2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 EXPORT_SYMBOL(sysctl_tcp_reordering
);
82 int sysctl_tcp_ecn __read_mostly
= 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 int sysctl_tcp_stdurg __read_mostly
;
90 int sysctl_tcp_rfc1337 __read_mostly
;
91 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
92 int sysctl_tcp_frto __read_mostly
= 2;
93 int sysctl_tcp_frto_response __read_mostly
;
94 int sysctl_tcp_nometrics_save __read_mostly
;
96 int sysctl_tcp_thin_dupack __read_mostly
;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_abc __read_mostly
;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
130 struct inet_connection_sock
*icsk
= inet_csk(sk
);
131 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
134 icsk
->icsk_ack
.last_seg_size
= 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
140 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
141 icsk
->icsk_ack
.rcv_mss
= len
;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len
+= skb
->data
- skb_transport_header(skb
);
149 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
156 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len
-= tcp_sk(sk
)->tcp_header_len
;
162 icsk
->icsk_ack
.last_seg_size
= len
;
164 icsk
->icsk_ack
.rcv_mss
= len
;
168 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
174 static void tcp_incr_quickack(struct sock
*sk
)
176 struct inet_connection_sock
*icsk
= inet_csk(sk
);
177 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
181 if (quickacks
> icsk
->icsk_ack
.quick
)
182 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
185 static void tcp_enter_quickack_mode(struct sock
*sk
)
187 struct inet_connection_sock
*icsk
= inet_csk(sk
);
188 tcp_incr_quickack(sk
);
189 icsk
->icsk_ack
.pingpong
= 0;
190 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
199 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
200 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
205 if (tp
->ecn_flags
& TCP_ECN_OK
)
206 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
211 if (tcp_hdr(skb
)->cwr
)
212 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
222 if (tp
->ecn_flags
& TCP_ECN_OK
) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
224 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
229 tcp_enter_quickack_mode((struct sock
*)tp
);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
235 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
236 tp
->ecn_flags
&= ~TCP_ECN_OK
;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
241 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
242 tp
->ecn_flags
&= ~TCP_ECN_OK
;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
247 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock
*sk
)
259 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
260 sizeof(struct sk_buff
);
262 if (sk
->sk_sndbuf
< 3 * sndmem
) {
263 sk
->sk_sndbuf
= 3 * sndmem
;
264 if (sk
->sk_sndbuf
> sysctl_tcp_wmem
[2])
265 sk
->sk_sndbuf
= sysctl_tcp_wmem
[2];
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
297 struct tcp_sock
*tp
= tcp_sk(sk
);
299 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
300 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
302 while (tp
->rcv_ssthresh
<= window
) {
303 if (truesize
<= skb
->len
)
304 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
312 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
314 struct tcp_sock
*tp
= tcp_sk(sk
);
317 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
318 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
319 !tcp_memory_pressure
) {
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
325 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
326 incr
= 2 * tp
->advmss
;
328 incr
= __tcp_grow_window(sk
, skb
);
331 incr
= max_t(int, incr
, 2 * skb
->len
);
332 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
334 inet_csk(sk
)->icsk_ack
.quick
|= 1;
339 /* 3. Tuning rcvbuf, when connection enters established state. */
341 static void tcp_fixup_rcvbuf(struct sock
*sk
)
343 struct tcp_sock
*tp
= tcp_sk(sk
);
344 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
346 /* Try to select rcvbuf so that 4 mss-sized segments
347 * will fit to window and corresponding skbs will fit to our rcvbuf.
348 * (was 3; 4 is minimum to allow fast retransmit to work.)
350 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
352 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
353 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
356 /* 4. Try to fixup all. It is made immediately after connection enters
359 static void tcp_init_buffer_space(struct sock
*sk
)
361 struct tcp_sock
*tp
= tcp_sk(sk
);
364 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
365 tcp_fixup_rcvbuf(sk
);
366 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
367 tcp_fixup_sndbuf(sk
);
369 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
371 maxwin
= tcp_full_space(sk
);
373 if (tp
->window_clamp
>= maxwin
) {
374 tp
->window_clamp
= maxwin
;
376 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
377 tp
->window_clamp
= max(maxwin
-
378 (maxwin
>> sysctl_tcp_app_win
),
382 /* Force reservation of one segment. */
383 if (sysctl_tcp_app_win
&&
384 tp
->window_clamp
> 2 * tp
->advmss
&&
385 tp
->window_clamp
+ tp
->advmss
> maxwin
)
386 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
388 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
389 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
392 /* 5. Recalculate window clamp after socket hit its memory bounds. */
393 static void tcp_clamp_window(struct sock
*sk
)
395 struct tcp_sock
*tp
= tcp_sk(sk
);
396 struct inet_connection_sock
*icsk
= inet_csk(sk
);
398 icsk
->icsk_ack
.quick
= 0;
400 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
401 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
402 !tcp_memory_pressure
&&
403 atomic_long_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
404 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
407 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
408 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
411 /* Initialize RCV_MSS value.
412 * RCV_MSS is an our guess about MSS used by the peer.
413 * We haven't any direct information about the MSS.
414 * It's better to underestimate the RCV_MSS rather than overestimate.
415 * Overestimations make us ACKing less frequently than needed.
416 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
418 void tcp_initialize_rcv_mss(struct sock
*sk
)
420 struct tcp_sock
*tp
= tcp_sk(sk
);
421 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
423 hint
= min(hint
, tp
->rcv_wnd
/ 2);
424 hint
= min(hint
, TCP_MSS_DEFAULT
);
425 hint
= max(hint
, TCP_MIN_MSS
);
427 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
429 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
431 /* Receiver "autotuning" code.
433 * The algorithm for RTT estimation w/o timestamps is based on
434 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
435 * <http://public.lanl.gov/radiant/pubs.html#DRS>
437 * More detail on this code can be found at
438 * <http://staff.psc.edu/jheffner/>,
439 * though this reference is out of date. A new paper
442 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
444 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
450 if (new_sample
!= 0) {
451 /* If we sample in larger samples in the non-timestamp
452 * case, we could grossly overestimate the RTT especially
453 * with chatty applications or bulk transfer apps which
454 * are stalled on filesystem I/O.
456 * Also, since we are only going for a minimum in the
457 * non-timestamp case, we do not smooth things out
458 * else with timestamps disabled convergence takes too
462 m
-= (new_sample
>> 3);
470 /* No previous measure. */
474 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
475 tp
->rcv_rtt_est
.rtt
= new_sample
;
478 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
480 if (tp
->rcv_rtt_est
.time
== 0)
482 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
484 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
487 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
488 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
491 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
492 const struct sk_buff
*skb
)
494 struct tcp_sock
*tp
= tcp_sk(sk
);
495 if (tp
->rx_opt
.rcv_tsecr
&&
496 (TCP_SKB_CB(skb
)->end_seq
-
497 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
498 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
502 * This function should be called every time data is copied to user space.
503 * It calculates the appropriate TCP receive buffer space.
505 void tcp_rcv_space_adjust(struct sock
*sk
)
507 struct tcp_sock
*tp
= tcp_sk(sk
);
511 if (tp
->rcvq_space
.time
== 0)
514 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
515 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
518 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
520 space
= max(tp
->rcvq_space
.space
, space
);
522 if (tp
->rcvq_space
.space
!= space
) {
525 tp
->rcvq_space
.space
= space
;
527 if (sysctl_tcp_moderate_rcvbuf
&&
528 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
529 int new_clamp
= space
;
531 /* Receive space grows, normalize in order to
532 * take into account packet headers and sk_buff
533 * structure overhead.
538 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
539 16 + sizeof(struct sk_buff
));
540 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
543 space
= min(space
, sysctl_tcp_rmem
[2]);
544 if (space
> sk
->sk_rcvbuf
) {
545 sk
->sk_rcvbuf
= space
;
547 /* Make the window clamp follow along. */
548 tp
->window_clamp
= new_clamp
;
554 tp
->rcvq_space
.seq
= tp
->copied_seq
;
555 tp
->rcvq_space
.time
= tcp_time_stamp
;
558 /* There is something which you must keep in mind when you analyze the
559 * behavior of the tp->ato delayed ack timeout interval. When a
560 * connection starts up, we want to ack as quickly as possible. The
561 * problem is that "good" TCP's do slow start at the beginning of data
562 * transmission. The means that until we send the first few ACK's the
563 * sender will sit on his end and only queue most of his data, because
564 * he can only send snd_cwnd unacked packets at any given time. For
565 * each ACK we send, he increments snd_cwnd and transmits more of his
568 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
570 struct tcp_sock
*tp
= tcp_sk(sk
);
571 struct inet_connection_sock
*icsk
= inet_csk(sk
);
574 inet_csk_schedule_ack(sk
);
576 tcp_measure_rcv_mss(sk
, skb
);
578 tcp_rcv_rtt_measure(tp
);
580 now
= tcp_time_stamp
;
582 if (!icsk
->icsk_ack
.ato
) {
583 /* The _first_ data packet received, initialize
584 * delayed ACK engine.
586 tcp_incr_quickack(sk
);
587 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
589 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
591 if (m
<= TCP_ATO_MIN
/ 2) {
592 /* The fastest case is the first. */
593 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
594 } else if (m
< icsk
->icsk_ack
.ato
) {
595 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
596 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
597 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
598 } else if (m
> icsk
->icsk_rto
) {
599 /* Too long gap. Apparently sender failed to
600 * restart window, so that we send ACKs quickly.
602 tcp_incr_quickack(sk
);
606 icsk
->icsk_ack
.lrcvtime
= now
;
608 TCP_ECN_check_ce(tp
, skb
);
611 tcp_grow_window(sk
, skb
);
614 /* Called to compute a smoothed rtt estimate. The data fed to this
615 * routine either comes from timestamps, or from segments that were
616 * known _not_ to have been retransmitted [see Karn/Partridge
617 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
618 * piece by Van Jacobson.
619 * NOTE: the next three routines used to be one big routine.
620 * To save cycles in the RFC 1323 implementation it was better to break
621 * it up into three procedures. -- erics
623 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
625 struct tcp_sock
*tp
= tcp_sk(sk
);
626 long m
= mrtt
; /* RTT */
628 /* The following amusing code comes from Jacobson's
629 * article in SIGCOMM '88. Note that rtt and mdev
630 * are scaled versions of rtt and mean deviation.
631 * This is designed to be as fast as possible
632 * m stands for "measurement".
634 * On a 1990 paper the rto value is changed to:
635 * RTO = rtt + 4 * mdev
637 * Funny. This algorithm seems to be very broken.
638 * These formulae increase RTO, when it should be decreased, increase
639 * too slowly, when it should be increased quickly, decrease too quickly
640 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
641 * does not matter how to _calculate_ it. Seems, it was trap
642 * that VJ failed to avoid. 8)
647 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
648 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
650 m
= -m
; /* m is now abs(error) */
651 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
652 /* This is similar to one of Eifel findings.
653 * Eifel blocks mdev updates when rtt decreases.
654 * This solution is a bit different: we use finer gain
655 * for mdev in this case (alpha*beta).
656 * Like Eifel it also prevents growth of rto,
657 * but also it limits too fast rto decreases,
658 * happening in pure Eifel.
663 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
665 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
666 if (tp
->mdev
> tp
->mdev_max
) {
667 tp
->mdev_max
= tp
->mdev
;
668 if (tp
->mdev_max
> tp
->rttvar
)
669 tp
->rttvar
= tp
->mdev_max
;
671 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
672 if (tp
->mdev_max
< tp
->rttvar
)
673 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
674 tp
->rtt_seq
= tp
->snd_nxt
;
675 tp
->mdev_max
= tcp_rto_min(sk
);
678 /* no previous measure. */
679 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
680 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
681 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
682 tp
->rtt_seq
= tp
->snd_nxt
;
686 /* Calculate rto without backoff. This is the second half of Van Jacobson's
687 * routine referred to above.
689 static inline void tcp_set_rto(struct sock
*sk
)
691 const struct tcp_sock
*tp
= tcp_sk(sk
);
692 /* Old crap is replaced with new one. 8)
695 * 1. If rtt variance happened to be less 50msec, it is hallucination.
696 * It cannot be less due to utterly erratic ACK generation made
697 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
698 * to do with delayed acks, because at cwnd>2 true delack timeout
699 * is invisible. Actually, Linux-2.4 also generates erratic
700 * ACKs in some circumstances.
702 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
704 /* 2. Fixups made earlier cannot be right.
705 * If we do not estimate RTO correctly without them,
706 * all the algo is pure shit and should be replaced
707 * with correct one. It is exactly, which we pretend to do.
710 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
711 * guarantees that rto is higher.
716 /* Save metrics learned by this TCP session.
717 This function is called only, when TCP finishes successfully
718 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720 void tcp_update_metrics(struct sock
*sk
)
722 struct tcp_sock
*tp
= tcp_sk(sk
);
723 struct dst_entry
*dst
= __sk_dst_get(sk
);
725 if (sysctl_tcp_nometrics_save
)
730 if (dst
&& (dst
->flags
& DST_HOST
)) {
731 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
735 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
736 /* This session failed to estimate rtt. Why?
737 * Probably, no packets returned in time.
740 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
741 dst_metric_set(dst
, RTAX_RTT
, 0);
745 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
748 /* If newly calculated rtt larger than stored one,
749 * store new one. Otherwise, use EWMA. Remember,
750 * rtt overestimation is always better than underestimation.
752 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
754 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
756 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
759 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
764 /* Scale deviation to rttvar fixed point */
769 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
773 var
-= (var
- m
) >> 2;
775 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
778 if (tcp_in_initial_slowstart(tp
)) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
781 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
782 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
783 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
784 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
785 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
786 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
787 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
788 icsk
->icsk_ca_state
== TCP_CA_Open
) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
791 dst_metric_set(dst
, RTAX_SSTHRESH
,
792 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
793 if (!dst_metric_locked(dst
, RTAX_CWND
))
794 dst_metric_set(dst
, RTAX_CWND
,
795 (dst_metric(dst
, RTAX_CWND
) +
798 /* Else slow start did not finish, cwnd is non-sense,
799 ssthresh may be also invalid.
801 if (!dst_metric_locked(dst
, RTAX_CWND
))
802 dst_metric_set(dst
, RTAX_CWND
,
803 (dst_metric(dst
, RTAX_CWND
) +
804 tp
->snd_ssthresh
) >> 1);
805 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
806 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
807 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
808 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
811 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
812 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
813 tp
->reordering
!= sysctl_tcp_reordering
)
814 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
819 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
821 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
824 cwnd
= TCP_INIT_CWND
;
825 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
828 /* Set slow start threshold and cwnd not falling to slow start */
829 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
831 struct tcp_sock
*tp
= tcp_sk(sk
);
832 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
834 tp
->prior_ssthresh
= 0;
836 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
839 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
840 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
841 tcp_packets_in_flight(tp
) + 1U);
842 tp
->snd_cwnd_cnt
= 0;
843 tp
->high_seq
= tp
->snd_nxt
;
844 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
845 TCP_ECN_queue_cwr(tp
);
847 tcp_set_ca_state(sk
, TCP_CA_CWR
);
852 * Packet counting of FACK is based on in-order assumptions, therefore TCP
853 * disables it when reordering is detected
855 static void tcp_disable_fack(struct tcp_sock
*tp
)
857 /* RFC3517 uses different metric in lost marker => reset on change */
859 tp
->lost_skb_hint
= NULL
;
860 tp
->rx_opt
.sack_ok
&= ~2;
863 /* Take a notice that peer is sending D-SACKs */
864 static void tcp_dsack_seen(struct tcp_sock
*tp
)
866 tp
->rx_opt
.sack_ok
|= 4;
869 /* Initialize metrics on socket. */
871 static void tcp_init_metrics(struct sock
*sk
)
873 struct tcp_sock
*tp
= tcp_sk(sk
);
874 struct dst_entry
*dst
= __sk_dst_get(sk
);
881 if (dst_metric_locked(dst
, RTAX_CWND
))
882 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
883 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
884 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
885 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
886 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
888 if (dst_metric(dst
, RTAX_REORDERING
) &&
889 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
890 tcp_disable_fack(tp
);
891 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
894 if (dst_metric(dst
, RTAX_RTT
) == 0)
897 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
900 /* Initial rtt is determined from SYN,SYN-ACK.
901 * The segment is small and rtt may appear much
902 * less than real one. Use per-dst memory
903 * to make it more realistic.
905 * A bit of theory. RTT is time passed after "normal" sized packet
906 * is sent until it is ACKed. In normal circumstances sending small
907 * packets force peer to delay ACKs and calculation is correct too.
908 * The algorithm is adaptive and, provided we follow specs, it
909 * NEVER underestimate RTT. BUT! If peer tries to make some clever
910 * tricks sort of "quick acks" for time long enough to decrease RTT
911 * to low value, and then abruptly stops to do it and starts to delay
912 * ACKs, wait for troubles.
914 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
915 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
916 tp
->rtt_seq
= tp
->snd_nxt
;
918 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
919 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
920 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
923 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
) {
925 /* Play conservative. If timestamps are not
926 * supported, TCP will fail to recalculate correct
927 * rtt, if initial rto is too small. FORGET ALL AND RESET!
929 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
931 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
932 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
935 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
936 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
939 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
942 struct tcp_sock
*tp
= tcp_sk(sk
);
943 if (metric
> tp
->reordering
) {
946 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
948 /* This exciting event is worth to be remembered. 8) */
950 mib_idx
= LINUX_MIB_TCPTSREORDER
;
951 else if (tcp_is_reno(tp
))
952 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
953 else if (tcp_is_fack(tp
))
954 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
956 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
958 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
959 #if FASTRETRANS_DEBUG > 1
960 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
961 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
965 tp
->undo_marker
? tp
->undo_retrans
: 0);
967 tcp_disable_fack(tp
);
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
974 if ((tp
->retransmit_skb_hint
== NULL
) ||
975 before(TCP_SKB_CB(skb
)->seq
,
976 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
977 tp
->retransmit_skb_hint
= skb
;
980 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
981 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
984 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
986 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
987 tcp_verify_retransmit_hint(tp
, skb
);
989 tp
->lost_out
+= tcp_skb_pcount(skb
);
990 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
997 tcp_verify_retransmit_hint(tp
, skb
);
999 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1000 tp
->lost_out
+= tcp_skb_pcount(skb
);
1001 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008 * Packets in queue with these bits set are counted in variables
1009 * sacked_out, retrans_out and lost_out, correspondingly.
1011 * Valid combinations are:
1012 * Tag InFlight Description
1013 * 0 1 - orig segment is in flight.
1014 * S 0 - nothing flies, orig reached receiver.
1015 * L 0 - nothing flies, orig lost by net.
1016 * R 2 - both orig and retransmit are in flight.
1017 * L|R 1 - orig is lost, retransmit is in flight.
1018 * S|R 1 - orig reached receiver, retrans is still in flight.
1019 * (L|S|R is logically valid, it could occur when L|R is sacked,
1020 * but it is equivalent to plain S and code short-curcuits it to S.
1021 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 * These 6 states form finite state machine, controlled by the following events:
1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026 * 3. Loss detection event of one of three flavors:
1027 * A. Scoreboard estimator decided the packet is lost.
1028 * A'. Reno "three dupacks" marks head of queue lost.
1029 * A''. Its FACK modfication, head until snd.fack is lost.
1030 * B. SACK arrives sacking data transmitted after never retransmitted
1031 * hole was sent out.
1032 * C. SACK arrives sacking SND.NXT at the moment, when the
1033 * segment was retransmitted.
1034 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 * It is pleasant to note, that state diagram turns out to be commutative,
1037 * so that we are allowed not to be bothered by order of our actions,
1038 * when multiple events arrive simultaneously. (see the function below).
1040 * Reordering detection.
1041 * --------------------
1042 * Reordering metric is maximal distance, which a packet can be displaced
1043 * in packet stream. With SACKs we can estimate it:
1045 * 1. SACK fills old hole and the corresponding segment was not
1046 * ever retransmitted -> reordering. Alas, we cannot use it
1047 * when segment was retransmitted.
1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049 * for retransmitted and already SACKed segment -> reordering..
1050 * Both of these heuristics are not used in Loss state, when we cannot
1051 * account for retransmits accurately.
1053 * SACK block validation.
1054 * ----------------------
1056 * SACK block range validation checks that the received SACK block fits to
1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058 * Note that SND.UNA is not included to the range though being valid because
1059 * it means that the receiver is rather inconsistent with itself reporting
1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061 * perfectly valid, however, in light of RFC2018 which explicitly states
1062 * that "SACK block MUST reflect the newest segment. Even if the newest
1063 * segment is going to be discarded ...", not that it looks very clever
1064 * in case of head skb. Due to potentional receiver driven attacks, we
1065 * choose to avoid immediate execution of a walk in write queue due to
1066 * reneging and defer head skb's loss recovery to standard loss recovery
1067 * procedure that will eventually trigger (nothing forbids us doing this).
1069 * Implements also blockage to start_seq wrap-around. Problem lies in the
1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071 * there's no guarantee that it will be before snd_nxt (n). The problem
1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1075 * <- outs wnd -> <- wrapzone ->
1076 * u e n u_w e_w s n_w
1078 * |<------------+------+----- TCP seqno space --------------+---------->|
1079 * ...-- <2^31 ->| |<--------...
1080 * ...---- >2^31 ------>| |<--------...
1082 * Current code wouldn't be vulnerable but it's better still to discard such
1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 * With D-SACK the lower bound is extended to cover sequence space below
1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090 * again, D-SACK block must not to go across snd_una (for the same reason as
1091 * for the normal SACK blocks, explained above). But there all simplicity
1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093 * fully below undo_marker they do not affect behavior in anyway and can
1094 * therefore be safely ignored. In rare cases (which are more or less
1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096 * fragmentation and packet reordering past skb's retransmission. To consider
1097 * them correctly, the acceptable range must be extended even more though
1098 * the exact amount is rather hard to quantify. However, tp->max_window can
1099 * be used as an exaggerated estimate.
1101 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1102 u32 start_seq
, u32 end_seq
)
1104 /* Too far in future, or reversed (interpretation is ambiguous) */
1105 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1108 /* Nasty start_seq wrap-around check (see comments above) */
1109 if (!before(start_seq
, tp
->snd_nxt
))
1112 /* In outstanding window? ...This is valid exit for D-SACKs too.
1113 * start_seq == snd_una is non-sensical (see comments above)
1115 if (after(start_seq
, tp
->snd_una
))
1118 if (!is_dsack
|| !tp
->undo_marker
)
1121 /* ...Then it's D-SACK, and must reside below snd_una completely */
1122 if (after(end_seq
, tp
->snd_una
))
1125 if (!before(start_seq
, tp
->undo_marker
))
1129 if (!after(end_seq
, tp
->undo_marker
))
1132 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 * start_seq < undo_marker and end_seq >= undo_marker.
1135 return !before(start_seq
, end_seq
- tp
->max_window
);
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139 * Event "C". Later note: FACK people cheated me again 8), we have to account
1140 * for reordering! Ugly, but should help.
1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143 * less than what is now known to be received by the other end (derived from
1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145 * retransmitted skbs to avoid some costly processing per ACKs.
1147 static void tcp_mark_lost_retrans(struct sock
*sk
)
1149 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1150 struct tcp_sock
*tp
= tcp_sk(sk
);
1151 struct sk_buff
*skb
;
1153 u32 new_low_seq
= tp
->snd_nxt
;
1154 u32 received_upto
= tcp_highest_sack_seq(tp
);
1156 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1157 !after(received_upto
, tp
->lost_retrans_low
) ||
1158 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1161 tcp_for_write_queue(skb
, sk
) {
1162 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1164 if (skb
== tcp_send_head(sk
))
1166 if (cnt
== tp
->retrans_out
)
1168 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1171 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1174 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1175 * constraint here (see above) but figuring out that at
1176 * least tp->reordering SACK blocks reside between ack_seq
1177 * and received_upto is not easy task to do cheaply with
1178 * the available datastructures.
1180 * Whether FACK should check here for tp->reordering segs
1181 * in-between one could argue for either way (it would be
1182 * rather simple to implement as we could count fack_count
1183 * during the walk and do tp->fackets_out - fack_count).
1185 if (after(received_upto
, ack_seq
)) {
1186 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1187 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1189 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1190 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1192 if (before(ack_seq
, new_low_seq
))
1193 new_low_seq
= ack_seq
;
1194 cnt
+= tcp_skb_pcount(skb
);
1198 if (tp
->retrans_out
)
1199 tp
->lost_retrans_low
= new_low_seq
;
1202 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1203 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1206 struct tcp_sock
*tp
= tcp_sk(sk
);
1207 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1208 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1211 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1214 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1215 } else if (num_sacks
> 1) {
1216 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1217 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1219 if (!after(end_seq_0
, end_seq_1
) &&
1220 !before(start_seq_0
, start_seq_1
)) {
1223 NET_INC_STATS_BH(sock_net(sk
),
1224 LINUX_MIB_TCPDSACKOFORECV
);
1228 /* D-SACK for already forgotten data... Do dumb counting. */
1229 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1230 !after(end_seq_0
, prior_snd_una
) &&
1231 after(end_seq_0
, tp
->undo_marker
))
1237 struct tcp_sacktag_state
{
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244 * the incoming SACK may not exactly match but we can find smaller MSS
1245 * aligned portion of it that matches. Therefore we might need to fragment
1246 * which may fail and creates some hassle (caller must handle error case
1249 * FIXME: this could be merged to shift decision code
1251 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1252 u32 start_seq
, u32 end_seq
)
1255 unsigned int pkt_len
;
1258 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1259 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1261 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1262 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1263 mss
= tcp_skb_mss(skb
);
1264 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1267 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1271 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1276 /* Round if necessary so that SACKs cover only full MSSes
1277 * and/or the remaining small portion (if present)
1279 if (pkt_len
> mss
) {
1280 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1281 if (!in_sack
&& new_len
< pkt_len
) {
1283 if (new_len
> skb
->len
)
1288 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1296 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1297 static u8
tcp_sacktag_one(struct sock
*sk
,
1298 struct tcp_sacktag_state
*state
, u8 sacked
,
1299 u32 start_seq
, u32 end_seq
,
1300 int dup_sack
, int pcount
)
1302 struct tcp_sock
*tp
= tcp_sk(sk
);
1303 int fack_count
= state
->fack_count
;
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1307 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1308 after(end_seq
, tp
->undo_marker
))
1310 if (sacked
& TCPCB_SACKED_ACKED
)
1311 state
->reord
= min(fack_count
, state
->reord
);
1314 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315 if (!after(end_seq
, tp
->snd_una
))
1318 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1319 if (sacked
& TCPCB_SACKED_RETRANS
) {
1320 /* If the segment is not tagged as lost,
1321 * we do not clear RETRANS, believing
1322 * that retransmission is still in flight.
1324 if (sacked
& TCPCB_LOST
) {
1325 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1326 tp
->lost_out
-= pcount
;
1327 tp
->retrans_out
-= pcount
;
1330 if (!(sacked
& TCPCB_RETRANS
)) {
1331 /* New sack for not retransmitted frame,
1332 * which was in hole. It is reordering.
1334 if (before(start_seq
,
1335 tcp_highest_sack_seq(tp
)))
1336 state
->reord
= min(fack_count
,
1339 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340 if (!after(end_seq
, tp
->frto_highmark
))
1341 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1344 if (sacked
& TCPCB_LOST
) {
1345 sacked
&= ~TCPCB_LOST
;
1346 tp
->lost_out
-= pcount
;
1350 sacked
|= TCPCB_SACKED_ACKED
;
1351 state
->flag
|= FLAG_DATA_SACKED
;
1352 tp
->sacked_out
+= pcount
;
1354 fack_count
+= pcount
;
1356 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1358 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1359 tp
->lost_cnt_hint
+= pcount
;
1361 if (fack_count
> tp
->fackets_out
)
1362 tp
->fackets_out
= fack_count
;
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1369 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1370 sacked
&= ~TCPCB_SACKED_RETRANS
;
1371 tp
->retrans_out
-= pcount
;
1377 /* Shift newly-SACKed bytes from this skb to the immediately previous
1378 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1380 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1381 struct tcp_sacktag_state
*state
,
1382 unsigned int pcount
, int shifted
, int mss
,
1385 struct tcp_sock
*tp
= tcp_sk(sk
);
1386 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1387 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1388 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1392 /* Adjust counters and hints for the newly sacked sequence
1393 * range but discard the return value since prev is already
1394 * marked. We must tag the range first because the seq
1395 * advancement below implicitly advances
1396 * tcp_highest_sack_seq() when skb is highest_sack.
1398 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1399 start_seq
, end_seq
, dup_sack
, pcount
);
1401 if (skb
== tp
->lost_skb_hint
)
1402 tp
->lost_cnt_hint
+= pcount
;
1404 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1405 TCP_SKB_CB(skb
)->seq
+= shifted
;
1407 skb_shinfo(prev
)->gso_segs
+= pcount
;
1408 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1409 skb_shinfo(skb
)->gso_segs
-= pcount
;
1411 /* When we're adding to gso_segs == 1, gso_size will be zero,
1412 * in theory this shouldn't be necessary but as long as DSACK
1413 * code can come after this skb later on it's better to keep
1414 * setting gso_size to something.
1416 if (!skb_shinfo(prev
)->gso_size
) {
1417 skb_shinfo(prev
)->gso_size
= mss
;
1418 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1421 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1423 skb_shinfo(skb
)->gso_size
= 0;
1424 skb_shinfo(skb
)->gso_type
= 0;
1427 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1428 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1431 BUG_ON(!tcp_skb_pcount(skb
));
1432 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1436 /* Whole SKB was eaten :-) */
1438 if (skb
== tp
->retransmit_skb_hint
)
1439 tp
->retransmit_skb_hint
= prev
;
1440 if (skb
== tp
->scoreboard_skb_hint
)
1441 tp
->scoreboard_skb_hint
= prev
;
1442 if (skb
== tp
->lost_skb_hint
) {
1443 tp
->lost_skb_hint
= prev
;
1444 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1447 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1448 if (skb
== tcp_highest_sack(sk
))
1449 tcp_advance_highest_sack(sk
, skb
);
1451 tcp_unlink_write_queue(skb
, sk
);
1452 sk_wmem_free_skb(sk
, skb
);
1454 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1459 /* I wish gso_size would have a bit more sane initialization than
1460 * something-or-zero which complicates things
1462 static int tcp_skb_seglen(struct sk_buff
*skb
)
1464 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1467 /* Shifting pages past head area doesn't work */
1468 static int skb_can_shift(struct sk_buff
*skb
)
1470 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1473 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1476 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1477 struct tcp_sacktag_state
*state
,
1478 u32 start_seq
, u32 end_seq
,
1481 struct tcp_sock
*tp
= tcp_sk(sk
);
1482 struct sk_buff
*prev
;
1488 if (!sk_can_gso(sk
))
1491 /* Normally R but no L won't result in plain S */
1493 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1495 if (!skb_can_shift(skb
))
1497 /* This frame is about to be dropped (was ACKed). */
1498 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1501 /* Can only happen with delayed DSACK + discard craziness */
1502 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1504 prev
= tcp_write_queue_prev(sk
, skb
);
1506 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1509 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1510 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1514 pcount
= tcp_skb_pcount(skb
);
1515 mss
= tcp_skb_seglen(skb
);
1517 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1518 * drop this restriction as unnecessary
1520 if (mss
!= tcp_skb_seglen(prev
))
1523 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1525 /* CHECKME: This is non-MSS split case only?, this will
1526 * cause skipped skbs due to advancing loop btw, original
1527 * has that feature too
1529 if (tcp_skb_pcount(skb
) <= 1)
1532 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1534 /* TODO: head merge to next could be attempted here
1535 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1536 * though it might not be worth of the additional hassle
1538 * ...we can probably just fallback to what was done
1539 * previously. We could try merging non-SACKed ones
1540 * as well but it probably isn't going to buy off
1541 * because later SACKs might again split them, and
1542 * it would make skb timestamp tracking considerably
1548 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1550 BUG_ON(len
> skb
->len
);
1552 /* MSS boundaries should be honoured or else pcount will
1553 * severely break even though it makes things bit trickier.
1554 * Optimize common case to avoid most of the divides
1556 mss
= tcp_skb_mss(skb
);
1558 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1559 * drop this restriction as unnecessary
1561 if (mss
!= tcp_skb_seglen(prev
))
1566 } else if (len
< mss
) {
1574 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1575 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1578 if (!skb_shift(prev
, skb
, len
))
1580 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1583 /* Hole filled allows collapsing with the next as well, this is very
1584 * useful when hole on every nth skb pattern happens
1586 if (prev
== tcp_write_queue_tail(sk
))
1588 skb
= tcp_write_queue_next(sk
, prev
);
1590 if (!skb_can_shift(skb
) ||
1591 (skb
== tcp_send_head(sk
)) ||
1592 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1593 (mss
!= tcp_skb_seglen(skb
)))
1597 if (skb_shift(prev
, skb
, len
)) {
1598 pcount
+= tcp_skb_pcount(skb
);
1599 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1603 state
->fack_count
+= pcount
;
1610 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1614 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1615 struct tcp_sack_block
*next_dup
,
1616 struct tcp_sacktag_state
*state
,
1617 u32 start_seq
, u32 end_seq
,
1620 struct tcp_sock
*tp
= tcp_sk(sk
);
1621 struct sk_buff
*tmp
;
1623 tcp_for_write_queue_from(skb
, sk
) {
1625 int dup_sack
= dup_sack_in
;
1627 if (skb
== tcp_send_head(sk
))
1630 /* queue is in-order => we can short-circuit the walk early */
1631 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1634 if ((next_dup
!= NULL
) &&
1635 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1636 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1637 next_dup
->start_seq
,
1643 /* skb reference here is a bit tricky to get right, since
1644 * shifting can eat and free both this skb and the next,
1645 * so not even _safe variant of the loop is enough.
1648 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1649 start_seq
, end_seq
, dup_sack
);
1658 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1664 if (unlikely(in_sack
< 0))
1668 TCP_SKB_CB(skb
)->sacked
=
1671 TCP_SKB_CB(skb
)->sacked
,
1672 TCP_SKB_CB(skb
)->seq
,
1673 TCP_SKB_CB(skb
)->end_seq
,
1675 tcp_skb_pcount(skb
));
1677 if (!before(TCP_SKB_CB(skb
)->seq
,
1678 tcp_highest_sack_seq(tp
)))
1679 tcp_advance_highest_sack(sk
, skb
);
1682 state
->fack_count
+= tcp_skb_pcount(skb
);
1687 /* Avoid all extra work that is being done by sacktag while walking in
1690 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1691 struct tcp_sacktag_state
*state
,
1694 tcp_for_write_queue_from(skb
, sk
) {
1695 if (skb
== tcp_send_head(sk
))
1698 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1701 state
->fack_count
+= tcp_skb_pcount(skb
);
1706 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1708 struct tcp_sack_block
*next_dup
,
1709 struct tcp_sacktag_state
*state
,
1712 if (next_dup
== NULL
)
1715 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1716 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1717 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1718 next_dup
->start_seq
, next_dup
->end_seq
,
1725 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1727 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1731 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1734 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1735 struct tcp_sock
*tp
= tcp_sk(sk
);
1736 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1737 TCP_SKB_CB(ack_skb
)->sacked
);
1738 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1739 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1740 struct tcp_sack_block
*cache
;
1741 struct tcp_sacktag_state state
;
1742 struct sk_buff
*skb
;
1743 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1745 int found_dup_sack
= 0;
1747 int first_sack_index
;
1750 state
.reord
= tp
->packets_out
;
1752 if (!tp
->sacked_out
) {
1753 if (WARN_ON(tp
->fackets_out
))
1754 tp
->fackets_out
= 0;
1755 tcp_highest_sack_reset(sk
);
1758 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1759 num_sacks
, prior_snd_una
);
1761 state
.flag
|= FLAG_DSACKING_ACK
;
1763 /* Eliminate too old ACKs, but take into
1764 * account more or less fresh ones, they can
1765 * contain valid SACK info.
1767 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1770 if (!tp
->packets_out
)
1774 first_sack_index
= 0;
1775 for (i
= 0; i
< num_sacks
; i
++) {
1776 int dup_sack
= !i
&& found_dup_sack
;
1778 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1779 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1781 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1782 sp
[used_sacks
].start_seq
,
1783 sp
[used_sacks
].end_seq
)) {
1787 if (!tp
->undo_marker
)
1788 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1790 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1792 /* Don't count olds caused by ACK reordering */
1793 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1794 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1796 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1799 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1801 first_sack_index
= -1;
1805 /* Ignore very old stuff early */
1806 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1812 /* order SACK blocks to allow in order walk of the retrans queue */
1813 for (i
= used_sacks
- 1; i
> 0; i
--) {
1814 for (j
= 0; j
< i
; j
++) {
1815 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1816 swap(sp
[j
], sp
[j
+ 1]);
1818 /* Track where the first SACK block goes to */
1819 if (j
== first_sack_index
)
1820 first_sack_index
= j
+ 1;
1825 skb
= tcp_write_queue_head(sk
);
1826 state
.fack_count
= 0;
1829 if (!tp
->sacked_out
) {
1830 /* It's already past, so skip checking against it */
1831 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1833 cache
= tp
->recv_sack_cache
;
1834 /* Skip empty blocks in at head of the cache */
1835 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1840 while (i
< used_sacks
) {
1841 u32 start_seq
= sp
[i
].start_seq
;
1842 u32 end_seq
= sp
[i
].end_seq
;
1843 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1844 struct tcp_sack_block
*next_dup
= NULL
;
1846 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1847 next_dup
= &sp
[i
+ 1];
1849 /* Event "B" in the comment above. */
1850 if (after(end_seq
, tp
->high_seq
))
1851 state
.flag
|= FLAG_DATA_LOST
;
1853 /* Skip too early cached blocks */
1854 while (tcp_sack_cache_ok(tp
, cache
) &&
1855 !before(start_seq
, cache
->end_seq
))
1858 /* Can skip some work by looking recv_sack_cache? */
1859 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1860 after(end_seq
, cache
->start_seq
)) {
1863 if (before(start_seq
, cache
->start_seq
)) {
1864 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1866 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1873 /* Rest of the block already fully processed? */
1874 if (!after(end_seq
, cache
->end_seq
))
1877 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1881 /* ...tail remains todo... */
1882 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1883 /* ...but better entrypoint exists! */
1884 skb
= tcp_highest_sack(sk
);
1887 state
.fack_count
= tp
->fackets_out
;
1892 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1893 /* Check overlap against next cached too (past this one already) */
1898 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1899 skb
= tcp_highest_sack(sk
);
1902 state
.fack_count
= tp
->fackets_out
;
1904 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1907 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1908 start_seq
, end_seq
, dup_sack
);
1911 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1912 * due to in-order walk
1914 if (after(end_seq
, tp
->frto_highmark
))
1915 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1920 /* Clear the head of the cache sack blocks so we can skip it next time */
1921 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1922 tp
->recv_sack_cache
[i
].start_seq
= 0;
1923 tp
->recv_sack_cache
[i
].end_seq
= 0;
1925 for (j
= 0; j
< used_sacks
; j
++)
1926 tp
->recv_sack_cache
[i
++] = sp
[j
];
1928 tcp_mark_lost_retrans(sk
);
1930 tcp_verify_left_out(tp
);
1932 if ((state
.reord
< tp
->fackets_out
) &&
1933 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1934 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1935 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1939 #if FASTRETRANS_DEBUG > 0
1940 WARN_ON((int)tp
->sacked_out
< 0);
1941 WARN_ON((int)tp
->lost_out
< 0);
1942 WARN_ON((int)tp
->retrans_out
< 0);
1943 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1948 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1949 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1951 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1955 holes
= max(tp
->lost_out
, 1U);
1956 holes
= min(holes
, tp
->packets_out
);
1958 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1959 tp
->sacked_out
= tp
->packets_out
- holes
;
1965 /* If we receive more dupacks than we expected counting segments
1966 * in assumption of absent reordering, interpret this as reordering.
1967 * The only another reason could be bug in receiver TCP.
1969 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1971 struct tcp_sock
*tp
= tcp_sk(sk
);
1972 if (tcp_limit_reno_sacked(tp
))
1973 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1976 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1978 static void tcp_add_reno_sack(struct sock
*sk
)
1980 struct tcp_sock
*tp
= tcp_sk(sk
);
1982 tcp_check_reno_reordering(sk
, 0);
1983 tcp_verify_left_out(tp
);
1986 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1988 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1990 struct tcp_sock
*tp
= tcp_sk(sk
);
1993 /* One ACK acked hole. The rest eat duplicate ACKs. */
1994 if (acked
- 1 >= tp
->sacked_out
)
1997 tp
->sacked_out
-= acked
- 1;
1999 tcp_check_reno_reordering(sk
, acked
);
2000 tcp_verify_left_out(tp
);
2003 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2008 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
2010 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2013 /* F-RTO can only be used if TCP has never retransmitted anything other than
2014 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2016 int tcp_use_frto(struct sock
*sk
)
2018 const struct tcp_sock
*tp
= tcp_sk(sk
);
2019 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2020 struct sk_buff
*skb
;
2022 if (!sysctl_tcp_frto
)
2025 /* MTU probe and F-RTO won't really play nicely along currently */
2026 if (icsk
->icsk_mtup
.probe_size
)
2029 if (tcp_is_sackfrto(tp
))
2032 /* Avoid expensive walking of rexmit queue if possible */
2033 if (tp
->retrans_out
> 1)
2036 skb
= tcp_write_queue_head(sk
);
2037 if (tcp_skb_is_last(sk
, skb
))
2039 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2040 tcp_for_write_queue_from(skb
, sk
) {
2041 if (skb
== tcp_send_head(sk
))
2043 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2045 /* Short-circuit when first non-SACKed skb has been checked */
2046 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2052 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2053 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2054 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2055 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2056 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2057 * bits are handled if the Loss state is really to be entered (in
2058 * tcp_enter_frto_loss).
2060 * Do like tcp_enter_loss() would; when RTO expires the second time it
2062 * "Reduce ssthresh if it has not yet been made inside this window."
2064 void tcp_enter_frto(struct sock
*sk
)
2066 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2067 struct tcp_sock
*tp
= tcp_sk(sk
);
2068 struct sk_buff
*skb
;
2070 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2071 tp
->snd_una
== tp
->high_seq
||
2072 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2073 !icsk
->icsk_retransmits
)) {
2074 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2075 /* Our state is too optimistic in ssthresh() call because cwnd
2076 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2077 * recovery has not yet completed. Pattern would be this: RTO,
2078 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2080 * RFC4138 should be more specific on what to do, even though
2081 * RTO is quite unlikely to occur after the first Cumulative ACK
2082 * due to back-off and complexity of triggering events ...
2084 if (tp
->frto_counter
) {
2086 stored_cwnd
= tp
->snd_cwnd
;
2088 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2089 tp
->snd_cwnd
= stored_cwnd
;
2091 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2093 /* ... in theory, cong.control module could do "any tricks" in
2094 * ssthresh(), which means that ca_state, lost bits and lost_out
2095 * counter would have to be faked before the call occurs. We
2096 * consider that too expensive, unlikely and hacky, so modules
2097 * using these in ssthresh() must deal these incompatibility
2098 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2100 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2103 tp
->undo_marker
= tp
->snd_una
;
2104 tp
->undo_retrans
= 0;
2106 skb
= tcp_write_queue_head(sk
);
2107 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2108 tp
->undo_marker
= 0;
2109 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2110 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2111 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2113 tcp_verify_left_out(tp
);
2115 /* Too bad if TCP was application limited */
2116 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2118 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2119 * The last condition is necessary at least in tp->frto_counter case.
2121 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2122 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2123 after(tp
->high_seq
, tp
->snd_una
)) {
2124 tp
->frto_highmark
= tp
->high_seq
;
2126 tp
->frto_highmark
= tp
->snd_nxt
;
2128 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2129 tp
->high_seq
= tp
->snd_nxt
;
2130 tp
->frto_counter
= 1;
2133 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2134 * which indicates that we should follow the traditional RTO recovery,
2135 * i.e. mark everything lost and do go-back-N retransmission.
2137 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2139 struct tcp_sock
*tp
= tcp_sk(sk
);
2140 struct sk_buff
*skb
;
2143 tp
->retrans_out
= 0;
2144 if (tcp_is_reno(tp
))
2145 tcp_reset_reno_sack(tp
);
2147 tcp_for_write_queue(skb
, sk
) {
2148 if (skb
== tcp_send_head(sk
))
2151 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2153 * Count the retransmission made on RTO correctly (only when
2154 * waiting for the first ACK and did not get it)...
2156 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2157 /* For some reason this R-bit might get cleared? */
2158 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2159 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2160 /* ...enter this if branch just for the first segment */
2161 flag
|= FLAG_DATA_ACKED
;
2163 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2164 tp
->undo_marker
= 0;
2165 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2168 /* Marking forward transmissions that were made after RTO lost
2169 * can cause unnecessary retransmissions in some scenarios,
2170 * SACK blocks will mitigate that in some but not in all cases.
2171 * We used to not mark them but it was causing break-ups with
2172 * receivers that do only in-order receival.
2174 * TODO: we could detect presence of such receiver and select
2175 * different behavior per flow.
2177 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2178 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2179 tp
->lost_out
+= tcp_skb_pcount(skb
);
2180 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2183 tcp_verify_left_out(tp
);
2185 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2186 tp
->snd_cwnd_cnt
= 0;
2187 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2188 tp
->frto_counter
= 0;
2189 tp
->bytes_acked
= 0;
2191 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2192 sysctl_tcp_reordering
);
2193 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2194 tp
->high_seq
= tp
->snd_nxt
;
2195 TCP_ECN_queue_cwr(tp
);
2197 tcp_clear_all_retrans_hints(tp
);
2200 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2202 tp
->retrans_out
= 0;
2205 tp
->undo_marker
= 0;
2206 tp
->undo_retrans
= 0;
2209 void tcp_clear_retrans(struct tcp_sock
*tp
)
2211 tcp_clear_retrans_partial(tp
);
2213 tp
->fackets_out
= 0;
2217 /* Enter Loss state. If "how" is not zero, forget all SACK information
2218 * and reset tags completely, otherwise preserve SACKs. If receiver
2219 * dropped its ofo queue, we will know this due to reneging detection.
2221 void tcp_enter_loss(struct sock
*sk
, int how
)
2223 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2224 struct tcp_sock
*tp
= tcp_sk(sk
);
2225 struct sk_buff
*skb
;
2227 /* Reduce ssthresh if it has not yet been made inside this window. */
2228 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2229 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2230 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2231 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2232 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2235 tp
->snd_cwnd_cnt
= 0;
2236 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2238 tp
->bytes_acked
= 0;
2239 tcp_clear_retrans_partial(tp
);
2241 if (tcp_is_reno(tp
))
2242 tcp_reset_reno_sack(tp
);
2245 /* Push undo marker, if it was plain RTO and nothing
2246 * was retransmitted. */
2247 tp
->undo_marker
= tp
->snd_una
;
2250 tp
->fackets_out
= 0;
2252 tcp_clear_all_retrans_hints(tp
);
2254 tcp_for_write_queue(skb
, sk
) {
2255 if (skb
== tcp_send_head(sk
))
2258 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2259 tp
->undo_marker
= 0;
2260 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2261 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2262 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2263 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2264 tp
->lost_out
+= tcp_skb_pcount(skb
);
2265 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2268 tcp_verify_left_out(tp
);
2270 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2271 sysctl_tcp_reordering
);
2272 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2273 tp
->high_seq
= tp
->snd_nxt
;
2274 TCP_ECN_queue_cwr(tp
);
2275 /* Abort F-RTO algorithm if one is in progress */
2276 tp
->frto_counter
= 0;
2279 /* If ACK arrived pointing to a remembered SACK, it means that our
2280 * remembered SACKs do not reflect real state of receiver i.e.
2281 * receiver _host_ is heavily congested (or buggy).
2283 * Do processing similar to RTO timeout.
2285 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2287 if (flag
& FLAG_SACK_RENEGING
) {
2288 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2289 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2291 tcp_enter_loss(sk
, 1);
2292 icsk
->icsk_retransmits
++;
2293 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2294 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2295 icsk
->icsk_rto
, TCP_RTO_MAX
);
2301 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2303 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2306 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2307 * counter when SACK is enabled (without SACK, sacked_out is used for
2310 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2311 * segments up to the highest received SACK block so far and holes in
2314 * With reordering, holes may still be in flight, so RFC3517 recovery
2315 * uses pure sacked_out (total number of SACKed segments) even though
2316 * it violates the RFC that uses duplicate ACKs, often these are equal
2317 * but when e.g. out-of-window ACKs or packet duplication occurs,
2318 * they differ. Since neither occurs due to loss, TCP should really
2321 static inline int tcp_dupack_heuristics(struct tcp_sock
*tp
)
2323 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2326 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2328 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2331 static inline int tcp_head_timedout(struct sock
*sk
)
2333 struct tcp_sock
*tp
= tcp_sk(sk
);
2335 return tp
->packets_out
&&
2336 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2339 /* Linux NewReno/SACK/FACK/ECN state machine.
2340 * --------------------------------------
2342 * "Open" Normal state, no dubious events, fast path.
2343 * "Disorder" In all the respects it is "Open",
2344 * but requires a bit more attention. It is entered when
2345 * we see some SACKs or dupacks. It is split of "Open"
2346 * mainly to move some processing from fast path to slow one.
2347 * "CWR" CWND was reduced due to some Congestion Notification event.
2348 * It can be ECN, ICMP source quench, local device congestion.
2349 * "Recovery" CWND was reduced, we are fast-retransmitting.
2350 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2352 * tcp_fastretrans_alert() is entered:
2353 * - each incoming ACK, if state is not "Open"
2354 * - when arrived ACK is unusual, namely:
2359 * Counting packets in flight is pretty simple.
2361 * in_flight = packets_out - left_out + retrans_out
2363 * packets_out is SND.NXT-SND.UNA counted in packets.
2365 * retrans_out is number of retransmitted segments.
2367 * left_out is number of segments left network, but not ACKed yet.
2369 * left_out = sacked_out + lost_out
2371 * sacked_out: Packets, which arrived to receiver out of order
2372 * and hence not ACKed. With SACKs this number is simply
2373 * amount of SACKed data. Even without SACKs
2374 * it is easy to give pretty reliable estimate of this number,
2375 * counting duplicate ACKs.
2377 * lost_out: Packets lost by network. TCP has no explicit
2378 * "loss notification" feedback from network (for now).
2379 * It means that this number can be only _guessed_.
2380 * Actually, it is the heuristics to predict lossage that
2381 * distinguishes different algorithms.
2383 * F.e. after RTO, when all the queue is considered as lost,
2384 * lost_out = packets_out and in_flight = retrans_out.
2386 * Essentially, we have now two algorithms counting
2389 * FACK: It is the simplest heuristics. As soon as we decided
2390 * that something is lost, we decide that _all_ not SACKed
2391 * packets until the most forward SACK are lost. I.e.
2392 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2393 * It is absolutely correct estimate, if network does not reorder
2394 * packets. And it loses any connection to reality when reordering
2395 * takes place. We use FACK by default until reordering
2396 * is suspected on the path to this destination.
2398 * NewReno: when Recovery is entered, we assume that one segment
2399 * is lost (classic Reno). While we are in Recovery and
2400 * a partial ACK arrives, we assume that one more packet
2401 * is lost (NewReno). This heuristics are the same in NewReno
2404 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2405 * deflation etc. CWND is real congestion window, never inflated, changes
2406 * only according to classic VJ rules.
2408 * Really tricky (and requiring careful tuning) part of algorithm
2409 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2410 * The first determines the moment _when_ we should reduce CWND and,
2411 * hence, slow down forward transmission. In fact, it determines the moment
2412 * when we decide that hole is caused by loss, rather than by a reorder.
2414 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2415 * holes, caused by lost packets.
2417 * And the most logically complicated part of algorithm is undo
2418 * heuristics. We detect false retransmits due to both too early
2419 * fast retransmit (reordering) and underestimated RTO, analyzing
2420 * timestamps and D-SACKs. When we detect that some segments were
2421 * retransmitted by mistake and CWND reduction was wrong, we undo
2422 * window reduction and abort recovery phase. This logic is hidden
2423 * inside several functions named tcp_try_undo_<something>.
2426 /* This function decides, when we should leave Disordered state
2427 * and enter Recovery phase, reducing congestion window.
2429 * Main question: may we further continue forward transmission
2430 * with the same cwnd?
2432 static int tcp_time_to_recover(struct sock
*sk
)
2434 struct tcp_sock
*tp
= tcp_sk(sk
);
2437 /* Do not perform any recovery during F-RTO algorithm */
2438 if (tp
->frto_counter
)
2441 /* Trick#1: The loss is proven. */
2445 /* Not-A-Trick#2 : Classic rule... */
2446 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2449 /* Trick#3 : when we use RFC2988 timer restart, fast
2450 * retransmit can be triggered by timeout of queue head.
2452 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2455 /* Trick#4: It is still not OK... But will it be useful to delay
2458 packets_out
= tp
->packets_out
;
2459 if (packets_out
<= tp
->reordering
&&
2460 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2461 !tcp_may_send_now(sk
)) {
2462 /* We have nothing to send. This connection is limited
2463 * either by receiver window or by application.
2468 /* If a thin stream is detected, retransmit after first
2469 * received dupack. Employ only if SACK is supported in order
2470 * to avoid possible corner-case series of spurious retransmissions
2471 * Use only if there are no unsent data.
2473 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2474 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2475 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2481 /* New heuristics: it is possible only after we switched to restart timer
2482 * each time when something is ACKed. Hence, we can detect timed out packets
2483 * during fast retransmit without falling to slow start.
2485 * Usefulness of this as is very questionable, since we should know which of
2486 * the segments is the next to timeout which is relatively expensive to find
2487 * in general case unless we add some data structure just for that. The
2488 * current approach certainly won't find the right one too often and when it
2489 * finally does find _something_ it usually marks large part of the window
2490 * right away (because a retransmission with a larger timestamp blocks the
2491 * loop from advancing). -ij
2493 static void tcp_timeout_skbs(struct sock
*sk
)
2495 struct tcp_sock
*tp
= tcp_sk(sk
);
2496 struct sk_buff
*skb
;
2498 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2501 skb
= tp
->scoreboard_skb_hint
;
2502 if (tp
->scoreboard_skb_hint
== NULL
)
2503 skb
= tcp_write_queue_head(sk
);
2505 tcp_for_write_queue_from(skb
, sk
) {
2506 if (skb
== tcp_send_head(sk
))
2508 if (!tcp_skb_timedout(sk
, skb
))
2511 tcp_skb_mark_lost(tp
, skb
);
2514 tp
->scoreboard_skb_hint
= skb
;
2516 tcp_verify_left_out(tp
);
2519 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2520 * is against sacked "cnt", otherwise it's against facked "cnt"
2522 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2524 struct tcp_sock
*tp
= tcp_sk(sk
);
2525 struct sk_buff
*skb
;
2530 WARN_ON(packets
> tp
->packets_out
);
2531 if (tp
->lost_skb_hint
) {
2532 skb
= tp
->lost_skb_hint
;
2533 cnt
= tp
->lost_cnt_hint
;
2534 /* Head already handled? */
2535 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2538 skb
= tcp_write_queue_head(sk
);
2542 tcp_for_write_queue_from(skb
, sk
) {
2543 if (skb
== tcp_send_head(sk
))
2545 /* TODO: do this better */
2546 /* this is not the most efficient way to do this... */
2547 tp
->lost_skb_hint
= skb
;
2548 tp
->lost_cnt_hint
= cnt
;
2550 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2554 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2555 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2556 cnt
+= tcp_skb_pcount(skb
);
2558 if (cnt
> packets
) {
2559 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2560 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2561 (oldcnt
>= packets
))
2564 mss
= skb_shinfo(skb
)->gso_size
;
2565 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2571 tcp_skb_mark_lost(tp
, skb
);
2576 tcp_verify_left_out(tp
);
2579 /* Account newly detected lost packet(s) */
2581 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2583 struct tcp_sock
*tp
= tcp_sk(sk
);
2585 if (tcp_is_reno(tp
)) {
2586 tcp_mark_head_lost(sk
, 1, 1);
2587 } else if (tcp_is_fack(tp
)) {
2588 int lost
= tp
->fackets_out
- tp
->reordering
;
2591 tcp_mark_head_lost(sk
, lost
, 0);
2593 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2594 if (sacked_upto
>= 0)
2595 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2596 else if (fast_rexmit
)
2597 tcp_mark_head_lost(sk
, 1, 1);
2600 tcp_timeout_skbs(sk
);
2603 /* CWND moderation, preventing bursts due to too big ACKs
2604 * in dubious situations.
2606 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2608 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2609 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2610 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2613 /* Lower bound on congestion window is slow start threshold
2614 * unless congestion avoidance choice decides to overide it.
2616 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2618 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2620 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2623 /* Decrease cwnd each second ack. */
2624 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2626 struct tcp_sock
*tp
= tcp_sk(sk
);
2627 int decr
= tp
->snd_cwnd_cnt
+ 1;
2629 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2630 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2631 tp
->snd_cwnd_cnt
= decr
& 1;
2634 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2635 tp
->snd_cwnd
-= decr
;
2637 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2638 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2642 /* Nothing was retransmitted or returned timestamp is less
2643 * than timestamp of the first retransmission.
2645 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2647 return !tp
->retrans_stamp
||
2648 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2649 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2652 /* Undo procedures. */
2654 #if FASTRETRANS_DEBUG > 1
2655 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2657 struct tcp_sock
*tp
= tcp_sk(sk
);
2658 struct inet_sock
*inet
= inet_sk(sk
);
2660 if (sk
->sk_family
== AF_INET
) {
2661 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2663 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2664 tp
->snd_cwnd
, tcp_left_out(tp
),
2665 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2668 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2669 else if (sk
->sk_family
== AF_INET6
) {
2670 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2671 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2673 &np
->daddr
, ntohs(inet
->inet_dport
),
2674 tp
->snd_cwnd
, tcp_left_out(tp
),
2675 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2681 #define DBGUNDO(x...) do { } while (0)
2684 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2686 struct tcp_sock
*tp
= tcp_sk(sk
);
2688 if (tp
->prior_ssthresh
) {
2689 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2691 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2692 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2694 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2696 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2697 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2698 TCP_ECN_withdraw_cwr(tp
);
2701 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2703 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2706 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2708 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2711 /* People celebrate: "We love our President!" */
2712 static int tcp_try_undo_recovery(struct sock
*sk
)
2714 struct tcp_sock
*tp
= tcp_sk(sk
);
2716 if (tcp_may_undo(tp
)) {
2719 /* Happy end! We did not retransmit anything
2720 * or our original transmission succeeded.
2722 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2723 tcp_undo_cwr(sk
, true);
2724 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2725 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2727 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2729 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2730 tp
->undo_marker
= 0;
2732 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2733 /* Hold old state until something *above* high_seq
2734 * is ACKed. For Reno it is MUST to prevent false
2735 * fast retransmits (RFC2582). SACK TCP is safe. */
2736 tcp_moderate_cwnd(tp
);
2739 tcp_set_ca_state(sk
, TCP_CA_Open
);
2743 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2744 static void tcp_try_undo_dsack(struct sock
*sk
)
2746 struct tcp_sock
*tp
= tcp_sk(sk
);
2748 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2749 DBGUNDO(sk
, "D-SACK");
2750 tcp_undo_cwr(sk
, true);
2751 tp
->undo_marker
= 0;
2752 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2756 /* We can clear retrans_stamp when there are no retransmissions in the
2757 * window. It would seem that it is trivially available for us in
2758 * tp->retrans_out, however, that kind of assumptions doesn't consider
2759 * what will happen if errors occur when sending retransmission for the
2760 * second time. ...It could the that such segment has only
2761 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2762 * the head skb is enough except for some reneging corner cases that
2763 * are not worth the effort.
2765 * Main reason for all this complexity is the fact that connection dying
2766 * time now depends on the validity of the retrans_stamp, in particular,
2767 * that successive retransmissions of a segment must not advance
2768 * retrans_stamp under any conditions.
2770 static int tcp_any_retrans_done(struct sock
*sk
)
2772 struct tcp_sock
*tp
= tcp_sk(sk
);
2773 struct sk_buff
*skb
;
2775 if (tp
->retrans_out
)
2778 skb
= tcp_write_queue_head(sk
);
2779 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2785 /* Undo during fast recovery after partial ACK. */
2787 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2789 struct tcp_sock
*tp
= tcp_sk(sk
);
2790 /* Partial ACK arrived. Force Hoe's retransmit. */
2791 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2793 if (tcp_may_undo(tp
)) {
2794 /* Plain luck! Hole if filled with delayed
2795 * packet, rather than with a retransmit.
2797 if (!tcp_any_retrans_done(sk
))
2798 tp
->retrans_stamp
= 0;
2800 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2803 tcp_undo_cwr(sk
, false);
2804 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2806 /* So... Do not make Hoe's retransmit yet.
2807 * If the first packet was delayed, the rest
2808 * ones are most probably delayed as well.
2815 /* Undo during loss recovery after partial ACK. */
2816 static int tcp_try_undo_loss(struct sock
*sk
)
2818 struct tcp_sock
*tp
= tcp_sk(sk
);
2820 if (tcp_may_undo(tp
)) {
2821 struct sk_buff
*skb
;
2822 tcp_for_write_queue(skb
, sk
) {
2823 if (skb
== tcp_send_head(sk
))
2825 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2828 tcp_clear_all_retrans_hints(tp
);
2830 DBGUNDO(sk
, "partial loss");
2832 tcp_undo_cwr(sk
, true);
2833 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2834 inet_csk(sk
)->icsk_retransmits
= 0;
2835 tp
->undo_marker
= 0;
2836 if (tcp_is_sack(tp
))
2837 tcp_set_ca_state(sk
, TCP_CA_Open
);
2843 static inline void tcp_complete_cwr(struct sock
*sk
)
2845 struct tcp_sock
*tp
= tcp_sk(sk
);
2846 /* Do not moderate cwnd if it's already undone in cwr or recovery */
2847 if (tp
->undo_marker
&& tp
->snd_cwnd
> tp
->snd_ssthresh
) {
2848 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2849 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2851 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2854 static void tcp_try_keep_open(struct sock
*sk
)
2856 struct tcp_sock
*tp
= tcp_sk(sk
);
2857 int state
= TCP_CA_Open
;
2859 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
) || tp
->undo_marker
)
2860 state
= TCP_CA_Disorder
;
2862 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2863 tcp_set_ca_state(sk
, state
);
2864 tp
->high_seq
= tp
->snd_nxt
;
2868 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2870 struct tcp_sock
*tp
= tcp_sk(sk
);
2872 tcp_verify_left_out(tp
);
2874 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2875 tp
->retrans_stamp
= 0;
2877 if (flag
& FLAG_ECE
)
2878 tcp_enter_cwr(sk
, 1);
2880 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2881 tcp_try_keep_open(sk
);
2882 tcp_moderate_cwnd(tp
);
2884 tcp_cwnd_down(sk
, flag
);
2888 static void tcp_mtup_probe_failed(struct sock
*sk
)
2890 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2892 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2893 icsk
->icsk_mtup
.probe_size
= 0;
2896 static void tcp_mtup_probe_success(struct sock
*sk
)
2898 struct tcp_sock
*tp
= tcp_sk(sk
);
2899 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2901 /* FIXME: breaks with very large cwnd */
2902 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2903 tp
->snd_cwnd
= tp
->snd_cwnd
*
2904 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2905 icsk
->icsk_mtup
.probe_size
;
2906 tp
->snd_cwnd_cnt
= 0;
2907 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2908 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2910 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2911 icsk
->icsk_mtup
.probe_size
= 0;
2912 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2915 /* Do a simple retransmit without using the backoff mechanisms in
2916 * tcp_timer. This is used for path mtu discovery.
2917 * The socket is already locked here.
2919 void tcp_simple_retransmit(struct sock
*sk
)
2921 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2922 struct tcp_sock
*tp
= tcp_sk(sk
);
2923 struct sk_buff
*skb
;
2924 unsigned int mss
= tcp_current_mss(sk
);
2925 u32 prior_lost
= tp
->lost_out
;
2927 tcp_for_write_queue(skb
, sk
) {
2928 if (skb
== tcp_send_head(sk
))
2930 if (tcp_skb_seglen(skb
) > mss
&&
2931 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2932 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2933 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2934 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2936 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2940 tcp_clear_retrans_hints_partial(tp
);
2942 if (prior_lost
== tp
->lost_out
)
2945 if (tcp_is_reno(tp
))
2946 tcp_limit_reno_sacked(tp
);
2948 tcp_verify_left_out(tp
);
2950 /* Don't muck with the congestion window here.
2951 * Reason is that we do not increase amount of _data_
2952 * in network, but units changed and effective
2953 * cwnd/ssthresh really reduced now.
2955 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2956 tp
->high_seq
= tp
->snd_nxt
;
2957 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2958 tp
->prior_ssthresh
= 0;
2959 tp
->undo_marker
= 0;
2960 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2962 tcp_xmit_retransmit_queue(sk
);
2964 EXPORT_SYMBOL(tcp_simple_retransmit
);
2966 /* Process an event, which can update packets-in-flight not trivially.
2967 * Main goal of this function is to calculate new estimate for left_out,
2968 * taking into account both packets sitting in receiver's buffer and
2969 * packets lost by network.
2971 * Besides that it does CWND reduction, when packet loss is detected
2972 * and changes state of machine.
2974 * It does _not_ decide what to send, it is made in function
2975 * tcp_xmit_retransmit_queue().
2977 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2979 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2980 struct tcp_sock
*tp
= tcp_sk(sk
);
2981 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2982 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2983 (tcp_fackets_out(tp
) > tp
->reordering
));
2984 int fast_rexmit
= 0, mib_idx
;
2986 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2988 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2989 tp
->fackets_out
= 0;
2991 /* Now state machine starts.
2992 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2993 if (flag
& FLAG_ECE
)
2994 tp
->prior_ssthresh
= 0;
2996 /* B. In all the states check for reneging SACKs. */
2997 if (tcp_check_sack_reneging(sk
, flag
))
3000 /* C. Process data loss notification, provided it is valid. */
3001 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
3002 before(tp
->snd_una
, tp
->high_seq
) &&
3003 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
3004 tp
->fackets_out
> tp
->reordering
) {
3005 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
, 0);
3006 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
3009 /* D. Check consistency of the current state. */
3010 tcp_verify_left_out(tp
);
3012 /* E. Check state exit conditions. State can be terminated
3013 * when high_seq is ACKed. */
3014 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3015 WARN_ON(tp
->retrans_out
!= 0);
3016 tp
->retrans_stamp
= 0;
3017 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3018 switch (icsk
->icsk_ca_state
) {
3020 icsk
->icsk_retransmits
= 0;
3021 if (tcp_try_undo_recovery(sk
))
3026 /* CWR is to be held something *above* high_seq
3027 * is ACKed for CWR bit to reach receiver. */
3028 if (tp
->snd_una
!= tp
->high_seq
) {
3029 tcp_complete_cwr(sk
);
3030 tcp_set_ca_state(sk
, TCP_CA_Open
);
3034 case TCP_CA_Disorder
:
3035 tcp_try_undo_dsack(sk
);
3036 if (!tp
->undo_marker
||
3037 /* For SACK case do not Open to allow to undo
3038 * catching for all duplicate ACKs. */
3039 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
3040 tp
->undo_marker
= 0;
3041 tcp_set_ca_state(sk
, TCP_CA_Open
);
3045 case TCP_CA_Recovery
:
3046 if (tcp_is_reno(tp
))
3047 tcp_reset_reno_sack(tp
);
3048 if (tcp_try_undo_recovery(sk
))
3050 tcp_complete_cwr(sk
);
3055 /* F. Process state. */
3056 switch (icsk
->icsk_ca_state
) {
3057 case TCP_CA_Recovery
:
3058 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3059 if (tcp_is_reno(tp
) && is_dupack
)
3060 tcp_add_reno_sack(sk
);
3062 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3065 if (flag
& FLAG_DATA_ACKED
)
3066 icsk
->icsk_retransmits
= 0;
3067 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3068 tcp_reset_reno_sack(tp
);
3069 if (!tcp_try_undo_loss(sk
)) {
3070 tcp_moderate_cwnd(tp
);
3071 tcp_xmit_retransmit_queue(sk
);
3074 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3076 /* Loss is undone; fall through to processing in Open state. */
3078 if (tcp_is_reno(tp
)) {
3079 if (flag
& FLAG_SND_UNA_ADVANCED
)
3080 tcp_reset_reno_sack(tp
);
3082 tcp_add_reno_sack(sk
);
3085 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3086 tcp_try_undo_dsack(sk
);
3088 if (!tcp_time_to_recover(sk
)) {
3089 tcp_try_to_open(sk
, flag
);
3093 /* MTU probe failure: don't reduce cwnd */
3094 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3095 icsk
->icsk_mtup
.probe_size
&&
3096 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3097 tcp_mtup_probe_failed(sk
);
3098 /* Restores the reduction we did in tcp_mtup_probe() */
3100 tcp_simple_retransmit(sk
);
3104 /* Otherwise enter Recovery state */
3106 if (tcp_is_reno(tp
))
3107 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3109 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3111 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3113 tp
->high_seq
= tp
->snd_nxt
;
3114 tp
->prior_ssthresh
= 0;
3115 tp
->undo_marker
= tp
->snd_una
;
3116 tp
->undo_retrans
= tp
->retrans_out
;
3118 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3119 if (!(flag
& FLAG_ECE
))
3120 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3121 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3122 TCP_ECN_queue_cwr(tp
);
3125 tp
->bytes_acked
= 0;
3126 tp
->snd_cwnd_cnt
= 0;
3127 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3131 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3132 tcp_update_scoreboard(sk
, fast_rexmit
);
3133 tcp_cwnd_down(sk
, flag
);
3134 tcp_xmit_retransmit_queue(sk
);
3137 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3139 tcp_rtt_estimator(sk
, seq_rtt
);
3141 inet_csk(sk
)->icsk_backoff
= 0;
3144 /* Read draft-ietf-tcplw-high-performance before mucking
3145 * with this code. (Supersedes RFC1323)
3147 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3149 /* RTTM Rule: A TSecr value received in a segment is used to
3150 * update the averaged RTT measurement only if the segment
3151 * acknowledges some new data, i.e., only if it advances the
3152 * left edge of the send window.
3154 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3155 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3157 * Changed: reset backoff as soon as we see the first valid sample.
3158 * If we do not, we get strongly overestimated rto. With timestamps
3159 * samples are accepted even from very old segments: f.e., when rtt=1
3160 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3161 * answer arrives rto becomes 120 seconds! If at least one of segments
3162 * in window is lost... Voila. --ANK (010210)
3164 struct tcp_sock
*tp
= tcp_sk(sk
);
3166 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3169 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3171 /* We don't have a timestamp. Can only use
3172 * packets that are not retransmitted to determine
3173 * rtt estimates. Also, we must not reset the
3174 * backoff for rto until we get a non-retransmitted
3175 * packet. This allows us to deal with a situation
3176 * where the network delay has increased suddenly.
3177 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3180 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3183 tcp_valid_rtt_meas(sk
, seq_rtt
);
3186 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3189 const struct tcp_sock
*tp
= tcp_sk(sk
);
3190 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3191 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3192 tcp_ack_saw_tstamp(sk
, flag
);
3193 else if (seq_rtt
>= 0)
3194 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3197 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3199 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3200 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3201 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3204 /* Restart timer after forward progress on connection.
3205 * RFC2988 recommends to restart timer to now+rto.
3207 static void tcp_rearm_rto(struct sock
*sk
)
3209 struct tcp_sock
*tp
= tcp_sk(sk
);
3211 if (!tp
->packets_out
) {
3212 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3214 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3215 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3219 /* If we get here, the whole TSO packet has not been acked. */
3220 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3222 struct tcp_sock
*tp
= tcp_sk(sk
);
3225 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3227 packets_acked
= tcp_skb_pcount(skb
);
3228 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3230 packets_acked
-= tcp_skb_pcount(skb
);
3232 if (packets_acked
) {
3233 BUG_ON(tcp_skb_pcount(skb
) == 0);
3234 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3237 return packets_acked
;
3240 /* Remove acknowledged frames from the retransmission queue. If our packet
3241 * is before the ack sequence we can discard it as it's confirmed to have
3242 * arrived at the other end.
3244 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3247 struct tcp_sock
*tp
= tcp_sk(sk
);
3248 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3249 struct sk_buff
*skb
;
3250 u32 now
= tcp_time_stamp
;
3251 int fully_acked
= 1;
3254 u32 reord
= tp
->packets_out
;
3255 u32 prior_sacked
= tp
->sacked_out
;
3257 s32 ca_seq_rtt
= -1;
3258 ktime_t last_ackt
= net_invalid_timestamp();
3260 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3261 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3263 u8 sacked
= scb
->sacked
;
3265 /* Determine how many packets and what bytes were acked, tso and else */
3266 if (after(scb
->end_seq
, tp
->snd_una
)) {
3267 if (tcp_skb_pcount(skb
) == 1 ||
3268 !after(tp
->snd_una
, scb
->seq
))
3271 acked_pcount
= tcp_tso_acked(sk
, skb
);
3277 acked_pcount
= tcp_skb_pcount(skb
);
3280 if (sacked
& TCPCB_RETRANS
) {
3281 if (sacked
& TCPCB_SACKED_RETRANS
)
3282 tp
->retrans_out
-= acked_pcount
;
3283 flag
|= FLAG_RETRANS_DATA_ACKED
;
3286 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3287 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3289 ca_seq_rtt
= now
- scb
->when
;
3290 last_ackt
= skb
->tstamp
;
3292 seq_rtt
= ca_seq_rtt
;
3294 if (!(sacked
& TCPCB_SACKED_ACKED
))
3295 reord
= min(pkts_acked
, reord
);
3298 if (sacked
& TCPCB_SACKED_ACKED
)
3299 tp
->sacked_out
-= acked_pcount
;
3300 if (sacked
& TCPCB_LOST
)
3301 tp
->lost_out
-= acked_pcount
;
3303 tp
->packets_out
-= acked_pcount
;
3304 pkts_acked
+= acked_pcount
;
3306 /* Initial outgoing SYN's get put onto the write_queue
3307 * just like anything else we transmit. It is not
3308 * true data, and if we misinform our callers that
3309 * this ACK acks real data, we will erroneously exit
3310 * connection startup slow start one packet too
3311 * quickly. This is severely frowned upon behavior.
3313 if (!(scb
->flags
& TCPHDR_SYN
)) {
3314 flag
|= FLAG_DATA_ACKED
;
3316 flag
|= FLAG_SYN_ACKED
;
3317 tp
->retrans_stamp
= 0;
3323 tcp_unlink_write_queue(skb
, sk
);
3324 sk_wmem_free_skb(sk
, skb
);
3325 tp
->scoreboard_skb_hint
= NULL
;
3326 if (skb
== tp
->retransmit_skb_hint
)
3327 tp
->retransmit_skb_hint
= NULL
;
3328 if (skb
== tp
->lost_skb_hint
)
3329 tp
->lost_skb_hint
= NULL
;
3332 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3333 tp
->snd_up
= tp
->snd_una
;
3335 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3336 flag
|= FLAG_SACK_RENEGING
;
3338 if (flag
& FLAG_ACKED
) {
3339 const struct tcp_congestion_ops
*ca_ops
3340 = inet_csk(sk
)->icsk_ca_ops
;
3342 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3343 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3344 tcp_mtup_probe_success(sk
);
3347 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3350 if (tcp_is_reno(tp
)) {
3351 tcp_remove_reno_sacks(sk
, pkts_acked
);
3355 /* Non-retransmitted hole got filled? That's reordering */
3356 if (reord
< prior_fackets
)
3357 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3359 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3360 prior_sacked
- tp
->sacked_out
;
3361 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3364 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3366 if (ca_ops
->pkts_acked
) {
3369 /* Is the ACK triggering packet unambiguous? */
3370 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3371 /* High resolution needed and available? */
3372 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3373 !ktime_equal(last_ackt
,
3374 net_invalid_timestamp()))
3375 rtt_us
= ktime_us_delta(ktime_get_real(),
3377 else if (ca_seq_rtt
>= 0)
3378 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3381 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3385 #if FASTRETRANS_DEBUG > 0
3386 WARN_ON((int)tp
->sacked_out
< 0);
3387 WARN_ON((int)tp
->lost_out
< 0);
3388 WARN_ON((int)tp
->retrans_out
< 0);
3389 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3390 icsk
= inet_csk(sk
);
3392 printk(KERN_DEBUG
"Leak l=%u %d\n",
3393 tp
->lost_out
, icsk
->icsk_ca_state
);
3396 if (tp
->sacked_out
) {
3397 printk(KERN_DEBUG
"Leak s=%u %d\n",
3398 tp
->sacked_out
, icsk
->icsk_ca_state
);
3401 if (tp
->retrans_out
) {
3402 printk(KERN_DEBUG
"Leak r=%u %d\n",
3403 tp
->retrans_out
, icsk
->icsk_ca_state
);
3404 tp
->retrans_out
= 0;
3411 static void tcp_ack_probe(struct sock
*sk
)
3413 const struct tcp_sock
*tp
= tcp_sk(sk
);
3414 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3416 /* Was it a usable window open? */
3418 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3419 icsk
->icsk_backoff
= 0;
3420 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3421 /* Socket must be waked up by subsequent tcp_data_snd_check().
3422 * This function is not for random using!
3425 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3426 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3431 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3433 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3434 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3437 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3439 const struct tcp_sock
*tp
= tcp_sk(sk
);
3440 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3441 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3444 /* Check that window update is acceptable.
3445 * The function assumes that snd_una<=ack<=snd_next.
3447 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3448 const u32 ack
, const u32 ack_seq
,
3451 return after(ack
, tp
->snd_una
) ||
3452 after(ack_seq
, tp
->snd_wl1
) ||
3453 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3456 /* Update our send window.
3458 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3459 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3461 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3464 struct tcp_sock
*tp
= tcp_sk(sk
);
3466 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3468 if (likely(!tcp_hdr(skb
)->syn
))
3469 nwin
<<= tp
->rx_opt
.snd_wscale
;
3471 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3472 flag
|= FLAG_WIN_UPDATE
;
3473 tcp_update_wl(tp
, ack_seq
);
3475 if (tp
->snd_wnd
!= nwin
) {
3478 /* Note, it is the only place, where
3479 * fast path is recovered for sending TCP.
3482 tcp_fast_path_check(sk
);
3484 if (nwin
> tp
->max_window
) {
3485 tp
->max_window
= nwin
;
3486 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3496 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3497 * continue in congestion avoidance.
3499 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3501 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3502 tp
->snd_cwnd_cnt
= 0;
3503 tp
->bytes_acked
= 0;
3504 TCP_ECN_queue_cwr(tp
);
3505 tcp_moderate_cwnd(tp
);
3508 /* A conservative spurious RTO response algorithm: reduce cwnd using
3509 * rate halving and continue in congestion avoidance.
3511 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3513 tcp_enter_cwr(sk
, 0);
3516 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3518 if (flag
& FLAG_ECE
)
3519 tcp_ratehalving_spur_to_response(sk
);
3521 tcp_undo_cwr(sk
, true);
3524 /* F-RTO spurious RTO detection algorithm (RFC4138)
3526 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3527 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3528 * window (but not to or beyond highest sequence sent before RTO):
3529 * On First ACK, send two new segments out.
3530 * On Second ACK, RTO was likely spurious. Do spurious response (response
3531 * algorithm is not part of the F-RTO detection algorithm
3532 * given in RFC4138 but can be selected separately).
3533 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3534 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3535 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3536 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3538 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3539 * original window even after we transmit two new data segments.
3542 * on first step, wait until first cumulative ACK arrives, then move to
3543 * the second step. In second step, the next ACK decides.
3545 * F-RTO is implemented (mainly) in four functions:
3546 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3547 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3548 * called when tcp_use_frto() showed green light
3549 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3550 * - tcp_enter_frto_loss() is called if there is not enough evidence
3551 * to prove that the RTO is indeed spurious. It transfers the control
3552 * from F-RTO to the conventional RTO recovery
3554 static int tcp_process_frto(struct sock
*sk
, int flag
)
3556 struct tcp_sock
*tp
= tcp_sk(sk
);
3558 tcp_verify_left_out(tp
);
3560 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3561 if (flag
& FLAG_DATA_ACKED
)
3562 inet_csk(sk
)->icsk_retransmits
= 0;
3564 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3565 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3566 tp
->undo_marker
= 0;
3568 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3569 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3573 if (!tcp_is_sackfrto(tp
)) {
3574 /* RFC4138 shortcoming in step 2; should also have case c):
3575 * ACK isn't duplicate nor advances window, e.g., opposite dir
3578 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3581 if (!(flag
& FLAG_DATA_ACKED
)) {
3582 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3587 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3588 /* Prevent sending of new data. */
3589 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3590 tcp_packets_in_flight(tp
));
3594 if ((tp
->frto_counter
>= 2) &&
3595 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3596 ((flag
& FLAG_DATA_SACKED
) &&
3597 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3598 /* RFC4138 shortcoming (see comment above) */
3599 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3600 (flag
& FLAG_NOT_DUP
))
3603 tcp_enter_frto_loss(sk
, 3, flag
);
3608 if (tp
->frto_counter
== 1) {
3609 /* tcp_may_send_now needs to see updated state */
3610 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3611 tp
->frto_counter
= 2;
3613 if (!tcp_may_send_now(sk
))
3614 tcp_enter_frto_loss(sk
, 2, flag
);
3618 switch (sysctl_tcp_frto_response
) {
3620 tcp_undo_spur_to_response(sk
, flag
);
3623 tcp_conservative_spur_to_response(tp
);
3626 tcp_ratehalving_spur_to_response(sk
);
3629 tp
->frto_counter
= 0;
3630 tp
->undo_marker
= 0;
3631 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3636 /* This routine deals with incoming acks, but not outgoing ones. */
3637 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3639 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3640 struct tcp_sock
*tp
= tcp_sk(sk
);
3641 u32 prior_snd_una
= tp
->snd_una
;
3642 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3643 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3644 u32 prior_in_flight
;
3649 /* If the ack is older than previous acks
3650 * then we can probably ignore it.
3652 if (before(ack
, prior_snd_una
))
3655 /* If the ack includes data we haven't sent yet, discard
3656 * this segment (RFC793 Section 3.9).
3658 if (after(ack
, tp
->snd_nxt
))
3661 if (after(ack
, prior_snd_una
))
3662 flag
|= FLAG_SND_UNA_ADVANCED
;
3664 if (sysctl_tcp_abc
) {
3665 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3666 tp
->bytes_acked
+= ack
- prior_snd_una
;
3667 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3668 /* we assume just one segment left network */
3669 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3673 prior_fackets
= tp
->fackets_out
;
3674 prior_in_flight
= tcp_packets_in_flight(tp
);
3676 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3677 /* Window is constant, pure forward advance.
3678 * No more checks are required.
3679 * Note, we use the fact that SND.UNA>=SND.WL2.
3681 tcp_update_wl(tp
, ack_seq
);
3683 flag
|= FLAG_WIN_UPDATE
;
3685 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3687 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3689 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3692 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3694 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3696 if (TCP_SKB_CB(skb
)->sacked
)
3697 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3699 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3702 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3705 /* We passed data and got it acked, remove any soft error
3706 * log. Something worked...
3708 sk
->sk_err_soft
= 0;
3709 icsk
->icsk_probes_out
= 0;
3710 tp
->rcv_tstamp
= tcp_time_stamp
;
3711 prior_packets
= tp
->packets_out
;
3715 /* See if we can take anything off of the retransmit queue. */
3716 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3718 if (tp
->frto_counter
)
3719 frto_cwnd
= tcp_process_frto(sk
, flag
);
3720 /* Guarantee sacktag reordering detection against wrap-arounds */
3721 if (before(tp
->frto_highmark
, tp
->snd_una
))
3722 tp
->frto_highmark
= 0;
3724 if (tcp_ack_is_dubious(sk
, flag
)) {
3725 /* Advance CWND, if state allows this. */
3726 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3727 tcp_may_raise_cwnd(sk
, flag
))
3728 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3729 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3732 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3733 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3736 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3737 dst_confirm(__sk_dst_get(sk
));
3742 /* If this ack opens up a zero window, clear backoff. It was
3743 * being used to time the probes, and is probably far higher than
3744 * it needs to be for normal retransmission.
3746 if (tcp_send_head(sk
))
3751 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3755 if (TCP_SKB_CB(skb
)->sacked
) {
3756 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3757 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3758 tcp_try_keep_open(sk
);
3761 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3765 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3766 * But, this can also be called on packets in the established flow when
3767 * the fast version below fails.
3769 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3770 u8
**hvpp
, int estab
)
3773 struct tcphdr
*th
= tcp_hdr(skb
);
3774 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3776 ptr
= (unsigned char *)(th
+ 1);
3777 opt_rx
->saw_tstamp
= 0;
3779 while (length
> 0) {
3780 int opcode
= *ptr
++;
3786 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3791 if (opsize
< 2) /* "silly options" */
3793 if (opsize
> length
)
3794 return; /* don't parse partial options */
3797 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3798 u16 in_mss
= get_unaligned_be16(ptr
);
3800 if (opt_rx
->user_mss
&&
3801 opt_rx
->user_mss
< in_mss
)
3802 in_mss
= opt_rx
->user_mss
;
3803 opt_rx
->mss_clamp
= in_mss
;
3808 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3809 !estab
&& sysctl_tcp_window_scaling
) {
3810 __u8 snd_wscale
= *(__u8
*)ptr
;
3811 opt_rx
->wscale_ok
= 1;
3812 if (snd_wscale
> 14) {
3813 if (net_ratelimit())
3814 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3815 "scaling value %d >14 received.\n",
3819 opt_rx
->snd_wscale
= snd_wscale
;
3822 case TCPOPT_TIMESTAMP
:
3823 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3824 ((estab
&& opt_rx
->tstamp_ok
) ||
3825 (!estab
&& sysctl_tcp_timestamps
))) {
3826 opt_rx
->saw_tstamp
= 1;
3827 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3828 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3831 case TCPOPT_SACK_PERM
:
3832 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3833 !estab
&& sysctl_tcp_sack
) {
3834 opt_rx
->sack_ok
= 1;
3835 tcp_sack_reset(opt_rx
);
3840 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3841 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3843 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3846 #ifdef CONFIG_TCP_MD5SIG
3849 * The MD5 Hash has already been
3850 * checked (see tcp_v{4,6}_do_rcv()).
3855 /* This option is variable length.
3858 case TCPOLEN_COOKIE_BASE
:
3859 /* not yet implemented */
3861 case TCPOLEN_COOKIE_PAIR
:
3862 /* not yet implemented */
3864 case TCPOLEN_COOKIE_MIN
+0:
3865 case TCPOLEN_COOKIE_MIN
+2:
3866 case TCPOLEN_COOKIE_MIN
+4:
3867 case TCPOLEN_COOKIE_MIN
+6:
3868 case TCPOLEN_COOKIE_MAX
:
3869 /* 16-bit multiple */
3870 opt_rx
->cookie_plus
= opsize
;
3885 EXPORT_SYMBOL(tcp_parse_options
);
3887 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3889 __be32
*ptr
= (__be32
*)(th
+ 1);
3891 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3892 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3893 tp
->rx_opt
.saw_tstamp
= 1;
3895 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3897 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3903 /* Fast parse options. This hopes to only see timestamps.
3904 * If it is wrong it falls back on tcp_parse_options().
3906 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3907 struct tcp_sock
*tp
, u8
**hvpp
)
3909 /* In the spirit of fast parsing, compare doff directly to constant
3910 * values. Because equality is used, short doff can be ignored here.
3912 if (th
->doff
== (sizeof(*th
) / 4)) {
3913 tp
->rx_opt
.saw_tstamp
= 0;
3915 } else if (tp
->rx_opt
.tstamp_ok
&&
3916 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3917 if (tcp_parse_aligned_timestamp(tp
, th
))
3920 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3924 #ifdef CONFIG_TCP_MD5SIG
3926 * Parse MD5 Signature option
3928 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3930 int length
= (th
->doff
<< 2) - sizeof (*th
);
3931 u8
*ptr
= (u8
*)(th
+ 1);
3933 /* If the TCP option is too short, we can short cut */
3934 if (length
< TCPOLEN_MD5SIG
)
3937 while (length
> 0) {
3938 int opcode
= *ptr
++;
3949 if (opsize
< 2 || opsize
> length
)
3951 if (opcode
== TCPOPT_MD5SIG
)
3952 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3959 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3962 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3964 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3965 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3968 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3970 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3971 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3972 * extra check below makes sure this can only happen
3973 * for pure ACK frames. -DaveM
3975 * Not only, also it occurs for expired timestamps.
3978 if (tcp_paws_check(&tp
->rx_opt
, 0))
3979 tcp_store_ts_recent(tp
);
3983 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3985 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3986 * it can pass through stack. So, the following predicate verifies that
3987 * this segment is not used for anything but congestion avoidance or
3988 * fast retransmit. Moreover, we even are able to eliminate most of such
3989 * second order effects, if we apply some small "replay" window (~RTO)
3990 * to timestamp space.
3992 * All these measures still do not guarantee that we reject wrapped ACKs
3993 * on networks with high bandwidth, when sequence space is recycled fastly,
3994 * but it guarantees that such events will be very rare and do not affect
3995 * connection seriously. This doesn't look nice, but alas, PAWS is really
3998 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3999 * states that events when retransmit arrives after original data are rare.
4000 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4001 * the biggest problem on large power networks even with minor reordering.
4002 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4003 * up to bandwidth of 18Gigabit/sec. 8) ]
4006 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4008 struct tcp_sock
*tp
= tcp_sk(sk
);
4009 struct tcphdr
*th
= tcp_hdr(skb
);
4010 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4011 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4013 return (/* 1. Pure ACK with correct sequence number. */
4014 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4016 /* 2. ... and duplicate ACK. */
4017 ack
== tp
->snd_una
&&
4019 /* 3. ... and does not update window. */
4020 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4022 /* 4. ... and sits in replay window. */
4023 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4026 static inline int tcp_paws_discard(const struct sock
*sk
,
4027 const struct sk_buff
*skb
)
4029 const struct tcp_sock
*tp
= tcp_sk(sk
);
4031 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4032 !tcp_disordered_ack(sk
, skb
);
4035 /* Check segment sequence number for validity.
4037 * Segment controls are considered valid, if the segment
4038 * fits to the window after truncation to the window. Acceptability
4039 * of data (and SYN, FIN, of course) is checked separately.
4040 * See tcp_data_queue(), for example.
4042 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4043 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4044 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4045 * (borrowed from freebsd)
4048 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4050 return !before(end_seq
, tp
->rcv_wup
) &&
4051 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4054 /* When we get a reset we do this. */
4055 static void tcp_reset(struct sock
*sk
)
4057 /* We want the right error as BSD sees it (and indeed as we do). */
4058 switch (sk
->sk_state
) {
4060 sk
->sk_err
= ECONNREFUSED
;
4062 case TCP_CLOSE_WAIT
:
4068 sk
->sk_err
= ECONNRESET
;
4070 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4073 if (!sock_flag(sk
, SOCK_DEAD
))
4074 sk
->sk_error_report(sk
);
4080 * Process the FIN bit. This now behaves as it is supposed to work
4081 * and the FIN takes effect when it is validly part of sequence
4082 * space. Not before when we get holes.
4084 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4085 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4088 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4089 * close and we go into CLOSING (and later onto TIME-WAIT)
4091 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4093 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
4095 struct tcp_sock
*tp
= tcp_sk(sk
);
4097 inet_csk_schedule_ack(sk
);
4099 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4100 sock_set_flag(sk
, SOCK_DONE
);
4102 switch (sk
->sk_state
) {
4104 case TCP_ESTABLISHED
:
4105 /* Move to CLOSE_WAIT */
4106 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4107 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4110 case TCP_CLOSE_WAIT
:
4112 /* Received a retransmission of the FIN, do
4117 /* RFC793: Remain in the LAST-ACK state. */
4121 /* This case occurs when a simultaneous close
4122 * happens, we must ack the received FIN and
4123 * enter the CLOSING state.
4126 tcp_set_state(sk
, TCP_CLOSING
);
4129 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4131 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4134 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4135 * cases we should never reach this piece of code.
4137 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4138 __func__
, sk
->sk_state
);
4142 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4143 * Probably, we should reset in this case. For now drop them.
4145 __skb_queue_purge(&tp
->out_of_order_queue
);
4146 if (tcp_is_sack(tp
))
4147 tcp_sack_reset(&tp
->rx_opt
);
4150 if (!sock_flag(sk
, SOCK_DEAD
)) {
4151 sk
->sk_state_change(sk
);
4153 /* Do not send POLL_HUP for half duplex close. */
4154 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4155 sk
->sk_state
== TCP_CLOSE
)
4156 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4158 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4162 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4165 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4166 if (before(seq
, sp
->start_seq
))
4167 sp
->start_seq
= seq
;
4168 if (after(end_seq
, sp
->end_seq
))
4169 sp
->end_seq
= end_seq
;
4175 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4177 struct tcp_sock
*tp
= tcp_sk(sk
);
4179 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4182 if (before(seq
, tp
->rcv_nxt
))
4183 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4185 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4187 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4189 tp
->rx_opt
.dsack
= 1;
4190 tp
->duplicate_sack
[0].start_seq
= seq
;
4191 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4195 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4197 struct tcp_sock
*tp
= tcp_sk(sk
);
4199 if (!tp
->rx_opt
.dsack
)
4200 tcp_dsack_set(sk
, seq
, end_seq
);
4202 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4205 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4207 struct tcp_sock
*tp
= tcp_sk(sk
);
4209 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4210 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4211 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4212 tcp_enter_quickack_mode(sk
);
4214 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4215 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4217 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4218 end_seq
= tp
->rcv_nxt
;
4219 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4226 /* These routines update the SACK block as out-of-order packets arrive or
4227 * in-order packets close up the sequence space.
4229 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4232 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4233 struct tcp_sack_block
*swalk
= sp
+ 1;
4235 /* See if the recent change to the first SACK eats into
4236 * or hits the sequence space of other SACK blocks, if so coalesce.
4238 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4239 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4242 /* Zap SWALK, by moving every further SACK up by one slot.
4243 * Decrease num_sacks.
4245 tp
->rx_opt
.num_sacks
--;
4246 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4250 this_sack
++, swalk
++;
4254 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4256 struct tcp_sock
*tp
= tcp_sk(sk
);
4257 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4258 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4264 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4265 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4266 /* Rotate this_sack to the first one. */
4267 for (; this_sack
> 0; this_sack
--, sp
--)
4268 swap(*sp
, *(sp
- 1));
4270 tcp_sack_maybe_coalesce(tp
);
4275 /* Could not find an adjacent existing SACK, build a new one,
4276 * put it at the front, and shift everyone else down. We
4277 * always know there is at least one SACK present already here.
4279 * If the sack array is full, forget about the last one.
4281 if (this_sack
>= TCP_NUM_SACKS
) {
4283 tp
->rx_opt
.num_sacks
--;
4286 for (; this_sack
> 0; this_sack
--, sp
--)
4290 /* Build the new head SACK, and we're done. */
4291 sp
->start_seq
= seq
;
4292 sp
->end_seq
= end_seq
;
4293 tp
->rx_opt
.num_sacks
++;
4296 /* RCV.NXT advances, some SACKs should be eaten. */
4298 static void tcp_sack_remove(struct tcp_sock
*tp
)
4300 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4301 int num_sacks
= tp
->rx_opt
.num_sacks
;
4304 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4305 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4306 tp
->rx_opt
.num_sacks
= 0;
4310 for (this_sack
= 0; this_sack
< num_sacks
;) {
4311 /* Check if the start of the sack is covered by RCV.NXT. */
4312 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4315 /* RCV.NXT must cover all the block! */
4316 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4318 /* Zap this SACK, by moving forward any other SACKS. */
4319 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4320 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4327 tp
->rx_opt
.num_sacks
= num_sacks
;
4330 /* This one checks to see if we can put data from the
4331 * out_of_order queue into the receive_queue.
4333 static void tcp_ofo_queue(struct sock
*sk
)
4335 struct tcp_sock
*tp
= tcp_sk(sk
);
4336 __u32 dsack_high
= tp
->rcv_nxt
;
4337 struct sk_buff
*skb
;
4339 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4340 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4343 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4344 __u32 dsack
= dsack_high
;
4345 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4346 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4347 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4350 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4351 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4352 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4356 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4357 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4358 TCP_SKB_CB(skb
)->end_seq
);
4360 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4361 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4362 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4363 if (tcp_hdr(skb
)->fin
)
4364 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4368 static int tcp_prune_ofo_queue(struct sock
*sk
);
4369 static int tcp_prune_queue(struct sock
*sk
);
4371 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4373 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4374 !sk_rmem_schedule(sk
, size
)) {
4376 if (tcp_prune_queue(sk
) < 0)
4379 if (!sk_rmem_schedule(sk
, size
)) {
4380 if (!tcp_prune_ofo_queue(sk
))
4383 if (!sk_rmem_schedule(sk
, size
))
4390 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4392 struct tcphdr
*th
= tcp_hdr(skb
);
4393 struct tcp_sock
*tp
= tcp_sk(sk
);
4396 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4400 __skb_pull(skb
, th
->doff
* 4);
4402 TCP_ECN_accept_cwr(tp
, skb
);
4404 tp
->rx_opt
.dsack
= 0;
4406 /* Queue data for delivery to the user.
4407 * Packets in sequence go to the receive queue.
4408 * Out of sequence packets to the out_of_order_queue.
4410 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4411 if (tcp_receive_window(tp
) == 0)
4414 /* Ok. In sequence. In window. */
4415 if (tp
->ucopy
.task
== current
&&
4416 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4417 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4418 int chunk
= min_t(unsigned int, skb
->len
,
4421 __set_current_state(TASK_RUNNING
);
4424 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4425 tp
->ucopy
.len
-= chunk
;
4426 tp
->copied_seq
+= chunk
;
4427 eaten
= (chunk
== skb
->len
);
4428 tcp_rcv_space_adjust(sk
);
4436 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4439 skb_set_owner_r(skb
, sk
);
4440 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4442 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4444 tcp_event_data_recv(sk
, skb
);
4446 tcp_fin(skb
, sk
, th
);
4448 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4451 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4452 * gap in queue is filled.
4454 if (skb_queue_empty(&tp
->out_of_order_queue
))
4455 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4458 if (tp
->rx_opt
.num_sacks
)
4459 tcp_sack_remove(tp
);
4461 tcp_fast_path_check(sk
);
4465 else if (!sock_flag(sk
, SOCK_DEAD
))
4466 sk
->sk_data_ready(sk
, 0);
4470 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4471 /* A retransmit, 2nd most common case. Force an immediate ack. */
4472 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4473 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4476 tcp_enter_quickack_mode(sk
);
4477 inet_csk_schedule_ack(sk
);
4483 /* Out of window. F.e. zero window probe. */
4484 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4487 tcp_enter_quickack_mode(sk
);
4489 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4490 /* Partial packet, seq < rcv_next < end_seq */
4491 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4492 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4493 TCP_SKB_CB(skb
)->end_seq
);
4495 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4497 /* If window is closed, drop tail of packet. But after
4498 * remembering D-SACK for its head made in previous line.
4500 if (!tcp_receive_window(tp
))
4505 TCP_ECN_check_ce(tp
, skb
);
4507 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4510 /* Disable header prediction. */
4512 inet_csk_schedule_ack(sk
);
4514 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4515 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4517 skb_set_owner_r(skb
, sk
);
4519 if (!skb_peek(&tp
->out_of_order_queue
)) {
4520 /* Initial out of order segment, build 1 SACK. */
4521 if (tcp_is_sack(tp
)) {
4522 tp
->rx_opt
.num_sacks
= 1;
4523 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4524 tp
->selective_acks
[0].end_seq
=
4525 TCP_SKB_CB(skb
)->end_seq
;
4527 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4529 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4530 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4531 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4533 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4534 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4536 if (!tp
->rx_opt
.num_sacks
||
4537 tp
->selective_acks
[0].end_seq
!= seq
)
4540 /* Common case: data arrive in order after hole. */
4541 tp
->selective_acks
[0].end_seq
= end_seq
;
4545 /* Find place to insert this segment. */
4547 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4549 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4553 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4556 /* Do skb overlap to previous one? */
4557 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4558 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4559 /* All the bits are present. Drop. */
4561 tcp_dsack_set(sk
, seq
, end_seq
);
4564 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4565 /* Partial overlap. */
4566 tcp_dsack_set(sk
, seq
,
4567 TCP_SKB_CB(skb1
)->end_seq
);
4569 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4573 skb1
= skb_queue_prev(
4574 &tp
->out_of_order_queue
,
4579 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4581 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4583 /* And clean segments covered by new one as whole. */
4584 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4585 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4587 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4589 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4590 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4594 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4595 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4596 TCP_SKB_CB(skb1
)->end_seq
);
4601 if (tcp_is_sack(tp
))
4602 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4606 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4607 struct sk_buff_head
*list
)
4609 struct sk_buff
*next
= NULL
;
4611 if (!skb_queue_is_last(list
, skb
))
4612 next
= skb_queue_next(list
, skb
);
4614 __skb_unlink(skb
, list
);
4616 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4621 /* Collapse contiguous sequence of skbs head..tail with
4622 * sequence numbers start..end.
4624 * If tail is NULL, this means until the end of the list.
4626 * Segments with FIN/SYN are not collapsed (only because this
4630 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4631 struct sk_buff
*head
, struct sk_buff
*tail
,
4634 struct sk_buff
*skb
, *n
;
4637 /* First, check that queue is collapsible and find
4638 * the point where collapsing can be useful. */
4642 skb_queue_walk_from_safe(list
, skb
, n
) {
4645 /* No new bits? It is possible on ofo queue. */
4646 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4647 skb
= tcp_collapse_one(sk
, skb
, list
);
4653 /* The first skb to collapse is:
4655 * - bloated or contains data before "start" or
4656 * overlaps to the next one.
4658 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4659 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4660 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4661 end_of_skbs
= false;
4665 if (!skb_queue_is_last(list
, skb
)) {
4666 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4668 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4669 end_of_skbs
= false;
4674 /* Decided to skip this, advance start seq. */
4675 start
= TCP_SKB_CB(skb
)->end_seq
;
4677 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4680 while (before(start
, end
)) {
4681 struct sk_buff
*nskb
;
4682 unsigned int header
= skb_headroom(skb
);
4683 int copy
= SKB_MAX_ORDER(header
, 0);
4685 /* Too big header? This can happen with IPv6. */
4688 if (end
- start
< copy
)
4690 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4694 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4695 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4697 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4699 skb_reserve(nskb
, header
);
4700 memcpy(nskb
->head
, skb
->head
, header
);
4701 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4702 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4703 __skb_queue_before(list
, skb
, nskb
);
4704 skb_set_owner_r(nskb
, sk
);
4706 /* Copy data, releasing collapsed skbs. */
4708 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4709 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4713 size
= min(copy
, size
);
4714 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4716 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4720 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4721 skb
= tcp_collapse_one(sk
, skb
, list
);
4724 tcp_hdr(skb
)->syn
||
4732 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4733 * and tcp_collapse() them until all the queue is collapsed.
4735 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4737 struct tcp_sock
*tp
= tcp_sk(sk
);
4738 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4739 struct sk_buff
*head
;
4745 start
= TCP_SKB_CB(skb
)->seq
;
4746 end
= TCP_SKB_CB(skb
)->end_seq
;
4750 struct sk_buff
*next
= NULL
;
4752 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4753 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4756 /* Segment is terminated when we see gap or when
4757 * we are at the end of all the queue. */
4759 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4760 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4761 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4762 head
, skb
, start
, end
);
4766 /* Start new segment */
4767 start
= TCP_SKB_CB(skb
)->seq
;
4768 end
= TCP_SKB_CB(skb
)->end_seq
;
4770 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4771 start
= TCP_SKB_CB(skb
)->seq
;
4772 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4773 end
= TCP_SKB_CB(skb
)->end_seq
;
4779 * Purge the out-of-order queue.
4780 * Return true if queue was pruned.
4782 static int tcp_prune_ofo_queue(struct sock
*sk
)
4784 struct tcp_sock
*tp
= tcp_sk(sk
);
4787 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4788 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4789 __skb_queue_purge(&tp
->out_of_order_queue
);
4791 /* Reset SACK state. A conforming SACK implementation will
4792 * do the same at a timeout based retransmit. When a connection
4793 * is in a sad state like this, we care only about integrity
4794 * of the connection not performance.
4796 if (tp
->rx_opt
.sack_ok
)
4797 tcp_sack_reset(&tp
->rx_opt
);
4804 /* Reduce allocated memory if we can, trying to get
4805 * the socket within its memory limits again.
4807 * Return less than zero if we should start dropping frames
4808 * until the socket owning process reads some of the data
4809 * to stabilize the situation.
4811 static int tcp_prune_queue(struct sock
*sk
)
4813 struct tcp_sock
*tp
= tcp_sk(sk
);
4815 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4817 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4819 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4820 tcp_clamp_window(sk
);
4821 else if (tcp_memory_pressure
)
4822 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4824 tcp_collapse_ofo_queue(sk
);
4825 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4826 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4827 skb_peek(&sk
->sk_receive_queue
),
4829 tp
->copied_seq
, tp
->rcv_nxt
);
4832 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4835 /* Collapsing did not help, destructive actions follow.
4836 * This must not ever occur. */
4838 tcp_prune_ofo_queue(sk
);
4840 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4843 /* If we are really being abused, tell the caller to silently
4844 * drop receive data on the floor. It will get retransmitted
4845 * and hopefully then we'll have sufficient space.
4847 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4849 /* Massive buffer overcommit. */
4854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4855 * As additional protections, we do not touch cwnd in retransmission phases,
4856 * and if application hit its sndbuf limit recently.
4858 void tcp_cwnd_application_limited(struct sock
*sk
)
4860 struct tcp_sock
*tp
= tcp_sk(sk
);
4862 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4863 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4864 /* Limited by application or receiver window. */
4865 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4866 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4867 if (win_used
< tp
->snd_cwnd
) {
4868 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4869 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4871 tp
->snd_cwnd_used
= 0;
4873 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4876 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4878 struct tcp_sock
*tp
= tcp_sk(sk
);
4880 /* If the user specified a specific send buffer setting, do
4883 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4886 /* If we are under global TCP memory pressure, do not expand. */
4887 if (tcp_memory_pressure
)
4890 /* If we are under soft global TCP memory pressure, do not expand. */
4891 if (atomic_long_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4894 /* If we filled the congestion window, do not expand. */
4895 if (tp
->packets_out
>= tp
->snd_cwnd
)
4901 /* When incoming ACK allowed to free some skb from write_queue,
4902 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4903 * on the exit from tcp input handler.
4905 * PROBLEM: sndbuf expansion does not work well with largesend.
4907 static void tcp_new_space(struct sock
*sk
)
4909 struct tcp_sock
*tp
= tcp_sk(sk
);
4911 if (tcp_should_expand_sndbuf(sk
)) {
4912 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4913 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4914 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4915 tp
->reordering
+ 1);
4916 sndmem
*= 2 * demanded
;
4917 if (sndmem
> sk
->sk_sndbuf
)
4918 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4919 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4922 sk
->sk_write_space(sk
);
4925 static void tcp_check_space(struct sock
*sk
)
4927 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4928 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4929 if (sk
->sk_socket
&&
4930 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4935 static inline void tcp_data_snd_check(struct sock
*sk
)
4937 tcp_push_pending_frames(sk
);
4938 tcp_check_space(sk
);
4942 * Check if sending an ack is needed.
4944 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4946 struct tcp_sock
*tp
= tcp_sk(sk
);
4948 /* More than one full frame received... */
4949 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4950 /* ... and right edge of window advances far enough.
4951 * (tcp_recvmsg() will send ACK otherwise). Or...
4953 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4954 /* We ACK each frame or... */
4955 tcp_in_quickack_mode(sk
) ||
4956 /* We have out of order data. */
4957 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4958 /* Then ack it now */
4961 /* Else, send delayed ack. */
4962 tcp_send_delayed_ack(sk
);
4966 static inline void tcp_ack_snd_check(struct sock
*sk
)
4968 if (!inet_csk_ack_scheduled(sk
)) {
4969 /* We sent a data segment already. */
4972 __tcp_ack_snd_check(sk
, 1);
4976 * This routine is only called when we have urgent data
4977 * signaled. Its the 'slow' part of tcp_urg. It could be
4978 * moved inline now as tcp_urg is only called from one
4979 * place. We handle URGent data wrong. We have to - as
4980 * BSD still doesn't use the correction from RFC961.
4981 * For 1003.1g we should support a new option TCP_STDURG to permit
4982 * either form (or just set the sysctl tcp_stdurg).
4985 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4987 struct tcp_sock
*tp
= tcp_sk(sk
);
4988 u32 ptr
= ntohs(th
->urg_ptr
);
4990 if (ptr
&& !sysctl_tcp_stdurg
)
4992 ptr
+= ntohl(th
->seq
);
4994 /* Ignore urgent data that we've already seen and read. */
4995 if (after(tp
->copied_seq
, ptr
))
4998 /* Do not replay urg ptr.
5000 * NOTE: interesting situation not covered by specs.
5001 * Misbehaving sender may send urg ptr, pointing to segment,
5002 * which we already have in ofo queue. We are not able to fetch
5003 * such data and will stay in TCP_URG_NOTYET until will be eaten
5004 * by recvmsg(). Seems, we are not obliged to handle such wicked
5005 * situations. But it is worth to think about possibility of some
5006 * DoSes using some hypothetical application level deadlock.
5008 if (before(ptr
, tp
->rcv_nxt
))
5011 /* Do we already have a newer (or duplicate) urgent pointer? */
5012 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5015 /* Tell the world about our new urgent pointer. */
5018 /* We may be adding urgent data when the last byte read was
5019 * urgent. To do this requires some care. We cannot just ignore
5020 * tp->copied_seq since we would read the last urgent byte again
5021 * as data, nor can we alter copied_seq until this data arrives
5022 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5024 * NOTE. Double Dutch. Rendering to plain English: author of comment
5025 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5026 * and expect that both A and B disappear from stream. This is _wrong_.
5027 * Though this happens in BSD with high probability, this is occasional.
5028 * Any application relying on this is buggy. Note also, that fix "works"
5029 * only in this artificial test. Insert some normal data between A and B and we will
5030 * decline of BSD again. Verdict: it is better to remove to trap
5033 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5034 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5035 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5037 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5038 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5043 tp
->urg_data
= TCP_URG_NOTYET
;
5046 /* Disable header prediction. */
5050 /* This is the 'fast' part of urgent handling. */
5051 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
5053 struct tcp_sock
*tp
= tcp_sk(sk
);
5055 /* Check if we get a new urgent pointer - normally not. */
5057 tcp_check_urg(sk
, th
);
5059 /* Do we wait for any urgent data? - normally not... */
5060 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5061 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5064 /* Is the urgent pointer pointing into this packet? */
5065 if (ptr
< skb
->len
) {
5067 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5069 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5070 if (!sock_flag(sk
, SOCK_DEAD
))
5071 sk
->sk_data_ready(sk
, 0);
5076 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5078 struct tcp_sock
*tp
= tcp_sk(sk
);
5079 int chunk
= skb
->len
- hlen
;
5083 if (skb_csum_unnecessary(skb
))
5084 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5086 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5090 tp
->ucopy
.len
-= chunk
;
5091 tp
->copied_seq
+= chunk
;
5092 tcp_rcv_space_adjust(sk
);
5099 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5100 struct sk_buff
*skb
)
5104 if (sock_owned_by_user(sk
)) {
5106 result
= __tcp_checksum_complete(skb
);
5109 result
= __tcp_checksum_complete(skb
);
5114 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5115 struct sk_buff
*skb
)
5117 return !skb_csum_unnecessary(skb
) &&
5118 __tcp_checksum_complete_user(sk
, skb
);
5121 #ifdef CONFIG_NET_DMA
5122 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5125 struct tcp_sock
*tp
= tcp_sk(sk
);
5126 int chunk
= skb
->len
- hlen
;
5128 int copied_early
= 0;
5130 if (tp
->ucopy
.wakeup
)
5133 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5134 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5136 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5138 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5140 tp
->ucopy
.iov
, chunk
,
5141 tp
->ucopy
.pinned_list
);
5146 tp
->ucopy
.dma_cookie
= dma_cookie
;
5149 tp
->ucopy
.len
-= chunk
;
5150 tp
->copied_seq
+= chunk
;
5151 tcp_rcv_space_adjust(sk
);
5153 if ((tp
->ucopy
.len
== 0) ||
5154 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5155 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5156 tp
->ucopy
.wakeup
= 1;
5157 sk
->sk_data_ready(sk
, 0);
5159 } else if (chunk
> 0) {
5160 tp
->ucopy
.wakeup
= 1;
5161 sk
->sk_data_ready(sk
, 0);
5164 return copied_early
;
5166 #endif /* CONFIG_NET_DMA */
5168 /* Does PAWS and seqno based validation of an incoming segment, flags will
5169 * play significant role here.
5171 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5172 struct tcphdr
*th
, int syn_inerr
)
5175 struct tcp_sock
*tp
= tcp_sk(sk
);
5177 /* RFC1323: H1. Apply PAWS check first. */
5178 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5179 tp
->rx_opt
.saw_tstamp
&&
5180 tcp_paws_discard(sk
, skb
)) {
5182 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5183 tcp_send_dupack(sk
, skb
);
5186 /* Reset is accepted even if it did not pass PAWS. */
5189 /* Step 1: check sequence number */
5190 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5191 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5192 * (RST) segments are validated by checking their SEQ-fields."
5193 * And page 69: "If an incoming segment is not acceptable,
5194 * an acknowledgment should be sent in reply (unless the RST
5195 * bit is set, if so drop the segment and return)".
5198 tcp_send_dupack(sk
, skb
);
5202 /* Step 2: check RST bit */
5208 /* ts_recent update must be made after we are sure that the packet
5211 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5213 /* step 3: check security and precedence [ignored] */
5215 /* step 4: Check for a SYN in window. */
5216 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5218 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5219 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5232 * TCP receive function for the ESTABLISHED state.
5234 * It is split into a fast path and a slow path. The fast path is
5236 * - A zero window was announced from us - zero window probing
5237 * is only handled properly in the slow path.
5238 * - Out of order segments arrived.
5239 * - Urgent data is expected.
5240 * - There is no buffer space left
5241 * - Unexpected TCP flags/window values/header lengths are received
5242 * (detected by checking the TCP header against pred_flags)
5243 * - Data is sent in both directions. Fast path only supports pure senders
5244 * or pure receivers (this means either the sequence number or the ack
5245 * value must stay constant)
5246 * - Unexpected TCP option.
5248 * When these conditions are not satisfied it drops into a standard
5249 * receive procedure patterned after RFC793 to handle all cases.
5250 * The first three cases are guaranteed by proper pred_flags setting,
5251 * the rest is checked inline. Fast processing is turned on in
5252 * tcp_data_queue when everything is OK.
5254 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5255 struct tcphdr
*th
, unsigned len
)
5257 struct tcp_sock
*tp
= tcp_sk(sk
);
5261 * Header prediction.
5262 * The code loosely follows the one in the famous
5263 * "30 instruction TCP receive" Van Jacobson mail.
5265 * Van's trick is to deposit buffers into socket queue
5266 * on a device interrupt, to call tcp_recv function
5267 * on the receive process context and checksum and copy
5268 * the buffer to user space. smart...
5270 * Our current scheme is not silly either but we take the
5271 * extra cost of the net_bh soft interrupt processing...
5272 * We do checksum and copy also but from device to kernel.
5275 tp
->rx_opt
.saw_tstamp
= 0;
5277 /* pred_flags is 0xS?10 << 16 + snd_wnd
5278 * if header_prediction is to be made
5279 * 'S' will always be tp->tcp_header_len >> 2
5280 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5281 * turn it off (when there are holes in the receive
5282 * space for instance)
5283 * PSH flag is ignored.
5286 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5287 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5288 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5289 int tcp_header_len
= tp
->tcp_header_len
;
5291 /* Timestamp header prediction: tcp_header_len
5292 * is automatically equal to th->doff*4 due to pred_flags
5296 /* Check timestamp */
5297 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5298 /* No? Slow path! */
5299 if (!tcp_parse_aligned_timestamp(tp
, th
))
5302 /* If PAWS failed, check it more carefully in slow path */
5303 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5306 /* DO NOT update ts_recent here, if checksum fails
5307 * and timestamp was corrupted part, it will result
5308 * in a hung connection since we will drop all
5309 * future packets due to the PAWS test.
5313 if (len
<= tcp_header_len
) {
5314 /* Bulk data transfer: sender */
5315 if (len
== tcp_header_len
) {
5316 /* Predicted packet is in window by definition.
5317 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5318 * Hence, check seq<=rcv_wup reduces to:
5320 if (tcp_header_len
==
5321 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5322 tp
->rcv_nxt
== tp
->rcv_wup
)
5323 tcp_store_ts_recent(tp
);
5325 /* We know that such packets are checksummed
5328 tcp_ack(sk
, skb
, 0);
5330 tcp_data_snd_check(sk
);
5332 } else { /* Header too small */
5333 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5338 int copied_early
= 0;
5340 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5341 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5342 #ifdef CONFIG_NET_DMA
5343 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5348 if (tp
->ucopy
.task
== current
&&
5349 sock_owned_by_user(sk
) && !copied_early
) {
5350 __set_current_state(TASK_RUNNING
);
5352 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5356 /* Predicted packet is in window by definition.
5357 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5358 * Hence, check seq<=rcv_wup reduces to:
5360 if (tcp_header_len
==
5361 (sizeof(struct tcphdr
) +
5362 TCPOLEN_TSTAMP_ALIGNED
) &&
5363 tp
->rcv_nxt
== tp
->rcv_wup
)
5364 tcp_store_ts_recent(tp
);
5366 tcp_rcv_rtt_measure_ts(sk
, skb
);
5368 __skb_pull(skb
, tcp_header_len
);
5369 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5370 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5373 tcp_cleanup_rbuf(sk
, skb
->len
);
5376 if (tcp_checksum_complete_user(sk
, skb
))
5379 /* Predicted packet is in window by definition.
5380 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5381 * Hence, check seq<=rcv_wup reduces to:
5383 if (tcp_header_len
==
5384 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5385 tp
->rcv_nxt
== tp
->rcv_wup
)
5386 tcp_store_ts_recent(tp
);
5388 tcp_rcv_rtt_measure_ts(sk
, skb
);
5390 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5393 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5395 /* Bulk data transfer: receiver */
5396 __skb_pull(skb
, tcp_header_len
);
5397 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5398 skb_set_owner_r(skb
, sk
);
5399 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5402 tcp_event_data_recv(sk
, skb
);
5404 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5405 /* Well, only one small jumplet in fast path... */
5406 tcp_ack(sk
, skb
, FLAG_DATA
);
5407 tcp_data_snd_check(sk
);
5408 if (!inet_csk_ack_scheduled(sk
))
5412 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5413 __tcp_ack_snd_check(sk
, 0);
5415 #ifdef CONFIG_NET_DMA
5417 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5423 sk
->sk_data_ready(sk
, 0);
5429 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5433 * Standard slow path.
5436 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5441 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5444 tcp_rcv_rtt_measure_ts(sk
, skb
);
5446 /* Process urgent data. */
5447 tcp_urg(sk
, skb
, th
);
5449 /* step 7: process the segment text */
5450 tcp_data_queue(sk
, skb
);
5452 tcp_data_snd_check(sk
);
5453 tcp_ack_snd_check(sk
);
5457 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5463 EXPORT_SYMBOL(tcp_rcv_established
);
5465 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5466 struct tcphdr
*th
, unsigned len
)
5469 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5470 struct tcp_sock
*tp
= tcp_sk(sk
);
5471 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5472 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5474 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5478 * "If the state is SYN-SENT then
5479 * first check the ACK bit
5480 * If the ACK bit is set
5481 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5482 * a reset (unless the RST bit is set, if so drop
5483 * the segment and return)"
5485 * We do not send data with SYN, so that RFC-correct
5488 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5489 goto reset_and_undo
;
5491 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5492 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5494 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5495 goto reset_and_undo
;
5498 /* Now ACK is acceptable.
5500 * "If the RST bit is set
5501 * If the ACK was acceptable then signal the user "error:
5502 * connection reset", drop the segment, enter CLOSED state,
5503 * delete TCB, and return."
5512 * "fifth, if neither of the SYN or RST bits is set then
5513 * drop the segment and return."
5519 goto discard_and_undo
;
5522 * "If the SYN bit is on ...
5523 * are acceptable then ...
5524 * (our SYN has been ACKed), change the connection
5525 * state to ESTABLISHED..."
5528 TCP_ECN_rcv_synack(tp
, th
);
5530 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5531 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5533 /* Ok.. it's good. Set up sequence numbers and
5534 * move to established.
5536 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5537 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5539 /* RFC1323: The window in SYN & SYN/ACK segments is
5542 tp
->snd_wnd
= ntohs(th
->window
);
5543 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5545 if (!tp
->rx_opt
.wscale_ok
) {
5546 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5547 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5550 if (tp
->rx_opt
.saw_tstamp
) {
5551 tp
->rx_opt
.tstamp_ok
= 1;
5552 tp
->tcp_header_len
=
5553 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5554 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5555 tcp_store_ts_recent(tp
);
5557 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5560 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5561 tcp_enable_fack(tp
);
5564 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5565 tcp_initialize_rcv_mss(sk
);
5567 /* Remember, tcp_poll() does not lock socket!
5568 * Change state from SYN-SENT only after copied_seq
5569 * is initialized. */
5570 tp
->copied_seq
= tp
->rcv_nxt
;
5573 cvp
->cookie_pair_size
> 0 &&
5574 tp
->rx_opt
.cookie_plus
> 0) {
5575 int cookie_size
= tp
->rx_opt
.cookie_plus
5576 - TCPOLEN_COOKIE_BASE
;
5577 int cookie_pair_size
= cookie_size
5578 + cvp
->cookie_desired
;
5580 /* A cookie extension option was sent and returned.
5581 * Note that each incoming SYNACK replaces the
5582 * Responder cookie. The initial exchange is most
5583 * fragile, as protection against spoofing relies
5584 * entirely upon the sequence and timestamp (above).
5585 * This replacement strategy allows the correct pair to
5586 * pass through, while any others will be filtered via
5587 * Responder verification later.
5589 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5590 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5591 hash_location
, cookie_size
);
5592 cvp
->cookie_pair_size
= cookie_pair_size
;
5597 tcp_set_state(sk
, TCP_ESTABLISHED
);
5599 security_inet_conn_established(sk
, skb
);
5601 /* Make sure socket is routed, for correct metrics. */
5602 icsk
->icsk_af_ops
->rebuild_header(sk
);
5604 tcp_init_metrics(sk
);
5606 tcp_init_congestion_control(sk
);
5608 /* Prevent spurious tcp_cwnd_restart() on first data
5611 tp
->lsndtime
= tcp_time_stamp
;
5613 tcp_init_buffer_space(sk
);
5615 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5616 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5618 if (!tp
->rx_opt
.snd_wscale
)
5619 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5623 if (!sock_flag(sk
, SOCK_DEAD
)) {
5624 sk
->sk_state_change(sk
);
5625 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5628 if (sk
->sk_write_pending
||
5629 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5630 icsk
->icsk_ack
.pingpong
) {
5631 /* Save one ACK. Data will be ready after
5632 * several ticks, if write_pending is set.
5634 * It may be deleted, but with this feature tcpdumps
5635 * look so _wonderfully_ clever, that I was not able
5636 * to stand against the temptation 8) --ANK
5638 inet_csk_schedule_ack(sk
);
5639 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5640 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5641 tcp_incr_quickack(sk
);
5642 tcp_enter_quickack_mode(sk
);
5643 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5644 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5655 /* No ACK in the segment */
5659 * "If the RST bit is set
5661 * Otherwise (no ACK) drop the segment and return."
5664 goto discard_and_undo
;
5668 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5669 tcp_paws_reject(&tp
->rx_opt
, 0))
5670 goto discard_and_undo
;
5673 /* We see SYN without ACK. It is attempt of
5674 * simultaneous connect with crossed SYNs.
5675 * Particularly, it can be connect to self.
5677 tcp_set_state(sk
, TCP_SYN_RECV
);
5679 if (tp
->rx_opt
.saw_tstamp
) {
5680 tp
->rx_opt
.tstamp_ok
= 1;
5681 tcp_store_ts_recent(tp
);
5682 tp
->tcp_header_len
=
5683 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5685 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5688 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5689 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5691 /* RFC1323: The window in SYN & SYN/ACK segments is
5694 tp
->snd_wnd
= ntohs(th
->window
);
5695 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5696 tp
->max_window
= tp
->snd_wnd
;
5698 TCP_ECN_rcv_syn(tp
, th
);
5701 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5702 tcp_initialize_rcv_mss(sk
);
5704 tcp_send_synack(sk
);
5706 /* Note, we could accept data and URG from this segment.
5707 * There are no obstacles to make this.
5709 * However, if we ignore data in ACKless segments sometimes,
5710 * we have no reasons to accept it sometimes.
5711 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5712 * is not flawless. So, discard packet for sanity.
5713 * Uncomment this return to process the data.
5720 /* "fifth, if neither of the SYN or RST bits is set then
5721 * drop the segment and return."
5725 tcp_clear_options(&tp
->rx_opt
);
5726 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5730 tcp_clear_options(&tp
->rx_opt
);
5731 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5736 * This function implements the receiving procedure of RFC 793 for
5737 * all states except ESTABLISHED and TIME_WAIT.
5738 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5739 * address independent.
5742 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5743 struct tcphdr
*th
, unsigned len
)
5745 struct tcp_sock
*tp
= tcp_sk(sk
);
5746 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5750 tp
->rx_opt
.saw_tstamp
= 0;
5752 switch (sk
->sk_state
) {
5764 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5767 /* Now we have several options: In theory there is
5768 * nothing else in the frame. KA9Q has an option to
5769 * send data with the syn, BSD accepts data with the
5770 * syn up to the [to be] advertised window and
5771 * Solaris 2.1 gives you a protocol error. For now
5772 * we just ignore it, that fits the spec precisely
5773 * and avoids incompatibilities. It would be nice in
5774 * future to drop through and process the data.
5776 * Now that TTCP is starting to be used we ought to
5778 * But, this leaves one open to an easy denial of
5779 * service attack, and SYN cookies can't defend
5780 * against this problem. So, we drop the data
5781 * in the interest of security over speed unless
5782 * it's still in use.
5790 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5794 /* Do step6 onward by hand. */
5795 tcp_urg(sk
, skb
, th
);
5797 tcp_data_snd_check(sk
);
5801 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5805 /* step 5: check the ACK field */
5807 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5809 switch (sk
->sk_state
) {
5812 tp
->copied_seq
= tp
->rcv_nxt
;
5814 tcp_set_state(sk
, TCP_ESTABLISHED
);
5815 sk
->sk_state_change(sk
);
5817 /* Note, that this wakeup is only for marginal
5818 * crossed SYN case. Passively open sockets
5819 * are not waked up, because sk->sk_sleep ==
5820 * NULL and sk->sk_socket == NULL.
5824 SOCK_WAKE_IO
, POLL_OUT
);
5826 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5827 tp
->snd_wnd
= ntohs(th
->window
) <<
5828 tp
->rx_opt
.snd_wscale
;
5829 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5831 /* tcp_ack considers this ACK as duplicate
5832 * and does not calculate rtt.
5835 tcp_ack_update_rtt(sk
, 0, 0);
5837 if (tp
->rx_opt
.tstamp_ok
)
5838 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5840 /* Make sure socket is routed, for
5843 icsk
->icsk_af_ops
->rebuild_header(sk
);
5845 tcp_init_metrics(sk
);
5847 tcp_init_congestion_control(sk
);
5849 /* Prevent spurious tcp_cwnd_restart() on
5850 * first data packet.
5852 tp
->lsndtime
= tcp_time_stamp
;
5855 tcp_initialize_rcv_mss(sk
);
5856 tcp_init_buffer_space(sk
);
5857 tcp_fast_path_on(tp
);
5864 if (tp
->snd_una
== tp
->write_seq
) {
5865 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5866 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5867 dst_confirm(__sk_dst_get(sk
));
5869 if (!sock_flag(sk
, SOCK_DEAD
))
5870 /* Wake up lingering close() */
5871 sk
->sk_state_change(sk
);
5875 if (tp
->linger2
< 0 ||
5876 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5877 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5879 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5883 tmo
= tcp_fin_time(sk
);
5884 if (tmo
> TCP_TIMEWAIT_LEN
) {
5885 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5886 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5887 /* Bad case. We could lose such FIN otherwise.
5888 * It is not a big problem, but it looks confusing
5889 * and not so rare event. We still can lose it now,
5890 * if it spins in bh_lock_sock(), but it is really
5893 inet_csk_reset_keepalive_timer(sk
, tmo
);
5895 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5903 if (tp
->snd_una
== tp
->write_seq
) {
5904 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5910 if (tp
->snd_una
== tp
->write_seq
) {
5911 tcp_update_metrics(sk
);
5920 /* step 6: check the URG bit */
5921 tcp_urg(sk
, skb
, th
);
5923 /* step 7: process the segment text */
5924 switch (sk
->sk_state
) {
5925 case TCP_CLOSE_WAIT
:
5928 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5932 /* RFC 793 says to queue data in these states,
5933 * RFC 1122 says we MUST send a reset.
5934 * BSD 4.4 also does reset.
5936 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5937 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5938 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5939 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5945 case TCP_ESTABLISHED
:
5946 tcp_data_queue(sk
, skb
);
5951 /* tcp_data could move socket to TIME-WAIT */
5952 if (sk
->sk_state
!= TCP_CLOSE
) {
5953 tcp_data_snd_check(sk
);
5954 tcp_ack_snd_check(sk
);
5963 EXPORT_SYMBOL(tcp_rcv_state_process
);