calling css_tryget
2914 if (!mem_cgroup_is_root(memcg
))
2915 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2916 mem_cgroup_swap_statistics(memcg
, false);
2917 mem_cgroup_put(memcg
);
2922 * At swapin, we may charge account against cgroup which has no tasks.
2923 * So, rmdir()->pre_destroy() can be called while we do this charge.
2924 * In that case, we need to call pre_destroy() again. check it here.
2926 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2929 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2931 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2932 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2935 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2937 if (mem_cgroup_disabled())
2941 __mem_cgroup_cancel_charge(mem
, 1);
2944 static void mem_cgroup_do_uncharge(struct mem_cgroup
*mem
,
2945 unsigned int nr_pages
,
2946 const enum charge_type ctype
)
2948 struct memcg_batch_info
*batch
= NULL
;
2949 bool uncharge_memsw
= true;
2951 /* If swapout, usage of swap doesn't decrease */
2952 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2953 uncharge_memsw
= false;
2955 batch
= ¤t
->memcg_batch
;
2957 * In usual, we do css_get() when we remember memcg pointer.
2958 * But in this case, we keep res->usage until end of a series of
2959 * uncharges. Then, it's ok to ignore memcg's refcnt.
2964 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2965 * In those cases, all pages freed continuously can be expected to be in
2966 * the same cgroup and we have chance to coalesce uncharges.
2967 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2968 * because we want to do uncharge as soon as possible.
2971 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2972 goto direct_uncharge
;
2975 goto direct_uncharge
;
2978 * In typical case, batch->memcg == mem. This means we can
2979 * merge a series of uncharges to an uncharge of res_counter.
2980 * If not, we uncharge res_counter ony by one.
2982 if (batch
->memcg
!= mem
)
2983 goto direct_uncharge
;
2984 /* remember freed charge and uncharge it later */
2987 batch
->memsw_nr_pages
++;
2990 res_counter_uncharge(&mem
->res
, nr_pages
* PAGE_SIZE
);
2992 res_counter_uncharge(&mem
->memsw
, nr_pages
* PAGE_SIZE
);
2993 if (unlikely(batch
->memcg
!= mem
))
2994 memcg_oom_recover(mem
);
2999 * uncharge if !page_mapped(page)
3001 static struct mem_cgroup
*
3002 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
3004 struct mem_cgroup
*mem
= NULL
;
3005 unsigned int nr_pages
= 1;
3006 struct page_cgroup
*pc
;
3008 if (mem_cgroup_disabled())
3011 if (PageSwapCache(page
))
3014 if (PageTransHuge(page
)) {
3015 nr_pages
<<= compound_order(page
);
3016 VM_BUG_ON(!PageTransHuge(page
));
3019 * Check if our page_cgroup is valid
3021 pc
= lookup_page_cgroup(page
);
3022 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
3025 lock_page_cgroup(pc
);
3027 mem
= pc
->mem_cgroup
;
3029 if (!PageCgroupUsed(pc
))
3033 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
3034 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3035 /* See mem_cgroup_prepare_migration() */
3036 if (page_mapped(page
) || PageCgroupMigration(pc
))
3039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3040 if (!PageAnon(page
)) { /* Shared memory */
3041 if (page
->mapping
&& !page_is_file_cache(page
))
3043 } else if (page_mapped(page
)) /* Anon */
3050 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -nr_pages
);
3052 ClearPageCgroupUsed(pc
);
3054 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3055 * freed from LRU. This is safe because uncharged page is expected not
3056 * to be reused (freed soon). Exception is SwapCache, it's handled by
3057 * special functions.
3060 unlock_page_cgroup(pc
);
3062 * even after unlock, we have mem->res.usage here and this memcg
3063 * will never be freed.
3065 memcg_check_events(mem
, page
);
3066 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3067 mem_cgroup_swap_statistics(mem
, true);
3068 mem_cgroup_get(mem
);
3070 if (!mem_cgroup_is_root(mem
))
3071 mem_cgroup_do_uncharge(mem
, nr_pages
, ctype
);
3076 unlock_page_cgroup(pc
);
3080 void mem_cgroup_uncharge_page(struct page
*page
)
3083 if (page_mapped(page
))
3085 if (page
->mapping
&& !PageAnon(page
))
3087 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3090 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3092 VM_BUG_ON(page_mapped(page
));
3093 VM_BUG_ON(page
->mapping
);
3094 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3098 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3099 * In that cases, pages are freed continuously and we can expect pages
3100 * are in the same memcg. All these calls itself limits the number of
3101 * pages freed at once, then uncharge_start/end() is called properly.
3102 * This may be called prural(2) times in a context,
3105 void mem_cgroup_uncharge_start(void)
3107 current
->memcg_batch
.do_batch
++;
3108 /* We can do nest. */
3109 if (current
->memcg_batch
.do_batch
== 1) {
3110 current
->memcg_batch
.memcg
= NULL
;
3111 current
->memcg_batch
.nr_pages
= 0;
3112 current
->memcg_batch
.memsw_nr_pages
= 0;
3116 void mem_cgroup_uncharge_end(void)
3118 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3120 if (!batch
->do_batch
)
3124 if (batch
->do_batch
) /* If stacked, do nothing. */
3130 * This "batch->memcg" is valid without any css_get/put etc...
3131 * bacause we hide charges behind us.
3133 if (batch
->nr_pages
)
3134 res_counter_uncharge(&batch
->memcg
->res
,
3135 batch
->nr_pages
* PAGE_SIZE
);
3136 if (batch
->memsw_nr_pages
)
3137 res_counter_uncharge(&batch
->memcg
->memsw
,
3138 batch
->memsw_nr_pages
* PAGE_SIZE
);
3139 memcg_oom_recover(batch
->memcg
);
3140 /* forget this pointer (for sanity check) */
3141 batch
->memcg
= NULL
;
3146 * called after __delete_from_swap_cache() and drop "page" account.
3147 * memcg information is recorded to swap_cgroup of "ent"
3150 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3152 struct mem_cgroup
*memcg
;
3153 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3155 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3156 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3158 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3161 * record memcg information, if swapout && memcg != NULL,
3162 * mem_cgroup_get() was called in uncharge().
3164 if (do_swap_account
&& swapout
&& memcg
)
3165 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3171 * called from swap_entry_free(). remove record in swap_cgroup and
3172 * uncharge "memsw" account.
3174 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3176 struct mem_cgroup
*memcg
;
3179 if (!do_swap_account
)
3182 id
= swap_cgroup_record(ent
, 0);
3184 memcg
= mem_cgroup_lookup(id
);
3187 * We uncharge this because swap is freed.
3188 * This memcg can be obsolete one. We avoid calling css_tryget
3190 if (!mem_cgroup_is_root(memcg
))
3191 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3192 mem_cgroup_swap_statistics(memcg
, false);
3193 mem_cgroup_put(memcg
);
3199 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3200 * @entry: swap entry to be moved
3201 * @from: mem_cgroup which the entry is moved from
3202 * @to: mem_cgroup which the entry is moved to
3203 * @need_fixup: whether we should fixup res_counters and refcounts.
3205 * It succeeds only when the swap_cgroup's record for this entry is the same
3206 * as the mem_cgroup's id of @from.
3208 * Returns 0 on success, -EINVAL on failure.
3210 * The caller must have charged to @to, IOW, called res_counter_charge() about
3211 * both res and memsw, and called css_get().
3213 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3214 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3216 unsigned short old_id
, new_id
;
3218 old_id
= css_id(&from
->css
);
3219 new_id
= css_id(&to
->css
);
3221 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3222 mem_cgroup_swap_statistics(from
, false);
3223 mem_cgroup_swap_statistics(to
, true);
3225 * This function is only called from task migration context now.
3226 * It postpones res_counter and refcount handling till the end
3227 * of task migration(mem_cgroup_clear_mc()) for performance
3228 * improvement. But we cannot postpone mem_cgroup_get(to)
3229 * because if the process that has been moved to @to does
3230 * swap-in, the refcount of @to might be decreased to 0.
3234 if (!mem_cgroup_is_root(from
))
3235 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3236 mem_cgroup_put(from
);
3238 * we charged both to->res and to->memsw, so we should
3241 if (!mem_cgroup_is_root(to
))
3242 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3250 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3257 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3260 int mem_cgroup_prepare_migration(struct page
*page
,
3261 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3263 struct mem_cgroup
*mem
= NULL
;
3264 struct page_cgroup
*pc
;
3265 enum charge_type ctype
;
3270 VM_BUG_ON(PageTransHuge(page
));
3271 if (mem_cgroup_disabled())
3274 pc
= lookup_page_cgroup(page
);
3275 lock_page_cgroup(pc
);
3276 if (PageCgroupUsed(pc
)) {
3277 mem
= pc
->mem_cgroup
;
3280 * At migrating an anonymous page, its mapcount goes down
3281 * to 0 and uncharge() will be called. But, even if it's fully
3282 * unmapped, migration may fail and this page has to be
3283 * charged again. We set MIGRATION flag here and delay uncharge
3284 * until end_migration() is called
3286 * Corner Case Thinking
3288 * When the old page was mapped as Anon and it's unmap-and-freed
3289 * while migration was ongoing.
3290 * If unmap finds the old page, uncharge() of it will be delayed
3291 * until end_migration(). If unmap finds a new page, it's
3292 * uncharged when it make mapcount to be 1->0. If unmap code
3293 * finds swap_migration_entry, the new page will not be mapped
3294 * and end_migration() will find it(mapcount==0).
3297 * When the old page was mapped but migraion fails, the kernel
3298 * remaps it. A charge for it is kept by MIGRATION flag even
3299 * if mapcount goes down to 0. We can do remap successfully
3300 * without charging it again.
3303 * The "old" page is under lock_page() until the end of
3304 * migration, so, the old page itself will not be swapped-out.
3305 * If the new page is swapped out before end_migraton, our
3306 * hook to usual swap-out path will catch the event.
3309 SetPageCgroupMigration(pc
);
3311 unlock_page_cgroup(pc
);
3313 * If the page is not charged at this point,
3320 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3321 css_put(&mem
->css
);/* drop extra refcnt */
3322 if (ret
|| *ptr
== NULL
) {
3323 if (PageAnon(page
)) {
3324 lock_page_cgroup(pc
);
3325 ClearPageCgroupMigration(pc
);
3326 unlock_page_cgroup(pc
);
3328 * The old page may be fully unmapped while we kept it.
3330 mem_cgroup_uncharge_page(page
);
3335 * We charge new page before it's used/mapped. So, even if unlock_page()
3336 * is called before end_migration, we can catch all events on this new
3337 * page. In the case new page is migrated but not remapped, new page's
3338 * mapcount will be finally 0 and we call uncharge in end_migration().
3340 pc
= lookup_page_cgroup(newpage
);
3342 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3343 else if (page_is_file_cache(page
))
3344 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3346 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3347 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
3351 /* remove redundant charge if migration failed*/
3352 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3353 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3355 struct page
*used
, *unused
;
3356 struct page_cgroup
*pc
;
3360 /* blocks rmdir() */
3361 cgroup_exclude_rmdir(&mem
->css
);
3362 if (!migration_ok
) {
3370 * We disallowed uncharge of pages under migration because mapcount
3371 * of the page goes down to zero, temporarly.
3372 * Clear the flag and check the page should be charged.
3374 pc
= lookup_page_cgroup(oldpage
);
3375 lock_page_cgroup(pc
);
3376 ClearPageCgroupMigration(pc
);
3377 unlock_page_cgroup(pc
);
3379 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3382 * If a page is a file cache, radix-tree replacement is very atomic
3383 * and we can skip this check. When it was an Anon page, its mapcount
3384 * goes down to 0. But because we added MIGRATION flage, it's not
3385 * uncharged yet. There are several case but page->mapcount check
3386 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3387 * check. (see prepare_charge() also)
3390 mem_cgroup_uncharge_page(used
);
3392 * At migration, we may charge account against cgroup which has no
3394 * So, rmdir()->pre_destroy() can be called while we do this charge.
3395 * In that case, we need to call pre_destroy() again. check it here.
3397 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3401 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3402 * Calling hierarchical_reclaim is not enough because we should update
3403 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3404 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3405 * not from the memcg which this page would be charged to.
3406 * try_charge_swapin does all of these works properly.
3408 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
3409 struct mm_struct
*mm
,
3412 struct mem_cgroup
*mem
;
3415 if (mem_cgroup_disabled())
3418 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
3420 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
3426 * At replace page cache, newpage is not under any memcg but it's on
3427 * LRU. So, this function doesn't touch res_counter but handles LRU
3428 * in correct way. Both pages are locked so we cannot race with uncharge.
3430 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
3431 struct page
*newpage
)
3433 struct mem_cgroup
*memcg
;
3434 struct page_cgroup
*pc
;
3436 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3437 unsigned long flags
;
3439 if (mem_cgroup_disabled())
3442 pc
= lookup_page_cgroup(oldpage
);
3443 /* fix accounting on old pages */
3444 lock_page_cgroup(pc
);
3445 memcg
= pc
->mem_cgroup
;
3446 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -1);
3447 ClearPageCgroupUsed(pc
);
3448 unlock_page_cgroup(pc
);
3450 if (PageSwapBacked(oldpage
))
3451 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3453 zone
= page_zone(newpage
);
3454 pc
= lookup_page_cgroup(newpage
);
3456 * Even if newpage->mapping was NULL before starting replacement,
3457 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3458 * LRU while we overwrite pc->mem_cgroup.
3460 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3461 if (PageLRU(newpage
))
3462 del_page_from_lru_list(zone
, newpage
, page_lru(newpage
));
3463 __mem_cgroup_commit_charge(memcg
, newpage
, 1, pc
, type
);
3464 if (PageLRU(newpage
))
3465 add_page_to_lru_list(zone
, newpage
, page_lru(newpage
));
3466 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3469 #ifdef CONFIG_DEBUG_VM
3470 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3472 struct page_cgroup
*pc
;
3474 pc
= lookup_page_cgroup(page
);
3475 if (likely(pc
) && PageCgroupUsed(pc
))
3480 bool mem_cgroup_bad_page_check(struct page
*page
)
3482 if (mem_cgroup_disabled())
3485 return lookup_page_cgroup_used(page
) != NULL
;
3488 void mem_cgroup_print_bad_page(struct page
*page
)
3490 struct page_cgroup
*pc
;
3492 pc
= lookup_page_cgroup_used(page
);
3497 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3498 pc
, pc
->flags
, pc
->mem_cgroup
);
3500 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3503 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3508 printk(KERN_CONT
"(%s)\n",
3509 (ret
< 0) ? "cannot get the path" : path
);
3515 static DEFINE_MUTEX(set_limit_mutex
);
3517 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3518 unsigned long long val
)
3521 u64 memswlimit
, memlimit
;
3523 int children
= mem_cgroup_count_children(memcg
);
3524 u64 curusage
, oldusage
;
3528 * For keeping hierarchical_reclaim simple, how long we should retry
3529 * is depends on callers. We set our retry-count to be function
3530 * of # of children which we should visit in this loop.
3532 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3534 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3537 while (retry_count
) {
3538 if (signal_pending(current
)) {
3543 * Rather than hide all in some function, I do this in
3544 * open coded manner. You see what this really does.
3545 * We have to guarantee mem->res.limit < mem->memsw.limit.
3547 mutex_lock(&set_limit_mutex
);
3548 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3549 if (memswlimit
< val
) {
3551 mutex_unlock(&set_limit_mutex
);
3555 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3559 ret
= res_counter_set_limit(&memcg
->res
, val
);
3561 if (memswlimit
== val
)
3562 memcg
->memsw_is_minimum
= true;
3564 memcg
->memsw_is_minimum
= false;
3566 mutex_unlock(&set_limit_mutex
);
3571 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3572 MEM_CGROUP_RECLAIM_SHRINK
,
3574 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3575 /* Usage is reduced ? */
3576 if (curusage
>= oldusage
)
3579 oldusage
= curusage
;
3581 if (!ret
&& enlarge
)
3582 memcg_oom_recover(memcg
);
3587 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3588 unsigned long long val
)
3591 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3592 int children
= mem_cgroup_count_children(memcg
);
3596 /* see mem_cgroup_resize_res_limit */
3597 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3598 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3599 while (retry_count
) {
3600 if (signal_pending(current
)) {
3605 * Rather than hide all in some function, I do this in
3606 * open coded manner. You see what this really does.
3607 * We have to guarantee mem->res.limit < mem->memsw.limit.
3609 mutex_lock(&set_limit_mutex
);
3610 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3611 if (memlimit
> val
) {
3613 mutex_unlock(&set_limit_mutex
);
3616 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3617 if (memswlimit
< val
)
3619 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3621 if (memlimit
== val
)
3622 memcg
->memsw_is_minimum
= true;
3624 memcg
->memsw_is_minimum
= false;
3626 mutex_unlock(&set_limit_mutex
);
3631 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3632 MEM_CGROUP_RECLAIM_NOSWAP
|
3633 MEM_CGROUP_RECLAIM_SHRINK
,
3635 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3636 /* Usage is reduced ? */
3637 if (curusage
>= oldusage
)
3640 oldusage
= curusage
;
3642 if (!ret
&& enlarge
)
3643 memcg_oom_recover(memcg
);
3647 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3649 unsigned long *total_scanned
)
3651 unsigned long nr_reclaimed
= 0;
3652 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3653 unsigned long reclaimed
;
3655 struct mem_cgroup_tree_per_zone
*mctz
;
3656 unsigned long long excess
;
3657 unsigned long nr_scanned
;
3662 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3664 * This loop can run a while, specially if mem_cgroup's continuously
3665 * keep exceeding their soft limit and putting the system under
3672 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3677 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3679 MEM_CGROUP_RECLAIM_SOFT
,
3681 nr_reclaimed
+= reclaimed
;
3682 *total_scanned
+= nr_scanned
;
3683 spin_lock(&mctz
->lock
);
3686 * If we failed to reclaim anything from this memory cgroup
3687 * it is time to move on to the next cgroup
3693 * Loop until we find yet another one.
3695 * By the time we get the soft_limit lock
3696 * again, someone might have aded the
3697 * group back on the RB tree. Iterate to
3698 * make sure we get a different mem.
3699 * mem_cgroup_largest_soft_limit_node returns
3700 * NULL if no other cgroup is present on
3704 __mem_cgroup_largest_soft_limit_node(mctz
);
3706 css_put(&next_mz
->mem
->css
);
3707 else /* next_mz == NULL or other memcg */
3711 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3712 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3714 * One school of thought says that we should not add
3715 * back the node to the tree if reclaim returns 0.
3716 * But our reclaim could return 0, simply because due
3717 * to priority we are exposing a smaller subset of
3718 * memory to reclaim from. Consider this as a longer
3721 /* If excess == 0, no tree ops */
3722 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3723 spin_unlock(&mctz
->lock
);
3724 css_put(&mz
->mem
->css
);
3727 * Could not reclaim anything and there are no more
3728 * mem cgroups to try or we seem to be looping without
3729 * reclaiming anything.
3731 if (!nr_reclaimed
&&
3733 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3735 } while (!nr_reclaimed
);
3737 css_put(&next_mz
->mem
->css
);
3738 return nr_reclaimed
;
3742 * This routine traverse page_cgroup in given list and drop them all.
3743 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3745 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3746 int node
, int zid
, enum lru_list lru
)
3749 struct mem_cgroup_per_zone
*mz
;
3750 struct page_cgroup
*pc
, *busy
;
3751 unsigned long flags
, loop
;
3752 struct list_head
*list
;
3755 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3756 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3757 list
= &mz
->lists
[lru
];
3759 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3760 /* give some margin against EBUSY etc...*/
3767 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3768 if (list_empty(list
)) {
3769 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3772 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3774 list_move(&pc
->lru
, list
);
3776 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3779 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3781 page
= lookup_cgroup_page(pc
);
3783 ret
= mem_cgroup_move_parent(page
, pc
, mem
, GFP_KERNEL
);
3787 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3788 /* found lock contention or "pc" is obsolete. */
3795 if (!ret
&& !list_empty(list
))
3801 * make mem_cgroup's charge to be 0 if there is no task.
3802 * This enables deleting this mem_cgroup.
3804 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3807 int node
, zid
, shrink
;
3808 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3809 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3814 /* should free all ? */
3820 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3823 if (signal_pending(current
))
3825 /* This is for making all *used* pages to be on LRU. */
3826 lru_add_drain_all();
3827 drain_all_stock_sync();
3829 mem_cgroup_start_move(mem
);
3830 for_each_node_state(node
, N_HIGH_MEMORY
) {
3831 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3834 ret
= mem_cgroup_force_empty_list(mem
,
3843 mem_cgroup_end_move(mem
);
3844 memcg_oom_recover(mem
);
3845 /* it seems parent cgroup doesn't have enough mem */
3849 /* "ret" should also be checked to ensure all lists are empty. */
3850 } while (mem
->res
.usage
> 0 || ret
);
3856 /* returns EBUSY if there is a task or if we come here twice. */
3857 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3861 /* we call try-to-free pages for make this cgroup empty */
3862 lru_add_drain_all();
3863 /* try to free all pages in this cgroup */
3865 while (nr_retries
&& mem
->res
.usage
> 0) {
3868 if (signal_pending(current
)) {
3872 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3873 false, get_swappiness(mem
));
3876 /* maybe some writeback is necessary */
3877 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3882 /* try move_account...there may be some *locked* pages. */
3886 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3888 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3892 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3894 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3897 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3901 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3902 struct cgroup
*parent
= cont
->parent
;
3903 struct mem_cgroup
*parent_mem
= NULL
;
3906 parent_mem
= mem_cgroup_from_cont(parent
);
3910 * If parent's use_hierarchy is set, we can't make any modifications
3911 * in the child subtrees. If it is unset, then the change can
3912 * occur, provided the current cgroup has no children.
3914 * For the root cgroup, parent_mem is NULL, we allow value to be
3915 * set if there are no children.
3917 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3918 (val
== 1 || val
== 0)) {
3919 if (list_empty(&cont
->children
))
3920 mem
->use_hierarchy
= val
;
3931 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*mem
,
3932 enum mem_cgroup_stat_index idx
)
3934 struct mem_cgroup
*iter
;
3937 /* Per-cpu values can be negative, use a signed accumulator */
3938 for_each_mem_cgroup_tree(iter
, mem
)
3939 val
+= mem_cgroup_read_stat(iter
, idx
);
3941 if (val
< 0) /* race ? */
3946 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3950 if (!mem_cgroup_is_root(mem
)) {
3952 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3954 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3957 val
= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3958 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_RSS
);
3961 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3963 return val
<< PAGE_SHIFT
;
3966 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3968 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3972 type
= MEMFILE_TYPE(cft
->private);
3973 name
= MEMFILE_ATTR(cft
->private);
3976 if (name
== RES_USAGE
)
3977 val
= mem_cgroup_usage(mem
, false);
3979 val
= res_counter_read_u64(&mem
->res
, name
);
3982 if (name
== RES_USAGE
)
3983 val
= mem_cgroup_usage(mem
, true);
3985 val
= res_counter_read_u64(&mem
->memsw
, name
);
3994 * The user of this function is...
3997 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
4000 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4002 unsigned long long val
;
4005 type
= MEMFILE_TYPE(cft
->private);
4006 name
= MEMFILE_ATTR(cft
->private);
4009 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
4013 /* This function does all necessary parse...reuse it */
4014 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
4018 ret
= mem_cgroup_resize_limit(memcg
, val
);
4020 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
4022 case RES_SOFT_LIMIT
:
4023 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
4027 * For memsw, soft limits are hard to implement in terms
4028 * of semantics, for now, we support soft limits for
4029 * control without swap
4032 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
4037 ret
= -EINVAL
; /* should be BUG() ? */
4043 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
4044 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
4046 struct cgroup
*cgroup
;
4047 unsigned long long min_limit
, min_memsw_limit
, tmp
;
4049 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4050 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4051 cgroup
= memcg
->css
.cgroup
;
4052 if (!memcg
->use_hierarchy
)
4055 while (cgroup
->parent
) {
4056 cgroup
= cgroup
->parent
;
4057 memcg
= mem_cgroup_from_cont(cgroup
);
4058 if (!memcg
->use_hierarchy
)
4060 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4061 min_limit
= min(min_limit
, tmp
);
4062 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4063 min_memsw_limit
= min(min_memsw_limit
, tmp
);
4066 *mem_limit
= min_limit
;
4067 *memsw_limit
= min_memsw_limit
;
4071 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
4073 struct mem_cgroup
*mem
;
4076 mem
= mem_cgroup_from_cont(cont
);
4077 type
= MEMFILE_TYPE(event
);
4078 name
= MEMFILE_ATTR(event
);
4082 res_counter_reset_max(&mem
->res
);
4084 res_counter_reset_max(&mem
->memsw
);
4088 res_counter_reset_failcnt(&mem
->res
);
4090 res_counter_reset_failcnt(&mem
->memsw
);
4097 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
4100 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4104 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4105 struct cftype
*cft
, u64 val
)
4107 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4109 if (val
>= (1 << NR_MOVE_TYPE
))
4112 * We check this value several times in both in can_attach() and
4113 * attach(), so we need cgroup lock to prevent this value from being
4117 mem
->move_charge_at_immigrate
= val
;
4123 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4124 struct cftype
*cft
, u64 val
)
4131 /* For read statistics */
4149 struct mcs_total_stat
{
4150 s64 stat
[NR_MCS_STAT
];
4156 } memcg_stat_strings
[NR_MCS_STAT
] = {
4157 {"cache", "total_cache"},
4158 {"rss", "total_rss"},
4159 {"mapped_file", "total_mapped_file"},
4160 {"pgpgin", "total_pgpgin"},
4161 {"pgpgout", "total_pgpgout"},
4162 {"swap", "total_swap"},
4163 {"pgfault", "total_pgfault"},
4164 {"pgmajfault", "total_pgmajfault"},
4165 {"inactive_anon", "total_inactive_anon"},
4166 {"active_anon", "total_active_anon"},
4167 {"inactive_file", "total_inactive_file"},
4168 {"active_file", "total_active_file"},
4169 {"unevictable", "total_unevictable"}
4174 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4179 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
4180 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4181 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
4182 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4183 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
4184 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4185 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGIN
);
4186 s
->stat
[MCS_PGPGIN
] += val
;
4187 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGOUT
);
4188 s
->stat
[MCS_PGPGOUT
] += val
;
4189 if (do_swap_account
) {
4190 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
4191 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4193 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGFAULT
);
4194 s
->stat
[MCS_PGFAULT
] += val
;
4195 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4196 s
->stat
[MCS_PGMAJFAULT
] += val
;
4199 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
4200 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4201 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
4202 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4203 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
4204 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4205 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
4206 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4207 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
4208 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4212 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4214 struct mem_cgroup
*iter
;
4216 for_each_mem_cgroup_tree(iter
, mem
)
4217 mem_cgroup_get_local_stat(iter
, s
);
4221 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4224 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4225 unsigned long node_nr
;
4226 struct cgroup
*cont
= m
->private;
4227 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4229 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
);
4230 seq_printf(m
, "total=%lu", total_nr
);
4231 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4232 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
);
4233 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4237 file_nr
= mem_cgroup_nr_file_lru_pages(mem_cont
);
4238 seq_printf(m
, "file=%lu", file_nr
);
4239 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4240 node_nr
= mem_cgroup_node_nr_file_lru_pages(mem_cont
, nid
);
4241 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4245 anon_nr
= mem_cgroup_nr_anon_lru_pages(mem_cont
);
4246 seq_printf(m
, "anon=%lu", anon_nr
);
4247 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4248 node_nr
= mem_cgroup_node_nr_anon_lru_pages(mem_cont
, nid
);
4249 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4253 unevictable_nr
= mem_cgroup_nr_unevictable_lru_pages(mem_cont
);
4254 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4255 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4256 node_nr
= mem_cgroup_node_nr_unevictable_lru_pages(mem_cont
,
4258 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4263 #endif /* CONFIG_NUMA */
4265 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4266 struct cgroup_map_cb
*cb
)
4268 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4269 struct mcs_total_stat mystat
;
4272 memset(&mystat
, 0, sizeof(mystat
));
4273 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4276 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4277 if (i
== MCS_SWAP
&& !do_swap_account
)
4279 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4282 /* Hierarchical information */
4284 unsigned long long limit
, memsw_limit
;
4285 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4286 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4287 if (do_swap_account
)
4288 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4291 memset(&mystat
, 0, sizeof(mystat
));
4292 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4293 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4294 if (i
== MCS_SWAP
&& !do_swap_account
)
4296 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4299 #ifdef CONFIG_DEBUG_VM
4300 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
4304 struct mem_cgroup_per_zone
*mz
;
4305 unsigned long recent_rotated
[2] = {0, 0};
4306 unsigned long recent_scanned
[2] = {0, 0};
4308 for_each_online_node(nid
)
4309 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4310 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4312 recent_rotated
[0] +=
4313 mz
->reclaim_stat
.recent_rotated
[0];
4314 recent_rotated
[1] +=
4315 mz
->reclaim_stat
.recent_rotated
[1];
4316 recent_scanned
[0] +=
4317 mz
->reclaim_stat
.recent_scanned
[0];
4318 recent_scanned
[1] +=
4319 mz
->reclaim_stat
.recent_scanned
[1];
4321 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4322 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4323 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4324 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4331 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4333 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4335 return get_swappiness(memcg
);
4338 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4341 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4342 struct mem_cgroup
*parent
;
4347 if (cgrp
->parent
== NULL
)
4350 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4354 /* If under hierarchy, only empty-root can set this value */
4355 if ((parent
->use_hierarchy
) ||
4356 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4361 memcg
->swappiness
= val
;
4368 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4370 struct mem_cgroup_threshold_ary
*t
;
4376 t
= rcu_dereference(memcg
->thresholds
.primary
);
4378 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4383 usage
= mem_cgroup_usage(memcg
, swap
);
4386 * current_threshold points to threshold just below usage.
4387 * If it's not true, a threshold was crossed after last
4388 * call of __mem_cgroup_threshold().
4390 i
= t
->current_threshold
;
4393 * Iterate backward over array of thresholds starting from
4394 * current_threshold and check if a threshold is crossed.
4395 * If none of thresholds below usage is crossed, we read
4396 * only one element of the array here.
4398 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4399 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4401 /* i = current_threshold + 1 */
4405 * Iterate forward over array of thresholds starting from
4406 * current_threshold+1 and check if a threshold is crossed.
4407 * If none of thresholds above usage is crossed, we read
4408 * only one element of the array here.
4410 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4411 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4413 /* Update current_threshold */
4414 t
->current_threshold
= i
- 1;
4419 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4422 __mem_cgroup_threshold(memcg
, false);
4423 if (do_swap_account
)
4424 __mem_cgroup_threshold(memcg
, true);
4426 memcg
= parent_mem_cgroup(memcg
);
4430 static int compare_thresholds(const void *a
, const void *b
)
4432 const struct mem_cgroup_threshold
*_a
= a
;
4433 const struct mem_cgroup_threshold
*_b
= b
;
4435 return _a
->threshold
- _b
->threshold
;
4438 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
4440 struct mem_cgroup_eventfd_list
*ev
;
4442 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
4443 eventfd_signal(ev
->eventfd
, 1);
4447 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
4449 struct mem_cgroup
*iter
;
4451 for_each_mem_cgroup_tree(iter
, mem
)
4452 mem_cgroup_oom_notify_cb(iter
);
4455 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4456 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4458 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4459 struct mem_cgroup_thresholds
*thresholds
;
4460 struct mem_cgroup_threshold_ary
*new;
4461 int type
= MEMFILE_TYPE(cft
->private);
4462 u64 threshold
, usage
;
4465 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4469 mutex_lock(&memcg
->thresholds_lock
);
4472 thresholds
= &memcg
->thresholds
;
4473 else if (type
== _MEMSWAP
)
4474 thresholds
= &memcg
->memsw_thresholds
;
4478 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4480 /* Check if a threshold crossed before adding a new one */
4481 if (thresholds
->primary
)
4482 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4484 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4486 /* Allocate memory for new array of thresholds */
4487 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4495 /* Copy thresholds (if any) to new array */
4496 if (thresholds
->primary
) {
4497 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4498 sizeof(struct mem_cgroup_threshold
));
4501 /* Add new threshold */
4502 new->entries
[size
- 1].eventfd
= eventfd
;
4503 new->entries
[size
- 1].threshold
= threshold
;
4505 /* Sort thresholds. Registering of new threshold isn't time-critical */
4506 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4507 compare_thresholds
, NULL
);
4509 /* Find current threshold */
4510 new->current_threshold
= -1;
4511 for (i
= 0; i
< size
; i
++) {
4512 if (new->entries
[i
].threshold
< usage
) {
4514 * new->current_threshold will not be used until
4515 * rcu_assign_pointer(), so it's safe to increment
4518 ++new->current_threshold
;
4522 /* Free old spare buffer and save old primary buffer as spare */
4523 kfree(thresholds
->spare
);
4524 thresholds
->spare
= thresholds
->primary
;
4526 rcu_assign_pointer(thresholds
->primary
, new);
4528 /* To be sure that nobody uses thresholds */
4532 mutex_unlock(&memcg
->thresholds_lock
);
4537 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4538 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4540 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4541 struct mem_cgroup_thresholds
*thresholds
;
4542 struct mem_cgroup_threshold_ary
*new;
4543 int type
= MEMFILE_TYPE(cft
->private);
4547 mutex_lock(&memcg
->thresholds_lock
);
4549 thresholds
= &memcg
->thresholds
;
4550 else if (type
== _MEMSWAP
)
4551 thresholds
= &memcg
->memsw_thresholds
;
4556 * Something went wrong if we trying to unregister a threshold
4557 * if we don't have thresholds
4559 BUG_ON(!thresholds
);
4561 if (!thresholds
->primary
)
4564 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4566 /* Check if a threshold crossed before removing */
4567 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4569 /* Calculate new number of threshold */
4571 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4572 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4576 new = thresholds
->spare
;
4578 /* Set thresholds array to NULL if we don't have thresholds */
4587 /* Copy thresholds and find current threshold */
4588 new->current_threshold
= -1;
4589 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4590 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4593 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4594 if (new->entries
[j
].threshold
< usage
) {
4596 * new->current_threshold will not be used
4597 * until rcu_assign_pointer(), so it's safe to increment
4600 ++new->current_threshold
;
4606 /* Swap primary and spare array */
4607 thresholds
->spare
= thresholds
->primary
;
4608 /* If all events are unregistered, free the spare array */
4610 kfree(thresholds
->spare
);
4611 thresholds
->spare
= NULL
;
4614 rcu_assign_pointer(thresholds
->primary
, new);
4616 /* To be sure that nobody uses thresholds */
4619 mutex_unlock(&memcg
->thresholds_lock
);
4622 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4623 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4625 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4626 struct mem_cgroup_eventfd_list
*event
;
4627 int type
= MEMFILE_TYPE(cft
->private);
4629 BUG_ON(type
!= _OOM_TYPE
);
4630 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4634 mutex_lock(&memcg_oom_mutex
);
4636 event
->eventfd
= eventfd
;
4637 list_add(&event
->list
, &memcg
->oom_notify
);
4639 /* already in OOM ? */
4640 if (atomic_read(&memcg
->oom_lock
))
4641 eventfd_signal(eventfd
, 1);
4642 mutex_unlock(&memcg_oom_mutex
);
4647 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4648 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4650 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4651 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4652 int type
= MEMFILE_TYPE(cft
->private);
4654 BUG_ON(type
!= _OOM_TYPE
);
4656 mutex_lock(&memcg_oom_mutex
);
4658 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4659 if (ev
->eventfd
== eventfd
) {
4660 list_del(&ev
->list
);
4665 mutex_unlock(&memcg_oom_mutex
);
4668 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4669 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4671 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4673 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4675 if (atomic_read(&mem
->oom_lock
))
4676 cb
->fill(cb
, "under_oom", 1);
4678 cb
->fill(cb
, "under_oom", 0);
4682 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4683 struct cftype
*cft
, u64 val
)
4685 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4686 struct mem_cgroup
*parent
;
4688 /* cannot set to root cgroup and only 0 and 1 are allowed */
4689 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4692 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4695 /* oom-kill-disable is a flag for subhierarchy. */
4696 if ((parent
->use_hierarchy
) ||
4697 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4701 mem
->oom_kill_disable
= val
;
4703 memcg_oom_recover(mem
);
4709 static const struct file_operations mem_control_numa_stat_file_operations
= {
4711 .llseek
= seq_lseek
,
4712 .release
= single_release
,
4715 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4717 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4719 file
->f_op
= &mem_control_numa_stat_file_operations
;
4720 return single_open(file
, mem_control_numa_stat_show
, cont
);
4722 #endif /* CONFIG_NUMA */
4724 static struct cftype mem_cgroup_files
[] = {
4726 .name
= "usage_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4728 .read_u64
= mem_cgroup_read
,
4729 .register_event
= mem_cgroup_usage_register_event
,
4730 .unregister_event
= mem_cgroup_usage_unregister_event
,
4733 .name
= "max_usage_in_bytes",
4734 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4735 .trigger
= mem_cgroup_reset
,
4736 .read_u64
= mem_cgroup_read
,
4739 .name
= "limit_in_bytes",
4740 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4741 .write_string
= mem_cgroup_write
,
4742 .read_u64
= mem_cgroup_read
,
4745 .name
= "soft_limit_in_bytes",
4746 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4747 .write_string
= mem_cgroup_write
,
4748 .read_u64
= mem_cgroup_read
,
4752 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4753 .trigger
= mem_cgroup_reset
,
4754 .read_u64
= mem_cgroup_read
,
4758 .read_map
= mem_control_stat_show
,
4761 .name
= "force_empty",
4762 .trigger
= mem_cgroup_force_empty_write
,
4765 .name
= "use_hierarchy",
4766 .write_u64
= mem_cgroup_hierarchy_write
,
4767 .read_u64
= mem_cgroup_hierarchy_read
,
4770 .name
= "swappiness",
4771 .read_u64
= mem_cgroup_swappiness_read
,
4772 .write_u64
= mem_cgroup_swappiness_write
,
4775 .name
= "move_charge_at_immigrate",
4776 .read_u64
= mem_cgroup_move_charge_read
,
4777 .write_u64
= mem_cgroup_move_charge_write
,
4780 .name
= "oom_control",
4781 .read_map
= mem_cgroup_oom_control_read
,
4782 .write_u64
= mem_cgroup_oom_control_write
,
4783 .register_event
= mem_cgroup_oom_register_event
,
4784 .unregister_event
= mem_cgroup_oom_unregister_event
,
4785 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4789 .name
= "numa_stat",
4790 .open
= mem_control_numa_stat_open
,
4796 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4797 static struct cftype memsw_cgroup_files
[] = {
4799 .name
= "memsw.usage_in_bytes",
4800 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4801 .read_u64
= mem_cgroup_read
,
4802 .register_event
= mem_cgroup_usage_register_event
,
4803 .unregister_event
= mem_cgroup_usage_unregister_event
,
4806 .name
= "memsw.max_usage_in_bytes",
4807 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4808 .trigger
= mem_cgroup_reset
,
4809 .read_u64
= mem_cgroup_read
,
4812 .name
= "memsw.limit_in_bytes",
4813 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4814 .write_string
= mem_cgroup_write
,
4815 .read_u64
= mem_cgroup_read
,
4818 .name
= "memsw.failcnt",
4819 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4820 .trigger
= mem_cgroup_reset
,
4821 .read_u64
= mem_cgroup_read
,
4825 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4827 if (!do_swap_account
)
4829 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4830 ARRAY_SIZE(memsw_cgroup_files
));
4833 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4839 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4841 struct mem_cgroup_per_node
*pn
;
4842 struct mem_cgroup_per_zone
*mz
;
4844 int zone
, tmp
= node
;
4846 * This routine is called against possible nodes.
4847 * But it's BUG to call kmalloc() against offline node.
4849 * TODO: this routine can waste much memory for nodes which will
4850 * never be onlined. It's better to use memory hotplug callback
4853 if (!node_state(node
, N_NORMAL_MEMORY
))
4855 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4859 mem
->info
.nodeinfo
[node
] = pn
;
4860 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4861 mz
= &pn
->zoneinfo
[zone
];
4863 INIT_LIST_HEAD(&mz
->lists
[l
]);
4864 mz
->usage_in_excess
= 0;
4865 mz
->on_tree
= false;
4871 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4873 kfree(mem
->info
.nodeinfo
[node
]);
4876 static struct mem_cgroup
*mem_cgroup_alloc(void)
4878 struct mem_cgroup
*mem
;
4879 int size
= sizeof(struct mem_cgroup
);
4881 /* Can be very big if MAX_NUMNODES is very big */
4882 if (size
< PAGE_SIZE
)
4883 mem
= kzalloc(size
, GFP_KERNEL
);
4885 mem
= vzalloc(size
);
4890 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4893 spin_lock_init(&mem
->pcp_counter_lock
);
4897 if (size
< PAGE_SIZE
)
4905 * At destroying mem_cgroup, references from swap_cgroup can remain.
4906 * (scanning all at force_empty is too costly...)
4908 * Instead of clearing all references at force_empty, we remember
4909 * the number of reference from swap_cgroup and free mem_cgroup when
4910 * it goes down to 0.
4912 * Removal of cgroup itself succeeds regardless of refs from swap.
4915 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4919 mem_cgroup_remove_from_trees(mem
);
4920 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4922 for_each_node_state(node
, N_POSSIBLE
)
4923 free_mem_cgroup_per_zone_info(mem
, node
);
4925 free_percpu(mem
->stat
);
4926 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4932 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4934 atomic_inc(&mem
->refcnt
);
4937 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4939 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4940 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4941 __mem_cgroup_free(mem
);
4943 mem_cgroup_put(parent
);
4947 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4949 __mem_cgroup_put(mem
, 1);
4953 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4955 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4957 if (!mem
->res
.parent
)
4959 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4962 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4963 static void __init
enable_swap_cgroup(void)
4965 if (!mem_cgroup_disabled() && really_do_swap_account
)
4966 do_swap_account
= 1;
4969 static void __init
enable_swap_cgroup(void)
4974 static int mem_cgroup_soft_limit_tree_init(void)
4976 struct mem_cgroup_tree_per_node
*rtpn
;
4977 struct mem_cgroup_tree_per_zone
*rtpz
;
4978 int tmp
, node
, zone
;
4980 for_each_node_state(node
, N_POSSIBLE
) {
4982 if (!node_state(node
, N_NORMAL_MEMORY
))
4984 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4988 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4990 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4991 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4992 rtpz
->rb_root
= RB_ROOT
;
4993 spin_lock_init(&rtpz
->lock
);
4999 static struct cgroup_subsys_state
* __ref
5000 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
5002 struct mem_cgroup
*mem
, *parent
;
5003 long error
= -ENOMEM
;
5006 mem
= mem_cgroup_alloc();
5008 return ERR_PTR(error
);
5010 for_each_node_state(node
, N_POSSIBLE
)
5011 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
5015 if (cont
->parent
== NULL
) {
5017 enable_swap_cgroup();
5019 if (mem_cgroup_soft_limit_tree_init())
5021 root_mem_cgroup
= mem
;
5022 for_each_possible_cpu(cpu
) {
5023 struct memcg_stock_pcp
*stock
=
5024 &per_cpu(memcg_stock
, cpu
);
5025 INIT_WORK(&stock
->work
, drain_local_stock
);
5027 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5029 parent
= mem_cgroup_from_cont(cont
->parent
);
5030 mem
->use_hierarchy
= parent
->use_hierarchy
;
5031 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
5034 if (parent
&& parent
->use_hierarchy
) {
5035 res_counter_init(&mem
->res
, &parent
->res
);
5036 res_counter_init(&mem
->memsw
, &parent
->memsw
);
5038 * We increment refcnt of the parent to ensure that we can
5039 * safely access it on res_counter_charge/uncharge.
5040 * This refcnt will be decremented when freeing this
5041 * mem_cgroup(see mem_cgroup_put).
5043 mem_cgroup_get(parent
);
5045 res_counter_init(&mem
->res
, NULL
);
5046 res_counter_init(&mem
->memsw
, NULL
);
5048 mem
->last_scanned_child
= 0;
5049 mem
->last_scanned_node
= MAX_NUMNODES
;
5050 INIT_LIST_HEAD(&mem
->oom_notify
);
5053 mem
->swappiness
= get_swappiness(parent
);
5054 atomic_set(&mem
->refcnt
, 1);
5055 mem
->move_charge_at_immigrate
= 0;
5056 mutex_init(&mem
->thresholds_lock
);
5059 __mem_cgroup_free(mem
);
5060 return ERR_PTR(error
);
5063 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
5064 struct cgroup
*cont
)
5066 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
5068 return mem_cgroup_force_empty(mem
, false);
5071 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
5072 struct cgroup
*cont
)
5074 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
5076 mem_cgroup_put(mem
);
5079 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
5080 struct cgroup
*cont
)
5084 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
5085 ARRAY_SIZE(mem_cgroup_files
));
5088 ret
= register_memsw_files(cont
, ss
);
5093 /* Handlers for move charge at task migration. */
5094 #define PRECHARGE_COUNT_AT_ONCE 256
5095 static int mem_cgroup_do_precharge(unsigned long count
)
5098 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5099 struct mem_cgroup
*mem
= mc
.to
;
5101 if (mem_cgroup_is_root(mem
)) {
5102 mc
.precharge
+= count
;
5103 /* we don't need css_get for root */
5106 /* try to charge at once */
5108 struct res_counter
*dummy
;
5110 * "mem" cannot be under rmdir() because we've already checked
5111 * by cgroup_lock_live_cgroup() that it is not removed and we
5112 * are still under the same cgroup_mutex. So we can postpone
5115 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
5117 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
5118 PAGE_SIZE
* count
, &dummy
)) {
5119 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
5122 mc
.precharge
+= count
;
5126 /* fall back to one by one charge */
5128 if (signal_pending(current
)) {
5132 if (!batch_count
--) {
5133 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5136 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, 1, &mem
, false);
5138 /* mem_cgroup_clear_mc() will do uncharge later */
5146 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5147 * @vma: the vma the pte to be checked belongs
5148 * @addr: the address corresponding to the pte to be checked
5149 * @ptent: the pte to be checked
5150 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5153 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5154 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5155 * move charge. if @target is not NULL, the page is stored in target->page
5156 * with extra refcnt got(Callers should handle it).
5157 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5158 * target for charge migration. if @target is not NULL, the entry is stored
5161 * Called with pte lock held.
5168 enum mc_target_type
{
5169 MC_TARGET_NONE
, /* not used */
5174 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5175 unsigned long addr
, pte_t ptent
)
5177 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5179 if (!page
|| !page_mapped(page
))
5181 if (PageAnon(page
)) {
5182 /* we don't move shared anon */
5183 if (!move_anon() || page_mapcount(page
) > 2)
5185 } else if (!move_file())
5186 /* we ignore mapcount for file pages */
5188 if (!get_page_unless_zero(page
))
5194 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5195 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5198 struct page
*page
= NULL
;
5199 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5201 if (!move_anon() || non_swap_entry(ent
))
5203 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5204 if (usage_count
> 1) { /* we don't move shared anon */
5209 if (do_swap_account
)
5210 entry
->val
= ent
.val
;
5215 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5216 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5218 struct page
*page
= NULL
;
5219 struct inode
*inode
;
5220 struct address_space
*mapping
;
5223 if (!vma
->vm_file
) /* anonymous vma */
5228 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5229 mapping
= vma
->vm_file
->f_mapping
;
5230 if (pte_none(ptent
))
5231 pgoff
= linear_page_index(vma
, addr
);
5232 else /* pte_file(ptent) is true */
5233 pgoff
= pte_to_pgoff(ptent
);
5235 /* page is moved even if it's not RSS of this task(page-faulted). */
5236 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
5237 page
= find_get_page(mapping
, pgoff
);
5238 } else { /* shmem/tmpfs file. we should take account of swap too. */
5240 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
5241 if (do_swap_account
)
5242 entry
->val
= ent
.val
;
5248 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5249 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5251 struct page
*page
= NULL
;
5252 struct page_cgroup
*pc
;
5254 swp_entry_t ent
= { .val
= 0 };
5256 if (pte_present(ptent
))
5257 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5258 else if (is_swap_pte(ptent
))
5259 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5260 else if (pte_none(ptent
) || pte_file(ptent
))
5261 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5263 if (!page
&& !ent
.val
)
5266 pc
= lookup_page_cgroup(page
);
5268 * Do only loose check w/o page_cgroup lock.
5269 * mem_cgroup_move_account() checks the pc is valid or not under
5272 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5273 ret
= MC_TARGET_PAGE
;
5275 target
->page
= page
;
5277 if (!ret
|| !target
)
5280 /* There is a swap entry and a page doesn't exist or isn't charged */
5281 if (ent
.val
&& !ret
&&
5282 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5283 ret
= MC_TARGET_SWAP
;
5290 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5291 unsigned long addr
, unsigned long end
,
5292 struct mm_walk
*walk
)
5294 struct vm_area_struct
*vma
= walk
->private;
5298 split_huge_page_pmd(walk
->mm
, pmd
);
5299 if (pmd_trans_unstable(pmd
))
5302 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5303 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5304 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5305 mc
.precharge
++; /* increment precharge temporarily */
5306 pte_unmap_unlock(pte
- 1, ptl
);
5312 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5314 unsigned long precharge
;
5315 struct vm_area_struct
*vma
;
5317 down_read(&mm
->mmap_sem
);
5318 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5319 struct mm_walk mem_cgroup_count_precharge_walk
= {
5320 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5324 if (is_vm_hugetlb_page(vma
))
5326 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5327 &mem_cgroup_count_precharge_walk
);
5329 up_read(&mm
->mmap_sem
);
5331 precharge
= mc
.precharge
;
5337 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5339 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5341 VM_BUG_ON(mc
.moving_task
);
5342 mc
.moving_task
= current
;
5343 return mem_cgroup_do_precharge(precharge
);
5346 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5347 static void __mem_cgroup_clear_mc(void)
5349 struct mem_cgroup
*from
= mc
.from
;
5350 struct mem_cgroup
*to
= mc
.to
;
5352 /* we must uncharge all the leftover precharges from mc.to */
5354 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5358 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5359 * we must uncharge here.
5361 if (mc
.moved_charge
) {
5362 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5363 mc
.moved_charge
= 0;
5365 /* we must fixup refcnts and charges */
5366 if (mc
.moved_swap
) {
5367 /* uncharge swap account from the old cgroup */
5368 if (!mem_cgroup_is_root(mc
.from
))
5369 res_counter_uncharge(&mc
.from
->memsw
,
5370 PAGE_SIZE
* mc
.moved_swap
);
5371 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5373 if (!mem_cgroup_is_root(mc
.to
)) {
5375 * we charged both to->res and to->memsw, so we should
5378 res_counter_uncharge(&mc
.to
->res
,
5379 PAGE_SIZE
* mc
.moved_swap
);
5381 /* we've already done mem_cgroup_get(mc.to) */
5384 memcg_oom_recover(from
);
5385 memcg_oom_recover(to
);
5386 wake_up_all(&mc
.waitq
);
5389 static void mem_cgroup_clear_mc(void)
5391 struct mem_cgroup
*from
= mc
.from
;
5394 * we must clear moving_task before waking up waiters at the end of
5397 mc
.moving_task
= NULL
;
5398 __mem_cgroup_clear_mc();
5399 spin_lock(&mc
.lock
);
5402 spin_unlock(&mc
.lock
);
5403 mem_cgroup_end_move(from
);
5406 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5407 struct cgroup
*cgroup
,
5408 struct task_struct
*p
)
5411 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
5413 if (mem
->move_charge_at_immigrate
) {
5414 struct mm_struct
*mm
;
5415 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5417 VM_BUG_ON(from
== mem
);
5419 mm
= get_task_mm(p
);
5422 /* We move charges only when we move a owner of the mm */
5423 if (mm
->owner
== p
) {
5426 VM_BUG_ON(mc
.precharge
);
5427 VM_BUG_ON(mc
.moved_charge
);
5428 VM_BUG_ON(mc
.moved_swap
);
5429 mem_cgroup_start_move(from
);
5430 spin_lock(&mc
.lock
);
5433 spin_unlock(&mc
.lock
);
5434 /* We set mc.moving_task later */
5436 ret
= mem_cgroup_precharge_mc(mm
);
5438 mem_cgroup_clear_mc();
5445 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5446 struct cgroup
*cgroup
,
5447 struct task_struct
*p
)
5449 mem_cgroup_clear_mc();
5452 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5453 unsigned long addr
, unsigned long end
,
5454 struct mm_walk
*walk
)
5457 struct vm_area_struct
*vma
= walk
->private;
5461 split_huge_page_pmd(walk
->mm
, pmd
);
5462 if (pmd_trans_unstable(pmd
))
5465 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5466 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5467 pte_t ptent
= *(pte
++);
5468 union mc_target target
;
5471 struct page_cgroup
*pc
;
5477 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5479 case MC_TARGET_PAGE
:
5481 if (isolate_lru_page(page
))
5483 pc
= lookup_page_cgroup(page
);
5484 if (!mem_cgroup_move_account(page
, 1, pc
,
5485 mc
.from
, mc
.to
, false)) {
5487 /* we uncharge from mc.from later. */
5490 putback_lru_page(page
);
5491 put
: /* is_target_pte_for_mc() gets the page */
5494 case MC_TARGET_SWAP
:
5496 if (!mem_cgroup_move_swap_account(ent
,
5497 mc
.from
, mc
.to
, false)) {
5499 /* we fixup refcnts and charges later. */
5507 pte_unmap_unlock(pte
- 1, ptl
);
5512 * We have consumed all precharges we got in can_attach().
5513 * We try charge one by one, but don't do any additional
5514 * charges to mc.to if we have failed in charge once in attach()
5517 ret
= mem_cgroup_do_precharge(1);
5525 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5527 struct vm_area_struct
*vma
;
5529 lru_add_drain_all();
5531 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5533 * Someone who are holding the mmap_sem might be waiting in
5534 * waitq. So we cancel all extra charges, wake up all waiters,
5535 * and retry. Because we cancel precharges, we might not be able
5536 * to move enough charges, but moving charge is a best-effort
5537 * feature anyway, so it wouldn't be a big problem.
5539 __mem_cgroup_clear_mc();
5543 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5545 struct mm_walk mem_cgroup_move_charge_walk
= {
5546 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5550 if (is_vm_hugetlb_page(vma
))
5552 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5553 &mem_cgroup_move_charge_walk
);
5556 * means we have consumed all precharges and failed in
5557 * doing additional charge. Just abandon here.
5561 up_read(&mm
->mmap_sem
);
5564 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5565 struct cgroup
*cont
,
5566 struct cgroup
*old_cont
,
5567 struct task_struct
*p
)
5569 struct mm_struct
*mm
= get_task_mm(p
);
5573 mem_cgroup_move_charge(mm
);
5578 mem_cgroup_clear_mc();
5580 #else /* !CONFIG_MMU */
5581 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5582 struct cgroup
*cgroup
,
5583 struct task_struct
*p
)
5587 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5588 struct cgroup
*cgroup
,
5589 struct task_struct
*p
)
5592 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5593 struct cgroup
*cont
,
5594 struct cgroup
*old_cont
,
5595 struct task_struct
*p
)
5600 struct cgroup_subsys mem_cgroup_subsys
= {
5602 .subsys_id
= mem_cgroup_subsys_id
,
5603 .create
= mem_cgroup_create
,
5604 .pre_destroy
= mem_cgroup_pre_destroy
,
5605 .destroy
= mem_cgroup_destroy
,
5606 .populate
= mem_cgroup_populate
,
5607 .can_attach
= mem_cgroup_can_attach
,
5608 .cancel_attach
= mem_cgroup_cancel_attach
,
5609 .attach
= mem_cgroup_move_task
,
5614 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5615 static int __init
enable_swap_account(char *s
)
5617 /* consider enabled if no parameter or 1 is given */
5618 if (!strcmp(s
, "1"))
5619 really_do_swap_account
= 1;
5620 else if (!strcmp(s
, "0"))
5621 really_do_swap_account
= 0;
5624 __setup("swapaccount=", enable_swap_account
);