ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / mm / slub.c
blob10ab2335e2eaff568eff6a38bb5a9349c591ebc3
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
31 #include <trace/events/kmem.h>
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has no one operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache *s)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 #define MIN_PARTIAL 5
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
145 #define MAX_PARTIAL 10
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158 * Set of flags that will prevent slab merging
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
174 static int kmem_size = sizeof(struct kmem_cache);
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* Kmem_cache_node works */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
192 * Tracking user of a slab.
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 kfree(s->name);
215 kfree(s);
218 #endif
220 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state >= UP;
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 return s->node[node];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
245 void *base;
247 if (!object)
248 return 1;
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
256 return 1;
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
261 return *(void **)(object + s->offset);
264 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266 void *p;
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270 #else
271 p = get_freepointer(s, object);
272 #endif
273 return p;
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 *(void **)(object + s->offset) = fp;
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 __p += (__s)->size)
286 /* Determine object index from a given position */
287 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 return (p - addr) / s->size;
292 static inline size_t slab_ksize(const struct kmem_cache *s)
294 #ifdef CONFIG_SLUB_DEBUG
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300 return s->objsize;
302 #endif
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
311 * Else we can use all the padding etc for the allocation
313 return s->size;
316 static inline int order_objects(int order, unsigned long size, int reserved)
318 return ((PAGE_SIZE << order) - reserved) / size;
321 static inline struct kmem_cache_order_objects oo_make(int order,
322 unsigned long size, int reserved)
324 struct kmem_cache_order_objects x = {
325 (order << OO_SHIFT) + order_objects(order, size, reserved)
328 return x;
331 static inline int oo_order(struct kmem_cache_order_objects x)
333 return x.x >> OO_SHIFT;
336 static inline int oo_objects(struct kmem_cache_order_objects x)
338 return x.x & OO_MASK;
341 #ifdef CONFIG_SLUB_DEBUG
343 * Determine a map of object in use on a page.
345 * Slab lock or node listlock must be held to guarantee that the page does
346 * not vanish from under us.
348 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
350 void *p;
351 void *addr = page_address(page);
353 for (p = page->freelist; p; p = get_freepointer(s, p))
354 set_bit(slab_index(p, s, addr), map);
358 * Debug settings:
360 #ifdef CONFIG_SLUB_DEBUG_ON
361 static int slub_debug = DEBUG_DEFAULT_FLAGS;
362 #else
363 static int slub_debug;
364 #endif
366 static char *slub_debug_slabs;
367 static int disable_higher_order_debug;
370 * Object debugging
372 static void print_section(char *text, u8 *addr, unsigned int length)
374 int i, offset;
375 int newline = 1;
376 char ascii[17];
378 ascii[16] = 0;
380 for (i = 0; i < length; i++) {
381 if (newline) {
382 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
383 newline = 0;
385 printk(KERN_CONT " %02x", addr[i]);
386 offset = i % 16;
387 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
388 if (offset == 15) {
389 printk(KERN_CONT " %s\n", ascii);
390 newline = 1;
393 if (!newline) {
394 i %= 16;
395 while (i < 16) {
396 printk(KERN_CONT " ");
397 ascii[i] = ' ';
398 i++;
400 printk(KERN_CONT " %s\n", ascii);
404 static struct track *get_track(struct kmem_cache *s, void *object,
405 enum track_item alloc)
407 struct track *p;
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
414 return p + alloc;
417 static void set_track(struct kmem_cache *s, void *object,
418 enum track_item alloc, unsigned long addr)
420 struct track *p = get_track(s, object, alloc);
422 if (addr) {
423 p->addr = addr;
424 p->cpu = smp_processor_id();
425 p->pid = current->pid;
426 p->when = jiffies;
427 } else
428 memset(p, 0, sizeof(struct track));
431 static void init_tracking(struct kmem_cache *s, void *object)
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
436 set_track(s, object, TRACK_FREE, 0UL);
437 set_track(s, object, TRACK_ALLOC, 0UL);
440 static void print_track(const char *s, struct track *t)
442 if (!t->addr)
443 return;
445 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
446 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
449 static void print_tracking(struct kmem_cache *s, void *object)
451 if (!(s->flags & SLAB_STORE_USER))
452 return;
454 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
455 print_track("Freed", get_track(s, object, TRACK_FREE));
458 static void print_page_info(struct page *page)
460 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
461 page, page->objects, page->inuse, page->freelist, page->flags);
465 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
467 va_list args;
468 char buf[100];
470 va_start(args, fmt);
471 vsnprintf(buf, sizeof(buf), fmt, args);
472 va_end(args);
473 printk(KERN_ERR "========================================"
474 "=====================================\n");
475 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
476 printk(KERN_ERR "----------------------------------------"
477 "-------------------------------------\n\n");
480 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
482 va_list args;
483 char buf[100];
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
491 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
493 unsigned int off; /* Offset of last byte */
494 u8 *addr = page_address(page);
496 print_tracking(s, p);
498 print_page_info(page);
500 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
501 p, p - addr, get_freepointer(s, p));
503 if (p > addr + 16)
504 print_section("Bytes b4", p - 16, 16);
506 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
508 if (s->flags & SLAB_RED_ZONE)
509 print_section("Redzone", p + s->objsize,
510 s->inuse - s->objsize);
512 if (s->offset)
513 off = s->offset + sizeof(void *);
514 else
515 off = s->inuse;
517 if (s->flags & SLAB_STORE_USER)
518 off += 2 * sizeof(struct track);
520 if (off != s->size)
521 /* Beginning of the filler is the free pointer */
522 print_section("Padding", p + off, s->size - off);
524 dump_stack();
527 static void object_err(struct kmem_cache *s, struct page *page,
528 u8 *object, char *reason)
530 slab_bug(s, "%s", reason);
531 print_trailer(s, page, object);
534 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
536 va_list args;
537 char buf[100];
539 va_start(args, fmt);
540 vsnprintf(buf, sizeof(buf), fmt, args);
541 va_end(args);
542 slab_bug(s, "%s", buf);
543 print_page_info(page);
544 dump_stack();
547 static void init_object(struct kmem_cache *s, void *object, u8 val)
549 u8 *p = object;
551 if (s->flags & __OBJECT_POISON) {
552 memset(p, POISON_FREE, s->objsize - 1);
553 p[s->objsize - 1] = POISON_END;
556 if (s->flags & SLAB_RED_ZONE)
557 memset(p + s->objsize, val, s->inuse - s->objsize);
560 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
562 while (bytes) {
563 if (*start != (u8)value)
564 return start;
565 start++;
566 bytes--;
568 return NULL;
571 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
572 void *from, void *to)
574 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
575 memset(from, data, to - from);
578 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
579 u8 *object, char *what,
580 u8 *start, unsigned int value, unsigned int bytes)
582 u8 *fault;
583 u8 *end;
585 fault = check_bytes(start, value, bytes);
586 if (!fault)
587 return 1;
589 end = start + bytes;
590 while (end > fault && end[-1] == value)
591 end--;
593 slab_bug(s, "%s overwritten", what);
594 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
595 fault, end - 1, fault[0], value);
596 print_trailer(s, page, object);
598 restore_bytes(s, what, value, fault, end);
599 return 0;
603 * Object layout:
605 * object address
606 * Bytes of the object to be managed.
607 * If the freepointer may overlay the object then the free
608 * pointer is the first word of the object.
610 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
611 * 0xa5 (POISON_END)
613 * object + s->objsize
614 * Padding to reach word boundary. This is also used for Redzoning.
615 * Padding is extended by another word if Redzoning is enabled and
616 * objsize == inuse.
618 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
619 * 0xcc (RED_ACTIVE) for objects in use.
621 * object + s->inuse
622 * Meta data starts here.
624 * A. Free pointer (if we cannot overwrite object on free)
625 * B. Tracking data for SLAB_STORE_USER
626 * C. Padding to reach required alignment boundary or at mininum
627 * one word if debugging is on to be able to detect writes
628 * before the word boundary.
630 * Padding is done using 0x5a (POISON_INUSE)
632 * object + s->size
633 * Nothing is used beyond s->size.
635 * If slabcaches are merged then the objsize and inuse boundaries are mostly
636 * ignored. And therefore no slab options that rely on these boundaries
637 * may be used with merged slabcaches.
640 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
642 unsigned long off = s->inuse; /* The end of info */
644 if (s->offset)
645 /* Freepointer is placed after the object. */
646 off += sizeof(void *);
648 if (s->flags & SLAB_STORE_USER)
649 /* We also have user information there */
650 off += 2 * sizeof(struct track);
652 if (s->size == off)
653 return 1;
655 return check_bytes_and_report(s, page, p, "Object padding",
656 p + off, POISON_INUSE, s->size - off);
659 /* Check the pad bytes at the end of a slab page */
660 static int slab_pad_check(struct kmem_cache *s, struct page *page)
662 u8 *start;
663 u8 *fault;
664 u8 *end;
665 int length;
666 int remainder;
668 if (!(s->flags & SLAB_POISON))
669 return 1;
671 start = page_address(page);
672 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
673 end = start + length;
674 remainder = length % s->size;
675 if (!remainder)
676 return 1;
678 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
679 if (!fault)
680 return 1;
681 while (end > fault && end[-1] == POISON_INUSE)
682 end--;
684 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
685 print_section("Padding", end - remainder, remainder);
687 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
688 return 0;
691 static int check_object(struct kmem_cache *s, struct page *page,
692 void *object, u8 val)
694 u8 *p = object;
695 u8 *endobject = object + s->objsize;
697 if (s->flags & SLAB_RED_ZONE) {
698 if (!check_bytes_and_report(s, page, object, "Redzone",
699 endobject, val, s->inuse - s->objsize))
700 return 0;
701 } else {
702 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
703 check_bytes_and_report(s, page, p, "Alignment padding",
704 endobject, POISON_INUSE, s->inuse - s->objsize);
708 if (s->flags & SLAB_POISON) {
709 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
710 (!check_bytes_and_report(s, page, p, "Poison", p,
711 POISON_FREE, s->objsize - 1) ||
712 !check_bytes_and_report(s, page, p, "Poison",
713 p + s->objsize - 1, POISON_END, 1)))
714 return 0;
716 * check_pad_bytes cleans up on its own.
718 check_pad_bytes(s, page, p);
721 if (!s->offset && val == SLUB_RED_ACTIVE)
723 * Object and freepointer overlap. Cannot check
724 * freepointer while object is allocated.
726 return 1;
728 /* Check free pointer validity */
729 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
730 object_err(s, page, p, "Freepointer corrupt");
732 * No choice but to zap it and thus lose the remainder
733 * of the free objects in this slab. May cause
734 * another error because the object count is now wrong.
736 set_freepointer(s, p, NULL);
737 return 0;
739 return 1;
742 static int check_slab(struct kmem_cache *s, struct page *page)
744 int maxobj;
746 VM_BUG_ON(!irqs_disabled());
748 if (!PageSlab(page)) {
749 slab_err(s, page, "Not a valid slab page");
750 return 0;
753 maxobj = order_objects(compound_order(page), s->size, s->reserved);
754 if (page->objects > maxobj) {
755 slab_err(s, page, "objects %u > max %u",
756 s->name, page->objects, maxobj);
757 return 0;
759 if (page->inuse > page->objects) {
760 slab_err(s, page, "inuse %u > max %u",
761 s->name, page->inuse, page->objects);
762 return 0;
764 /* Slab_pad_check fixes things up after itself */
765 slab_pad_check(s, page);
766 return 1;
770 * Determine if a certain object on a page is on the freelist. Must hold the
771 * slab lock to guarantee that the chains are in a consistent state.
773 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
775 int nr = 0;
776 void *fp = page->freelist;
777 void *object = NULL;
778 unsigned long max_objects;
780 while (fp && nr <= page->objects) {
781 if (fp == search)
782 return 1;
783 if (!check_valid_pointer(s, page, fp)) {
784 if (object) {
785 object_err(s, page, object,
786 "Freechain corrupt");
787 set_freepointer(s, object, NULL);
788 break;
789 } else {
790 slab_err(s, page, "Freepointer corrupt");
791 page->freelist = NULL;
792 page->inuse = page->objects;
793 slab_fix(s, "Freelist cleared");
794 return 0;
796 break;
798 object = fp;
799 fp = get_freepointer(s, object);
800 nr++;
803 max_objects = order_objects(compound_order(page), s->size, s->reserved);
804 if (max_objects > MAX_OBJS_PER_PAGE)
805 max_objects = MAX_OBJS_PER_PAGE;
807 if (page->objects != max_objects) {
808 slab_err(s, page, "Wrong number of objects. Found %d but "
809 "should be %d", page->objects, max_objects);
810 page->objects = max_objects;
811 slab_fix(s, "Number of objects adjusted.");
813 if (page->inuse != page->objects - nr) {
814 slab_err(s, page, "Wrong object count. Counter is %d but "
815 "counted were %d", page->inuse, page->objects - nr);
816 page->inuse = page->objects - nr;
817 slab_fix(s, "Object count adjusted.");
819 return search == NULL;
822 static void trace(struct kmem_cache *s, struct page *page, void *object,
823 int alloc)
825 if (s->flags & SLAB_TRACE) {
826 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
827 s->name,
828 alloc ? "alloc" : "free",
829 object, page->inuse,
830 page->freelist);
832 if (!alloc)
833 print_section("Object", (void *)object, s->objsize);
835 dump_stack();
840 * Hooks for other subsystems that check memory allocations. In a typical
841 * production configuration these hooks all should produce no code at all.
843 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
845 flags &= gfp_allowed_mask;
846 lockdep_trace_alloc(flags);
847 might_sleep_if(flags & __GFP_WAIT);
849 return should_failslab(s->objsize, flags, s->flags);
852 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
854 flags &= gfp_allowed_mask;
855 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
856 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
859 static inline void slab_free_hook(struct kmem_cache *s, void *x)
861 kmemleak_free_recursive(x, s->flags);
864 * Trouble is that we may no longer disable interupts in the fast path
865 * So in order to make the debug calls that expect irqs to be
866 * disabled we need to disable interrupts temporarily.
868 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
870 unsigned long flags;
872 local_irq_save(flags);
873 kmemcheck_slab_free(s, x, s->objsize);
874 debug_check_no_locks_freed(x, s->objsize);
875 local_irq_restore(flags);
877 #endif
878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
879 debug_check_no_obj_freed(x, s->objsize);
883 * Tracking of fully allocated slabs for debugging purposes.
885 static void add_full(struct kmem_cache_node *n, struct page *page)
887 spin_lock(&n->list_lock);
888 list_add(&page->lru, &n->full);
889 spin_unlock(&n->list_lock);
892 static void remove_full(struct kmem_cache *s, struct page *page)
894 struct kmem_cache_node *n;
896 if (!(s->flags & SLAB_STORE_USER))
897 return;
899 n = get_node(s, page_to_nid(page));
901 spin_lock(&n->list_lock);
902 list_del(&page->lru);
903 spin_unlock(&n->list_lock);
906 /* Tracking of the number of slabs for debugging purposes */
907 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
909 struct kmem_cache_node *n = get_node(s, node);
911 return atomic_long_read(&n->nr_slabs);
914 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
916 return atomic_long_read(&n->nr_slabs);
919 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
921 struct kmem_cache_node *n = get_node(s, node);
924 * May be called early in order to allocate a slab for the
925 * kmem_cache_node structure. Solve the chicken-egg
926 * dilemma by deferring the increment of the count during
927 * bootstrap (see early_kmem_cache_node_alloc).
929 if (n) {
930 atomic_long_inc(&n->nr_slabs);
931 atomic_long_add(objects, &n->total_objects);
934 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
936 struct kmem_cache_node *n = get_node(s, node);
938 atomic_long_dec(&n->nr_slabs);
939 atomic_long_sub(objects, &n->total_objects);
942 /* Object debug checks for alloc/free paths */
943 static void setup_object_debug(struct kmem_cache *s, struct page *page,
944 void *object)
946 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
947 return;
949 init_object(s, object, SLUB_RED_INACTIVE);
950 init_tracking(s, object);
953 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
954 void *object, unsigned long addr)
956 if (!check_slab(s, page))
957 goto bad;
959 if (!on_freelist(s, page, object)) {
960 object_err(s, page, object, "Object already allocated");
961 goto bad;
964 if (!check_valid_pointer(s, page, object)) {
965 object_err(s, page, object, "Freelist Pointer check fails");
966 goto bad;
969 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
970 goto bad;
972 /* Success perform special debug activities for allocs */
973 if (s->flags & SLAB_STORE_USER)
974 set_track(s, object, TRACK_ALLOC, addr);
975 trace(s, page, object, 1);
976 init_object(s, object, SLUB_RED_ACTIVE);
977 return 1;
979 bad:
980 if (PageSlab(page)) {
982 * If this is a slab page then lets do the best we can
983 * to avoid issues in the future. Marking all objects
984 * as used avoids touching the remaining objects.
986 slab_fix(s, "Marking all objects used");
987 page->inuse = page->objects;
988 page->freelist = NULL;
990 return 0;
993 static noinline int free_debug_processing(struct kmem_cache *s,
994 struct page *page, void *object, unsigned long addr)
996 if (!check_slab(s, page))
997 goto fail;
999 if (!check_valid_pointer(s, page, object)) {
1000 slab_err(s, page, "Invalid object pointer 0x%p", object);
1001 goto fail;
1004 if (on_freelist(s, page, object)) {
1005 object_err(s, page, object, "Object already free");
1006 goto fail;
1009 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1010 return 0;
1012 if (unlikely(s != page->slab)) {
1013 if (!PageSlab(page)) {
1014 slab_err(s, page, "Attempt to free object(0x%p) "
1015 "outside of slab", object);
1016 } else if (!page->slab) {
1017 printk(KERN_ERR
1018 "SLUB <none>: no slab for object 0x%p.\n",
1019 object);
1020 dump_stack();
1021 } else
1022 object_err(s, page, object,
1023 "page slab pointer corrupt.");
1024 goto fail;
1027 /* Special debug activities for freeing objects */
1028 if (!PageSlubFrozen(page) && !page->freelist)
1029 remove_full(s, page);
1030 if (s->flags & SLAB_STORE_USER)
1031 set_track(s, object, TRACK_FREE, addr);
1032 trace(s, page, object, 0);
1033 init_object(s, object, SLUB_RED_INACTIVE);
1034 return 1;
1036 fail:
1037 slab_fix(s, "Object at 0x%p not freed", object);
1038 return 0;
1041 static int __init setup_slub_debug(char *str)
1043 slub_debug = DEBUG_DEFAULT_FLAGS;
1044 if (*str++ != '=' || !*str)
1046 * No options specified. Switch on full debugging.
1048 goto out;
1050 if (*str == ',')
1052 * No options but restriction on slabs. This means full
1053 * debugging for slabs matching a pattern.
1055 goto check_slabs;
1057 if (tolower(*str) == 'o') {
1059 * Avoid enabling debugging on caches if its minimum order
1060 * would increase as a result.
1062 disable_higher_order_debug = 1;
1063 goto out;
1066 slub_debug = 0;
1067 if (*str == '-')
1069 * Switch off all debugging measures.
1071 goto out;
1074 * Determine which debug features should be switched on
1076 for (; *str && *str != ','; str++) {
1077 switch (tolower(*str)) {
1078 case 'f':
1079 slub_debug |= SLAB_DEBUG_FREE;
1080 break;
1081 case 'z':
1082 slub_debug |= SLAB_RED_ZONE;
1083 break;
1084 case 'p':
1085 slub_debug |= SLAB_POISON;
1086 break;
1087 case 'u':
1088 slub_debug |= SLAB_STORE_USER;
1089 break;
1090 case 't':
1091 slub_debug |= SLAB_TRACE;
1092 break;
1093 case 'a':
1094 slub_debug |= SLAB_FAILSLAB;
1095 break;
1096 default:
1097 printk(KERN_ERR "slub_debug option '%c' "
1098 "unknown. skipped\n", *str);
1102 check_slabs:
1103 if (*str == ',')
1104 slub_debug_slabs = str + 1;
1105 out:
1106 return 1;
1109 __setup("slub_debug", setup_slub_debug);
1111 static unsigned long kmem_cache_flags(unsigned long objsize,
1112 unsigned long flags, const char *name,
1113 void (*ctor)(void *))
1116 * Enable debugging if selected on the kernel commandline.
1118 if (slub_debug && (!slub_debug_slabs ||
1119 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1120 flags |= slub_debug;
1122 return flags;
1124 #else
1125 static inline void setup_object_debug(struct kmem_cache *s,
1126 struct page *page, void *object) {}
1128 static inline int alloc_debug_processing(struct kmem_cache *s,
1129 struct page *page, void *object, unsigned long addr) { return 0; }
1131 static inline int free_debug_processing(struct kmem_cache *s,
1132 struct page *page, void *object, unsigned long addr) { return 0; }
1134 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1135 { return 1; }
1136 static inline int check_object(struct kmem_cache *s, struct page *page,
1137 void *object, u8 val) { return 1; }
1138 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1139 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1140 unsigned long flags, const char *name,
1141 void (*ctor)(void *))
1143 return flags;
1145 #define slub_debug 0
1147 #define disable_higher_order_debug 0
1149 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1150 { return 0; }
1151 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1152 { return 0; }
1153 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1154 int objects) {}
1155 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1156 int objects) {}
1158 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1159 { return 0; }
1161 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1162 void *object) {}
1164 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1166 #endif /* CONFIG_SLUB_DEBUG */
1169 * Slab allocation and freeing
1171 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1172 struct kmem_cache_order_objects oo)
1174 int order = oo_order(oo);
1176 flags |= __GFP_NOTRACK;
1178 if (node == NUMA_NO_NODE)
1179 return alloc_pages(flags, order);
1180 else
1181 return alloc_pages_exact_node(node, flags, order);
1184 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1186 struct page *page;
1187 struct kmem_cache_order_objects oo = s->oo;
1188 gfp_t alloc_gfp;
1190 flags |= s->allocflags;
1193 * Let the initial higher-order allocation fail under memory pressure
1194 * so we fall-back to the minimum order allocation.
1196 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1198 page = alloc_slab_page(alloc_gfp, node, oo);
1199 if (unlikely(!page)) {
1200 oo = s->min;
1202 * Allocation may have failed due to fragmentation.
1203 * Try a lower order alloc if possible
1205 page = alloc_slab_page(flags, node, oo);
1206 if (!page)
1207 return NULL;
1209 stat(s, ORDER_FALLBACK);
1212 if (kmemcheck_enabled
1213 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1214 int pages = 1 << oo_order(oo);
1216 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1219 * Objects from caches that have a constructor don't get
1220 * cleared when they're allocated, so we need to do it here.
1222 if (s->ctor)
1223 kmemcheck_mark_uninitialized_pages(page, pages);
1224 else
1225 kmemcheck_mark_unallocated_pages(page, pages);
1228 page->objects = oo_objects(oo);
1229 mod_zone_page_state(page_zone(page),
1230 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1231 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1232 1 << oo_order(oo));
1234 return page;
1237 static void setup_object(struct kmem_cache *s, struct page *page,
1238 void *object)
1240 setup_object_debug(s, page, object);
1241 if (unlikely(s->ctor))
1242 s->ctor(object);
1245 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1247 struct page *page;
1248 void *start;
1249 void *last;
1250 void *p;
1252 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1254 page = allocate_slab(s,
1255 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1256 if (!page)
1257 goto out;
1259 inc_slabs_node(s, page_to_nid(page), page->objects);
1260 page->slab = s;
1261 page->flags |= 1 << PG_slab;
1263 start = page_address(page);
1265 if (unlikely(s->flags & SLAB_POISON))
1266 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1268 last = start;
1269 for_each_object(p, s, start, page->objects) {
1270 setup_object(s, page, last);
1271 set_freepointer(s, last, p);
1272 last = p;
1274 setup_object(s, page, last);
1275 set_freepointer(s, last, NULL);
1277 page->freelist = start;
1278 page->inuse = 0;
1279 out:
1280 return page;
1283 static void __free_slab(struct kmem_cache *s, struct page *page)
1285 int order = compound_order(page);
1286 int pages = 1 << order;
1288 if (kmem_cache_debug(s)) {
1289 void *p;
1291 slab_pad_check(s, page);
1292 for_each_object(p, s, page_address(page),
1293 page->objects)
1294 check_object(s, page, p, SLUB_RED_INACTIVE);
1297 kmemcheck_free_shadow(page, compound_order(page));
1299 mod_zone_page_state(page_zone(page),
1300 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1301 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1302 -pages);
1304 __ClearPageSlab(page);
1305 reset_page_mapcount(page);
1306 if (current->reclaim_state)
1307 current->reclaim_state->reclaimed_slab += pages;
1308 __free_pages(page, order);
1311 #define need_reserve_slab_rcu \
1312 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1314 static void rcu_free_slab(struct rcu_head *h)
1316 struct page *page;
1318 if (need_reserve_slab_rcu)
1319 page = virt_to_head_page(h);
1320 else
1321 page = container_of((struct list_head *)h, struct page, lru);
1323 __free_slab(page->slab, page);
1326 static void free_slab(struct kmem_cache *s, struct page *page)
1328 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1329 struct rcu_head *head;
1331 if (need_reserve_slab_rcu) {
1332 int order = compound_order(page);
1333 int offset = (PAGE_SIZE << order) - s->reserved;
1335 VM_BUG_ON(s->reserved != sizeof(*head));
1336 head = page_address(page) + offset;
1337 } else {
1339 * RCU free overloads the RCU head over the LRU
1341 head = (void *)&page->lru;
1344 call_rcu(head, rcu_free_slab);
1345 } else
1346 __free_slab(s, page);
1349 static void discard_slab(struct kmem_cache *s, struct page *page)
1351 dec_slabs_node(s, page_to_nid(page), page->objects);
1352 free_slab(s, page);
1356 * Per slab locking using the pagelock
1358 static __always_inline void slab_lock(struct page *page)
1360 bit_spin_lock(PG_locked, &page->flags);
1363 static __always_inline void slab_unlock(struct page *page)
1365 __bit_spin_unlock(PG_locked, &page->flags);
1368 static __always_inline int slab_trylock(struct page *page)
1370 int rc = 1;
1372 rc = bit_spin_trylock(PG_locked, &page->flags);
1373 return rc;
1377 * Management of partially allocated slabs
1379 static void add_partial(struct kmem_cache_node *n,
1380 struct page *page, int tail)
1382 spin_lock(&n->list_lock);
1383 n->nr_partial++;
1384 if (tail)
1385 list_add_tail(&page->lru, &n->partial);
1386 else
1387 list_add(&page->lru, &n->partial);
1388 spin_unlock(&n->list_lock);
1391 static inline void __remove_partial(struct kmem_cache_node *n,
1392 struct page *page)
1394 list_del(&page->lru);
1395 n->nr_partial--;
1398 static void remove_partial(struct kmem_cache *s, struct page *page)
1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1402 spin_lock(&n->list_lock);
1403 __remove_partial(n, page);
1404 spin_unlock(&n->list_lock);
1408 * Lock slab and remove from the partial list.
1410 * Must hold list_lock.
1412 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1413 struct page *page)
1415 if (slab_trylock(page)) {
1416 __remove_partial(n, page);
1417 __SetPageSlubFrozen(page);
1418 return 1;
1420 return 0;
1424 * Try to allocate a partial slab from a specific node.
1426 static struct page *get_partial_node(struct kmem_cache_node *n)
1428 struct page *page;
1431 * Racy check. If we mistakenly see no partial slabs then we
1432 * just allocate an empty slab. If we mistakenly try to get a
1433 * partial slab and there is none available then get_partials()
1434 * will return NULL.
1436 if (!n || !n->nr_partial)
1437 return NULL;
1439 spin_lock(&n->list_lock);
1440 list_for_each_entry(page, &n->partial, lru)
1441 if (lock_and_freeze_slab(n, page))
1442 goto out;
1443 page = NULL;
1444 out:
1445 spin_unlock(&n->list_lock);
1446 return page;
1450 * Get a page from somewhere. Search in increasing NUMA distances.
1452 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1454 #ifdef CONFIG_NUMA
1455 struct zonelist *zonelist;
1456 struct zoneref *z;
1457 struct zone *zone;
1458 enum zone_type high_zoneidx = gfp_zone(flags);
1459 struct page *page;
1462 * The defrag ratio allows a configuration of the tradeoffs between
1463 * inter node defragmentation and node local allocations. A lower
1464 * defrag_ratio increases the tendency to do local allocations
1465 * instead of attempting to obtain partial slabs from other nodes.
1467 * If the defrag_ratio is set to 0 then kmalloc() always
1468 * returns node local objects. If the ratio is higher then kmalloc()
1469 * may return off node objects because partial slabs are obtained
1470 * from other nodes and filled up.
1472 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1473 * defrag_ratio = 1000) then every (well almost) allocation will
1474 * first attempt to defrag slab caches on other nodes. This means
1475 * scanning over all nodes to look for partial slabs which may be
1476 * expensive if we do it every time we are trying to find a slab
1477 * with available objects.
1479 if (!s->remote_node_defrag_ratio ||
1480 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1481 return NULL;
1483 get_mems_allowed();
1484 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1485 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1486 struct kmem_cache_node *n;
1488 n = get_node(s, zone_to_nid(zone));
1490 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1491 n->nr_partial > s->min_partial) {
1492 page = get_partial_node(n);
1493 if (page) {
1494 put_mems_allowed();
1495 return page;
1499 put_mems_allowed();
1500 #endif
1501 return NULL;
1505 * Get a partial page, lock it and return it.
1507 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1509 struct page *page;
1510 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1512 page = get_partial_node(get_node(s, searchnode));
1513 if (page || node != NUMA_NO_NODE)
1514 return page;
1516 return get_any_partial(s, flags);
1520 * Move a page back to the lists.
1522 * Must be called with the slab lock held.
1524 * On exit the slab lock will have been dropped.
1526 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1527 __releases(bitlock)
1529 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1531 __ClearPageSlubFrozen(page);
1532 if (page->inuse) {
1534 if (page->freelist) {
1535 add_partial(n, page, tail);
1536 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1537 } else {
1538 stat(s, DEACTIVATE_FULL);
1539 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1540 add_full(n, page);
1542 slab_unlock(page);
1543 } else {
1544 stat(s, DEACTIVATE_EMPTY);
1545 if (n->nr_partial < s->min_partial) {
1547 * Adding an empty slab to the partial slabs in order
1548 * to avoid page allocator overhead. This slab needs
1549 * to come after the other slabs with objects in
1550 * so that the others get filled first. That way the
1551 * size of the partial list stays small.
1553 * kmem_cache_shrink can reclaim any empty slabs from
1554 * the partial list.
1556 add_partial(n, page, 1);
1557 slab_unlock(page);
1558 } else {
1559 slab_unlock(page);
1560 stat(s, FREE_SLAB);
1561 discard_slab(s, page);
1566 #ifdef CONFIG_PREEMPT
1568 * Calculate the next globally unique transaction for disambiguiation
1569 * during cmpxchg. The transactions start with the cpu number and are then
1570 * incremented by CONFIG_NR_CPUS.
1572 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1573 #else
1575 * No preemption supported therefore also no need to check for
1576 * different cpus.
1578 #define TID_STEP 1
1579 #endif
1581 static inline unsigned long next_tid(unsigned long tid)
1583 return tid + TID_STEP;
1586 static inline unsigned int tid_to_cpu(unsigned long tid)
1588 return tid % TID_STEP;
1591 static inline unsigned long tid_to_event(unsigned long tid)
1593 return tid / TID_STEP;
1596 static inline unsigned int init_tid(int cpu)
1598 return cpu;
1601 static inline void note_cmpxchg_failure(const char *n,
1602 const struct kmem_cache *s, unsigned long tid)
1604 #ifdef SLUB_DEBUG_CMPXCHG
1605 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1607 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1609 #ifdef CONFIG_PREEMPT
1610 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1611 printk("due to cpu change %d -> %d\n",
1612 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1613 else
1614 #endif
1615 if (tid_to_event(tid) != tid_to_event(actual_tid))
1616 printk("due to cpu running other code. Event %ld->%ld\n",
1617 tid_to_event(tid), tid_to_event(actual_tid));
1618 else
1619 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1620 actual_tid, tid, next_tid(tid));
1621 #endif
1622 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1625 void init_kmem_cache_cpus(struct kmem_cache *s)
1627 int cpu;
1629 for_each_possible_cpu(cpu)
1630 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1633 * Remove the cpu slab
1635 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1636 __releases(bitlock)
1638 struct page *page = c->page;
1639 int tail = 1;
1641 if (page->freelist)
1642 stat(s, DEACTIVATE_REMOTE_FREES);
1644 * Merge cpu freelist into slab freelist. Typically we get here
1645 * because both freelists are empty. So this is unlikely
1646 * to occur.
1648 while (unlikely(c->freelist)) {
1649 void **object;
1651 tail = 0; /* Hot objects. Put the slab first */
1653 /* Retrieve object from cpu_freelist */
1654 object = c->freelist;
1655 c->freelist = get_freepointer(s, c->freelist);
1657 /* And put onto the regular freelist */
1658 set_freepointer(s, object, page->freelist);
1659 page->freelist = object;
1660 page->inuse--;
1662 c->page = NULL;
1663 c->tid = next_tid(c->tid);
1664 unfreeze_slab(s, page, tail);
1667 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1669 stat(s, CPUSLAB_FLUSH);
1670 slab_lock(c->page);
1671 deactivate_slab(s, c);
1675 * Flush cpu slab.
1677 * Called from IPI handler with interrupts disabled.
1679 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1681 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1683 if (likely(c && c->page))
1684 flush_slab(s, c);
1687 static void flush_cpu_slab(void *d)
1689 struct kmem_cache *s = d;
1691 __flush_cpu_slab(s, smp_processor_id());
1694 static void flush_all(struct kmem_cache *s)
1696 on_each_cpu(flush_cpu_slab, s, 1);
1700 * Check if the objects in a per cpu structure fit numa
1701 * locality expectations.
1703 static inline int node_match(struct kmem_cache_cpu *c, int node)
1705 #ifdef CONFIG_NUMA
1706 if (node != NUMA_NO_NODE && c->node != node)
1707 return 0;
1708 #endif
1709 return 1;
1712 static int count_free(struct page *page)
1714 return page->objects - page->inuse;
1717 static unsigned long count_partial(struct kmem_cache_node *n,
1718 int (*get_count)(struct page *))
1720 unsigned long flags;
1721 unsigned long x = 0;
1722 struct page *page;
1724 spin_lock_irqsave(&n->list_lock, flags);
1725 list_for_each_entry(page, &n->partial, lru)
1726 x += get_count(page);
1727 spin_unlock_irqrestore(&n->list_lock, flags);
1728 return x;
1731 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1733 #ifdef CONFIG_SLUB_DEBUG
1734 return atomic_long_read(&n->total_objects);
1735 #else
1736 return 0;
1737 #endif
1740 static noinline void
1741 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1743 int node;
1745 printk(KERN_WARNING
1746 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1747 nid, gfpflags);
1748 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1749 "default order: %d, min order: %d\n", s->name, s->objsize,
1750 s->size, oo_order(s->oo), oo_order(s->min));
1752 if (oo_order(s->min) > get_order(s->objsize))
1753 printk(KERN_WARNING " %s debugging increased min order, use "
1754 "slub_debug=O to disable.\n", s->name);
1756 for_each_online_node(node) {
1757 struct kmem_cache_node *n = get_node(s, node);
1758 unsigned long nr_slabs;
1759 unsigned long nr_objs;
1760 unsigned long nr_free;
1762 if (!n)
1763 continue;
1765 nr_free = count_partial(n, count_free);
1766 nr_slabs = node_nr_slabs(n);
1767 nr_objs = node_nr_objs(n);
1769 printk(KERN_WARNING
1770 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1771 node, nr_slabs, nr_objs, nr_free);
1776 * Slow path. The lockless freelist is empty or we need to perform
1777 * debugging duties.
1779 * Interrupts are disabled.
1781 * Processing is still very fast if new objects have been freed to the
1782 * regular freelist. In that case we simply take over the regular freelist
1783 * as the lockless freelist and zap the regular freelist.
1785 * If that is not working then we fall back to the partial lists. We take the
1786 * first element of the freelist as the object to allocate now and move the
1787 * rest of the freelist to the lockless freelist.
1789 * And if we were unable to get a new slab from the partial slab lists then
1790 * we need to allocate a new slab. This is the slowest path since it involves
1791 * a call to the page allocator and the setup of a new slab.
1793 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1794 unsigned long addr, struct kmem_cache_cpu *c)
1796 void **object;
1797 struct page *page;
1798 unsigned long flags;
1800 local_irq_save(flags);
1801 #ifdef CONFIG_PREEMPT
1803 * We may have been preempted and rescheduled on a different
1804 * cpu before disabling interrupts. Need to reload cpu area
1805 * pointer.
1807 c = this_cpu_ptr(s->cpu_slab);
1808 #endif
1810 /* We handle __GFP_ZERO in the caller */
1811 gfpflags &= ~__GFP_ZERO;
1813 page = c->page;
1814 if (!page)
1815 goto new_slab;
1817 slab_lock(page);
1818 if (unlikely(!node_match(c, node)))
1819 goto another_slab;
1821 /* must check again c->freelist in case of cpu migration or IRQ */
1822 object = c->freelist;
1823 if (object)
1824 goto update_freelist;
1826 stat(s, ALLOC_REFILL);
1828 load_freelist:
1829 object = page->freelist;
1830 if (unlikely(!object))
1831 goto another_slab;
1832 if (kmem_cache_debug(s))
1833 goto debug;
1835 update_freelist:
1836 c->freelist = get_freepointer(s, object);
1837 page->inuse = page->objects;
1838 page->freelist = NULL;
1840 slab_unlock(page);
1841 c->tid = next_tid(c->tid);
1842 local_irq_restore(flags);
1843 stat(s, ALLOC_SLOWPATH);
1844 return object;
1846 another_slab:
1847 deactivate_slab(s, c);
1849 new_slab:
1850 page = get_partial(s, gfpflags, node);
1851 if (page) {
1852 stat(s, ALLOC_FROM_PARTIAL);
1853 c->node = page_to_nid(page);
1854 c->page = page;
1855 goto load_freelist;
1858 gfpflags &= gfp_allowed_mask;
1859 if (gfpflags & __GFP_WAIT)
1860 local_irq_enable();
1862 page = new_slab(s, gfpflags, node);
1864 if (gfpflags & __GFP_WAIT)
1865 local_irq_disable();
1867 if (page) {
1868 c = __this_cpu_ptr(s->cpu_slab);
1869 stat(s, ALLOC_SLAB);
1870 if (c->page)
1871 flush_slab(s, c);
1873 slab_lock(page);
1874 __SetPageSlubFrozen(page);
1875 c->node = page_to_nid(page);
1876 c->page = page;
1877 goto load_freelist;
1879 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1880 slab_out_of_memory(s, gfpflags, node);
1881 local_irq_restore(flags);
1882 return NULL;
1883 debug:
1884 if (!alloc_debug_processing(s, page, object, addr))
1885 goto another_slab;
1887 page->inuse++;
1888 page->freelist = get_freepointer(s, object);
1889 deactivate_slab(s, c);
1890 c->page = NULL;
1891 c->node = NUMA_NO_NODE;
1892 local_irq_restore(flags);
1893 return object;
1897 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1898 * have the fastpath folded into their functions. So no function call
1899 * overhead for requests that can be satisfied on the fastpath.
1901 * The fastpath works by first checking if the lockless freelist can be used.
1902 * If not then __slab_alloc is called for slow processing.
1904 * Otherwise we can simply pick the next object from the lockless free list.
1906 static __always_inline void *slab_alloc(struct kmem_cache *s,
1907 gfp_t gfpflags, int node, unsigned long addr)
1909 void **object;
1910 struct kmem_cache_cpu *c;
1911 unsigned long tid;
1913 if (slab_pre_alloc_hook(s, gfpflags))
1914 return NULL;
1916 redo:
1919 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1920 * enabled. We may switch back and forth between cpus while
1921 * reading from one cpu area. That does not matter as long
1922 * as we end up on the original cpu again when doing the cmpxchg.
1924 c = __this_cpu_ptr(s->cpu_slab);
1927 * The transaction ids are globally unique per cpu and per operation on
1928 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1929 * occurs on the right processor and that there was no operation on the
1930 * linked list in between.
1932 tid = c->tid;
1933 barrier();
1935 object = c->freelist;
1936 if (unlikely(!object || !node_match(c, node)))
1938 object = __slab_alloc(s, gfpflags, node, addr, c);
1940 else {
1942 * The cmpxchg will only match if there was no additional
1943 * operation and if we are on the right processor.
1945 * The cmpxchg does the following atomically (without lock semantics!)
1946 * 1. Relocate first pointer to the current per cpu area.
1947 * 2. Verify that tid and freelist have not been changed
1948 * 3. If they were not changed replace tid and freelist
1950 * Since this is without lock semantics the protection is only against
1951 * code executing on this cpu *not* from access by other cpus.
1953 if (unlikely(!irqsafe_cpu_cmpxchg_double(
1954 s->cpu_slab->freelist, s->cpu_slab->tid,
1955 object, tid,
1956 get_freepointer_safe(s, object), next_tid(tid)))) {
1958 note_cmpxchg_failure("slab_alloc", s, tid);
1959 goto redo;
1961 stat(s, ALLOC_FASTPATH);
1964 if (unlikely(gfpflags & __GFP_ZERO) && object)
1965 memset(object, 0, s->objsize);
1967 slab_post_alloc_hook(s, gfpflags, object);
1969 return object;
1972 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1974 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1976 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1978 return ret;
1980 EXPORT_SYMBOL(kmem_cache_alloc);
1982 #ifdef CONFIG_TRACING
1983 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1985 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1986 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1987 return ret;
1989 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1991 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1993 void *ret = kmalloc_order(size, flags, order);
1994 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1995 return ret;
1997 EXPORT_SYMBOL(kmalloc_order_trace);
1998 #endif
2000 #ifdef CONFIG_NUMA
2001 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2003 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2005 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2006 s->objsize, s->size, gfpflags, node);
2008 return ret;
2010 EXPORT_SYMBOL(kmem_cache_alloc_node);
2012 #ifdef CONFIG_TRACING
2013 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2014 gfp_t gfpflags,
2015 int node, size_t size)
2017 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2019 trace_kmalloc_node(_RET_IP_, ret,
2020 size, s->size, gfpflags, node);
2021 return ret;
2023 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2024 #endif
2025 #endif
2028 * Slow patch handling. This may still be called frequently since objects
2029 * have a longer lifetime than the cpu slabs in most processing loads.
2031 * So we still attempt to reduce cache line usage. Just take the slab
2032 * lock and free the item. If there is no additional partial page
2033 * handling required then we can return immediately.
2035 static void __slab_free(struct kmem_cache *s, struct page *page,
2036 void *x, unsigned long addr)
2038 void *prior;
2039 void **object = (void *)x;
2040 unsigned long flags;
2042 local_irq_save(flags);
2043 slab_lock(page);
2044 stat(s, FREE_SLOWPATH);
2046 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2047 goto out_unlock;
2049 prior = page->freelist;
2050 set_freepointer(s, object, prior);
2051 page->freelist = object;
2052 page->inuse--;
2054 if (unlikely(PageSlubFrozen(page))) {
2055 stat(s, FREE_FROZEN);
2056 goto out_unlock;
2059 if (unlikely(!page->inuse))
2060 goto slab_empty;
2063 * Objects left in the slab. If it was not on the partial list before
2064 * then add it.
2066 if (unlikely(!prior)) {
2067 add_partial(get_node(s, page_to_nid(page)), page, 1);
2068 stat(s, FREE_ADD_PARTIAL);
2071 out_unlock:
2072 slab_unlock(page);
2073 local_irq_restore(flags);
2074 return;
2076 slab_empty:
2077 if (prior) {
2079 * Slab still on the partial list.
2081 remove_partial(s, page);
2082 stat(s, FREE_REMOVE_PARTIAL);
2084 slab_unlock(page);
2085 local_irq_restore(flags);
2086 stat(s, FREE_SLAB);
2087 discard_slab(s, page);
2091 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2092 * can perform fastpath freeing without additional function calls.
2094 * The fastpath is only possible if we are freeing to the current cpu slab
2095 * of this processor. This typically the case if we have just allocated
2096 * the item before.
2098 * If fastpath is not possible then fall back to __slab_free where we deal
2099 * with all sorts of special processing.
2101 static __always_inline void slab_free(struct kmem_cache *s,
2102 struct page *page, void *x, unsigned long addr)
2104 void **object = (void *)x;
2105 struct kmem_cache_cpu *c;
2106 unsigned long tid;
2108 slab_free_hook(s, x);
2110 redo:
2113 * Determine the currently cpus per cpu slab.
2114 * The cpu may change afterward. However that does not matter since
2115 * data is retrieved via this pointer. If we are on the same cpu
2116 * during the cmpxchg then the free will succedd.
2118 c = __this_cpu_ptr(s->cpu_slab);
2120 tid = c->tid;
2121 barrier();
2123 if (likely(page == c->page)) {
2124 set_freepointer(s, object, c->freelist);
2126 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2127 s->cpu_slab->freelist, s->cpu_slab->tid,
2128 c->freelist, tid,
2129 object, next_tid(tid)))) {
2131 note_cmpxchg_failure("slab_free", s, tid);
2132 goto redo;
2134 stat(s, FREE_FASTPATH);
2135 } else
2136 __slab_free(s, page, x, addr);
2140 void kmem_cache_free(struct kmem_cache *s, void *x)
2142 struct page *page;
2144 page = virt_to_head_page(x);
2146 slab_free(s, page, x, _RET_IP_);
2148 trace_kmem_cache_free(_RET_IP_, x);
2150 EXPORT_SYMBOL(kmem_cache_free);
2153 * Object placement in a slab is made very easy because we always start at
2154 * offset 0. If we tune the size of the object to the alignment then we can
2155 * get the required alignment by putting one properly sized object after
2156 * another.
2158 * Notice that the allocation order determines the sizes of the per cpu
2159 * caches. Each processor has always one slab available for allocations.
2160 * Increasing the allocation order reduces the number of times that slabs
2161 * must be moved on and off the partial lists and is therefore a factor in
2162 * locking overhead.
2166 * Mininum / Maximum order of slab pages. This influences locking overhead
2167 * and slab fragmentation. A higher order reduces the number of partial slabs
2168 * and increases the number of allocations possible without having to
2169 * take the list_lock.
2171 static int slub_min_order;
2172 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2173 static int slub_min_objects;
2176 * Merge control. If this is set then no merging of slab caches will occur.
2177 * (Could be removed. This was introduced to pacify the merge skeptics.)
2179 static int slub_nomerge;
2182 * Calculate the order of allocation given an slab object size.
2184 * The order of allocation has significant impact on performance and other
2185 * system components. Generally order 0 allocations should be preferred since
2186 * order 0 does not cause fragmentation in the page allocator. Larger objects
2187 * be problematic to put into order 0 slabs because there may be too much
2188 * unused space left. We go to a higher order if more than 1/16th of the slab
2189 * would be wasted.
2191 * In order to reach satisfactory performance we must ensure that a minimum
2192 * number of objects is in one slab. Otherwise we may generate too much
2193 * activity on the partial lists which requires taking the list_lock. This is
2194 * less a concern for large slabs though which are rarely used.
2196 * slub_max_order specifies the order where we begin to stop considering the
2197 * number of objects in a slab as critical. If we reach slub_max_order then
2198 * we try to keep the page order as low as possible. So we accept more waste
2199 * of space in favor of a small page order.
2201 * Higher order allocations also allow the placement of more objects in a
2202 * slab and thereby reduce object handling overhead. If the user has
2203 * requested a higher mininum order then we start with that one instead of
2204 * the smallest order which will fit the object.
2206 static inline int slab_order(int size, int min_objects,
2207 int max_order, int fract_leftover, int reserved)
2209 int order;
2210 int rem;
2211 int min_order = slub_min_order;
2213 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2214 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2216 for (order = max(min_order,
2217 fls(min_objects * size - 1) - PAGE_SHIFT);
2218 order <= max_order; order++) {
2220 unsigned long slab_size = PAGE_SIZE << order;
2222 if (slab_size < min_objects * size + reserved)
2223 continue;
2225 rem = (slab_size - reserved) % size;
2227 if (rem <= slab_size / fract_leftover)
2228 break;
2232 return order;
2235 static inline int calculate_order(int size, int reserved)
2237 int order;
2238 int min_objects;
2239 int fraction;
2240 int max_objects;
2243 * Attempt to find best configuration for a slab. This
2244 * works by first attempting to generate a layout with
2245 * the best configuration and backing off gradually.
2247 * First we reduce the acceptable waste in a slab. Then
2248 * we reduce the minimum objects required in a slab.
2250 min_objects = slub_min_objects;
2251 if (!min_objects)
2252 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2253 max_objects = order_objects(slub_max_order, size, reserved);
2254 min_objects = min(min_objects, max_objects);
2256 while (min_objects > 1) {
2257 fraction = 16;
2258 while (fraction >= 4) {
2259 order = slab_order(size, min_objects,
2260 slub_max_order, fraction, reserved);
2261 if (order <= slub_max_order)
2262 return order;
2263 fraction /= 2;
2265 min_objects--;
2269 * We were unable to place multiple objects in a slab. Now
2270 * lets see if we can place a single object there.
2272 order = slab_order(size, 1, slub_max_order, 1, reserved);
2273 if (order <= slub_max_order)
2274 return order;
2277 * Doh this slab cannot be placed using slub_max_order.
2279 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2280 if (order < MAX_ORDER)
2281 return order;
2282 return -ENOSYS;
2286 * Figure out what the alignment of the objects will be.
2288 static unsigned long calculate_alignment(unsigned long flags,
2289 unsigned long align, unsigned long size)
2292 * If the user wants hardware cache aligned objects then follow that
2293 * suggestion if the object is sufficiently large.
2295 * The hardware cache alignment cannot override the specified
2296 * alignment though. If that is greater then use it.
2298 if (flags & SLAB_HWCACHE_ALIGN) {
2299 unsigned long ralign = cache_line_size();
2300 while (size <= ralign / 2)
2301 ralign /= 2;
2302 align = max(align, ralign);
2305 if (align < ARCH_SLAB_MINALIGN)
2306 align = ARCH_SLAB_MINALIGN;
2308 return ALIGN(align, sizeof(void *));
2311 static void
2312 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2314 n->nr_partial = 0;
2315 spin_lock_init(&n->list_lock);
2316 INIT_LIST_HEAD(&n->partial);
2317 #ifdef CONFIG_SLUB_DEBUG
2318 atomic_long_set(&n->nr_slabs, 0);
2319 atomic_long_set(&n->total_objects, 0);
2320 INIT_LIST_HEAD(&n->full);
2321 #endif
2324 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2326 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2327 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2330 * Must align to double word boundary for the double cmpxchg
2331 * instructions to work; see __pcpu_double_call_return_bool().
2333 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2334 2 * sizeof(void *));
2336 if (!s->cpu_slab)
2337 return 0;
2339 init_kmem_cache_cpus(s);
2341 return 1;
2344 static struct kmem_cache *kmem_cache_node;
2347 * No kmalloc_node yet so do it by hand. We know that this is the first
2348 * slab on the node for this slabcache. There are no concurrent accesses
2349 * possible.
2351 * Note that this function only works on the kmalloc_node_cache
2352 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2353 * memory on a fresh node that has no slab structures yet.
2355 static void early_kmem_cache_node_alloc(int node)
2357 struct page *page;
2358 struct kmem_cache_node *n;
2359 unsigned long flags;
2361 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2363 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2365 BUG_ON(!page);
2366 if (page_to_nid(page) != node) {
2367 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2368 "node %d\n", node);
2369 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2370 "in order to be able to continue\n");
2373 n = page->freelist;
2374 BUG_ON(!n);
2375 page->freelist = get_freepointer(kmem_cache_node, n);
2376 page->inuse++;
2377 kmem_cache_node->node[node] = n;
2378 #ifdef CONFIG_SLUB_DEBUG
2379 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2380 init_tracking(kmem_cache_node, n);
2381 #endif
2382 init_kmem_cache_node(n, kmem_cache_node);
2383 inc_slabs_node(kmem_cache_node, node, page->objects);
2386 * lockdep requires consistent irq usage for each lock
2387 * so even though there cannot be a race this early in
2388 * the boot sequence, we still disable irqs.
2390 local_irq_save(flags);
2391 add_partial(n, page, 0);
2392 local_irq_restore(flags);
2395 static void free_kmem_cache_nodes(struct kmem_cache *s)
2397 int node;
2399 for_each_node_state(node, N_NORMAL_MEMORY) {
2400 struct kmem_cache_node *n = s->node[node];
2402 if (n)
2403 kmem_cache_free(kmem_cache_node, n);
2405 s->node[node] = NULL;
2409 static int init_kmem_cache_nodes(struct kmem_cache *s)
2411 int node;
2413 for_each_node_state(node, N_NORMAL_MEMORY) {
2414 struct kmem_cache_node *n;
2416 if (slab_state == DOWN) {
2417 early_kmem_cache_node_alloc(node);
2418 continue;
2420 n = kmem_cache_alloc_node(kmem_cache_node,
2421 GFP_KERNEL, node);
2423 if (!n) {
2424 free_kmem_cache_nodes(s);
2425 return 0;
2428 s->node[node] = n;
2429 init_kmem_cache_node(n, s);
2431 return 1;
2434 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2436 if (min < MIN_PARTIAL)
2437 min = MIN_PARTIAL;
2438 else if (min > MAX_PARTIAL)
2439 min = MAX_PARTIAL;
2440 s->min_partial = min;
2444 * calculate_sizes() determines the order and the distribution of data within
2445 * a slab object.
2447 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2449 unsigned long flags = s->flags;
2450 unsigned long size = s->objsize;
2451 unsigned long align = s->align;
2452 int order;
2455 * Round up object size to the next word boundary. We can only
2456 * place the free pointer at word boundaries and this determines
2457 * the possible location of the free pointer.
2459 size = ALIGN(size, sizeof(void *));
2461 #ifdef CONFIG_SLUB_DEBUG
2463 * Determine if we can poison the object itself. If the user of
2464 * the slab may touch the object after free or before allocation
2465 * then we should never poison the object itself.
2467 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2468 !s->ctor)
2469 s->flags |= __OBJECT_POISON;
2470 else
2471 s->flags &= ~__OBJECT_POISON;
2475 * If we are Redzoning then check if there is some space between the
2476 * end of the object and the free pointer. If not then add an
2477 * additional word to have some bytes to store Redzone information.
2479 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2480 size += sizeof(void *);
2481 #endif
2484 * With that we have determined the number of bytes in actual use
2485 * by the object. This is the potential offset to the free pointer.
2487 s->inuse = size;
2489 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2490 s->ctor)) {
2492 * Relocate free pointer after the object if it is not
2493 * permitted to overwrite the first word of the object on
2494 * kmem_cache_free.
2496 * This is the case if we do RCU, have a constructor or
2497 * destructor or are poisoning the objects.
2499 s->offset = size;
2500 size += sizeof(void *);
2503 #ifdef CONFIG_SLUB_DEBUG
2504 if (flags & SLAB_STORE_USER)
2506 * Need to store information about allocs and frees after
2507 * the object.
2509 size += 2 * sizeof(struct track);
2511 if (flags & SLAB_RED_ZONE)
2513 * Add some empty padding so that we can catch
2514 * overwrites from earlier objects rather than let
2515 * tracking information or the free pointer be
2516 * corrupted if a user writes before the start
2517 * of the object.
2519 size += sizeof(void *);
2520 #endif
2523 * Determine the alignment based on various parameters that the
2524 * user specified and the dynamic determination of cache line size
2525 * on bootup.
2527 align = calculate_alignment(flags, align, s->objsize);
2528 s->align = align;
2531 * SLUB stores one object immediately after another beginning from
2532 * offset 0. In order to align the objects we have to simply size
2533 * each object to conform to the alignment.
2535 size = ALIGN(size, align);
2536 s->size = size;
2537 if (forced_order >= 0)
2538 order = forced_order;
2539 else
2540 order = calculate_order(size, s->reserved);
2542 if (order < 0)
2543 return 0;
2545 s->allocflags = 0;
2546 if (order)
2547 s->allocflags |= __GFP_COMP;
2549 if (s->flags & SLAB_CACHE_DMA)
2550 s->allocflags |= SLUB_DMA;
2552 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2553 s->allocflags |= __GFP_RECLAIMABLE;
2556 * Determine the number of objects per slab
2558 s->oo = oo_make(order, size, s->reserved);
2559 s->min = oo_make(get_order(size), size, s->reserved);
2560 if (oo_objects(s->oo) > oo_objects(s->max))
2561 s->max = s->oo;
2563 return !!oo_objects(s->oo);
2567 static int kmem_cache_open(struct kmem_cache *s,
2568 const char *name, size_t size,
2569 size_t align, unsigned long flags,
2570 void (*ctor)(void *))
2572 memset(s, 0, kmem_size);
2573 s->name = name;
2574 s->ctor = ctor;
2575 s->objsize = size;
2576 s->align = align;
2577 s->flags = kmem_cache_flags(size, flags, name, ctor);
2578 s->reserved = 0;
2580 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2581 s->reserved = sizeof(struct rcu_head);
2583 if (!calculate_sizes(s, -1))
2584 goto error;
2585 if (disable_higher_order_debug) {
2587 * Disable debugging flags that store metadata if the min slab
2588 * order increased.
2590 if (get_order(s->size) > get_order(s->objsize)) {
2591 s->flags &= ~DEBUG_METADATA_FLAGS;
2592 s->offset = 0;
2593 if (!calculate_sizes(s, -1))
2594 goto error;
2599 * The larger the object size is, the more pages we want on the partial
2600 * list to avoid pounding the page allocator excessively.
2602 set_min_partial(s, ilog2(s->size));
2603 s->refcount = 1;
2604 #ifdef CONFIG_NUMA
2605 s->remote_node_defrag_ratio = 1000;
2606 #endif
2607 if (!init_kmem_cache_nodes(s))
2608 goto error;
2610 if (alloc_kmem_cache_cpus(s))
2611 return 1;
2613 free_kmem_cache_nodes(s);
2614 error:
2615 if (flags & SLAB_PANIC)
2616 panic("Cannot create slab %s size=%lu realsize=%u "
2617 "order=%u offset=%u flags=%lx\n",
2618 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2619 s->offset, flags);
2620 return 0;
2624 * Determine the size of a slab object
2626 unsigned int kmem_cache_size(struct kmem_cache *s)
2628 return s->objsize;
2630 EXPORT_SYMBOL(kmem_cache_size);
2632 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2633 const char *text)
2635 #ifdef CONFIG_SLUB_DEBUG
2636 void *addr = page_address(page);
2637 void *p;
2638 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2639 sizeof(long), GFP_ATOMIC);
2640 if (!map)
2641 return;
2642 slab_err(s, page, "%s", text);
2643 slab_lock(page);
2645 get_map(s, page, map);
2646 for_each_object(p, s, addr, page->objects) {
2648 if (!test_bit(slab_index(p, s, addr), map)) {
2649 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2650 p, p - addr);
2651 print_tracking(s, p);
2654 slab_unlock(page);
2655 kfree(map);
2656 #endif
2660 * Attempt to free all partial slabs on a node.
2662 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2664 unsigned long flags;
2665 struct page *page, *h;
2667 spin_lock_irqsave(&n->list_lock, flags);
2668 list_for_each_entry_safe(page, h, &n->partial, lru) {
2669 if (!page->inuse) {
2670 __remove_partial(n, page);
2671 discard_slab(s, page);
2672 } else {
2673 list_slab_objects(s, page,
2674 "Objects remaining on kmem_cache_close()");
2677 spin_unlock_irqrestore(&n->list_lock, flags);
2681 * Release all resources used by a slab cache.
2683 static inline int kmem_cache_close(struct kmem_cache *s)
2685 int node;
2687 flush_all(s);
2688 free_percpu(s->cpu_slab);
2689 /* Attempt to free all objects */
2690 for_each_node_state(node, N_NORMAL_MEMORY) {
2691 struct kmem_cache_node *n = get_node(s, node);
2693 free_partial(s, n);
2694 if (n->nr_partial || slabs_node(s, node))
2695 return 1;
2697 free_kmem_cache_nodes(s);
2698 return 0;
2702 * Close a cache and release the kmem_cache structure
2703 * (must be used for caches created using kmem_cache_create)
2705 void kmem_cache_destroy(struct kmem_cache *s)
2707 down_write(&slub_lock);
2708 s->refcount--;
2709 if (!s->refcount) {
2710 list_del(&s->list);
2711 if (kmem_cache_close(s)) {
2712 printk(KERN_ERR "SLUB %s: %s called for cache that "
2713 "still has objects.\n", s->name, __func__);
2714 dump_stack();
2716 if (s->flags & SLAB_DESTROY_BY_RCU)
2717 rcu_barrier();
2718 sysfs_slab_remove(s);
2720 up_write(&slub_lock);
2722 EXPORT_SYMBOL(kmem_cache_destroy);
2724 /********************************************************************
2725 * Kmalloc subsystem
2726 *******************************************************************/
2728 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2729 EXPORT_SYMBOL(kmalloc_caches);
2731 static struct kmem_cache *kmem_cache;
2733 #ifdef CONFIG_ZONE_DMA
2734 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2735 #endif
2737 static int __init setup_slub_min_order(char *str)
2739 get_option(&str, &slub_min_order);
2741 return 1;
2744 __setup("slub_min_order=", setup_slub_min_order);
2746 static int __init setup_slub_max_order(char *str)
2748 get_option(&str, &slub_max_order);
2749 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2751 return 1;
2754 __setup("slub_max_order=", setup_slub_max_order);
2756 static int __init setup_slub_min_objects(char *str)
2758 get_option(&str, &slub_min_objects);
2760 return 1;
2763 __setup("slub_min_objects=", setup_slub_min_objects);
2765 static int __init setup_slub_nomerge(char *str)
2767 slub_nomerge = 1;
2768 return 1;
2771 __setup("slub_nomerge", setup_slub_nomerge);
2773 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2774 int size, unsigned int flags)
2776 struct kmem_cache *s;
2778 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2781 * This function is called with IRQs disabled during early-boot on
2782 * single CPU so there's no need to take slub_lock here.
2784 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2785 flags, NULL))
2786 goto panic;
2788 list_add(&s->list, &slab_caches);
2789 return s;
2791 panic:
2792 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2793 return NULL;
2797 * Conversion table for small slabs sizes / 8 to the index in the
2798 * kmalloc array. This is necessary for slabs < 192 since we have non power
2799 * of two cache sizes there. The size of larger slabs can be determined using
2800 * fls.
2802 static s8 size_index[24] = {
2803 3, /* 8 */
2804 4, /* 16 */
2805 5, /* 24 */
2806 5, /* 32 */
2807 6, /* 40 */
2808 6, /* 48 */
2809 6, /* 56 */
2810 6, /* 64 */
2811 1, /* 72 */
2812 1, /* 80 */
2813 1, /* 88 */
2814 1, /* 96 */
2815 7, /* 104 */
2816 7, /* 112 */
2817 7, /* 120 */
2818 7, /* 128 */
2819 2, /* 136 */
2820 2, /* 144 */
2821 2, /* 152 */
2822 2, /* 160 */
2823 2, /* 168 */
2824 2, /* 176 */
2825 2, /* 184 */
2826 2 /* 192 */
2829 static inline int size_index_elem(size_t bytes)
2831 return (bytes - 1) / 8;
2834 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2836 int index;
2838 if (size <= 192) {
2839 if (!size)
2840 return ZERO_SIZE_PTR;
2842 index = size_index[size_index_elem(size)];
2843 } else
2844 index = fls(size - 1);
2846 #ifdef CONFIG_ZONE_DMA
2847 if (unlikely((flags & SLUB_DMA)))
2848 return kmalloc_dma_caches[index];
2850 #endif
2851 return kmalloc_caches[index];
2854 void *__kmalloc(size_t size, gfp_t flags)
2856 struct kmem_cache *s;
2857 void *ret;
2859 if (unlikely(size > SLUB_MAX_SIZE))
2860 return kmalloc_large(size, flags);
2862 s = get_slab(size, flags);
2864 if (unlikely(ZERO_OR_NULL_PTR(s)))
2865 return s;
2867 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2869 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2871 return ret;
2873 EXPORT_SYMBOL(__kmalloc);
2875 #ifdef CONFIG_NUMA
2876 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2878 struct page *page;
2879 void *ptr = NULL;
2881 flags |= __GFP_COMP | __GFP_NOTRACK;
2882 page = alloc_pages_node(node, flags, get_order(size));
2883 if (page)
2884 ptr = page_address(page);
2886 kmemleak_alloc(ptr, size, 1, flags);
2887 return ptr;
2890 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2892 struct kmem_cache *s;
2893 void *ret;
2895 if (unlikely(size > SLUB_MAX_SIZE)) {
2896 ret = kmalloc_large_node(size, flags, node);
2898 trace_kmalloc_node(_RET_IP_, ret,
2899 size, PAGE_SIZE << get_order(size),
2900 flags, node);
2902 return ret;
2905 s = get_slab(size, flags);
2907 if (unlikely(ZERO_OR_NULL_PTR(s)))
2908 return s;
2910 ret = slab_alloc(s, flags, node, _RET_IP_);
2912 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2914 return ret;
2916 EXPORT_SYMBOL(__kmalloc_node);
2917 #endif
2919 size_t ksize(const void *object)
2921 struct page *page;
2923 if (unlikely(object == ZERO_SIZE_PTR))
2924 return 0;
2926 page = virt_to_head_page(object);
2928 if (unlikely(!PageSlab(page))) {
2929 WARN_ON(!PageCompound(page));
2930 return PAGE_SIZE << compound_order(page);
2933 return slab_ksize(page->slab);
2935 EXPORT_SYMBOL(ksize);
2937 void kfree(const void *x)
2939 struct page *page;
2940 void *object = (void *)x;
2942 trace_kfree(_RET_IP_, x);
2944 if (unlikely(ZERO_OR_NULL_PTR(x)))
2945 return;
2947 page = virt_to_head_page(x);
2948 if (unlikely(!PageSlab(page))) {
2949 BUG_ON(!PageCompound(page));
2950 kmemleak_free(x);
2951 put_page(page);
2952 return;
2954 slab_free(page->slab, page, object, _RET_IP_);
2956 EXPORT_SYMBOL(kfree);
2959 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2960 * the remaining slabs by the number of items in use. The slabs with the
2961 * most items in use come first. New allocations will then fill those up
2962 * and thus they can be removed from the partial lists.
2964 * The slabs with the least items are placed last. This results in them
2965 * being allocated from last increasing the chance that the last objects
2966 * are freed in them.
2968 int kmem_cache_shrink(struct kmem_cache *s)
2970 int node;
2971 int i;
2972 struct kmem_cache_node *n;
2973 struct page *page;
2974 struct page *t;
2975 int objects = oo_objects(s->max);
2976 struct list_head *slabs_by_inuse =
2977 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2978 unsigned long flags;
2980 if (!slabs_by_inuse)
2981 return -ENOMEM;
2983 flush_all(s);
2984 for_each_node_state(node, N_NORMAL_MEMORY) {
2985 n = get_node(s, node);
2987 if (!n->nr_partial)
2988 continue;
2990 for (i = 0; i < objects; i++)
2991 INIT_LIST_HEAD(slabs_by_inuse + i);
2993 spin_lock_irqsave(&n->list_lock, flags);
2996 * Build lists indexed by the items in use in each slab.
2998 * Note that concurrent frees may occur while we hold the
2999 * list_lock. page->inuse here is the upper limit.
3001 list_for_each_entry_safe(page, t, &n->partial, lru) {
3002 if (!page->inuse && slab_trylock(page)) {
3004 * Must hold slab lock here because slab_free
3005 * may have freed the last object and be
3006 * waiting to release the slab.
3008 __remove_partial(n, page);
3009 slab_unlock(page);
3010 discard_slab(s, page);
3011 } else {
3012 list_move(&page->lru,
3013 slabs_by_inuse + page->inuse);
3018 * Rebuild the partial list with the slabs filled up most
3019 * first and the least used slabs at the end.
3021 for (i = objects - 1; i >= 0; i--)
3022 list_splice(slabs_by_inuse + i, n->partial.prev);
3024 spin_unlock_irqrestore(&n->list_lock, flags);
3027 kfree(slabs_by_inuse);
3028 return 0;
3030 EXPORT_SYMBOL(kmem_cache_shrink);
3032 #if defined(CONFIG_MEMORY_HOTPLUG)
3033 static int slab_mem_going_offline_callback(void *arg)
3035 struct kmem_cache *s;
3037 down_read(&slub_lock);
3038 list_for_each_entry(s, &slab_caches, list)
3039 kmem_cache_shrink(s);
3040 up_read(&slub_lock);
3042 return 0;
3045 static void slab_mem_offline_callback(void *arg)
3047 struct kmem_cache_node *n;
3048 struct kmem_cache *s;
3049 struct memory_notify *marg = arg;
3050 int offline_node;
3052 offline_node = marg->status_change_nid;
3055 * If the node still has available memory. we need kmem_cache_node
3056 * for it yet.
3058 if (offline_node < 0)
3059 return;
3061 down_read(&slub_lock);
3062 list_for_each_entry(s, &slab_caches, list) {
3063 n = get_node(s, offline_node);
3064 if (n) {
3066 * if n->nr_slabs > 0, slabs still exist on the node
3067 * that is going down. We were unable to free them,
3068 * and offline_pages() function shouldn't call this
3069 * callback. So, we must fail.
3071 BUG_ON(slabs_node(s, offline_node));
3073 s->node[offline_node] = NULL;
3074 kmem_cache_free(kmem_cache_node, n);
3077 up_read(&slub_lock);
3080 static int slab_mem_going_online_callback(void *arg)
3082 struct kmem_cache_node *n;
3083 struct kmem_cache *s;
3084 struct memory_notify *marg = arg;
3085 int nid = marg->status_change_nid;
3086 int ret = 0;
3089 * If the node's memory is already available, then kmem_cache_node is
3090 * already created. Nothing to do.
3092 if (nid < 0)
3093 return 0;
3096 * We are bringing a node online. No memory is available yet. We must
3097 * allocate a kmem_cache_node structure in order to bring the node
3098 * online.
3100 down_read(&slub_lock);
3101 list_for_each_entry(s, &slab_caches, list) {
3103 * XXX: kmem_cache_alloc_node will fallback to other nodes
3104 * since memory is not yet available from the node that
3105 * is brought up.
3107 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3108 if (!n) {
3109 ret = -ENOMEM;
3110 goto out;
3112 init_kmem_cache_node(n, s);
3113 s->node[nid] = n;
3115 out:
3116 up_read(&slub_lock);
3117 return ret;
3120 static int slab_memory_callback(struct notifier_block *self,
3121 unsigned long action, void *arg)
3123 int ret = 0;
3125 switch (action) {
3126 case MEM_GOING_ONLINE:
3127 ret = slab_mem_going_online_callback(arg);
3128 break;
3129 case MEM_GOING_OFFLINE:
3130 ret = slab_mem_going_offline_callback(arg);
3131 break;
3132 case MEM_OFFLINE:
3133 case MEM_CANCEL_ONLINE:
3134 slab_mem_offline_callback(arg);
3135 break;
3136 case MEM_ONLINE:
3137 case MEM_CANCEL_OFFLINE:
3138 break;
3140 if (ret)
3141 ret = notifier_from_errno(ret);
3142 else
3143 ret = NOTIFY_OK;
3144 return ret;
3147 #endif /* CONFIG_MEMORY_HOTPLUG */
3149 /********************************************************************
3150 * Basic setup of slabs
3151 *******************************************************************/
3154 * Used for early kmem_cache structures that were allocated using
3155 * the page allocator
3158 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3160 int node;
3162 list_add(&s->list, &slab_caches);
3163 s->refcount = -1;
3165 for_each_node_state(node, N_NORMAL_MEMORY) {
3166 struct kmem_cache_node *n = get_node(s, node);
3167 struct page *p;
3169 if (n) {
3170 list_for_each_entry(p, &n->partial, lru)
3171 p->slab = s;
3173 #ifdef CONFIG_SLUB_DEBUG
3174 list_for_each_entry(p, &n->full, lru)
3175 p->slab = s;
3176 #endif
3181 void __init kmem_cache_init(void)
3183 int i;
3184 int caches = 0;
3185 struct kmem_cache *temp_kmem_cache;
3186 int order;
3187 struct kmem_cache *temp_kmem_cache_node;
3188 unsigned long kmalloc_size;
3190 kmem_size = offsetof(struct kmem_cache, node) +
3191 nr_node_ids * sizeof(struct kmem_cache_node *);
3193 /* Allocate two kmem_caches from the page allocator */
3194 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3195 order = get_order(2 * kmalloc_size);
3196 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3199 * Must first have the slab cache available for the allocations of the
3200 * struct kmem_cache_node's. There is special bootstrap code in
3201 * kmem_cache_open for slab_state == DOWN.
3203 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3205 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3206 sizeof(struct kmem_cache_node),
3207 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3209 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3211 /* Able to allocate the per node structures */
3212 slab_state = PARTIAL;
3214 temp_kmem_cache = kmem_cache;
3215 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3216 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3217 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3218 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3221 * Allocate kmem_cache_node properly from the kmem_cache slab.
3222 * kmem_cache_node is separately allocated so no need to
3223 * update any list pointers.
3225 temp_kmem_cache_node = kmem_cache_node;
3227 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3228 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3230 kmem_cache_bootstrap_fixup(kmem_cache_node);
3232 caches++;
3233 kmem_cache_bootstrap_fixup(kmem_cache);
3234 caches++;
3235 /* Free temporary boot structure */
3236 free_pages((unsigned long)temp_kmem_cache, order);
3238 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3241 * Patch up the size_index table if we have strange large alignment
3242 * requirements for the kmalloc array. This is only the case for
3243 * MIPS it seems. The standard arches will not generate any code here.
3245 * Largest permitted alignment is 256 bytes due to the way we
3246 * handle the index determination for the smaller caches.
3248 * Make sure that nothing crazy happens if someone starts tinkering
3249 * around with ARCH_KMALLOC_MINALIGN
3251 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3252 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3254 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3255 int elem = size_index_elem(i);
3256 if (elem >= ARRAY_SIZE(size_index))
3257 break;
3258 size_index[elem] = KMALLOC_SHIFT_LOW;
3261 if (KMALLOC_MIN_SIZE == 64) {
3263 * The 96 byte size cache is not used if the alignment
3264 * is 64 byte.
3266 for (i = 64 + 8; i <= 96; i += 8)
3267 size_index[size_index_elem(i)] = 7;
3268 } else if (KMALLOC_MIN_SIZE == 128) {
3270 * The 192 byte sized cache is not used if the alignment
3271 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3272 * instead.
3274 for (i = 128 + 8; i <= 192; i += 8)
3275 size_index[size_index_elem(i)] = 8;
3278 /* Caches that are not of the two-to-the-power-of size */
3279 if (KMALLOC_MIN_SIZE <= 32) {
3280 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3281 caches++;
3284 if (KMALLOC_MIN_SIZE <= 64) {
3285 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3286 caches++;
3289 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3290 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3291 caches++;
3294 slab_state = UP;
3296 /* Provide the correct kmalloc names now that the caches are up */
3297 if (KMALLOC_MIN_SIZE <= 32) {
3298 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3299 BUG_ON(!kmalloc_caches[1]->name);
3302 if (KMALLOC_MIN_SIZE <= 64) {
3303 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3304 BUG_ON(!kmalloc_caches[2]->name);
3307 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3308 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3310 BUG_ON(!s);
3311 kmalloc_caches[i]->name = s;
3314 #ifdef CONFIG_SMP
3315 register_cpu_notifier(&slab_notifier);
3316 #endif
3318 #ifdef CONFIG_ZONE_DMA
3319 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3320 struct kmem_cache *s = kmalloc_caches[i];
3322 if (s && s->size) {
3323 char *name = kasprintf(GFP_NOWAIT,
3324 "dma-kmalloc-%d", s->objsize);
3326 BUG_ON(!name);
3327 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3328 s->objsize, SLAB_CACHE_DMA);
3331 #endif
3332 printk(KERN_INFO
3333 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3334 " CPUs=%d, Nodes=%d\n",
3335 caches, cache_line_size(),
3336 slub_min_order, slub_max_order, slub_min_objects,
3337 nr_cpu_ids, nr_node_ids);
3340 void __init kmem_cache_init_late(void)
3345 * Find a mergeable slab cache
3347 static int slab_unmergeable(struct kmem_cache *s)
3349 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3350 return 1;
3352 if (s->ctor)
3353 return 1;
3356 * We may have set a slab to be unmergeable during bootstrap.
3358 if (s->refcount < 0)
3359 return 1;
3361 return 0;
3364 static struct kmem_cache *find_mergeable(size_t size,
3365 size_t align, unsigned long flags, const char *name,
3366 void (*ctor)(void *))
3368 struct kmem_cache *s;
3370 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3371 return NULL;
3373 if (ctor)
3374 return NULL;
3376 size = ALIGN(size, sizeof(void *));
3377 align = calculate_alignment(flags, align, size);
3378 size = ALIGN(size, align);
3379 flags = kmem_cache_flags(size, flags, name, NULL);
3381 list_for_each_entry(s, &slab_caches, list) {
3382 if (slab_unmergeable(s))
3383 continue;
3385 if (size > s->size)
3386 continue;
3388 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3389 continue;
3391 * Check if alignment is compatible.
3392 * Courtesy of Adrian Drzewiecki
3394 if ((s->size & ~(align - 1)) != s->size)
3395 continue;
3397 if (s->size - size >= sizeof(void *))
3398 continue;
3400 return s;
3402 return NULL;
3405 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3406 size_t align, unsigned long flags, void (*ctor)(void *))
3408 struct kmem_cache *s;
3409 char *n;
3411 if (WARN_ON(!name))
3412 return NULL;
3414 down_write(&slub_lock);
3415 s = find_mergeable(size, align, flags, name, ctor);
3416 if (s) {
3417 s->refcount++;
3419 * Adjust the object sizes so that we clear
3420 * the complete object on kzalloc.
3422 s->objsize = max(s->objsize, (int)size);
3423 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3425 if (sysfs_slab_alias(s, name)) {
3426 s->refcount--;
3427 goto err;
3429 up_write(&slub_lock);
3430 return s;
3433 n = kstrdup(name, GFP_KERNEL);
3434 if (!n)
3435 goto err;
3437 s = kmalloc(kmem_size, GFP_KERNEL);
3438 if (s) {
3439 if (kmem_cache_open(s, n,
3440 size, align, flags, ctor)) {
3441 list_add(&s->list, &slab_caches);
3442 up_write(&slub_lock);
3443 if (sysfs_slab_add(s)) {
3444 down_write(&slub_lock);
3445 list_del(&s->list);
3446 kfree(n);
3447 kfree(s);
3448 goto err;
3450 return s;
3452 kfree(n);
3453 kfree(s);
3455 err:
3456 up_write(&slub_lock);
3458 if (flags & SLAB_PANIC)
3459 panic("Cannot create slabcache %s\n", name);
3460 else
3461 s = NULL;
3462 return s;
3464 EXPORT_SYMBOL(kmem_cache_create);
3466 #ifdef CONFIG_SMP
3468 * Use the cpu notifier to insure that the cpu slabs are flushed when
3469 * necessary.
3471 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3472 unsigned long action, void *hcpu)
3474 long cpu = (long)hcpu;
3475 struct kmem_cache *s;
3476 unsigned long flags;
3478 switch (action) {
3479 case CPU_UP_CANCELED:
3480 case CPU_UP_CANCELED_FROZEN:
3481 case CPU_DEAD:
3482 case CPU_DEAD_FROZEN:
3483 down_read(&slub_lock);
3484 list_for_each_entry(s, &slab_caches, list) {
3485 local_irq_save(flags);
3486 __flush_cpu_slab(s, cpu);
3487 local_irq_restore(flags);
3489 up_read(&slub_lock);
3490 break;
3491 default:
3492 break;
3494 return NOTIFY_OK;
3497 static struct notifier_block __cpuinitdata slab_notifier = {
3498 .notifier_call = slab_cpuup_callback
3501 #endif
3503 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3505 struct kmem_cache *s;
3506 void *ret;
3508 if (unlikely(size > SLUB_MAX_SIZE))
3509 return kmalloc_large(size, gfpflags);
3511 s = get_slab(size, gfpflags);
3513 if (unlikely(ZERO_OR_NULL_PTR(s)))
3514 return s;
3516 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3518 /* Honor the call site pointer we received. */
3519 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3521 return ret;
3524 #ifdef CONFIG_NUMA
3525 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3526 int node, unsigned long caller)
3528 struct kmem_cache *s;
3529 void *ret;
3531 if (unlikely(size > SLUB_MAX_SIZE)) {
3532 ret = kmalloc_large_node(size, gfpflags, node);
3534 trace_kmalloc_node(caller, ret,
3535 size, PAGE_SIZE << get_order(size),
3536 gfpflags, node);
3538 return ret;
3541 s = get_slab(size, gfpflags);
3543 if (unlikely(ZERO_OR_NULL_PTR(s)))
3544 return s;
3546 ret = slab_alloc(s, gfpflags, node, caller);
3548 /* Honor the call site pointer we received. */
3549 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3551 return ret;
3553 #endif
3555 #ifdef CONFIG_SYSFS
3556 static int count_inuse(struct page *page)
3558 return page->inuse;
3561 static int count_total(struct page *page)
3563 return page->objects;
3565 #endif
3567 #ifdef CONFIG_SLUB_DEBUG
3568 static int validate_slab(struct kmem_cache *s, struct page *page,
3569 unsigned long *map)
3571 void *p;
3572 void *addr = page_address(page);
3574 if (!check_slab(s, page) ||
3575 !on_freelist(s, page, NULL))
3576 return 0;
3578 /* Now we know that a valid freelist exists */
3579 bitmap_zero(map, page->objects);
3581 get_map(s, page, map);
3582 for_each_object(p, s, addr, page->objects) {
3583 if (test_bit(slab_index(p, s, addr), map))
3584 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3585 return 0;
3588 for_each_object(p, s, addr, page->objects)
3589 if (!test_bit(slab_index(p, s, addr), map))
3590 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3591 return 0;
3592 return 1;
3595 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3596 unsigned long *map)
3598 if (slab_trylock(page)) {
3599 validate_slab(s, page, map);
3600 slab_unlock(page);
3601 } else
3602 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3603 s->name, page);
3606 static int validate_slab_node(struct kmem_cache *s,
3607 struct kmem_cache_node *n, unsigned long *map)
3609 unsigned long count = 0;
3610 struct page *page;
3611 unsigned long flags;
3613 spin_lock_irqsave(&n->list_lock, flags);
3615 list_for_each_entry(page, &n->partial, lru) {
3616 validate_slab_slab(s, page, map);
3617 count++;
3619 if (count != n->nr_partial)
3620 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3621 "counter=%ld\n", s->name, count, n->nr_partial);
3623 if (!(s->flags & SLAB_STORE_USER))
3624 goto out;
3626 list_for_each_entry(page, &n->full, lru) {
3627 validate_slab_slab(s, page, map);
3628 count++;
3630 if (count != atomic_long_read(&n->nr_slabs))
3631 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3632 "counter=%ld\n", s->name, count,
3633 atomic_long_read(&n->nr_slabs));
3635 out:
3636 spin_unlock_irqrestore(&n->list_lock, flags);
3637 return count;
3640 static long validate_slab_cache(struct kmem_cache *s)
3642 int node;
3643 unsigned long count = 0;
3644 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3645 sizeof(unsigned long), GFP_KERNEL);
3647 if (!map)
3648 return -ENOMEM;
3650 flush_all(s);
3651 for_each_node_state(node, N_NORMAL_MEMORY) {
3652 struct kmem_cache_node *n = get_node(s, node);
3654 count += validate_slab_node(s, n, map);
3656 kfree(map);
3657 return count;
3660 * Generate lists of code addresses where slabcache objects are allocated
3661 * and freed.
3664 struct location {
3665 unsigned long count;
3666 unsigned long addr;
3667 long long sum_time;
3668 long min_time;
3669 long max_time;
3670 long min_pid;
3671 long max_pid;
3672 DECLARE_BITMAP(cpus, NR_CPUS);
3673 nodemask_t nodes;
3676 struct loc_track {
3677 unsigned long max;
3678 unsigned long count;
3679 struct location *loc;
3682 static void free_loc_track(struct loc_track *t)
3684 if (t->max)
3685 free_pages((unsigned long)t->loc,
3686 get_order(sizeof(struct location) * t->max));
3689 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3691 struct location *l;
3692 int order;
3694 order = get_order(sizeof(struct location) * max);
3696 l = (void *)__get_free_pages(flags, order);
3697 if (!l)
3698 return 0;
3700 if (t->count) {
3701 memcpy(l, t->loc, sizeof(struct location) * t->count);
3702 free_loc_track(t);
3704 t->max = max;
3705 t->loc = l;
3706 return 1;
3709 static int add_location(struct loc_track *t, struct kmem_cache *s,
3710 const struct track *track)
3712 long start, end, pos;
3713 struct location *l;
3714 unsigned long caddr;
3715 unsigned long age = jiffies - track->when;
3717 start = -1;
3718 end = t->count;
3720 for ( ; ; ) {
3721 pos = start + (end - start + 1) / 2;
3724 * There is nothing at "end". If we end up there
3725 * we need to add something to before end.
3727 if (pos == end)
3728 break;
3730 caddr = t->loc[pos].addr;
3731 if (track->addr == caddr) {
3733 l = &t->loc[pos];
3734 l->count++;
3735 if (track->when) {
3736 l->sum_time += age;
3737 if (age < l->min_time)
3738 l->min_time = age;
3739 if (age > l->max_time)
3740 l->max_time = age;
3742 if (track->pid < l->min_pid)
3743 l->min_pid = track->pid;
3744 if (track->pid > l->max_pid)
3745 l->max_pid = track->pid;
3747 cpumask_set_cpu(track->cpu,
3748 to_cpumask(l->cpus));
3750 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3751 return 1;
3754 if (track->addr < caddr)
3755 end = pos;
3756 else
3757 start = pos;
3761 * Not found. Insert new tracking element.
3763 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3764 return 0;
3766 l = t->loc + pos;
3767 if (pos < t->count)
3768 memmove(l + 1, l,
3769 (t->count - pos) * sizeof(struct location));
3770 t->count++;
3771 l->count = 1;
3772 l->addr = track->addr;
3773 l->sum_time = age;
3774 l->min_time = age;
3775 l->max_time = age;
3776 l->min_pid = track->pid;
3777 l->max_pid = track->pid;
3778 cpumask_clear(to_cpumask(l->cpus));
3779 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3780 nodes_clear(l->nodes);
3781 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3782 return 1;
3785 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3786 struct page *page, enum track_item alloc,
3787 unsigned long *map)
3789 void *addr = page_address(page);
3790 void *p;
3792 bitmap_zero(map, page->objects);
3793 get_map(s, page, map);
3795 for_each_object(p, s, addr, page->objects)
3796 if (!test_bit(slab_index(p, s, addr), map))
3797 add_location(t, s, get_track(s, p, alloc));
3800 static int list_locations(struct kmem_cache *s, char *buf,
3801 enum track_item alloc)
3803 int len = 0;
3804 unsigned long i;
3805 struct loc_track t = { 0, 0, NULL };
3806 int node;
3807 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3808 sizeof(unsigned long), GFP_KERNEL);
3810 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3811 GFP_TEMPORARY)) {
3812 kfree(map);
3813 return sprintf(buf, "Out of memory\n");
3815 /* Push back cpu slabs */
3816 flush_all(s);
3818 for_each_node_state(node, N_NORMAL_MEMORY) {
3819 struct kmem_cache_node *n = get_node(s, node);
3820 unsigned long flags;
3821 struct page *page;
3823 if (!atomic_long_read(&n->nr_slabs))
3824 continue;
3826 spin_lock_irqsave(&n->list_lock, flags);
3827 list_for_each_entry(page, &n->partial, lru)
3828 process_slab(&t, s, page, alloc, map);
3829 list_for_each_entry(page, &n->full, lru)
3830 process_slab(&t, s, page, alloc, map);
3831 spin_unlock_irqrestore(&n->list_lock, flags);
3834 for (i = 0; i < t.count; i++) {
3835 struct location *l = &t.loc[i];
3837 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3838 break;
3839 len += sprintf(buf + len, "%7ld ", l->count);
3841 if (l->addr)
3842 len += sprintf(buf + len, "%pS", (void *)l->addr);
3843 else
3844 len += sprintf(buf + len, "<not-available>");
3846 if (l->sum_time != l->min_time) {
3847 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3848 l->min_time,
3849 (long)div_u64(l->sum_time, l->count),
3850 l->max_time);
3851 } else
3852 len += sprintf(buf + len, " age=%ld",
3853 l->min_time);
3855 if (l->min_pid != l->max_pid)
3856 len += sprintf(buf + len, " pid=%ld-%ld",
3857 l->min_pid, l->max_pid);
3858 else
3859 len += sprintf(buf + len, " pid=%ld",
3860 l->min_pid);
3862 if (num_online_cpus() > 1 &&
3863 !cpumask_empty(to_cpumask(l->cpus)) &&
3864 len < PAGE_SIZE - 60) {
3865 len += sprintf(buf + len, " cpus=");
3866 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3867 to_cpumask(l->cpus));
3870 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3871 len < PAGE_SIZE - 60) {
3872 len += sprintf(buf + len, " nodes=");
3873 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3874 l->nodes);
3877 len += sprintf(buf + len, "\n");
3880 free_loc_track(&t);
3881 kfree(map);
3882 if (!t.count)
3883 len += sprintf(buf, "No data\n");
3884 return len;
3886 #endif
3888 #ifdef SLUB_RESILIENCY_TEST
3889 static void resiliency_test(void)
3891 u8 *p;
3893 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3895 printk(KERN_ERR "SLUB resiliency testing\n");
3896 printk(KERN_ERR "-----------------------\n");
3897 printk(KERN_ERR "A. Corruption after allocation\n");
3899 p = kzalloc(16, GFP_KERNEL);
3900 p[16] = 0x12;
3901 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3902 " 0x12->0x%p\n\n", p + 16);
3904 validate_slab_cache(kmalloc_caches[4]);
3906 /* Hmmm... The next two are dangerous */
3907 p = kzalloc(32, GFP_KERNEL);
3908 p[32 + sizeof(void *)] = 0x34;
3909 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3910 " 0x34 -> -0x%p\n", p);
3911 printk(KERN_ERR
3912 "If allocated object is overwritten then not detectable\n\n");
3914 validate_slab_cache(kmalloc_caches[5]);
3915 p = kzalloc(64, GFP_KERNEL);
3916 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3917 *p = 0x56;
3918 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3920 printk(KERN_ERR
3921 "If allocated object is overwritten then not detectable\n\n");
3922 validate_slab_cache(kmalloc_caches[6]);
3924 printk(KERN_ERR "\nB. Corruption after free\n");
3925 p = kzalloc(128, GFP_KERNEL);
3926 kfree(p);
3927 *p = 0x78;
3928 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3929 validate_slab_cache(kmalloc_caches[7]);
3931 p = kzalloc(256, GFP_KERNEL);
3932 kfree(p);
3933 p[50] = 0x9a;
3934 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3936 validate_slab_cache(kmalloc_caches[8]);
3938 p = kzalloc(512, GFP_KERNEL);
3939 kfree(p);
3940 p[512] = 0xab;
3941 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3942 validate_slab_cache(kmalloc_caches[9]);
3944 #else
3945 #ifdef CONFIG_SYSFS
3946 static void resiliency_test(void) {};
3947 #endif
3948 #endif
3950 #ifdef CONFIG_SYSFS
3951 enum slab_stat_type {
3952 SL_ALL, /* All slabs */
3953 SL_PARTIAL, /* Only partially allocated slabs */
3954 SL_CPU, /* Only slabs used for cpu caches */
3955 SL_OBJECTS, /* Determine allocated objects not slabs */
3956 SL_TOTAL /* Determine object capacity not slabs */
3959 #define SO_ALL (1 << SL_ALL)
3960 #define SO_PARTIAL (1 << SL_PARTIAL)
3961 #define SO_CPU (1 << SL_CPU)
3962 #define SO_OBJECTS (1 << SL_OBJECTS)
3963 #define SO_TOTAL (1 << SL_TOTAL)
3965 static ssize_t show_slab_objects(struct kmem_cache *s,
3966 char *buf, unsigned long flags)
3968 unsigned long total = 0;
3969 int node;
3970 int x;
3971 unsigned long *nodes;
3972 unsigned long *per_cpu;
3974 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3975 if (!nodes)
3976 return -ENOMEM;
3977 per_cpu = nodes + nr_node_ids;
3979 if (flags & SO_CPU) {
3980 int cpu;
3982 for_each_possible_cpu(cpu) {
3983 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3985 if (!c || c->node < 0)
3986 continue;
3988 if (c->page) {
3989 if (flags & SO_TOTAL)
3990 x = c->page->objects;
3991 else if (flags & SO_OBJECTS)
3992 x = c->page->inuse;
3993 else
3994 x = 1;
3996 total += x;
3997 nodes[c->node] += x;
3999 per_cpu[c->node]++;
4003 lock_memory_hotplug();
4004 #ifdef CONFIG_SLUB_DEBUG
4005 if (flags & SO_ALL) {
4006 for_each_node_state(node, N_NORMAL_MEMORY) {
4007 struct kmem_cache_node *n = get_node(s, node);
4009 if (flags & SO_TOTAL)
4010 x = atomic_long_read(&n->total_objects);
4011 else if (flags & SO_OBJECTS)
4012 x = atomic_long_read(&n->total_objects) -
4013 count_partial(n, count_free);
4015 else
4016 x = atomic_long_read(&n->nr_slabs);
4017 total += x;
4018 nodes[node] += x;
4021 } else
4022 #endif
4023 if (flags & SO_PARTIAL) {
4024 for_each_node_state(node, N_NORMAL_MEMORY) {
4025 struct kmem_cache_node *n = get_node(s, node);
4027 if (flags & SO_TOTAL)
4028 x = count_partial(n, count_total);
4029 else if (flags & SO_OBJECTS)
4030 x = count_partial(n, count_inuse);
4031 else
4032 x = n->nr_partial;
4033 total += x;
4034 nodes[node] += x;
4037 x = sprintf(buf, "%lu", total);
4038 #ifdef CONFIG_NUMA
4039 for_each_node_state(node, N_NORMAL_MEMORY)
4040 if (nodes[node])
4041 x += sprintf(buf + x, " N%d=%lu",
4042 node, nodes[node]);
4043 #endif
4044 unlock_memory_hotplug();
4045 kfree(nodes);
4046 return x + sprintf(buf + x, "\n");
4049 #ifdef CONFIG_SLUB_DEBUG
4050 static int any_slab_objects(struct kmem_cache *s)
4052 int node;
4054 for_each_online_node(node) {
4055 struct kmem_cache_node *n = get_node(s, node);
4057 if (!n)
4058 continue;
4060 if (atomic_long_read(&n->total_objects))
4061 return 1;
4063 return 0;
4065 #endif
4067 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4068 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4070 struct slab_attribute {
4071 struct attribute attr;
4072 ssize_t (*show)(struct kmem_cache *s, char *buf);
4073 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4076 #define SLAB_ATTR_RO(_name) \
4077 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4079 #define SLAB_ATTR(_name) \
4080 static struct slab_attribute _name##_attr = \
4081 __ATTR(_name, 0644, _name##_show, _name##_store)
4083 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4085 return sprintf(buf, "%d\n", s->size);
4087 SLAB_ATTR_RO(slab_size);
4089 static ssize_t align_show(struct kmem_cache *s, char *buf)
4091 return sprintf(buf, "%d\n", s->align);
4093 SLAB_ATTR_RO(align);
4095 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4097 return sprintf(buf, "%d\n", s->objsize);
4099 SLAB_ATTR_RO(object_size);
4101 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4103 return sprintf(buf, "%d\n", oo_objects(s->oo));
4105 SLAB_ATTR_RO(objs_per_slab);
4107 static ssize_t order_store(struct kmem_cache *s,
4108 const char *buf, size_t length)
4110 unsigned long order;
4111 int err;
4113 err = strict_strtoul(buf, 10, &order);
4114 if (err)
4115 return err;
4117 if (order > slub_max_order || order < slub_min_order)
4118 return -EINVAL;
4120 calculate_sizes(s, order);
4121 return length;
4124 static ssize_t order_show(struct kmem_cache *s, char *buf)
4126 return sprintf(buf, "%d\n", oo_order(s->oo));
4128 SLAB_ATTR(order);
4130 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4132 return sprintf(buf, "%lu\n", s->min_partial);
4135 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4136 size_t length)
4138 unsigned long min;
4139 int err;
4141 err = strict_strtoul(buf, 10, &min);
4142 if (err)
4143 return err;
4145 set_min_partial(s, min);
4146 return length;
4148 SLAB_ATTR(min_partial);
4150 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4152 if (!s->ctor)
4153 return 0;
4154 return sprintf(buf, "%pS\n", s->ctor);
4156 SLAB_ATTR_RO(ctor);
4158 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4160 return sprintf(buf, "%d\n", s->refcount - 1);
4162 SLAB_ATTR_RO(aliases);
4164 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4166 return show_slab_objects(s, buf, SO_PARTIAL);
4168 SLAB_ATTR_RO(partial);
4170 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4172 return show_slab_objects(s, buf, SO_CPU);
4174 SLAB_ATTR_RO(cpu_slabs);
4176 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4178 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4180 SLAB_ATTR_RO(objects);
4182 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4184 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4186 SLAB_ATTR_RO(objects_partial);
4188 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4190 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4193 static ssize_t reclaim_account_store(struct kmem_cache *s,
4194 const char *buf, size_t length)
4196 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4197 if (buf[0] == '1')
4198 s->flags |= SLAB_RECLAIM_ACCOUNT;
4199 return length;
4201 SLAB_ATTR(reclaim_account);
4203 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4207 SLAB_ATTR_RO(hwcache_align);
4209 #ifdef CONFIG_ZONE_DMA
4210 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4212 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4214 SLAB_ATTR_RO(cache_dma);
4215 #endif
4217 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4219 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4221 SLAB_ATTR_RO(destroy_by_rcu);
4223 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4225 return sprintf(buf, "%d\n", s->reserved);
4227 SLAB_ATTR_RO(reserved);
4229 #ifdef CONFIG_SLUB_DEBUG
4230 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4232 return show_slab_objects(s, buf, SO_ALL);
4234 SLAB_ATTR_RO(slabs);
4236 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4238 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4240 SLAB_ATTR_RO(total_objects);
4242 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4244 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4247 static ssize_t sanity_checks_store(struct kmem_cache *s,
4248 const char *buf, size_t length)
4250 s->flags &= ~SLAB_DEBUG_FREE;
4251 if (buf[0] == '1')
4252 s->flags |= SLAB_DEBUG_FREE;
4253 return length;
4255 SLAB_ATTR(sanity_checks);
4257 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4259 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4262 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4263 size_t length)
4265 s->flags &= ~SLAB_TRACE;
4266 if (buf[0] == '1')
4267 s->flags |= SLAB_TRACE;
4268 return length;
4270 SLAB_ATTR(trace);
4272 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4274 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4277 static ssize_t red_zone_store(struct kmem_cache *s,
4278 const char *buf, size_t length)
4280 if (any_slab_objects(s))
4281 return -EBUSY;
4283 s->flags &= ~SLAB_RED_ZONE;
4284 if (buf[0] == '1')
4285 s->flags |= SLAB_RED_ZONE;
4286 calculate_sizes(s, -1);
4287 return length;
4289 SLAB_ATTR(red_zone);
4291 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4293 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4296 static ssize_t poison_store(struct kmem_cache *s,
4297 const char *buf, size_t length)
4299 if (any_slab_objects(s))
4300 return -EBUSY;
4302 s->flags &= ~SLAB_POISON;
4303 if (buf[0] == '1')
4304 s->flags |= SLAB_POISON;
4305 calculate_sizes(s, -1);
4306 return length;
4308 SLAB_ATTR(poison);
4310 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4312 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4315 static ssize_t store_user_store(struct kmem_cache *s,
4316 const char *buf, size_t length)
4318 if (any_slab_objects(s))
4319 return -EBUSY;
4321 s->flags &= ~SLAB_STORE_USER;
4322 if (buf[0] == '1')
4323 s->flags |= SLAB_STORE_USER;
4324 calculate_sizes(s, -1);
4325 return length;
4327 SLAB_ATTR(store_user);
4329 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4331 return 0;
4334 static ssize_t validate_store(struct kmem_cache *s,
4335 const char *buf, size_t length)
4337 int ret = -EINVAL;
4339 if (buf[0] == '1') {
4340 ret = validate_slab_cache(s);
4341 if (ret >= 0)
4342 ret = length;
4344 return ret;
4346 SLAB_ATTR(validate);
4348 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4350 if (!(s->flags & SLAB_STORE_USER))
4351 return -ENOSYS;
4352 return list_locations(s, buf, TRACK_ALLOC);
4354 SLAB_ATTR_RO(alloc_calls);
4356 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4358 if (!(s->flags & SLAB_STORE_USER))
4359 return -ENOSYS;
4360 return list_locations(s, buf, TRACK_FREE);
4362 SLAB_ATTR_RO(free_calls);
4363 #endif /* CONFIG_SLUB_DEBUG */
4365 #ifdef CONFIG_FAILSLAB
4366 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4368 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4371 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4372 size_t length)
4374 s->flags &= ~SLAB_FAILSLAB;
4375 if (buf[0] == '1')
4376 s->flags |= SLAB_FAILSLAB;
4377 return length;
4379 SLAB_ATTR(failslab);
4380 #endif
4382 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4384 return 0;
4387 static ssize_t shrink_store(struct kmem_cache *s,
4388 const char *buf, size_t length)
4390 if (buf[0] == '1') {
4391 int rc = kmem_cache_shrink(s);
4393 if (rc)
4394 return rc;
4395 } else
4396 return -EINVAL;
4397 return length;
4399 SLAB_ATTR(shrink);
4401 #ifdef CONFIG_NUMA
4402 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4404 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4407 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4408 const char *buf, size_t length)
4410 unsigned long ratio;
4411 int err;
4413 err = strict_strtoul(buf, 10, &ratio);
4414 if (err)
4415 return err;
4417 if (ratio <= 100)
4418 s->remote_node_defrag_ratio = ratio * 10;
4420 return length;
4422 SLAB_ATTR(remote_node_defrag_ratio);
4423 #endif
4425 #ifdef CONFIG_SLUB_STATS
4426 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4428 unsigned long sum = 0;
4429 int cpu;
4430 int len;
4431 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4433 if (!data)
4434 return -ENOMEM;
4436 for_each_online_cpu(cpu) {
4437 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4439 data[cpu] = x;
4440 sum += x;
4443 len = sprintf(buf, "%lu", sum);
4445 #ifdef CONFIG_SMP
4446 for_each_online_cpu(cpu) {
4447 if (data[cpu] && len < PAGE_SIZE - 20)
4448 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4450 #endif
4451 kfree(data);
4452 return len + sprintf(buf + len, "\n");
4455 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4457 int cpu;
4459 for_each_online_cpu(cpu)
4460 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4463 #define STAT_ATTR(si, text) \
4464 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4466 return show_stat(s, buf, si); \
4468 static ssize_t text##_store(struct kmem_cache *s, \
4469 const char *buf, size_t length) \
4471 if (buf[0] != '0') \
4472 return -EINVAL; \
4473 clear_stat(s, si); \
4474 return length; \
4476 SLAB_ATTR(text); \
4478 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4479 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4480 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4481 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4482 STAT_ATTR(FREE_FROZEN, free_frozen);
4483 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4484 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4485 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4486 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4487 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4488 STAT_ATTR(FREE_SLAB, free_slab);
4489 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4490 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4491 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4492 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4493 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4494 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4495 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4496 #endif
4498 static struct attribute *slab_attrs[] = {
4499 &slab_size_attr.attr,
4500 &object_size_attr.attr,
4501 &objs_per_slab_attr.attr,
4502 &order_attr.attr,
4503 &min_partial_attr.attr,
4504 &objects_attr.attr,
4505 &objects_partial_attr.attr,
4506 &partial_attr.attr,
4507 &cpu_slabs_attr.attr,
4508 &ctor_attr.attr,
4509 &aliases_attr.attr,
4510 &align_attr.attr,
4511 &hwcache_align_attr.attr,
4512 &reclaim_account_attr.attr,
4513 &destroy_by_rcu_attr.attr,
4514 &shrink_attr.attr,
4515 &reserved_attr.attr,
4516 #ifdef CONFIG_SLUB_DEBUG
4517 &total_objects_attr.attr,
4518 &slabs_attr.attr,
4519 &sanity_checks_attr.attr,
4520 &trace_attr.attr,
4521 &red_zone_attr.attr,
4522 &poison_attr.attr,
4523 &store_user_attr.attr,
4524 &validate_attr.attr,
4525 &alloc_calls_attr.attr,
4526 &free_calls_attr.attr,
4527 #endif
4528 #ifdef CONFIG_ZONE_DMA
4529 &cache_dma_attr.attr,
4530 #endif
4531 #ifdef CONFIG_NUMA
4532 &remote_node_defrag_ratio_attr.attr,
4533 #endif
4534 #ifdef CONFIG_SLUB_STATS
4535 &alloc_fastpath_attr.attr,
4536 &alloc_slowpath_attr.attr,
4537 &free_fastpath_attr.attr,
4538 &free_slowpath_attr.attr,
4539 &free_frozen_attr.attr,
4540 &free_add_partial_attr.attr,
4541 &free_remove_partial_attr.attr,
4542 &alloc_from_partial_attr.attr,
4543 &alloc_slab_attr.attr,
4544 &alloc_refill_attr.attr,
4545 &free_slab_attr.attr,
4546 &cpuslab_flush_attr.attr,
4547 &deactivate_full_attr.attr,
4548 &deactivate_empty_attr.attr,
4549 &deactivate_to_head_attr.attr,
4550 &deactivate_to_tail_attr.attr,
4551 &deactivate_remote_frees_attr.attr,
4552 &order_fallback_attr.attr,
4553 #endif
4554 #ifdef CONFIG_FAILSLAB
4555 &failslab_attr.attr,
4556 #endif
4558 NULL
4561 static struct attribute_group slab_attr_group = {
4562 .attrs = slab_attrs,
4565 static ssize_t slab_attr_show(struct kobject *kobj,
4566 struct attribute *attr,
4567 char *buf)
4569 struct slab_attribute *attribute;
4570 struct kmem_cache *s;
4571 int err;
4573 attribute = to_slab_attr(attr);
4574 s = to_slab(kobj);
4576 if (!attribute->show)
4577 return -EIO;
4579 err = attribute->show(s, buf);
4581 return err;
4584 static ssize_t slab_attr_store(struct kobject *kobj,
4585 struct attribute *attr,
4586 const char *buf, size_t len)
4588 struct slab_attribute *attribute;
4589 struct kmem_cache *s;
4590 int err;
4592 attribute = to_slab_attr(attr);
4593 s = to_slab(kobj);
4595 if (!attribute->store)
4596 return -EIO;
4598 err = attribute->store(s, buf, len);
4600 return err;
4603 static void kmem_cache_release(struct kobject *kobj)
4605 struct kmem_cache *s = to_slab(kobj);
4607 kfree(s->name);
4608 kfree(s);
4611 static const struct sysfs_ops slab_sysfs_ops = {
4612 .show = slab_attr_show,
4613 .store = slab_attr_store,
4616 static struct kobj_type slab_ktype = {
4617 .sysfs_ops = &slab_sysfs_ops,
4618 .release = kmem_cache_release
4621 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4623 struct kobj_type *ktype = get_ktype(kobj);
4625 if (ktype == &slab_ktype)
4626 return 1;
4627 return 0;
4630 static const struct kset_uevent_ops slab_uevent_ops = {
4631 .filter = uevent_filter,
4634 static struct kset *slab_kset;
4636 #define ID_STR_LENGTH 64
4638 /* Create a unique string id for a slab cache:
4640 * Format :[flags-]size
4642 static char *create_unique_id(struct kmem_cache *s)
4644 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4645 char *p = name;
4647 BUG_ON(!name);
4649 *p++ = ':';
4651 * First flags affecting slabcache operations. We will only
4652 * get here for aliasable slabs so we do not need to support
4653 * too many flags. The flags here must cover all flags that
4654 * are matched during merging to guarantee that the id is
4655 * unique.
4657 if (s->flags & SLAB_CACHE_DMA)
4658 *p++ = 'd';
4659 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4660 *p++ = 'a';
4661 if (s->flags & SLAB_DEBUG_FREE)
4662 *p++ = 'F';
4663 if (!(s->flags & SLAB_NOTRACK))
4664 *p++ = 't';
4665 if (p != name + 1)
4666 *p++ = '-';
4667 p += sprintf(p, "%07d", s->size);
4668 BUG_ON(p > name + ID_STR_LENGTH - 1);
4669 return name;
4672 static int sysfs_slab_add(struct kmem_cache *s)
4674 int err;
4675 const char *name;
4676 int unmergeable;
4678 if (slab_state < SYSFS)
4679 /* Defer until later */
4680 return 0;
4682 unmergeable = slab_unmergeable(s);
4683 if (unmergeable) {
4685 * Slabcache can never be merged so we can use the name proper.
4686 * This is typically the case for debug situations. In that
4687 * case we can catch duplicate names easily.
4689 sysfs_remove_link(&slab_kset->kobj, s->name);
4690 name = s->name;
4691 } else {
4693 * Create a unique name for the slab as a target
4694 * for the symlinks.
4696 name = create_unique_id(s);
4699 s->kobj.kset = slab_kset;
4700 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4701 if (err) {
4702 kobject_put(&s->kobj);
4703 return err;
4706 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4707 if (err) {
4708 kobject_del(&s->kobj);
4709 kobject_put(&s->kobj);
4710 return err;
4712 kobject_uevent(&s->kobj, KOBJ_ADD);
4713 if (!unmergeable) {
4714 /* Setup first alias */
4715 sysfs_slab_alias(s, s->name);
4716 kfree(name);
4718 return 0;
4721 static void sysfs_slab_remove(struct kmem_cache *s)
4723 if (slab_state < SYSFS)
4725 * Sysfs has not been setup yet so no need to remove the
4726 * cache from sysfs.
4728 return;
4730 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4731 kobject_del(&s->kobj);
4732 kobject_put(&s->kobj);
4736 * Need to buffer aliases during bootup until sysfs becomes
4737 * available lest we lose that information.
4739 struct saved_alias {
4740 struct kmem_cache *s;
4741 const char *name;
4742 struct saved_alias *next;
4745 static struct saved_alias *alias_list;
4747 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4749 struct saved_alias *al;
4751 if (slab_state == SYSFS) {
4753 * If we have a leftover link then remove it.
4755 sysfs_remove_link(&slab_kset->kobj, name);
4756 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4759 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4760 if (!al)
4761 return -ENOMEM;
4763 al->s = s;
4764 al->name = name;
4765 al->next = alias_list;
4766 alias_list = al;
4767 return 0;
4770 static int __init slab_sysfs_init(void)
4772 struct kmem_cache *s;
4773 int err;
4775 down_write(&slub_lock);
4777 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4778 if (!slab_kset) {
4779 up_write(&slub_lock);
4780 printk(KERN_ERR "Cannot register slab subsystem.\n");
4781 return -ENOSYS;
4784 slab_state = SYSFS;
4786 list_for_each_entry(s, &slab_caches, list) {
4787 err = sysfs_slab_add(s);
4788 if (err)
4789 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4790 " to sysfs\n", s->name);
4793 while (alias_list) {
4794 struct saved_alias *al = alias_list;
4796 alias_list = alias_list->next;
4797 err = sysfs_slab_alias(al->s, al->name);
4798 if (err)
4799 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4800 " %s to sysfs\n", s->name);
4801 kfree(al);
4804 up_write(&slub_lock);
4805 resiliency_test();
4806 return 0;
4809 __initcall(slab_sysfs_init);
4810 #endif /* CONFIG_SYSFS */
4813 * The /proc/slabinfo ABI
4815 #ifdef CONFIG_SLABINFO
4816 static void print_slabinfo_header(struct seq_file *m)
4818 seq_puts(m, "slabinfo - version: 2.1\n");
4819 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4820 "<objperslab> <pagesperslab>");
4821 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4822 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4823 seq_putc(m, '\n');
4826 static void *s_start(struct seq_file *m, loff_t *pos)
4828 loff_t n = *pos;
4830 down_read(&slub_lock);
4831 if (!n)
4832 print_slabinfo_header(m);
4834 return seq_list_start(&slab_caches, *pos);
4837 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4839 return seq_list_next(p, &slab_caches, pos);
4842 static void s_stop(struct seq_file *m, void *p)
4844 up_read(&slub_lock);
4847 static int s_show(struct seq_file *m, void *p)
4849 unsigned long nr_partials = 0;
4850 unsigned long nr_slabs = 0;
4851 unsigned long nr_inuse = 0;
4852 unsigned long nr_objs = 0;
4853 unsigned long nr_free = 0;
4854 struct kmem_cache *s;
4855 int node;
4857 s = list_entry(p, struct kmem_cache, list);
4859 for_each_online_node(node) {
4860 struct kmem_cache_node *n = get_node(s, node);
4862 if (!n)
4863 continue;
4865 nr_partials += n->nr_partial;
4866 nr_slabs += atomic_long_read(&n->nr_slabs);
4867 nr_objs += atomic_long_read(&n->total_objects);
4868 nr_free += count_partial(n, count_free);
4871 nr_inuse = nr_objs - nr_free;
4873 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4874 nr_objs, s->size, oo_objects(s->oo),
4875 (1 << oo_order(s->oo)));
4876 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4877 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4878 0UL);
4879 seq_putc(m, '\n');
4880 return 0;
4883 static const struct seq_operations slabinfo_op = {
4884 .start = s_start,
4885 .next = s_next,
4886 .stop = s_stop,
4887 .show = s_show,
4890 static int slabinfo_open(struct inode *inode, struct file *file)
4892 return seq_open(file, &slabinfo_op);
4895 static const struct file_operations proc_slabinfo_operations = {
4896 .open = slabinfo_open,
4897 .read = seq_read,
4898 .llseek = seq_lseek,
4899 .release = seq_release,
4902 static int __init slab_proc_init(void)
4904 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4905 return 0;
4907 module_init(slab_proc_init);
4908 #endif /* CONFIG_SLABINFO */