ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / net / ipv4 / arp.c
blobd8f852dbf6600f4dab50893153bebdbc1d927f2a
1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 EXPORT_SYMBOL(clip_tbl_hook);
120 #endif
122 #include <asm/system.h>
123 #include <linux/uaccess.h>
125 #include <linux/netfilter_arp.h>
128 * Interface to generic neighbour cache.
130 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
131 static int arp_constructor(struct neighbour *neigh);
132 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
133 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
134 static void parp_redo(struct sk_buff *skb);
136 static const struct neigh_ops arp_generic_ops = {
137 .family = AF_INET,
138 .solicit = arp_solicit,
139 .error_report = arp_error_report,
140 .output = neigh_resolve_output,
141 .connected_output = neigh_connected_output,
142 .hh_output = dev_queue_xmit,
143 .queue_xmit = dev_queue_xmit,
146 static const struct neigh_ops arp_hh_ops = {
147 .family = AF_INET,
148 .solicit = arp_solicit,
149 .error_report = arp_error_report,
150 .output = neigh_resolve_output,
151 .connected_output = neigh_resolve_output,
152 .hh_output = dev_queue_xmit,
153 .queue_xmit = dev_queue_xmit,
156 static const struct neigh_ops arp_direct_ops = {
157 .family = AF_INET,
158 .output = dev_queue_xmit,
159 .connected_output = dev_queue_xmit,
160 .hh_output = dev_queue_xmit,
161 .queue_xmit = dev_queue_xmit,
164 static const struct neigh_ops arp_broken_ops = {
165 .family = AF_INET,
166 .solicit = arp_solicit,
167 .error_report = arp_error_report,
168 .output = neigh_compat_output,
169 .connected_output = neigh_compat_output,
170 .hh_output = dev_queue_xmit,
171 .queue_xmit = dev_queue_xmit,
174 struct neigh_table arp_tbl = {
175 .family = AF_INET,
176 .entry_size = sizeof(struct neighbour) + 4,
177 .key_len = 4,
178 .hash = arp_hash,
179 .constructor = arp_constructor,
180 .proxy_redo = parp_redo,
181 .id = "arp_cache",
182 .parms = {
183 .tbl = &arp_tbl,
184 .base_reachable_time = 30 * HZ,
185 .retrans_time = 1 * HZ,
186 .gc_staletime = 60 * HZ,
187 .reachable_time = 30 * HZ,
188 .delay_probe_time = 5 * HZ,
189 .queue_len = 3,
190 .ucast_probes = 3,
191 .mcast_probes = 3,
192 .anycast_delay = 1 * HZ,
193 .proxy_delay = (8 * HZ) / 10,
194 .proxy_qlen = 64,
195 .locktime = 1 * HZ,
197 .gc_interval = 30 * HZ,
198 .gc_thresh1 = 128,
199 .gc_thresh2 = 512,
200 .gc_thresh3 = 1024,
202 EXPORT_SYMBOL(arp_tbl);
204 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
206 switch (dev->type) {
207 case ARPHRD_ETHER:
208 case ARPHRD_FDDI:
209 case ARPHRD_IEEE802:
210 ip_eth_mc_map(addr, haddr);
211 return 0;
212 case ARPHRD_IEEE802_TR:
213 ip_tr_mc_map(addr, haddr);
214 return 0;
215 case ARPHRD_INFINIBAND:
216 ip_ib_mc_map(addr, dev->broadcast, haddr);
217 return 0;
218 case ARPHRD_IPGRE:
219 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
220 return 0;
221 default:
222 if (dir) {
223 memcpy(haddr, dev->broadcast, dev->addr_len);
224 return 0;
227 return -EINVAL;
231 static u32 arp_hash(const void *pkey,
232 const struct net_device *dev,
233 __u32 hash_rnd)
235 return jhash_2words(*(u32 *)pkey, dev->ifindex, hash_rnd);
238 static int arp_constructor(struct neighbour *neigh)
240 __be32 addr = *(__be32 *)neigh->primary_key;
241 struct net_device *dev = neigh->dev;
242 struct in_device *in_dev;
243 struct neigh_parms *parms;
245 rcu_read_lock();
246 in_dev = __in_dev_get_rcu(dev);
247 if (in_dev == NULL) {
248 rcu_read_unlock();
249 return -EINVAL;
252 neigh->type = inet_addr_type(dev_net(dev), addr);
254 parms = in_dev->arp_parms;
255 __neigh_parms_put(neigh->parms);
256 neigh->parms = neigh_parms_clone(parms);
257 rcu_read_unlock();
259 if (!dev->header_ops) {
260 neigh->nud_state = NUD_NOARP;
261 neigh->ops = &arp_direct_ops;
262 neigh->output = neigh->ops->queue_xmit;
263 } else {
264 /* Good devices (checked by reading texts, but only Ethernet is
265 tested)
267 ARPHRD_ETHER: (ethernet, apfddi)
268 ARPHRD_FDDI: (fddi)
269 ARPHRD_IEEE802: (tr)
270 ARPHRD_METRICOM: (strip)
271 ARPHRD_ARCNET:
272 etc. etc. etc.
274 ARPHRD_IPDDP will also work, if author repairs it.
275 I did not it, because this driver does not work even
276 in old paradigm.
279 #if 1
280 /* So... these "amateur" devices are hopeless.
281 The only thing, that I can say now:
282 It is very sad that we need to keep ugly obsolete
283 code to make them happy.
285 They should be moved to more reasonable state, now
286 they use rebuild_header INSTEAD OF hard_start_xmit!!!
287 Besides that, they are sort of out of date
288 (a lot of redundant clones/copies, useless in 2.1),
289 I wonder why people believe that they work.
291 switch (dev->type) {
292 default:
293 break;
294 case ARPHRD_ROSE:
295 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
296 case ARPHRD_AX25:
297 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
298 case ARPHRD_NETROM:
299 #endif
300 neigh->ops = &arp_broken_ops;
301 neigh->output = neigh->ops->output;
302 return 0;
303 #else
304 break;
305 #endif
307 #endif
308 if (neigh->type == RTN_MULTICAST) {
309 neigh->nud_state = NUD_NOARP;
310 arp_mc_map(addr, neigh->ha, dev, 1);
311 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
312 neigh->nud_state = NUD_NOARP;
313 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
314 } else if (neigh->type == RTN_BROADCAST ||
315 (dev->flags & IFF_POINTOPOINT)) {
316 neigh->nud_state = NUD_NOARP;
317 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
320 if (dev->header_ops->cache)
321 neigh->ops = &arp_hh_ops;
322 else
323 neigh->ops = &arp_generic_ops;
325 if (neigh->nud_state & NUD_VALID)
326 neigh->output = neigh->ops->connected_output;
327 else
328 neigh->output = neigh->ops->output;
330 return 0;
333 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
335 dst_link_failure(skb);
336 kfree_skb(skb);
339 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
341 __be32 saddr = 0;
342 u8 *dst_ha = NULL;
343 struct net_device *dev = neigh->dev;
344 __be32 target = *(__be32 *)neigh->primary_key;
345 int probes = atomic_read(&neigh->probes);
346 struct in_device *in_dev;
348 rcu_read_lock();
349 in_dev = __in_dev_get_rcu(dev);
350 if (!in_dev) {
351 rcu_read_unlock();
352 return;
354 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
355 default:
356 case 0: /* By default announce any local IP */
357 if (skb && inet_addr_type(dev_net(dev),
358 ip_hdr(skb)->saddr) == RTN_LOCAL)
359 saddr = ip_hdr(skb)->saddr;
360 break;
361 case 1: /* Restrict announcements of saddr in same subnet */
362 if (!skb)
363 break;
364 saddr = ip_hdr(skb)->saddr;
365 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
366 /* saddr should be known to target */
367 if (inet_addr_onlink(in_dev, target, saddr))
368 break;
370 saddr = 0;
371 break;
372 case 2: /* Avoid secondary IPs, get a primary/preferred one */
373 break;
375 rcu_read_unlock();
377 if (!saddr)
378 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
380 probes -= neigh->parms->ucast_probes;
381 if (probes < 0) {
382 if (!(neigh->nud_state & NUD_VALID))
383 printk(KERN_DEBUG
384 "trying to ucast probe in NUD_INVALID\n");
385 dst_ha = neigh->ha;
386 read_lock_bh(&neigh->lock);
387 } else {
388 probes -= neigh->parms->app_probes;
389 if (probes < 0) {
390 #ifdef CONFIG_ARPD
391 neigh_app_ns(neigh);
392 #endif
393 return;
397 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
398 dst_ha, dev->dev_addr, NULL);
399 if (dst_ha)
400 read_unlock_bh(&neigh->lock);
403 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
405 int scope;
407 switch (IN_DEV_ARP_IGNORE(in_dev)) {
408 case 0: /* Reply, the tip is already validated */
409 return 0;
410 case 1: /* Reply only if tip is configured on the incoming interface */
411 sip = 0;
412 scope = RT_SCOPE_HOST;
413 break;
414 case 2: /*
415 * Reply only if tip is configured on the incoming interface
416 * and is in same subnet as sip
418 scope = RT_SCOPE_HOST;
419 break;
420 case 3: /* Do not reply for scope host addresses */
421 sip = 0;
422 scope = RT_SCOPE_LINK;
423 break;
424 case 4: /* Reserved */
425 case 5:
426 case 6:
427 case 7:
428 return 0;
429 case 8: /* Do not reply */
430 return 1;
431 default:
432 return 0;
434 return !inet_confirm_addr(in_dev, sip, tip, scope);
437 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
439 struct rtable *rt;
440 int flag = 0;
441 /*unsigned long now; */
442 struct net *net = dev_net(dev);
444 rt = ip_route_output(net, sip, tip, 0, 0);
445 if (IS_ERR(rt))
446 return 1;
447 if (rt->dst.dev != dev) {
448 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
449 flag = 1;
451 ip_rt_put(rt);
452 return flag;
455 /* OBSOLETE FUNCTIONS */
458 * Find an arp mapping in the cache. If not found, post a request.
460 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
461 * even if it exists. It is supposed that skb->dev was mangled
462 * by a virtual device (eql, shaper). Nobody but broken devices
463 * is allowed to use this function, it is scheduled to be removed. --ANK
466 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
467 __be32 paddr, struct net_device *dev)
469 switch (addr_hint) {
470 case RTN_LOCAL:
471 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
472 memcpy(haddr, dev->dev_addr, dev->addr_len);
473 return 1;
474 case RTN_MULTICAST:
475 arp_mc_map(paddr, haddr, dev, 1);
476 return 1;
477 case RTN_BROADCAST:
478 memcpy(haddr, dev->broadcast, dev->addr_len);
479 return 1;
481 return 0;
485 int arp_find(unsigned char *haddr, struct sk_buff *skb)
487 struct net_device *dev = skb->dev;
488 __be32 paddr;
489 struct neighbour *n;
491 if (!skb_dst(skb)) {
492 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
493 kfree_skb(skb);
494 return 1;
497 paddr = skb_rtable(skb)->rt_gateway;
499 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
500 paddr, dev))
501 return 0;
503 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
505 if (n) {
506 n->used = jiffies;
507 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
508 neigh_ha_snapshot(haddr, n, dev);
509 neigh_release(n);
510 return 0;
512 neigh_release(n);
513 } else
514 kfree_skb(skb);
515 return 1;
517 EXPORT_SYMBOL(arp_find);
519 /* END OF OBSOLETE FUNCTIONS */
521 struct neighbour *__arp_bind_neighbour(struct dst_entry *dst, __be32 nexthop)
523 struct net_device *dev = dst->dev;
525 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
526 nexthop = 0;
527 return __neigh_lookup_errno(
528 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
529 dev->type == ARPHRD_ATM ?
530 clip_tbl_hook :
531 #endif
532 &arp_tbl, &nexthop, dev);
535 int arp_bind_neighbour(struct dst_entry *dst)
537 struct net_device *dev = dst->dev;
538 struct neighbour *n = dst_get_neighbour(dst);
540 if (dev == NULL)
541 return -EINVAL;
542 if (n == NULL) {
543 n = __arp_bind_neighbour(dst, ((struct rtable *)dst)->rt_gateway);
544 if (IS_ERR(n))
545 return PTR_ERR(n);
546 dst_set_neighbour(dst, n);
548 return 0;
552 * Check if we can use proxy ARP for this path
554 static inline int arp_fwd_proxy(struct in_device *in_dev,
555 struct net_device *dev, struct rtable *rt)
557 struct in_device *out_dev;
558 int imi, omi = -1;
560 if (rt->dst.dev == dev)
561 return 0;
563 if (!IN_DEV_PROXY_ARP(in_dev))
564 return 0;
565 imi = IN_DEV_MEDIUM_ID(in_dev);
566 if (imi == 0)
567 return 1;
568 if (imi == -1)
569 return 0;
571 /* place to check for proxy_arp for routes */
573 out_dev = __in_dev_get_rcu(rt->dst.dev);
574 if (out_dev)
575 omi = IN_DEV_MEDIUM_ID(out_dev);
577 return omi != imi && omi != -1;
581 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
583 * RFC3069 supports proxy arp replies back to the same interface. This
584 * is done to support (ethernet) switch features, like RFC 3069, where
585 * the individual ports are not allowed to communicate with each
586 * other, BUT they are allowed to talk to the upstream router. As
587 * described in RFC 3069, it is possible to allow these hosts to
588 * communicate through the upstream router, by proxy_arp'ing.
590 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
592 * This technology is known by different names:
593 * In RFC 3069 it is called VLAN Aggregation.
594 * Cisco and Allied Telesyn call it Private VLAN.
595 * Hewlett-Packard call it Source-Port filtering or port-isolation.
596 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
599 static inline int arp_fwd_pvlan(struct in_device *in_dev,
600 struct net_device *dev, struct rtable *rt,
601 __be32 sip, __be32 tip)
603 /* Private VLAN is only concerned about the same ethernet segment */
604 if (rt->dst.dev != dev)
605 return 0;
607 /* Don't reply on self probes (often done by windowz boxes)*/
608 if (sip == tip)
609 return 0;
611 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
612 return 1;
613 else
614 return 0;
618 * Interface to link layer: send routine and receive handler.
622 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
623 * message.
625 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
626 struct net_device *dev, __be32 src_ip,
627 const unsigned char *dest_hw,
628 const unsigned char *src_hw,
629 const unsigned char *target_hw)
631 struct sk_buff *skb;
632 struct arphdr *arp;
633 unsigned char *arp_ptr;
636 * Allocate a buffer
639 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
640 if (skb == NULL)
641 return NULL;
643 skb_reserve(skb, LL_RESERVED_SPACE(dev));
644 skb_reset_network_header(skb);
645 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
646 skb->dev = dev;
647 skb->protocol = htons(ETH_P_ARP);
648 if (src_hw == NULL)
649 src_hw = dev->dev_addr;
650 if (dest_hw == NULL)
651 dest_hw = dev->broadcast;
654 * Fill the device header for the ARP frame
656 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
657 goto out;
660 * Fill out the arp protocol part.
662 * The arp hardware type should match the device type, except for FDDI,
663 * which (according to RFC 1390) should always equal 1 (Ethernet).
666 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
667 * DIX code for the protocol. Make these device structure fields.
669 switch (dev->type) {
670 default:
671 arp->ar_hrd = htons(dev->type);
672 arp->ar_pro = htons(ETH_P_IP);
673 break;
675 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
676 case ARPHRD_AX25:
677 arp->ar_hrd = htons(ARPHRD_AX25);
678 arp->ar_pro = htons(AX25_P_IP);
679 break;
681 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
682 case ARPHRD_NETROM:
683 arp->ar_hrd = htons(ARPHRD_NETROM);
684 arp->ar_pro = htons(AX25_P_IP);
685 break;
686 #endif
687 #endif
689 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
690 case ARPHRD_FDDI:
691 arp->ar_hrd = htons(ARPHRD_ETHER);
692 arp->ar_pro = htons(ETH_P_IP);
693 break;
694 #endif
695 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
696 case ARPHRD_IEEE802_TR:
697 arp->ar_hrd = htons(ARPHRD_IEEE802);
698 arp->ar_pro = htons(ETH_P_IP);
699 break;
700 #endif
703 arp->ar_hln = dev->addr_len;
704 arp->ar_pln = 4;
705 arp->ar_op = htons(type);
707 arp_ptr = (unsigned char *)(arp + 1);
709 memcpy(arp_ptr, src_hw, dev->addr_len);
710 arp_ptr += dev->addr_len;
711 memcpy(arp_ptr, &src_ip, 4);
712 arp_ptr += 4;
713 if (target_hw != NULL)
714 memcpy(arp_ptr, target_hw, dev->addr_len);
715 else
716 memset(arp_ptr, 0, dev->addr_len);
717 arp_ptr += dev->addr_len;
718 memcpy(arp_ptr, &dest_ip, 4);
720 return skb;
722 out:
723 kfree_skb(skb);
724 return NULL;
726 EXPORT_SYMBOL(arp_create);
729 * Send an arp packet.
731 void arp_xmit(struct sk_buff *skb)
733 /* Send it off, maybe filter it using firewalling first. */
734 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
736 EXPORT_SYMBOL(arp_xmit);
739 * Create and send an arp packet.
741 void arp_send(int type, int ptype, __be32 dest_ip,
742 struct net_device *dev, __be32 src_ip,
743 const unsigned char *dest_hw, const unsigned char *src_hw,
744 const unsigned char *target_hw)
746 struct sk_buff *skb;
749 * No arp on this interface.
752 if (dev->flags&IFF_NOARP)
753 return;
755 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
756 dest_hw, src_hw, target_hw);
757 if (skb == NULL)
758 return;
760 arp_xmit(skb);
762 EXPORT_SYMBOL(arp_send);
765 * Process an arp request.
768 static int arp_process(struct sk_buff *skb)
770 struct net_device *dev = skb->dev;
771 struct in_device *in_dev = __in_dev_get_rcu(dev);
772 struct arphdr *arp;
773 unsigned char *arp_ptr;
774 struct rtable *rt;
775 unsigned char *sha;
776 __be32 sip, tip;
777 u16 dev_type = dev->type;
778 int addr_type;
779 struct neighbour *n;
780 struct net *net = dev_net(dev);
782 /* arp_rcv below verifies the ARP header and verifies the device
783 * is ARP'able.
786 if (in_dev == NULL)
787 goto out;
789 arp = arp_hdr(skb);
791 switch (dev_type) {
792 default:
793 if (arp->ar_pro != htons(ETH_P_IP) ||
794 htons(dev_type) != arp->ar_hrd)
795 goto out;
796 break;
797 case ARPHRD_ETHER:
798 case ARPHRD_IEEE802_TR:
799 case ARPHRD_FDDI:
800 case ARPHRD_IEEE802:
802 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
803 * devices, according to RFC 2625) devices will accept ARP
804 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
805 * This is the case also of FDDI, where the RFC 1390 says that
806 * FDDI devices should accept ARP hardware of (1) Ethernet,
807 * however, to be more robust, we'll accept both 1 (Ethernet)
808 * or 6 (IEEE 802.2)
810 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
811 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
812 arp->ar_pro != htons(ETH_P_IP))
813 goto out;
814 break;
815 case ARPHRD_AX25:
816 if (arp->ar_pro != htons(AX25_P_IP) ||
817 arp->ar_hrd != htons(ARPHRD_AX25))
818 goto out;
819 break;
820 case ARPHRD_NETROM:
821 if (arp->ar_pro != htons(AX25_P_IP) ||
822 arp->ar_hrd != htons(ARPHRD_NETROM))
823 goto out;
824 break;
827 /* Understand only these message types */
829 if (arp->ar_op != htons(ARPOP_REPLY) &&
830 arp->ar_op != htons(ARPOP_REQUEST))
831 goto out;
834 * Extract fields
836 arp_ptr = (unsigned char *)(arp + 1);
837 sha = arp_ptr;
838 arp_ptr += dev->addr_len;
839 memcpy(&sip, arp_ptr, 4);
840 arp_ptr += 4;
841 arp_ptr += dev->addr_len;
842 memcpy(&tip, arp_ptr, 4);
844 * Check for bad requests for 127.x.x.x and requests for multicast
845 * addresses. If this is one such, delete it.
847 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
848 goto out;
851 * Special case: We must set Frame Relay source Q.922 address
853 if (dev_type == ARPHRD_DLCI)
854 sha = dev->broadcast;
857 * Process entry. The idea here is we want to send a reply if it is a
858 * request for us or if it is a request for someone else that we hold
859 * a proxy for. We want to add an entry to our cache if it is a reply
860 * to us or if it is a request for our address.
861 * (The assumption for this last is that if someone is requesting our
862 * address, they are probably intending to talk to us, so it saves time
863 * if we cache their address. Their address is also probably not in
864 * our cache, since ours is not in their cache.)
866 * Putting this another way, we only care about replies if they are to
867 * us, in which case we add them to the cache. For requests, we care
868 * about those for us and those for our proxies. We reply to both,
869 * and in the case of requests for us we add the requester to the arp
870 * cache.
873 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
874 if (sip == 0) {
875 if (arp->ar_op == htons(ARPOP_REQUEST) &&
876 inet_addr_type(net, tip) == RTN_LOCAL &&
877 !arp_ignore(in_dev, sip, tip))
878 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
879 dev->dev_addr, sha);
880 goto out;
883 if (arp->ar_op == htons(ARPOP_REQUEST) &&
884 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
886 rt = skb_rtable(skb);
887 addr_type = rt->rt_type;
889 if (addr_type == RTN_LOCAL) {
890 int dont_send;
892 dont_send = arp_ignore(in_dev, sip, tip);
893 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
894 dont_send = arp_filter(sip, tip, dev);
895 if (!dont_send) {
896 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
897 if (n) {
898 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
899 dev, tip, sha, dev->dev_addr,
900 sha);
901 neigh_release(n);
904 goto out;
905 } else if (IN_DEV_FORWARD(in_dev)) {
906 if (addr_type == RTN_UNICAST &&
907 (arp_fwd_proxy(in_dev, dev, rt) ||
908 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
909 (rt->dst.dev != dev &&
910 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
911 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
912 if (n)
913 neigh_release(n);
915 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
916 skb->pkt_type == PACKET_HOST ||
917 in_dev->arp_parms->proxy_delay == 0) {
918 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
919 dev, tip, sha, dev->dev_addr,
920 sha);
921 } else {
922 pneigh_enqueue(&arp_tbl,
923 in_dev->arp_parms, skb);
924 return 0;
926 goto out;
931 /* Update our ARP tables */
933 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
935 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
936 /* Unsolicited ARP is not accepted by default.
937 It is possible, that this option should be enabled for some
938 devices (strip is candidate)
940 if (n == NULL &&
941 (arp->ar_op == htons(ARPOP_REPLY) ||
942 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
943 inet_addr_type(net, sip) == RTN_UNICAST)
944 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
947 if (n) {
948 int state = NUD_REACHABLE;
949 int override;
951 /* If several different ARP replies follows back-to-back,
952 use the FIRST one. It is possible, if several proxy
953 agents are active. Taking the first reply prevents
954 arp trashing and chooses the fastest router.
956 override = time_after(jiffies, n->updated + n->parms->locktime);
958 /* Broadcast replies and request packets
959 do not assert neighbour reachability.
961 if (arp->ar_op != htons(ARPOP_REPLY) ||
962 skb->pkt_type != PACKET_HOST)
963 state = NUD_STALE;
964 neigh_update(n, sha, state,
965 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
966 neigh_release(n);
969 out:
970 consume_skb(skb);
971 return 0;
974 static void parp_redo(struct sk_buff *skb)
976 arp_process(skb);
981 * Receive an arp request from the device layer.
984 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
985 struct packet_type *pt, struct net_device *orig_dev)
987 struct arphdr *arp;
989 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
990 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
991 goto freeskb;
993 arp = arp_hdr(skb);
994 if (arp->ar_hln != dev->addr_len ||
995 dev->flags & IFF_NOARP ||
996 skb->pkt_type == PACKET_OTHERHOST ||
997 skb->pkt_type == PACKET_LOOPBACK ||
998 arp->ar_pln != 4)
999 goto freeskb;
1001 skb = skb_share_check(skb, GFP_ATOMIC);
1002 if (skb == NULL)
1003 goto out_of_mem;
1005 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
1007 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
1009 freeskb:
1010 kfree_skb(skb);
1011 out_of_mem:
1012 return 0;
1016 * User level interface (ioctl)
1020 * Set (create) an ARP cache entry.
1023 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1025 if (dev == NULL) {
1026 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1027 return 0;
1029 if (__in_dev_get_rtnl(dev)) {
1030 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1031 return 0;
1033 return -ENXIO;
1036 static int arp_req_set_public(struct net *net, struct arpreq *r,
1037 struct net_device *dev)
1039 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1040 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1042 if (mask && mask != htonl(0xFFFFFFFF))
1043 return -EINVAL;
1044 if (!dev && (r->arp_flags & ATF_COM)) {
1045 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1046 r->arp_ha.sa_data);
1047 if (!dev)
1048 return -ENODEV;
1050 if (mask) {
1051 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1052 return -ENOBUFS;
1053 return 0;
1056 return arp_req_set_proxy(net, dev, 1);
1059 static int arp_req_set(struct net *net, struct arpreq *r,
1060 struct net_device *dev)
1062 __be32 ip;
1063 struct neighbour *neigh;
1064 int err;
1066 if (r->arp_flags & ATF_PUBL)
1067 return arp_req_set_public(net, r, dev);
1069 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1070 if (r->arp_flags & ATF_PERM)
1071 r->arp_flags |= ATF_COM;
1072 if (dev == NULL) {
1073 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1075 if (IS_ERR(rt))
1076 return PTR_ERR(rt);
1077 dev = rt->dst.dev;
1078 ip_rt_put(rt);
1079 if (!dev)
1080 return -EINVAL;
1082 switch (dev->type) {
1083 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1084 case ARPHRD_FDDI:
1086 * According to RFC 1390, FDDI devices should accept ARP
1087 * hardware types of 1 (Ethernet). However, to be more
1088 * robust, we'll accept hardware types of either 1 (Ethernet)
1089 * or 6 (IEEE 802.2).
1091 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1092 r->arp_ha.sa_family != ARPHRD_ETHER &&
1093 r->arp_ha.sa_family != ARPHRD_IEEE802)
1094 return -EINVAL;
1095 break;
1096 #endif
1097 default:
1098 if (r->arp_ha.sa_family != dev->type)
1099 return -EINVAL;
1100 break;
1103 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1104 err = PTR_ERR(neigh);
1105 if (!IS_ERR(neigh)) {
1106 unsigned state = NUD_STALE;
1107 if (r->arp_flags & ATF_PERM)
1108 state = NUD_PERMANENT;
1109 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1110 r->arp_ha.sa_data : NULL, state,
1111 NEIGH_UPDATE_F_OVERRIDE |
1112 NEIGH_UPDATE_F_ADMIN);
1113 neigh_release(neigh);
1115 return err;
1118 static unsigned arp_state_to_flags(struct neighbour *neigh)
1120 if (neigh->nud_state&NUD_PERMANENT)
1121 return ATF_PERM | ATF_COM;
1122 else if (neigh->nud_state&NUD_VALID)
1123 return ATF_COM;
1124 else
1125 return 0;
1129 * Get an ARP cache entry.
1132 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1134 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1135 struct neighbour *neigh;
1136 int err = -ENXIO;
1138 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1139 if (neigh) {
1140 read_lock_bh(&neigh->lock);
1141 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1142 r->arp_flags = arp_state_to_flags(neigh);
1143 read_unlock_bh(&neigh->lock);
1144 r->arp_ha.sa_family = dev->type;
1145 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1146 neigh_release(neigh);
1147 err = 0;
1149 return err;
1152 int arp_invalidate(struct net_device *dev, __be32 ip)
1154 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1155 int err = -ENXIO;
1157 if (neigh) {
1158 if (neigh->nud_state & ~NUD_NOARP)
1159 err = neigh_update(neigh, NULL, NUD_FAILED,
1160 NEIGH_UPDATE_F_OVERRIDE|
1161 NEIGH_UPDATE_F_ADMIN);
1162 neigh_release(neigh);
1165 return err;
1167 EXPORT_SYMBOL(arp_invalidate);
1169 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1170 struct net_device *dev)
1172 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1173 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1175 if (mask == htonl(0xFFFFFFFF))
1176 return pneigh_delete(&arp_tbl, net, &ip, dev);
1178 if (mask)
1179 return -EINVAL;
1181 return arp_req_set_proxy(net, dev, 0);
1184 static int arp_req_delete(struct net *net, struct arpreq *r,
1185 struct net_device *dev)
1187 __be32 ip;
1189 if (r->arp_flags & ATF_PUBL)
1190 return arp_req_delete_public(net, r, dev);
1192 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1193 if (dev == NULL) {
1194 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1195 if (IS_ERR(rt))
1196 return PTR_ERR(rt);
1197 dev = rt->dst.dev;
1198 ip_rt_put(rt);
1199 if (!dev)
1200 return -EINVAL;
1202 return arp_invalidate(dev, ip);
1206 * Handle an ARP layer I/O control request.
1209 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1211 int err;
1212 struct arpreq r;
1213 struct net_device *dev = NULL;
1215 switch (cmd) {
1216 case SIOCDARP:
1217 case SIOCSARP:
1218 if (!capable(CAP_NET_ADMIN))
1219 return -EPERM;
1220 case SIOCGARP:
1221 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1222 if (err)
1223 return -EFAULT;
1224 break;
1225 default:
1226 return -EINVAL;
1229 if (r.arp_pa.sa_family != AF_INET)
1230 return -EPFNOSUPPORT;
1232 if (!(r.arp_flags & ATF_PUBL) &&
1233 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1234 return -EINVAL;
1235 if (!(r.arp_flags & ATF_NETMASK))
1236 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1237 htonl(0xFFFFFFFFUL);
1238 rtnl_lock();
1239 if (r.arp_dev[0]) {
1240 err = -ENODEV;
1241 dev = __dev_get_by_name(net, r.arp_dev);
1242 if (dev == NULL)
1243 goto out;
1245 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1246 if (!r.arp_ha.sa_family)
1247 r.arp_ha.sa_family = dev->type;
1248 err = -EINVAL;
1249 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1250 goto out;
1251 } else if (cmd == SIOCGARP) {
1252 err = -ENODEV;
1253 goto out;
1256 switch (cmd) {
1257 case SIOCDARP:
1258 err = arp_req_delete(net, &r, dev);
1259 break;
1260 case SIOCSARP:
1261 err = arp_req_set(net, &r, dev);
1262 break;
1263 case SIOCGARP:
1264 err = arp_req_get(&r, dev);
1265 break;
1267 out:
1268 rtnl_unlock();
1269 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1270 err = -EFAULT;
1271 return err;
1274 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1275 void *ptr)
1277 struct net_device *dev = ptr;
1279 switch (event) {
1280 case NETDEV_CHANGEADDR:
1281 neigh_changeaddr(&arp_tbl, dev);
1282 rt_cache_flush(dev_net(dev), 0);
1283 break;
1284 default:
1285 break;
1288 return NOTIFY_DONE;
1291 static struct notifier_block arp_netdev_notifier = {
1292 .notifier_call = arp_netdev_event,
1295 /* Note, that it is not on notifier chain.
1296 It is necessary, that this routine was called after route cache will be
1297 flushed.
1299 void arp_ifdown(struct net_device *dev)
1301 neigh_ifdown(&arp_tbl, dev);
1306 * Called once on startup.
1309 static struct packet_type arp_packet_type __read_mostly = {
1310 .type = cpu_to_be16(ETH_P_ARP),
1311 .func = arp_rcv,
1314 static int arp_proc_init(void);
1316 void __init arp_init(void)
1318 neigh_table_init(&arp_tbl);
1320 dev_add_pack(&arp_packet_type);
1321 arp_proc_init();
1322 #ifdef CONFIG_SYSCTL
1323 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1324 #endif
1325 register_netdevice_notifier(&arp_netdev_notifier);
1328 #ifdef CONFIG_PROC_FS
1329 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1331 /* ------------------------------------------------------------------------ */
1333 * ax25 -> ASCII conversion
1335 static char *ax2asc2(ax25_address *a, char *buf)
1337 char c, *s;
1338 int n;
1340 for (n = 0, s = buf; n < 6; n++) {
1341 c = (a->ax25_call[n] >> 1) & 0x7F;
1343 if (c != ' ')
1344 *s++ = c;
1347 *s++ = '-';
1348 n = (a->ax25_call[6] >> 1) & 0x0F;
1349 if (n > 9) {
1350 *s++ = '1';
1351 n -= 10;
1354 *s++ = n + '0';
1355 *s++ = '\0';
1357 if (*buf == '\0' || *buf == '-')
1358 return "*";
1360 return buf;
1362 #endif /* CONFIG_AX25 */
1364 #define HBUFFERLEN 30
1366 static void arp_format_neigh_entry(struct seq_file *seq,
1367 struct neighbour *n)
1369 char hbuffer[HBUFFERLEN];
1370 int k, j;
1371 char tbuf[16];
1372 struct net_device *dev = n->dev;
1373 int hatype = dev->type;
1375 read_lock(&n->lock);
1376 /* Convert hardware address to XX:XX:XX:XX ... form. */
1377 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1378 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1379 ax2asc2((ax25_address *)n->ha, hbuffer);
1380 else {
1381 #endif
1382 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1383 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1384 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1385 hbuffer[k++] = ':';
1387 if (k != 0)
1388 --k;
1389 hbuffer[k] = 0;
1390 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1392 #endif
1393 sprintf(tbuf, "%pI4", n->primary_key);
1394 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1395 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1396 read_unlock(&n->lock);
1399 static void arp_format_pneigh_entry(struct seq_file *seq,
1400 struct pneigh_entry *n)
1402 struct net_device *dev = n->dev;
1403 int hatype = dev ? dev->type : 0;
1404 char tbuf[16];
1406 sprintf(tbuf, "%pI4", n->key);
1407 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1408 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1409 dev ? dev->name : "*");
1412 static int arp_seq_show(struct seq_file *seq, void *v)
1414 if (v == SEQ_START_TOKEN) {
1415 seq_puts(seq, "IP address HW type Flags "
1416 "HW address Mask Device\n");
1417 } else {
1418 struct neigh_seq_state *state = seq->private;
1420 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1421 arp_format_pneigh_entry(seq, v);
1422 else
1423 arp_format_neigh_entry(seq, v);
1426 return 0;
1429 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1431 /* Don't want to confuse "arp -a" w/ magic entries,
1432 * so we tell the generic iterator to skip NUD_NOARP.
1434 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1437 /* ------------------------------------------------------------------------ */
1439 static const struct seq_operations arp_seq_ops = {
1440 .start = arp_seq_start,
1441 .next = neigh_seq_next,
1442 .stop = neigh_seq_stop,
1443 .show = arp_seq_show,
1446 static int arp_seq_open(struct inode *inode, struct file *file)
1448 return seq_open_net(inode, file, &arp_seq_ops,
1449 sizeof(struct neigh_seq_state));
1452 static const struct file_operations arp_seq_fops = {
1453 .owner = THIS_MODULE,
1454 .open = arp_seq_open,
1455 .read = seq_read,
1456 .llseek = seq_lseek,
1457 .release = seq_release_net,
1461 static int __net_init arp_net_init(struct net *net)
1463 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1464 return -ENOMEM;
1465 return 0;
1468 static void __net_exit arp_net_exit(struct net *net)
1470 proc_net_remove(net, "arp");
1473 static struct pernet_operations arp_net_ops = {
1474 .init = arp_net_init,
1475 .exit = arp_net_exit,
1478 static int __init arp_proc_init(void)
1480 return register_pernet_subsys(&arp_net_ops);
1483 #else /* CONFIG_PROC_FS */
1485 static int __init arp_proc_init(void)
1487 return 0;
1490 #endif /* CONFIG_PROC_FS */