ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob7410a8c28e14bdde88b4a7b49c78576ddeee2994
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
222 if (tp->ecn_flags & TCP_ECN_OK) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 tp->ecn_flags &= ~TCP_ECN_OK;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 return 1;
249 return 0;
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock *sk)
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
297 struct tcp_sock *tp = tcp_sk(sk);
298 /* Optimize this! */
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
306 truesize >>= 1;
307 window >>= 1;
309 return 0;
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
314 struct tcp_sock *tp = tcp_sk(sk);
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
326 incr = 2 * tp->advmss;
327 else
328 incr = __tcp_grow_window(sk, skb);
330 if (incr) {
331 incr = max_t(int, incr, 2 * skb->len);
332 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
333 tp->window_clamp);
334 inet_csk(sk)->icsk_ack.quick |= 1;
339 /* 3. Tuning rcvbuf, when connection enters established state. */
341 static void tcp_fixup_rcvbuf(struct sock *sk)
343 struct tcp_sock *tp = tcp_sk(sk);
344 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
346 /* Try to select rcvbuf so that 4 mss-sized segments
347 * will fit to window and corresponding skbs will fit to our rcvbuf.
348 * (was 3; 4 is minimum to allow fast retransmit to work.)
350 while (tcp_win_from_space(rcvmem) < tp->advmss)
351 rcvmem += 128;
352 if (sk->sk_rcvbuf < 4 * rcvmem)
353 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
356 /* 4. Try to fixup all. It is made immediately after connection enters
357 * established state.
359 static void tcp_init_buffer_space(struct sock *sk)
361 struct tcp_sock *tp = tcp_sk(sk);
362 int maxwin;
364 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
365 tcp_fixup_rcvbuf(sk);
366 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
367 tcp_fixup_sndbuf(sk);
369 tp->rcvq_space.space = tp->rcv_wnd;
371 maxwin = tcp_full_space(sk);
373 if (tp->window_clamp >= maxwin) {
374 tp->window_clamp = maxwin;
376 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
377 tp->window_clamp = max(maxwin -
378 (maxwin >> sysctl_tcp_app_win),
379 4 * tp->advmss);
382 /* Force reservation of one segment. */
383 if (sysctl_tcp_app_win &&
384 tp->window_clamp > 2 * tp->advmss &&
385 tp->window_clamp + tp->advmss > maxwin)
386 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
388 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
389 tp->snd_cwnd_stamp = tcp_time_stamp;
392 /* 5. Recalculate window clamp after socket hit its memory bounds. */
393 static void tcp_clamp_window(struct sock *sk)
395 struct tcp_sock *tp = tcp_sk(sk);
396 struct inet_connection_sock *icsk = inet_csk(sk);
398 icsk->icsk_ack.quick = 0;
400 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
401 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
402 !tcp_memory_pressure &&
403 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
404 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
405 sysctl_tcp_rmem[2]);
407 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
408 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
411 /* Initialize RCV_MSS value.
412 * RCV_MSS is an our guess about MSS used by the peer.
413 * We haven't any direct information about the MSS.
414 * It's better to underestimate the RCV_MSS rather than overestimate.
415 * Overestimations make us ACKing less frequently than needed.
416 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
418 void tcp_initialize_rcv_mss(struct sock *sk)
420 struct tcp_sock *tp = tcp_sk(sk);
421 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
423 hint = min(hint, tp->rcv_wnd / 2);
424 hint = min(hint, TCP_MSS_DEFAULT);
425 hint = max(hint, TCP_MIN_MSS);
427 inet_csk(sk)->icsk_ack.rcv_mss = hint;
429 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
431 /* Receiver "autotuning" code.
433 * The algorithm for RTT estimation w/o timestamps is based on
434 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
435 * <http://public.lanl.gov/radiant/pubs.html#DRS>
437 * More detail on this code can be found at
438 * <http://staff.psc.edu/jheffner/>,
439 * though this reference is out of date. A new paper
440 * is pending.
442 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
444 u32 new_sample = tp->rcv_rtt_est.rtt;
445 long m = sample;
447 if (m == 0)
448 m = 1;
450 if (new_sample != 0) {
451 /* If we sample in larger samples in the non-timestamp
452 * case, we could grossly overestimate the RTT especially
453 * with chatty applications or bulk transfer apps which
454 * are stalled on filesystem I/O.
456 * Also, since we are only going for a minimum in the
457 * non-timestamp case, we do not smooth things out
458 * else with timestamps disabled convergence takes too
459 * long.
461 if (!win_dep) {
462 m -= (new_sample >> 3);
463 new_sample += m;
464 } else {
465 m <<= 3;
466 if (m < new_sample)
467 new_sample = m;
469 } else {
470 /* No previous measure. */
471 new_sample = m << 3;
474 if (tp->rcv_rtt_est.rtt != new_sample)
475 tp->rcv_rtt_est.rtt = new_sample;
478 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
480 if (tp->rcv_rtt_est.time == 0)
481 goto new_measure;
482 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
483 return;
484 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
486 new_measure:
487 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
488 tp->rcv_rtt_est.time = tcp_time_stamp;
491 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
492 const struct sk_buff *skb)
494 struct tcp_sock *tp = tcp_sk(sk);
495 if (tp->rx_opt.rcv_tsecr &&
496 (TCP_SKB_CB(skb)->end_seq -
497 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
498 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
502 * This function should be called every time data is copied to user space.
503 * It calculates the appropriate TCP receive buffer space.
505 void tcp_rcv_space_adjust(struct sock *sk)
507 struct tcp_sock *tp = tcp_sk(sk);
508 int time;
509 int space;
511 if (tp->rcvq_space.time == 0)
512 goto new_measure;
514 time = tcp_time_stamp - tp->rcvq_space.time;
515 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
516 return;
518 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
520 space = max(tp->rcvq_space.space, space);
522 if (tp->rcvq_space.space != space) {
523 int rcvmem;
525 tp->rcvq_space.space = space;
527 if (sysctl_tcp_moderate_rcvbuf &&
528 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
529 int new_clamp = space;
531 /* Receive space grows, normalize in order to
532 * take into account packet headers and sk_buff
533 * structure overhead.
535 space /= tp->advmss;
536 if (!space)
537 space = 1;
538 rcvmem = (tp->advmss + MAX_TCP_HEADER +
539 16 + sizeof(struct sk_buff));
540 while (tcp_win_from_space(rcvmem) < tp->advmss)
541 rcvmem += 128;
542 space *= rcvmem;
543 space = min(space, sysctl_tcp_rmem[2]);
544 if (space > sk->sk_rcvbuf) {
545 sk->sk_rcvbuf = space;
547 /* Make the window clamp follow along. */
548 tp->window_clamp = new_clamp;
553 new_measure:
554 tp->rcvq_space.seq = tp->copied_seq;
555 tp->rcvq_space.time = tcp_time_stamp;
558 /* There is something which you must keep in mind when you analyze the
559 * behavior of the tp->ato delayed ack timeout interval. When a
560 * connection starts up, we want to ack as quickly as possible. The
561 * problem is that "good" TCP's do slow start at the beginning of data
562 * transmission. The means that until we send the first few ACK's the
563 * sender will sit on his end and only queue most of his data, because
564 * he can only send snd_cwnd unacked packets at any given time. For
565 * each ACK we send, he increments snd_cwnd and transmits more of his
566 * queue. -DaveM
568 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
570 struct tcp_sock *tp = tcp_sk(sk);
571 struct inet_connection_sock *icsk = inet_csk(sk);
572 u32 now;
574 inet_csk_schedule_ack(sk);
576 tcp_measure_rcv_mss(sk, skb);
578 tcp_rcv_rtt_measure(tp);
580 now = tcp_time_stamp;
582 if (!icsk->icsk_ack.ato) {
583 /* The _first_ data packet received, initialize
584 * delayed ACK engine.
586 tcp_incr_quickack(sk);
587 icsk->icsk_ack.ato = TCP_ATO_MIN;
588 } else {
589 int m = now - icsk->icsk_ack.lrcvtime;
591 if (m <= TCP_ATO_MIN / 2) {
592 /* The fastest case is the first. */
593 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
594 } else if (m < icsk->icsk_ack.ato) {
595 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
596 if (icsk->icsk_ack.ato > icsk->icsk_rto)
597 icsk->icsk_ack.ato = icsk->icsk_rto;
598 } else if (m > icsk->icsk_rto) {
599 /* Too long gap. Apparently sender failed to
600 * restart window, so that we send ACKs quickly.
602 tcp_incr_quickack(sk);
603 sk_mem_reclaim(sk);
606 icsk->icsk_ack.lrcvtime = now;
608 TCP_ECN_check_ce(tp, skb);
610 if (skb->len >= 128)
611 tcp_grow_window(sk, skb);
614 /* Called to compute a smoothed rtt estimate. The data fed to this
615 * routine either comes from timestamps, or from segments that were
616 * known _not_ to have been retransmitted [see Karn/Partridge
617 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
618 * piece by Van Jacobson.
619 * NOTE: the next three routines used to be one big routine.
620 * To save cycles in the RFC 1323 implementation it was better to break
621 * it up into three procedures. -- erics
623 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 struct tcp_sock *tp = tcp_sk(sk);
626 long m = mrtt; /* RTT */
628 /* The following amusing code comes from Jacobson's
629 * article in SIGCOMM '88. Note that rtt and mdev
630 * are scaled versions of rtt and mean deviation.
631 * This is designed to be as fast as possible
632 * m stands for "measurement".
634 * On a 1990 paper the rto value is changed to:
635 * RTO = rtt + 4 * mdev
637 * Funny. This algorithm seems to be very broken.
638 * These formulae increase RTO, when it should be decreased, increase
639 * too slowly, when it should be increased quickly, decrease too quickly
640 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
641 * does not matter how to _calculate_ it. Seems, it was trap
642 * that VJ failed to avoid. 8)
644 if (m == 0)
645 m = 1;
646 if (tp->srtt != 0) {
647 m -= (tp->srtt >> 3); /* m is now error in rtt est */
648 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
649 if (m < 0) {
650 m = -m; /* m is now abs(error) */
651 m -= (tp->mdev >> 2); /* similar update on mdev */
652 /* This is similar to one of Eifel findings.
653 * Eifel blocks mdev updates when rtt decreases.
654 * This solution is a bit different: we use finer gain
655 * for mdev in this case (alpha*beta).
656 * Like Eifel it also prevents growth of rto,
657 * but also it limits too fast rto decreases,
658 * happening in pure Eifel.
660 if (m > 0)
661 m >>= 3;
662 } else {
663 m -= (tp->mdev >> 2); /* similar update on mdev */
665 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
666 if (tp->mdev > tp->mdev_max) {
667 tp->mdev_max = tp->mdev;
668 if (tp->mdev_max > tp->rttvar)
669 tp->rttvar = tp->mdev_max;
671 if (after(tp->snd_una, tp->rtt_seq)) {
672 if (tp->mdev_max < tp->rttvar)
673 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
674 tp->rtt_seq = tp->snd_nxt;
675 tp->mdev_max = tcp_rto_min(sk);
677 } else {
678 /* no previous measure. */
679 tp->srtt = m << 3; /* take the measured time to be rtt */
680 tp->mdev = m << 1; /* make sure rto = 3*rtt */
681 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
682 tp->rtt_seq = tp->snd_nxt;
686 /* Calculate rto without backoff. This is the second half of Van Jacobson's
687 * routine referred to above.
689 static inline void tcp_set_rto(struct sock *sk)
691 const struct tcp_sock *tp = tcp_sk(sk);
692 /* Old crap is replaced with new one. 8)
694 * More seriously:
695 * 1. If rtt variance happened to be less 50msec, it is hallucination.
696 * It cannot be less due to utterly erratic ACK generation made
697 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
698 * to do with delayed acks, because at cwnd>2 true delack timeout
699 * is invisible. Actually, Linux-2.4 also generates erratic
700 * ACKs in some circumstances.
702 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
704 /* 2. Fixups made earlier cannot be right.
705 * If we do not estimate RTO correctly without them,
706 * all the algo is pure shit and should be replaced
707 * with correct one. It is exactly, which we pretend to do.
710 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
711 * guarantees that rto is higher.
713 tcp_bound_rto(sk);
716 /* Save metrics learned by this TCP session.
717 This function is called only, when TCP finishes successfully
718 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720 void tcp_update_metrics(struct sock *sk)
722 struct tcp_sock *tp = tcp_sk(sk);
723 struct dst_entry *dst = __sk_dst_get(sk);
725 if (sysctl_tcp_nometrics_save)
726 return;
728 dst_confirm(dst);
730 if (dst && (dst->flags & DST_HOST)) {
731 const struct inet_connection_sock *icsk = inet_csk(sk);
732 int m;
733 unsigned long rtt;
735 if (icsk->icsk_backoff || !tp->srtt) {
736 /* This session failed to estimate rtt. Why?
737 * Probably, no packets returned in time.
738 * Reset our results.
740 if (!(dst_metric_locked(dst, RTAX_RTT)))
741 dst_metric_set(dst, RTAX_RTT, 0);
742 return;
745 rtt = dst_metric_rtt(dst, RTAX_RTT);
746 m = rtt - tp->srtt;
748 /* If newly calculated rtt larger than stored one,
749 * store new one. Otherwise, use EWMA. Remember,
750 * rtt overestimation is always better than underestimation.
752 if (!(dst_metric_locked(dst, RTAX_RTT))) {
753 if (m <= 0)
754 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
755 else
756 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
759 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760 unsigned long var;
761 if (m < 0)
762 m = -m;
764 /* Scale deviation to rttvar fixed point */
765 m >>= 1;
766 if (m < tp->mdev)
767 m = tp->mdev;
769 var = dst_metric_rtt(dst, RTAX_RTTVAR);
770 if (m >= var)
771 var = m;
772 else
773 var -= (var - m) >> 2;
775 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
778 if (tcp_in_initial_slowstart(tp)) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst_metric_set(dst, RTAX_SSTHRESH,
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst_metric_set(dst, RTAX_CWND,
795 (dst_metric(dst, RTAX_CWND) +
796 tp->snd_cwnd) >> 1);
797 } else {
798 /* Else slow start did not finish, cwnd is non-sense,
799 ssthresh may be also invalid.
801 if (!dst_metric_locked(dst, RTAX_CWND))
802 dst_metric_set(dst, RTAX_CWND,
803 (dst_metric(dst, RTAX_CWND) +
804 tp->snd_ssthresh) >> 1);
805 if (dst_metric(dst, RTAX_SSTHRESH) &&
806 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
807 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
808 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
811 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
812 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
813 tp->reordering != sysctl_tcp_reordering)
814 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
819 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823 if (!cwnd)
824 cwnd = TCP_INIT_CWND;
825 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
828 /* Set slow start threshold and cwnd not falling to slow start */
829 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
831 struct tcp_sock *tp = tcp_sk(sk);
832 const struct inet_connection_sock *icsk = inet_csk(sk);
834 tp->prior_ssthresh = 0;
835 tp->bytes_acked = 0;
836 if (icsk->icsk_ca_state < TCP_CA_CWR) {
837 tp->undo_marker = 0;
838 if (set_ssthresh)
839 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
840 tp->snd_cwnd = min(tp->snd_cwnd,
841 tcp_packets_in_flight(tp) + 1U);
842 tp->snd_cwnd_cnt = 0;
843 tp->high_seq = tp->snd_nxt;
844 tp->snd_cwnd_stamp = tcp_time_stamp;
845 TCP_ECN_queue_cwr(tp);
847 tcp_set_ca_state(sk, TCP_CA_CWR);
852 * Packet counting of FACK is based on in-order assumptions, therefore TCP
853 * disables it when reordering is detected
855 static void tcp_disable_fack(struct tcp_sock *tp)
857 /* RFC3517 uses different metric in lost marker => reset on change */
858 if (tcp_is_fack(tp))
859 tp->lost_skb_hint = NULL;
860 tp->rx_opt.sack_ok &= ~2;
863 /* Take a notice that peer is sending D-SACKs */
864 static void tcp_dsack_seen(struct tcp_sock *tp)
866 tp->rx_opt.sack_ok |= 4;
869 /* Initialize metrics on socket. */
871 static void tcp_init_metrics(struct sock *sk)
873 struct tcp_sock *tp = tcp_sk(sk);
874 struct dst_entry *dst = __sk_dst_get(sk);
876 if (dst == NULL)
877 goto reset;
879 dst_confirm(dst);
881 if (dst_metric_locked(dst, RTAX_CWND))
882 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
883 if (dst_metric(dst, RTAX_SSTHRESH)) {
884 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
885 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
886 tp->snd_ssthresh = tp->snd_cwnd_clamp;
888 if (dst_metric(dst, RTAX_REORDERING) &&
889 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
890 tcp_disable_fack(tp);
891 tp->reordering = dst_metric(dst, RTAX_REORDERING);
894 if (dst_metric(dst, RTAX_RTT) == 0)
895 goto reset;
897 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
898 goto reset;
900 /* Initial rtt is determined from SYN,SYN-ACK.
901 * The segment is small and rtt may appear much
902 * less than real one. Use per-dst memory
903 * to make it more realistic.
905 * A bit of theory. RTT is time passed after "normal" sized packet
906 * is sent until it is ACKed. In normal circumstances sending small
907 * packets force peer to delay ACKs and calculation is correct too.
908 * The algorithm is adaptive and, provided we follow specs, it
909 * NEVER underestimate RTT. BUT! If peer tries to make some clever
910 * tricks sort of "quick acks" for time long enough to decrease RTT
911 * to low value, and then abruptly stops to do it and starts to delay
912 * ACKs, wait for troubles.
914 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
915 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
916 tp->rtt_seq = tp->snd_nxt;
918 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
919 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
920 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
922 tcp_set_rto(sk);
923 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
924 reset:
925 /* Play conservative. If timestamps are not
926 * supported, TCP will fail to recalculate correct
927 * rtt, if initial rto is too small. FORGET ALL AND RESET!
929 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
930 tp->srtt = 0;
931 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
932 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
939 static void tcp_update_reordering(struct sock *sk, const int metric,
940 const int ts)
942 struct tcp_sock *tp = tcp_sk(sk);
943 if (metric > tp->reordering) {
944 int mib_idx;
946 tp->reordering = min(TCP_MAX_REORDERING, metric);
948 /* This exciting event is worth to be remembered. 8) */
949 if (ts)
950 mib_idx = LINUX_MIB_TCPTSREORDER;
951 else if (tcp_is_reno(tp))
952 mib_idx = LINUX_MIB_TCPRENOREORDER;
953 else if (tcp_is_fack(tp))
954 mib_idx = LINUX_MIB_TCPFACKREORDER;
955 else
956 mib_idx = LINUX_MIB_TCPSACKREORDER;
958 NET_INC_STATS_BH(sock_net(sk), mib_idx);
959 #if FASTRETRANS_DEBUG > 1
960 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962 tp->reordering,
963 tp->fackets_out,
964 tp->sacked_out,
965 tp->undo_marker ? tp->undo_retrans : 0);
966 #endif
967 tcp_disable_fack(tp);
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
974 if ((tp->retransmit_skb_hint == NULL) ||
975 before(TCP_SKB_CB(skb)->seq,
976 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977 tp->retransmit_skb_hint = skb;
979 if (!tp->lost_out ||
980 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987 tcp_verify_retransmit_hint(tp, skb);
989 tp->lost_out += tcp_skb_pcount(skb);
990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995 struct sk_buff *skb)
997 tcp_verify_retransmit_hint(tp, skb);
999 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008 * Packets in queue with these bits set are counted in variables
1009 * sacked_out, retrans_out and lost_out, correspondingly.
1011 * Valid combinations are:
1012 * Tag InFlight Description
1013 * 0 1 - orig segment is in flight.
1014 * S 0 - nothing flies, orig reached receiver.
1015 * L 0 - nothing flies, orig lost by net.
1016 * R 2 - both orig and retransmit are in flight.
1017 * L|R 1 - orig is lost, retransmit is in flight.
1018 * S|R 1 - orig reached receiver, retrans is still in flight.
1019 * (L|S|R is logically valid, it could occur when L|R is sacked,
1020 * but it is equivalent to plain S and code short-curcuits it to S.
1021 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 * These 6 states form finite state machine, controlled by the following events:
1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026 * 3. Loss detection event of one of three flavors:
1027 * A. Scoreboard estimator decided the packet is lost.
1028 * A'. Reno "three dupacks" marks head of queue lost.
1029 * A''. Its FACK modfication, head until snd.fack is lost.
1030 * B. SACK arrives sacking data transmitted after never retransmitted
1031 * hole was sent out.
1032 * C. SACK arrives sacking SND.NXT at the moment, when the
1033 * segment was retransmitted.
1034 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 * It is pleasant to note, that state diagram turns out to be commutative,
1037 * so that we are allowed not to be bothered by order of our actions,
1038 * when multiple events arrive simultaneously. (see the function below).
1040 * Reordering detection.
1041 * --------------------
1042 * Reordering metric is maximal distance, which a packet can be displaced
1043 * in packet stream. With SACKs we can estimate it:
1045 * 1. SACK fills old hole and the corresponding segment was not
1046 * ever retransmitted -> reordering. Alas, we cannot use it
1047 * when segment was retransmitted.
1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049 * for retransmitted and already SACKed segment -> reordering..
1050 * Both of these heuristics are not used in Loss state, when we cannot
1051 * account for retransmits accurately.
1053 * SACK block validation.
1054 * ----------------------
1056 * SACK block range validation checks that the received SACK block fits to
1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058 * Note that SND.UNA is not included to the range though being valid because
1059 * it means that the receiver is rather inconsistent with itself reporting
1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061 * perfectly valid, however, in light of RFC2018 which explicitly states
1062 * that "SACK block MUST reflect the newest segment. Even if the newest
1063 * segment is going to be discarded ...", not that it looks very clever
1064 * in case of head skb. Due to potentional receiver driven attacks, we
1065 * choose to avoid immediate execution of a walk in write queue due to
1066 * reneging and defer head skb's loss recovery to standard loss recovery
1067 * procedure that will eventually trigger (nothing forbids us doing this).
1069 * Implements also blockage to start_seq wrap-around. Problem lies in the
1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071 * there's no guarantee that it will be before snd_nxt (n). The problem
1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073 * wrap (s_w):
1075 * <- outs wnd -> <- wrapzone ->
1076 * u e n u_w e_w s n_w
1077 * | | | | | | |
1078 * |<------------+------+----- TCP seqno space --------------+---------->|
1079 * ...-- <2^31 ->| |<--------...
1080 * ...---- >2^31 ------>| |<--------...
1082 * Current code wouldn't be vulnerable but it's better still to discard such
1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 * With D-SACK the lower bound is extended to cover sequence space below
1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090 * again, D-SACK block must not to go across snd_una (for the same reason as
1091 * for the normal SACK blocks, explained above). But there all simplicity
1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093 * fully below undo_marker they do not affect behavior in anyway and can
1094 * therefore be safely ignored. In rare cases (which are more or less
1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096 * fragmentation and packet reordering past skb's retransmission. To consider
1097 * them correctly, the acceptable range must be extended even more though
1098 * the exact amount is rather hard to quantify. However, tp->max_window can
1099 * be used as an exaggerated estimate.
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102 u32 start_seq, u32 end_seq)
1104 /* Too far in future, or reversed (interpretation is ambiguous) */
1105 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106 return 0;
1108 /* Nasty start_seq wrap-around check (see comments above) */
1109 if (!before(start_seq, tp->snd_nxt))
1110 return 0;
1112 /* In outstanding window? ...This is valid exit for D-SACKs too.
1113 * start_seq == snd_una is non-sensical (see comments above)
1115 if (after(start_seq, tp->snd_una))
1116 return 1;
1118 if (!is_dsack || !tp->undo_marker)
1119 return 0;
1121 /* ...Then it's D-SACK, and must reside below snd_una completely */
1122 if (after(end_seq, tp->snd_una))
1123 return 0;
1125 if (!before(start_seq, tp->undo_marker))
1126 return 1;
1128 /* Too old */
1129 if (!after(end_seq, tp->undo_marker))
1130 return 0;
1132 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 * start_seq < undo_marker and end_seq >= undo_marker.
1135 return !before(start_seq, end_seq - tp->max_window);
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139 * Event "C". Later note: FACK people cheated me again 8), we have to account
1140 * for reordering! Ugly, but should help.
1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143 * less than what is now known to be received by the other end (derived from
1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145 * retransmitted skbs to avoid some costly processing per ACKs.
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1149 const struct inet_connection_sock *icsk = inet_csk(sk);
1150 struct tcp_sock *tp = tcp_sk(sk);
1151 struct sk_buff *skb;
1152 int cnt = 0;
1153 u32 new_low_seq = tp->snd_nxt;
1154 u32 received_upto = tcp_highest_sack_seq(tp);
1156 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157 !after(received_upto, tp->lost_retrans_low) ||
1158 icsk->icsk_ca_state != TCP_CA_Recovery)
1159 return;
1161 tcp_for_write_queue(skb, sk) {
1162 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164 if (skb == tcp_send_head(sk))
1165 break;
1166 if (cnt == tp->retrans_out)
1167 break;
1168 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169 continue;
1171 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172 continue;
1174 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1175 * constraint here (see above) but figuring out that at
1176 * least tp->reordering SACK blocks reside between ack_seq
1177 * and received_upto is not easy task to do cheaply with
1178 * the available datastructures.
1180 * Whether FACK should check here for tp->reordering segs
1181 * in-between one could argue for either way (it would be
1182 * rather simple to implement as we could count fack_count
1183 * during the walk and do tp->fackets_out - fack_count).
1185 if (after(received_upto, ack_seq)) {
1186 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187 tp->retrans_out -= tcp_skb_pcount(skb);
1189 tcp_skb_mark_lost_uncond_verify(tp, skb);
1190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191 } else {
1192 if (before(ack_seq, new_low_seq))
1193 new_low_seq = ack_seq;
1194 cnt += tcp_skb_pcount(skb);
1198 if (tp->retrans_out)
1199 tp->lost_retrans_low = new_low_seq;
1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203 struct tcp_sack_block_wire *sp, int num_sacks,
1204 u32 prior_snd_una)
1206 struct tcp_sock *tp = tcp_sk(sk);
1207 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209 int dup_sack = 0;
1211 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212 dup_sack = 1;
1213 tcp_dsack_seen(tp);
1214 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215 } else if (num_sacks > 1) {
1216 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1219 if (!after(end_seq_0, end_seq_1) &&
1220 !before(start_seq_0, start_seq_1)) {
1221 dup_sack = 1;
1222 tcp_dsack_seen(tp);
1223 NET_INC_STATS_BH(sock_net(sk),
1224 LINUX_MIB_TCPDSACKOFORECV);
1228 /* D-SACK for already forgotten data... Do dumb counting. */
1229 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1230 !after(end_seq_0, prior_snd_una) &&
1231 after(end_seq_0, tp->undo_marker))
1232 tp->undo_retrans--;
1234 return dup_sack;
1237 struct tcp_sacktag_state {
1238 int reord;
1239 int fack_count;
1240 int flag;
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244 * the incoming SACK may not exactly match but we can find smaller MSS
1245 * aligned portion of it that matches. Therefore we might need to fragment
1246 * which may fail and creates some hassle (caller must handle error case
1247 * returns).
1249 * FIXME: this could be merged to shift decision code
1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252 u32 start_seq, u32 end_seq)
1254 int in_sack, err;
1255 unsigned int pkt_len;
1256 unsigned int mss;
1258 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1261 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263 mss = tcp_skb_mss(skb);
1264 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1266 if (!in_sack) {
1267 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268 if (pkt_len < mss)
1269 pkt_len = mss;
1270 } else {
1271 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272 if (pkt_len < mss)
1273 return -EINVAL;
1276 /* Round if necessary so that SACKs cover only full MSSes
1277 * and/or the remaining small portion (if present)
1279 if (pkt_len > mss) {
1280 unsigned int new_len = (pkt_len / mss) * mss;
1281 if (!in_sack && new_len < pkt_len) {
1282 new_len += mss;
1283 if (new_len > skb->len)
1284 return 0;
1286 pkt_len = new_len;
1288 err = tcp_fragment(sk, skb, pkt_len, mss);
1289 if (err < 0)
1290 return err;
1293 return in_sack;
1296 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1297 static u8 tcp_sacktag_one(struct sock *sk,
1298 struct tcp_sacktag_state *state, u8 sacked,
1299 u32 start_seq, u32 end_seq,
1300 int dup_sack, int pcount)
1302 struct tcp_sock *tp = tcp_sk(sk);
1303 int fack_count = state->fack_count;
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307 if (tp->undo_marker && tp->undo_retrans &&
1308 after(end_seq, tp->undo_marker))
1309 tp->undo_retrans--;
1310 if (sacked & TCPCB_SACKED_ACKED)
1311 state->reord = min(fack_count, state->reord);
1314 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315 if (!after(end_seq, tp->snd_una))
1316 return sacked;
1318 if (!(sacked & TCPCB_SACKED_ACKED)) {
1319 if (sacked & TCPCB_SACKED_RETRANS) {
1320 /* If the segment is not tagged as lost,
1321 * we do not clear RETRANS, believing
1322 * that retransmission is still in flight.
1324 if (sacked & TCPCB_LOST) {
1325 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1326 tp->lost_out -= pcount;
1327 tp->retrans_out -= pcount;
1329 } else {
1330 if (!(sacked & TCPCB_RETRANS)) {
1331 /* New sack for not retransmitted frame,
1332 * which was in hole. It is reordering.
1334 if (before(start_seq,
1335 tcp_highest_sack_seq(tp)))
1336 state->reord = min(fack_count,
1337 state->reord);
1339 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340 if (!after(end_seq, tp->frto_highmark))
1341 state->flag |= FLAG_ONLY_ORIG_SACKED;
1344 if (sacked & TCPCB_LOST) {
1345 sacked &= ~TCPCB_LOST;
1346 tp->lost_out -= pcount;
1350 sacked |= TCPCB_SACKED_ACKED;
1351 state->flag |= FLAG_DATA_SACKED;
1352 tp->sacked_out += pcount;
1354 fack_count += pcount;
1356 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1358 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1359 tp->lost_cnt_hint += pcount;
1361 if (fack_count > tp->fackets_out)
1362 tp->fackets_out = fack_count;
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1369 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370 sacked &= ~TCPCB_SACKED_RETRANS;
1371 tp->retrans_out -= pcount;
1374 return sacked;
1377 /* Shift newly-SACKed bytes from this skb to the immediately previous
1378 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1380 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1381 struct tcp_sacktag_state *state,
1382 unsigned int pcount, int shifted, int mss,
1383 int dup_sack)
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1387 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1388 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1390 BUG_ON(!pcount);
1392 /* Adjust counters and hints for the newly sacked sequence
1393 * range but discard the return value since prev is already
1394 * marked. We must tag the range first because the seq
1395 * advancement below implicitly advances
1396 * tcp_highest_sack_seq() when skb is highest_sack.
1398 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1399 start_seq, end_seq, dup_sack, pcount);
1401 if (skb == tp->lost_skb_hint)
1402 tp->lost_cnt_hint += pcount;
1404 TCP_SKB_CB(prev)->end_seq += shifted;
1405 TCP_SKB_CB(skb)->seq += shifted;
1407 skb_shinfo(prev)->gso_segs += pcount;
1408 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1409 skb_shinfo(skb)->gso_segs -= pcount;
1411 /* When we're adding to gso_segs == 1, gso_size will be zero,
1412 * in theory this shouldn't be necessary but as long as DSACK
1413 * code can come after this skb later on it's better to keep
1414 * setting gso_size to something.
1416 if (!skb_shinfo(prev)->gso_size) {
1417 skb_shinfo(prev)->gso_size = mss;
1418 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1421 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422 if (skb_shinfo(skb)->gso_segs <= 1) {
1423 skb_shinfo(skb)->gso_size = 0;
1424 skb_shinfo(skb)->gso_type = 0;
1427 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1428 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1430 if (skb->len > 0) {
1431 BUG_ON(!tcp_skb_pcount(skb));
1432 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1433 return 0;
1436 /* Whole SKB was eaten :-) */
1438 if (skb == tp->retransmit_skb_hint)
1439 tp->retransmit_skb_hint = prev;
1440 if (skb == tp->scoreboard_skb_hint)
1441 tp->scoreboard_skb_hint = prev;
1442 if (skb == tp->lost_skb_hint) {
1443 tp->lost_skb_hint = prev;
1444 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1447 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1448 if (skb == tcp_highest_sack(sk))
1449 tcp_advance_highest_sack(sk, skb);
1451 tcp_unlink_write_queue(skb, sk);
1452 sk_wmem_free_skb(sk, skb);
1454 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1456 return 1;
1459 /* I wish gso_size would have a bit more sane initialization than
1460 * something-or-zero which complicates things
1462 static int tcp_skb_seglen(struct sk_buff *skb)
1464 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1467 /* Shifting pages past head area doesn't work */
1468 static int skb_can_shift(struct sk_buff *skb)
1470 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1473 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1474 * skb.
1476 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1477 struct tcp_sacktag_state *state,
1478 u32 start_seq, u32 end_seq,
1479 int dup_sack)
1481 struct tcp_sock *tp = tcp_sk(sk);
1482 struct sk_buff *prev;
1483 int mss;
1484 int pcount = 0;
1485 int len;
1486 int in_sack;
1488 if (!sk_can_gso(sk))
1489 goto fallback;
1491 /* Normally R but no L won't result in plain S */
1492 if (!dup_sack &&
1493 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1494 goto fallback;
1495 if (!skb_can_shift(skb))
1496 goto fallback;
1497 /* This frame is about to be dropped (was ACKed). */
1498 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1499 goto fallback;
1501 /* Can only happen with delayed DSACK + discard craziness */
1502 if (unlikely(skb == tcp_write_queue_head(sk)))
1503 goto fallback;
1504 prev = tcp_write_queue_prev(sk, skb);
1506 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1507 goto fallback;
1509 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1510 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1512 if (in_sack) {
1513 len = skb->len;
1514 pcount = tcp_skb_pcount(skb);
1515 mss = tcp_skb_seglen(skb);
1517 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1518 * drop this restriction as unnecessary
1520 if (mss != tcp_skb_seglen(prev))
1521 goto fallback;
1522 } else {
1523 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1524 goto noop;
1525 /* CHECKME: This is non-MSS split case only?, this will
1526 * cause skipped skbs due to advancing loop btw, original
1527 * has that feature too
1529 if (tcp_skb_pcount(skb) <= 1)
1530 goto noop;
1532 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1533 if (!in_sack) {
1534 /* TODO: head merge to next could be attempted here
1535 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1536 * though it might not be worth of the additional hassle
1538 * ...we can probably just fallback to what was done
1539 * previously. We could try merging non-SACKed ones
1540 * as well but it probably isn't going to buy off
1541 * because later SACKs might again split them, and
1542 * it would make skb timestamp tracking considerably
1543 * harder problem.
1545 goto fallback;
1548 len = end_seq - TCP_SKB_CB(skb)->seq;
1549 BUG_ON(len < 0);
1550 BUG_ON(len > skb->len);
1552 /* MSS boundaries should be honoured or else pcount will
1553 * severely break even though it makes things bit trickier.
1554 * Optimize common case to avoid most of the divides
1556 mss = tcp_skb_mss(skb);
1558 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1559 * drop this restriction as unnecessary
1561 if (mss != tcp_skb_seglen(prev))
1562 goto fallback;
1564 if (len == mss) {
1565 pcount = 1;
1566 } else if (len < mss) {
1567 goto noop;
1568 } else {
1569 pcount = len / mss;
1570 len = pcount * mss;
1574 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1575 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1576 goto fallback;
1578 if (!skb_shift(prev, skb, len))
1579 goto fallback;
1580 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1581 goto out;
1583 /* Hole filled allows collapsing with the next as well, this is very
1584 * useful when hole on every nth skb pattern happens
1586 if (prev == tcp_write_queue_tail(sk))
1587 goto out;
1588 skb = tcp_write_queue_next(sk, prev);
1590 if (!skb_can_shift(skb) ||
1591 (skb == tcp_send_head(sk)) ||
1592 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1593 (mss != tcp_skb_seglen(skb)))
1594 goto out;
1596 len = skb->len;
1597 if (skb_shift(prev, skb, len)) {
1598 pcount += tcp_skb_pcount(skb);
1599 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1602 out:
1603 state->fack_count += pcount;
1604 return prev;
1606 noop:
1607 return skb;
1609 fallback:
1610 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1611 return NULL;
1614 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1615 struct tcp_sack_block *next_dup,
1616 struct tcp_sacktag_state *state,
1617 u32 start_seq, u32 end_seq,
1618 int dup_sack_in)
1620 struct tcp_sock *tp = tcp_sk(sk);
1621 struct sk_buff *tmp;
1623 tcp_for_write_queue_from(skb, sk) {
1624 int in_sack = 0;
1625 int dup_sack = dup_sack_in;
1627 if (skb == tcp_send_head(sk))
1628 break;
1630 /* queue is in-order => we can short-circuit the walk early */
1631 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1632 break;
1634 if ((next_dup != NULL) &&
1635 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1636 in_sack = tcp_match_skb_to_sack(sk, skb,
1637 next_dup->start_seq,
1638 next_dup->end_seq);
1639 if (in_sack > 0)
1640 dup_sack = 1;
1643 /* skb reference here is a bit tricky to get right, since
1644 * shifting can eat and free both this skb and the next,
1645 * so not even _safe variant of the loop is enough.
1647 if (in_sack <= 0) {
1648 tmp = tcp_shift_skb_data(sk, skb, state,
1649 start_seq, end_seq, dup_sack);
1650 if (tmp != NULL) {
1651 if (tmp != skb) {
1652 skb = tmp;
1653 continue;
1656 in_sack = 0;
1657 } else {
1658 in_sack = tcp_match_skb_to_sack(sk, skb,
1659 start_seq,
1660 end_seq);
1664 if (unlikely(in_sack < 0))
1665 break;
1667 if (in_sack) {
1668 TCP_SKB_CB(skb)->sacked =
1669 tcp_sacktag_one(sk,
1670 state,
1671 TCP_SKB_CB(skb)->sacked,
1672 TCP_SKB_CB(skb)->seq,
1673 TCP_SKB_CB(skb)->end_seq,
1674 dup_sack,
1675 tcp_skb_pcount(skb));
1677 if (!before(TCP_SKB_CB(skb)->seq,
1678 tcp_highest_sack_seq(tp)))
1679 tcp_advance_highest_sack(sk, skb);
1682 state->fack_count += tcp_skb_pcount(skb);
1684 return skb;
1687 /* Avoid all extra work that is being done by sacktag while walking in
1688 * a normal way
1690 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1691 struct tcp_sacktag_state *state,
1692 u32 skip_to_seq)
1694 tcp_for_write_queue_from(skb, sk) {
1695 if (skb == tcp_send_head(sk))
1696 break;
1698 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1699 break;
1701 state->fack_count += tcp_skb_pcount(skb);
1703 return skb;
1706 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1707 struct sock *sk,
1708 struct tcp_sack_block *next_dup,
1709 struct tcp_sacktag_state *state,
1710 u32 skip_to_seq)
1712 if (next_dup == NULL)
1713 return skb;
1715 if (before(next_dup->start_seq, skip_to_seq)) {
1716 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1717 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1718 next_dup->start_seq, next_dup->end_seq,
1722 return skb;
1725 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1727 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1730 static int
1731 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1732 u32 prior_snd_una)
1734 const struct inet_connection_sock *icsk = inet_csk(sk);
1735 struct tcp_sock *tp = tcp_sk(sk);
1736 unsigned char *ptr = (skb_transport_header(ack_skb) +
1737 TCP_SKB_CB(ack_skb)->sacked);
1738 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1739 struct tcp_sack_block sp[TCP_NUM_SACKS];
1740 struct tcp_sack_block *cache;
1741 struct tcp_sacktag_state state;
1742 struct sk_buff *skb;
1743 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1744 int used_sacks;
1745 int found_dup_sack = 0;
1746 int i, j;
1747 int first_sack_index;
1749 state.flag = 0;
1750 state.reord = tp->packets_out;
1752 if (!tp->sacked_out) {
1753 if (WARN_ON(tp->fackets_out))
1754 tp->fackets_out = 0;
1755 tcp_highest_sack_reset(sk);
1758 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1759 num_sacks, prior_snd_una);
1760 if (found_dup_sack)
1761 state.flag |= FLAG_DSACKING_ACK;
1763 /* Eliminate too old ACKs, but take into
1764 * account more or less fresh ones, they can
1765 * contain valid SACK info.
1767 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1768 return 0;
1770 if (!tp->packets_out)
1771 goto out;
1773 used_sacks = 0;
1774 first_sack_index = 0;
1775 for (i = 0; i < num_sacks; i++) {
1776 int dup_sack = !i && found_dup_sack;
1778 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1779 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1781 if (!tcp_is_sackblock_valid(tp, dup_sack,
1782 sp[used_sacks].start_seq,
1783 sp[used_sacks].end_seq)) {
1784 int mib_idx;
1786 if (dup_sack) {
1787 if (!tp->undo_marker)
1788 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1789 else
1790 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1791 } else {
1792 /* Don't count olds caused by ACK reordering */
1793 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1794 !after(sp[used_sacks].end_seq, tp->snd_una))
1795 continue;
1796 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1799 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1800 if (i == 0)
1801 first_sack_index = -1;
1802 continue;
1805 /* Ignore very old stuff early */
1806 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1807 continue;
1809 used_sacks++;
1812 /* order SACK blocks to allow in order walk of the retrans queue */
1813 for (i = used_sacks - 1; i > 0; i--) {
1814 for (j = 0; j < i; j++) {
1815 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1816 swap(sp[j], sp[j + 1]);
1818 /* Track where the first SACK block goes to */
1819 if (j == first_sack_index)
1820 first_sack_index = j + 1;
1825 skb = tcp_write_queue_head(sk);
1826 state.fack_count = 0;
1827 i = 0;
1829 if (!tp->sacked_out) {
1830 /* It's already past, so skip checking against it */
1831 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1832 } else {
1833 cache = tp->recv_sack_cache;
1834 /* Skip empty blocks in at head of the cache */
1835 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1836 !cache->end_seq)
1837 cache++;
1840 while (i < used_sacks) {
1841 u32 start_seq = sp[i].start_seq;
1842 u32 end_seq = sp[i].end_seq;
1843 int dup_sack = (found_dup_sack && (i == first_sack_index));
1844 struct tcp_sack_block *next_dup = NULL;
1846 if (found_dup_sack && ((i + 1) == first_sack_index))
1847 next_dup = &sp[i + 1];
1849 /* Event "B" in the comment above. */
1850 if (after(end_seq, tp->high_seq))
1851 state.flag |= FLAG_DATA_LOST;
1853 /* Skip too early cached blocks */
1854 while (tcp_sack_cache_ok(tp, cache) &&
1855 !before(start_seq, cache->end_seq))
1856 cache++;
1858 /* Can skip some work by looking recv_sack_cache? */
1859 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1860 after(end_seq, cache->start_seq)) {
1862 /* Head todo? */
1863 if (before(start_seq, cache->start_seq)) {
1864 skb = tcp_sacktag_skip(skb, sk, &state,
1865 start_seq);
1866 skb = tcp_sacktag_walk(skb, sk, next_dup,
1867 &state,
1868 start_seq,
1869 cache->start_seq,
1870 dup_sack);
1873 /* Rest of the block already fully processed? */
1874 if (!after(end_seq, cache->end_seq))
1875 goto advance_sp;
1877 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1878 &state,
1879 cache->end_seq);
1881 /* ...tail remains todo... */
1882 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1883 /* ...but better entrypoint exists! */
1884 skb = tcp_highest_sack(sk);
1885 if (skb == NULL)
1886 break;
1887 state.fack_count = tp->fackets_out;
1888 cache++;
1889 goto walk;
1892 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1893 /* Check overlap against next cached too (past this one already) */
1894 cache++;
1895 continue;
1898 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1899 skb = tcp_highest_sack(sk);
1900 if (skb == NULL)
1901 break;
1902 state.fack_count = tp->fackets_out;
1904 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1906 walk:
1907 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1908 start_seq, end_seq, dup_sack);
1910 advance_sp:
1911 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1912 * due to in-order walk
1914 if (after(end_seq, tp->frto_highmark))
1915 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1917 i++;
1920 /* Clear the head of the cache sack blocks so we can skip it next time */
1921 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1922 tp->recv_sack_cache[i].start_seq = 0;
1923 tp->recv_sack_cache[i].end_seq = 0;
1925 for (j = 0; j < used_sacks; j++)
1926 tp->recv_sack_cache[i++] = sp[j];
1928 tcp_mark_lost_retrans(sk);
1930 tcp_verify_left_out(tp);
1932 if ((state.reord < tp->fackets_out) &&
1933 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1934 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1935 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1937 out:
1939 #if FASTRETRANS_DEBUG > 0
1940 WARN_ON((int)tp->sacked_out < 0);
1941 WARN_ON((int)tp->lost_out < 0);
1942 WARN_ON((int)tp->retrans_out < 0);
1943 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1944 #endif
1945 return state.flag;
1948 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1949 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1951 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1953 u32 holes;
1955 holes = max(tp->lost_out, 1U);
1956 holes = min(holes, tp->packets_out);
1958 if ((tp->sacked_out + holes) > tp->packets_out) {
1959 tp->sacked_out = tp->packets_out - holes;
1960 return 1;
1962 return 0;
1965 /* If we receive more dupacks than we expected counting segments
1966 * in assumption of absent reordering, interpret this as reordering.
1967 * The only another reason could be bug in receiver TCP.
1969 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 if (tcp_limit_reno_sacked(tp))
1973 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1976 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1978 static void tcp_add_reno_sack(struct sock *sk)
1980 struct tcp_sock *tp = tcp_sk(sk);
1981 tp->sacked_out++;
1982 tcp_check_reno_reordering(sk, 0);
1983 tcp_verify_left_out(tp);
1986 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1988 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1990 struct tcp_sock *tp = tcp_sk(sk);
1992 if (acked > 0) {
1993 /* One ACK acked hole. The rest eat duplicate ACKs. */
1994 if (acked - 1 >= tp->sacked_out)
1995 tp->sacked_out = 0;
1996 else
1997 tp->sacked_out -= acked - 1;
1999 tcp_check_reno_reordering(sk, acked);
2000 tcp_verify_left_out(tp);
2003 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2005 tp->sacked_out = 0;
2008 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2010 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2013 /* F-RTO can only be used if TCP has never retransmitted anything other than
2014 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2016 int tcp_use_frto(struct sock *sk)
2018 const struct tcp_sock *tp = tcp_sk(sk);
2019 const struct inet_connection_sock *icsk = inet_csk(sk);
2020 struct sk_buff *skb;
2022 if (!sysctl_tcp_frto)
2023 return 0;
2025 /* MTU probe and F-RTO won't really play nicely along currently */
2026 if (icsk->icsk_mtup.probe_size)
2027 return 0;
2029 if (tcp_is_sackfrto(tp))
2030 return 1;
2032 /* Avoid expensive walking of rexmit queue if possible */
2033 if (tp->retrans_out > 1)
2034 return 0;
2036 skb = tcp_write_queue_head(sk);
2037 if (tcp_skb_is_last(sk, skb))
2038 return 1;
2039 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2040 tcp_for_write_queue_from(skb, sk) {
2041 if (skb == tcp_send_head(sk))
2042 break;
2043 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2044 return 0;
2045 /* Short-circuit when first non-SACKed skb has been checked */
2046 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2047 break;
2049 return 1;
2052 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2053 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2054 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2055 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2056 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2057 * bits are handled if the Loss state is really to be entered (in
2058 * tcp_enter_frto_loss).
2060 * Do like tcp_enter_loss() would; when RTO expires the second time it
2061 * does:
2062 * "Reduce ssthresh if it has not yet been made inside this window."
2064 void tcp_enter_frto(struct sock *sk)
2066 const struct inet_connection_sock *icsk = inet_csk(sk);
2067 struct tcp_sock *tp = tcp_sk(sk);
2068 struct sk_buff *skb;
2070 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2071 tp->snd_una == tp->high_seq ||
2072 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2073 !icsk->icsk_retransmits)) {
2074 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2075 /* Our state is too optimistic in ssthresh() call because cwnd
2076 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2077 * recovery has not yet completed. Pattern would be this: RTO,
2078 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2079 * up here twice).
2080 * RFC4138 should be more specific on what to do, even though
2081 * RTO is quite unlikely to occur after the first Cumulative ACK
2082 * due to back-off and complexity of triggering events ...
2084 if (tp->frto_counter) {
2085 u32 stored_cwnd;
2086 stored_cwnd = tp->snd_cwnd;
2087 tp->snd_cwnd = 2;
2088 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2089 tp->snd_cwnd = stored_cwnd;
2090 } else {
2091 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2093 /* ... in theory, cong.control module could do "any tricks" in
2094 * ssthresh(), which means that ca_state, lost bits and lost_out
2095 * counter would have to be faked before the call occurs. We
2096 * consider that too expensive, unlikely and hacky, so modules
2097 * using these in ssthresh() must deal these incompatibility
2098 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2100 tcp_ca_event(sk, CA_EVENT_FRTO);
2103 tp->undo_marker = tp->snd_una;
2104 tp->undo_retrans = 0;
2106 skb = tcp_write_queue_head(sk);
2107 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2108 tp->undo_marker = 0;
2109 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2110 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2111 tp->retrans_out -= tcp_skb_pcount(skb);
2113 tcp_verify_left_out(tp);
2115 /* Too bad if TCP was application limited */
2116 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2118 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2119 * The last condition is necessary at least in tp->frto_counter case.
2121 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2122 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2123 after(tp->high_seq, tp->snd_una)) {
2124 tp->frto_highmark = tp->high_seq;
2125 } else {
2126 tp->frto_highmark = tp->snd_nxt;
2128 tcp_set_ca_state(sk, TCP_CA_Disorder);
2129 tp->high_seq = tp->snd_nxt;
2130 tp->frto_counter = 1;
2133 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2134 * which indicates that we should follow the traditional RTO recovery,
2135 * i.e. mark everything lost and do go-back-N retransmission.
2137 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2139 struct tcp_sock *tp = tcp_sk(sk);
2140 struct sk_buff *skb;
2142 tp->lost_out = 0;
2143 tp->retrans_out = 0;
2144 if (tcp_is_reno(tp))
2145 tcp_reset_reno_sack(tp);
2147 tcp_for_write_queue(skb, sk) {
2148 if (skb == tcp_send_head(sk))
2149 break;
2151 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2153 * Count the retransmission made on RTO correctly (only when
2154 * waiting for the first ACK and did not get it)...
2156 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2157 /* For some reason this R-bit might get cleared? */
2158 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2159 tp->retrans_out += tcp_skb_pcount(skb);
2160 /* ...enter this if branch just for the first segment */
2161 flag |= FLAG_DATA_ACKED;
2162 } else {
2163 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2164 tp->undo_marker = 0;
2165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2168 /* Marking forward transmissions that were made after RTO lost
2169 * can cause unnecessary retransmissions in some scenarios,
2170 * SACK blocks will mitigate that in some but not in all cases.
2171 * We used to not mark them but it was causing break-ups with
2172 * receivers that do only in-order receival.
2174 * TODO: we could detect presence of such receiver and select
2175 * different behavior per flow.
2177 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2178 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2179 tp->lost_out += tcp_skb_pcount(skb);
2180 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2183 tcp_verify_left_out(tp);
2185 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2186 tp->snd_cwnd_cnt = 0;
2187 tp->snd_cwnd_stamp = tcp_time_stamp;
2188 tp->frto_counter = 0;
2189 tp->bytes_acked = 0;
2191 tp->reordering = min_t(unsigned int, tp->reordering,
2192 sysctl_tcp_reordering);
2193 tcp_set_ca_state(sk, TCP_CA_Loss);
2194 tp->high_seq = tp->snd_nxt;
2195 TCP_ECN_queue_cwr(tp);
2197 tcp_clear_all_retrans_hints(tp);
2200 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2202 tp->retrans_out = 0;
2203 tp->lost_out = 0;
2205 tp->undo_marker = 0;
2206 tp->undo_retrans = 0;
2209 void tcp_clear_retrans(struct tcp_sock *tp)
2211 tcp_clear_retrans_partial(tp);
2213 tp->fackets_out = 0;
2214 tp->sacked_out = 0;
2217 /* Enter Loss state. If "how" is not zero, forget all SACK information
2218 * and reset tags completely, otherwise preserve SACKs. If receiver
2219 * dropped its ofo queue, we will know this due to reneging detection.
2221 void tcp_enter_loss(struct sock *sk, int how)
2223 const struct inet_connection_sock *icsk = inet_csk(sk);
2224 struct tcp_sock *tp = tcp_sk(sk);
2225 struct sk_buff *skb;
2227 /* Reduce ssthresh if it has not yet been made inside this window. */
2228 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2229 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2230 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2231 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2232 tcp_ca_event(sk, CA_EVENT_LOSS);
2234 tp->snd_cwnd = 1;
2235 tp->snd_cwnd_cnt = 0;
2236 tp->snd_cwnd_stamp = tcp_time_stamp;
2238 tp->bytes_acked = 0;
2239 tcp_clear_retrans_partial(tp);
2241 if (tcp_is_reno(tp))
2242 tcp_reset_reno_sack(tp);
2244 if (!how) {
2245 /* Push undo marker, if it was plain RTO and nothing
2246 * was retransmitted. */
2247 tp->undo_marker = tp->snd_una;
2248 } else {
2249 tp->sacked_out = 0;
2250 tp->fackets_out = 0;
2252 tcp_clear_all_retrans_hints(tp);
2254 tcp_for_write_queue(skb, sk) {
2255 if (skb == tcp_send_head(sk))
2256 break;
2258 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2259 tp->undo_marker = 0;
2260 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2261 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2262 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2263 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2264 tp->lost_out += tcp_skb_pcount(skb);
2265 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2268 tcp_verify_left_out(tp);
2270 tp->reordering = min_t(unsigned int, tp->reordering,
2271 sysctl_tcp_reordering);
2272 tcp_set_ca_state(sk, TCP_CA_Loss);
2273 tp->high_seq = tp->snd_nxt;
2274 TCP_ECN_queue_cwr(tp);
2275 /* Abort F-RTO algorithm if one is in progress */
2276 tp->frto_counter = 0;
2279 /* If ACK arrived pointing to a remembered SACK, it means that our
2280 * remembered SACKs do not reflect real state of receiver i.e.
2281 * receiver _host_ is heavily congested (or buggy).
2283 * Do processing similar to RTO timeout.
2285 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2287 if (flag & FLAG_SACK_RENEGING) {
2288 struct inet_connection_sock *icsk = inet_csk(sk);
2289 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2291 tcp_enter_loss(sk, 1);
2292 icsk->icsk_retransmits++;
2293 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2294 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2295 icsk->icsk_rto, TCP_RTO_MAX);
2296 return 1;
2298 return 0;
2301 static inline int tcp_fackets_out(struct tcp_sock *tp)
2303 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2306 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2307 * counter when SACK is enabled (without SACK, sacked_out is used for
2308 * that purpose).
2310 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2311 * segments up to the highest received SACK block so far and holes in
2312 * between them.
2314 * With reordering, holes may still be in flight, so RFC3517 recovery
2315 * uses pure sacked_out (total number of SACKed segments) even though
2316 * it violates the RFC that uses duplicate ACKs, often these are equal
2317 * but when e.g. out-of-window ACKs or packet duplication occurs,
2318 * they differ. Since neither occurs due to loss, TCP should really
2319 * ignore them.
2321 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2323 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2326 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2328 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2331 static inline int tcp_head_timedout(struct sock *sk)
2333 struct tcp_sock *tp = tcp_sk(sk);
2335 return tp->packets_out &&
2336 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2339 /* Linux NewReno/SACK/FACK/ECN state machine.
2340 * --------------------------------------
2342 * "Open" Normal state, no dubious events, fast path.
2343 * "Disorder" In all the respects it is "Open",
2344 * but requires a bit more attention. It is entered when
2345 * we see some SACKs or dupacks. It is split of "Open"
2346 * mainly to move some processing from fast path to slow one.
2347 * "CWR" CWND was reduced due to some Congestion Notification event.
2348 * It can be ECN, ICMP source quench, local device congestion.
2349 * "Recovery" CWND was reduced, we are fast-retransmitting.
2350 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2352 * tcp_fastretrans_alert() is entered:
2353 * - each incoming ACK, if state is not "Open"
2354 * - when arrived ACK is unusual, namely:
2355 * * SACK
2356 * * Duplicate ACK.
2357 * * ECN ECE.
2359 * Counting packets in flight is pretty simple.
2361 * in_flight = packets_out - left_out + retrans_out
2363 * packets_out is SND.NXT-SND.UNA counted in packets.
2365 * retrans_out is number of retransmitted segments.
2367 * left_out is number of segments left network, but not ACKed yet.
2369 * left_out = sacked_out + lost_out
2371 * sacked_out: Packets, which arrived to receiver out of order
2372 * and hence not ACKed. With SACKs this number is simply
2373 * amount of SACKed data. Even without SACKs
2374 * it is easy to give pretty reliable estimate of this number,
2375 * counting duplicate ACKs.
2377 * lost_out: Packets lost by network. TCP has no explicit
2378 * "loss notification" feedback from network (for now).
2379 * It means that this number can be only _guessed_.
2380 * Actually, it is the heuristics to predict lossage that
2381 * distinguishes different algorithms.
2383 * F.e. after RTO, when all the queue is considered as lost,
2384 * lost_out = packets_out and in_flight = retrans_out.
2386 * Essentially, we have now two algorithms counting
2387 * lost packets.
2389 * FACK: It is the simplest heuristics. As soon as we decided
2390 * that something is lost, we decide that _all_ not SACKed
2391 * packets until the most forward SACK are lost. I.e.
2392 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2393 * It is absolutely correct estimate, if network does not reorder
2394 * packets. And it loses any connection to reality when reordering
2395 * takes place. We use FACK by default until reordering
2396 * is suspected on the path to this destination.
2398 * NewReno: when Recovery is entered, we assume that one segment
2399 * is lost (classic Reno). While we are in Recovery and
2400 * a partial ACK arrives, we assume that one more packet
2401 * is lost (NewReno). This heuristics are the same in NewReno
2402 * and SACK.
2404 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2405 * deflation etc. CWND is real congestion window, never inflated, changes
2406 * only according to classic VJ rules.
2408 * Really tricky (and requiring careful tuning) part of algorithm
2409 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2410 * The first determines the moment _when_ we should reduce CWND and,
2411 * hence, slow down forward transmission. In fact, it determines the moment
2412 * when we decide that hole is caused by loss, rather than by a reorder.
2414 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2415 * holes, caused by lost packets.
2417 * And the most logically complicated part of algorithm is undo
2418 * heuristics. We detect false retransmits due to both too early
2419 * fast retransmit (reordering) and underestimated RTO, analyzing
2420 * timestamps and D-SACKs. When we detect that some segments were
2421 * retransmitted by mistake and CWND reduction was wrong, we undo
2422 * window reduction and abort recovery phase. This logic is hidden
2423 * inside several functions named tcp_try_undo_<something>.
2426 /* This function decides, when we should leave Disordered state
2427 * and enter Recovery phase, reducing congestion window.
2429 * Main question: may we further continue forward transmission
2430 * with the same cwnd?
2432 static int tcp_time_to_recover(struct sock *sk)
2434 struct tcp_sock *tp = tcp_sk(sk);
2435 __u32 packets_out;
2437 /* Do not perform any recovery during F-RTO algorithm */
2438 if (tp->frto_counter)
2439 return 0;
2441 /* Trick#1: The loss is proven. */
2442 if (tp->lost_out)
2443 return 1;
2445 /* Not-A-Trick#2 : Classic rule... */
2446 if (tcp_dupack_heuristics(tp) > tp->reordering)
2447 return 1;
2449 /* Trick#3 : when we use RFC2988 timer restart, fast
2450 * retransmit can be triggered by timeout of queue head.
2452 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2453 return 1;
2455 /* Trick#4: It is still not OK... But will it be useful to delay
2456 * recovery more?
2458 packets_out = tp->packets_out;
2459 if (packets_out <= tp->reordering &&
2460 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2461 !tcp_may_send_now(sk)) {
2462 /* We have nothing to send. This connection is limited
2463 * either by receiver window or by application.
2465 return 1;
2468 /* If a thin stream is detected, retransmit after first
2469 * received dupack. Employ only if SACK is supported in order
2470 * to avoid possible corner-case series of spurious retransmissions
2471 * Use only if there are no unsent data.
2473 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2474 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2475 tcp_is_sack(tp) && !tcp_send_head(sk))
2476 return 1;
2478 return 0;
2481 /* New heuristics: it is possible only after we switched to restart timer
2482 * each time when something is ACKed. Hence, we can detect timed out packets
2483 * during fast retransmit without falling to slow start.
2485 * Usefulness of this as is very questionable, since we should know which of
2486 * the segments is the next to timeout which is relatively expensive to find
2487 * in general case unless we add some data structure just for that. The
2488 * current approach certainly won't find the right one too often and when it
2489 * finally does find _something_ it usually marks large part of the window
2490 * right away (because a retransmission with a larger timestamp blocks the
2491 * loop from advancing). -ij
2493 static void tcp_timeout_skbs(struct sock *sk)
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 struct sk_buff *skb;
2498 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2499 return;
2501 skb = tp->scoreboard_skb_hint;
2502 if (tp->scoreboard_skb_hint == NULL)
2503 skb = tcp_write_queue_head(sk);
2505 tcp_for_write_queue_from(skb, sk) {
2506 if (skb == tcp_send_head(sk))
2507 break;
2508 if (!tcp_skb_timedout(sk, skb))
2509 break;
2511 tcp_skb_mark_lost(tp, skb);
2514 tp->scoreboard_skb_hint = skb;
2516 tcp_verify_left_out(tp);
2519 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2520 * is against sacked "cnt", otherwise it's against facked "cnt"
2522 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2524 struct tcp_sock *tp = tcp_sk(sk);
2525 struct sk_buff *skb;
2526 int cnt, oldcnt;
2527 int err;
2528 unsigned int mss;
2530 WARN_ON(packets > tp->packets_out);
2531 if (tp->lost_skb_hint) {
2532 skb = tp->lost_skb_hint;
2533 cnt = tp->lost_cnt_hint;
2534 /* Head already handled? */
2535 if (mark_head && skb != tcp_write_queue_head(sk))
2536 return;
2537 } else {
2538 skb = tcp_write_queue_head(sk);
2539 cnt = 0;
2542 tcp_for_write_queue_from(skb, sk) {
2543 if (skb == tcp_send_head(sk))
2544 break;
2545 /* TODO: do this better */
2546 /* this is not the most efficient way to do this... */
2547 tp->lost_skb_hint = skb;
2548 tp->lost_cnt_hint = cnt;
2550 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2551 break;
2553 oldcnt = cnt;
2554 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2555 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2556 cnt += tcp_skb_pcount(skb);
2558 if (cnt > packets) {
2559 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2560 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2561 (oldcnt >= packets))
2562 break;
2564 mss = skb_shinfo(skb)->gso_size;
2565 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2566 if (err < 0)
2567 break;
2568 cnt = packets;
2571 tcp_skb_mark_lost(tp, skb);
2573 if (mark_head)
2574 break;
2576 tcp_verify_left_out(tp);
2579 /* Account newly detected lost packet(s) */
2581 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2583 struct tcp_sock *tp = tcp_sk(sk);
2585 if (tcp_is_reno(tp)) {
2586 tcp_mark_head_lost(sk, 1, 1);
2587 } else if (tcp_is_fack(tp)) {
2588 int lost = tp->fackets_out - tp->reordering;
2589 if (lost <= 0)
2590 lost = 1;
2591 tcp_mark_head_lost(sk, lost, 0);
2592 } else {
2593 int sacked_upto = tp->sacked_out - tp->reordering;
2594 if (sacked_upto >= 0)
2595 tcp_mark_head_lost(sk, sacked_upto, 0);
2596 else if (fast_rexmit)
2597 tcp_mark_head_lost(sk, 1, 1);
2600 tcp_timeout_skbs(sk);
2603 /* CWND moderation, preventing bursts due to too big ACKs
2604 * in dubious situations.
2606 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2608 tp->snd_cwnd = min(tp->snd_cwnd,
2609 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2610 tp->snd_cwnd_stamp = tcp_time_stamp;
2613 /* Lower bound on congestion window is slow start threshold
2614 * unless congestion avoidance choice decides to overide it.
2616 static inline u32 tcp_cwnd_min(const struct sock *sk)
2618 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2620 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2623 /* Decrease cwnd each second ack. */
2624 static void tcp_cwnd_down(struct sock *sk, int flag)
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 int decr = tp->snd_cwnd_cnt + 1;
2629 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2630 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2631 tp->snd_cwnd_cnt = decr & 1;
2632 decr >>= 1;
2634 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2635 tp->snd_cwnd -= decr;
2637 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2638 tp->snd_cwnd_stamp = tcp_time_stamp;
2642 /* Nothing was retransmitted or returned timestamp is less
2643 * than timestamp of the first retransmission.
2645 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2647 return !tp->retrans_stamp ||
2648 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2649 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2652 /* Undo procedures. */
2654 #if FASTRETRANS_DEBUG > 1
2655 static void DBGUNDO(struct sock *sk, const char *msg)
2657 struct tcp_sock *tp = tcp_sk(sk);
2658 struct inet_sock *inet = inet_sk(sk);
2660 if (sk->sk_family == AF_INET) {
2661 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2662 msg,
2663 &inet->inet_daddr, ntohs(inet->inet_dport),
2664 tp->snd_cwnd, tcp_left_out(tp),
2665 tp->snd_ssthresh, tp->prior_ssthresh,
2666 tp->packets_out);
2668 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2669 else if (sk->sk_family == AF_INET6) {
2670 struct ipv6_pinfo *np = inet6_sk(sk);
2671 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2672 msg,
2673 &np->daddr, ntohs(inet->inet_dport),
2674 tp->snd_cwnd, tcp_left_out(tp),
2675 tp->snd_ssthresh, tp->prior_ssthresh,
2676 tp->packets_out);
2678 #endif
2680 #else
2681 #define DBGUNDO(x...) do { } while (0)
2682 #endif
2684 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2686 struct tcp_sock *tp = tcp_sk(sk);
2688 if (tp->prior_ssthresh) {
2689 const struct inet_connection_sock *icsk = inet_csk(sk);
2691 if (icsk->icsk_ca_ops->undo_cwnd)
2692 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2693 else
2694 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2696 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2697 tp->snd_ssthresh = tp->prior_ssthresh;
2698 TCP_ECN_withdraw_cwr(tp);
2700 } else {
2701 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2703 tp->snd_cwnd_stamp = tcp_time_stamp;
2706 static inline int tcp_may_undo(struct tcp_sock *tp)
2708 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2711 /* People celebrate: "We love our President!" */
2712 static int tcp_try_undo_recovery(struct sock *sk)
2714 struct tcp_sock *tp = tcp_sk(sk);
2716 if (tcp_may_undo(tp)) {
2717 int mib_idx;
2719 /* Happy end! We did not retransmit anything
2720 * or our original transmission succeeded.
2722 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2723 tcp_undo_cwr(sk, true);
2724 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2725 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2726 else
2727 mib_idx = LINUX_MIB_TCPFULLUNDO;
2729 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2730 tp->undo_marker = 0;
2732 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2733 /* Hold old state until something *above* high_seq
2734 * is ACKed. For Reno it is MUST to prevent false
2735 * fast retransmits (RFC2582). SACK TCP is safe. */
2736 tcp_moderate_cwnd(tp);
2737 return 1;
2739 tcp_set_ca_state(sk, TCP_CA_Open);
2740 return 0;
2743 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2744 static void tcp_try_undo_dsack(struct sock *sk)
2746 struct tcp_sock *tp = tcp_sk(sk);
2748 if (tp->undo_marker && !tp->undo_retrans) {
2749 DBGUNDO(sk, "D-SACK");
2750 tcp_undo_cwr(sk, true);
2751 tp->undo_marker = 0;
2752 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2756 /* We can clear retrans_stamp when there are no retransmissions in the
2757 * window. It would seem that it is trivially available for us in
2758 * tp->retrans_out, however, that kind of assumptions doesn't consider
2759 * what will happen if errors occur when sending retransmission for the
2760 * second time. ...It could the that such segment has only
2761 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2762 * the head skb is enough except for some reneging corner cases that
2763 * are not worth the effort.
2765 * Main reason for all this complexity is the fact that connection dying
2766 * time now depends on the validity of the retrans_stamp, in particular,
2767 * that successive retransmissions of a segment must not advance
2768 * retrans_stamp under any conditions.
2770 static int tcp_any_retrans_done(struct sock *sk)
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 struct sk_buff *skb;
2775 if (tp->retrans_out)
2776 return 1;
2778 skb = tcp_write_queue_head(sk);
2779 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2780 return 1;
2782 return 0;
2785 /* Undo during fast recovery after partial ACK. */
2787 static int tcp_try_undo_partial(struct sock *sk, int acked)
2789 struct tcp_sock *tp = tcp_sk(sk);
2790 /* Partial ACK arrived. Force Hoe's retransmit. */
2791 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2793 if (tcp_may_undo(tp)) {
2794 /* Plain luck! Hole if filled with delayed
2795 * packet, rather than with a retransmit.
2797 if (!tcp_any_retrans_done(sk))
2798 tp->retrans_stamp = 0;
2800 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2802 DBGUNDO(sk, "Hoe");
2803 tcp_undo_cwr(sk, false);
2804 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2806 /* So... Do not make Hoe's retransmit yet.
2807 * If the first packet was delayed, the rest
2808 * ones are most probably delayed as well.
2810 failed = 0;
2812 return failed;
2815 /* Undo during loss recovery after partial ACK. */
2816 static int tcp_try_undo_loss(struct sock *sk)
2818 struct tcp_sock *tp = tcp_sk(sk);
2820 if (tcp_may_undo(tp)) {
2821 struct sk_buff *skb;
2822 tcp_for_write_queue(skb, sk) {
2823 if (skb == tcp_send_head(sk))
2824 break;
2825 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2828 tcp_clear_all_retrans_hints(tp);
2830 DBGUNDO(sk, "partial loss");
2831 tp->lost_out = 0;
2832 tcp_undo_cwr(sk, true);
2833 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2834 inet_csk(sk)->icsk_retransmits = 0;
2835 tp->undo_marker = 0;
2836 if (tcp_is_sack(tp))
2837 tcp_set_ca_state(sk, TCP_CA_Open);
2838 return 1;
2840 return 0;
2843 static inline void tcp_complete_cwr(struct sock *sk)
2845 struct tcp_sock *tp = tcp_sk(sk);
2846 /* Do not moderate cwnd if it's already undone in cwr or recovery */
2847 if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2848 tp->snd_cwnd = tp->snd_ssthresh;
2849 tp->snd_cwnd_stamp = tcp_time_stamp;
2851 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2854 static void tcp_try_keep_open(struct sock *sk)
2856 struct tcp_sock *tp = tcp_sk(sk);
2857 int state = TCP_CA_Open;
2859 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2860 state = TCP_CA_Disorder;
2862 if (inet_csk(sk)->icsk_ca_state != state) {
2863 tcp_set_ca_state(sk, state);
2864 tp->high_seq = tp->snd_nxt;
2868 static void tcp_try_to_open(struct sock *sk, int flag)
2870 struct tcp_sock *tp = tcp_sk(sk);
2872 tcp_verify_left_out(tp);
2874 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2875 tp->retrans_stamp = 0;
2877 if (flag & FLAG_ECE)
2878 tcp_enter_cwr(sk, 1);
2880 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2881 tcp_try_keep_open(sk);
2882 tcp_moderate_cwnd(tp);
2883 } else {
2884 tcp_cwnd_down(sk, flag);
2888 static void tcp_mtup_probe_failed(struct sock *sk)
2890 struct inet_connection_sock *icsk = inet_csk(sk);
2892 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2893 icsk->icsk_mtup.probe_size = 0;
2896 static void tcp_mtup_probe_success(struct sock *sk)
2898 struct tcp_sock *tp = tcp_sk(sk);
2899 struct inet_connection_sock *icsk = inet_csk(sk);
2901 /* FIXME: breaks with very large cwnd */
2902 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2903 tp->snd_cwnd = tp->snd_cwnd *
2904 tcp_mss_to_mtu(sk, tp->mss_cache) /
2905 icsk->icsk_mtup.probe_size;
2906 tp->snd_cwnd_cnt = 0;
2907 tp->snd_cwnd_stamp = tcp_time_stamp;
2908 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2910 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2911 icsk->icsk_mtup.probe_size = 0;
2912 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2915 /* Do a simple retransmit without using the backoff mechanisms in
2916 * tcp_timer. This is used for path mtu discovery.
2917 * The socket is already locked here.
2919 void tcp_simple_retransmit(struct sock *sk)
2921 const struct inet_connection_sock *icsk = inet_csk(sk);
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 struct sk_buff *skb;
2924 unsigned int mss = tcp_current_mss(sk);
2925 u32 prior_lost = tp->lost_out;
2927 tcp_for_write_queue(skb, sk) {
2928 if (skb == tcp_send_head(sk))
2929 break;
2930 if (tcp_skb_seglen(skb) > mss &&
2931 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2932 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2933 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2934 tp->retrans_out -= tcp_skb_pcount(skb);
2936 tcp_skb_mark_lost_uncond_verify(tp, skb);
2940 tcp_clear_retrans_hints_partial(tp);
2942 if (prior_lost == tp->lost_out)
2943 return;
2945 if (tcp_is_reno(tp))
2946 tcp_limit_reno_sacked(tp);
2948 tcp_verify_left_out(tp);
2950 /* Don't muck with the congestion window here.
2951 * Reason is that we do not increase amount of _data_
2952 * in network, but units changed and effective
2953 * cwnd/ssthresh really reduced now.
2955 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2956 tp->high_seq = tp->snd_nxt;
2957 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2958 tp->prior_ssthresh = 0;
2959 tp->undo_marker = 0;
2960 tcp_set_ca_state(sk, TCP_CA_Loss);
2962 tcp_xmit_retransmit_queue(sk);
2964 EXPORT_SYMBOL(tcp_simple_retransmit);
2966 /* Process an event, which can update packets-in-flight not trivially.
2967 * Main goal of this function is to calculate new estimate for left_out,
2968 * taking into account both packets sitting in receiver's buffer and
2969 * packets lost by network.
2971 * Besides that it does CWND reduction, when packet loss is detected
2972 * and changes state of machine.
2974 * It does _not_ decide what to send, it is made in function
2975 * tcp_xmit_retransmit_queue().
2977 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2979 struct inet_connection_sock *icsk = inet_csk(sk);
2980 struct tcp_sock *tp = tcp_sk(sk);
2981 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2982 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2983 (tcp_fackets_out(tp) > tp->reordering));
2984 int fast_rexmit = 0, mib_idx;
2986 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2987 tp->sacked_out = 0;
2988 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2989 tp->fackets_out = 0;
2991 /* Now state machine starts.
2992 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2993 if (flag & FLAG_ECE)
2994 tp->prior_ssthresh = 0;
2996 /* B. In all the states check for reneging SACKs. */
2997 if (tcp_check_sack_reneging(sk, flag))
2998 return;
3000 /* C. Process data loss notification, provided it is valid. */
3001 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3002 before(tp->snd_una, tp->high_seq) &&
3003 icsk->icsk_ca_state != TCP_CA_Open &&
3004 tp->fackets_out > tp->reordering) {
3005 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3006 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3009 /* D. Check consistency of the current state. */
3010 tcp_verify_left_out(tp);
3012 /* E. Check state exit conditions. State can be terminated
3013 * when high_seq is ACKed. */
3014 if (icsk->icsk_ca_state == TCP_CA_Open) {
3015 WARN_ON(tp->retrans_out != 0);
3016 tp->retrans_stamp = 0;
3017 } else if (!before(tp->snd_una, tp->high_seq)) {
3018 switch (icsk->icsk_ca_state) {
3019 case TCP_CA_Loss:
3020 icsk->icsk_retransmits = 0;
3021 if (tcp_try_undo_recovery(sk))
3022 return;
3023 break;
3025 case TCP_CA_CWR:
3026 /* CWR is to be held something *above* high_seq
3027 * is ACKed for CWR bit to reach receiver. */
3028 if (tp->snd_una != tp->high_seq) {
3029 tcp_complete_cwr(sk);
3030 tcp_set_ca_state(sk, TCP_CA_Open);
3032 break;
3034 case TCP_CA_Disorder:
3035 tcp_try_undo_dsack(sk);
3036 if (!tp->undo_marker ||
3037 /* For SACK case do not Open to allow to undo
3038 * catching for all duplicate ACKs. */
3039 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3040 tp->undo_marker = 0;
3041 tcp_set_ca_state(sk, TCP_CA_Open);
3043 break;
3045 case TCP_CA_Recovery:
3046 if (tcp_is_reno(tp))
3047 tcp_reset_reno_sack(tp);
3048 if (tcp_try_undo_recovery(sk))
3049 return;
3050 tcp_complete_cwr(sk);
3051 break;
3055 /* F. Process state. */
3056 switch (icsk->icsk_ca_state) {
3057 case TCP_CA_Recovery:
3058 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3059 if (tcp_is_reno(tp) && is_dupack)
3060 tcp_add_reno_sack(sk);
3061 } else
3062 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3063 break;
3064 case TCP_CA_Loss:
3065 if (flag & FLAG_DATA_ACKED)
3066 icsk->icsk_retransmits = 0;
3067 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3068 tcp_reset_reno_sack(tp);
3069 if (!tcp_try_undo_loss(sk)) {
3070 tcp_moderate_cwnd(tp);
3071 tcp_xmit_retransmit_queue(sk);
3072 return;
3074 if (icsk->icsk_ca_state != TCP_CA_Open)
3075 return;
3076 /* Loss is undone; fall through to processing in Open state. */
3077 default:
3078 if (tcp_is_reno(tp)) {
3079 if (flag & FLAG_SND_UNA_ADVANCED)
3080 tcp_reset_reno_sack(tp);
3081 if (is_dupack)
3082 tcp_add_reno_sack(sk);
3085 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3086 tcp_try_undo_dsack(sk);
3088 if (!tcp_time_to_recover(sk)) {
3089 tcp_try_to_open(sk, flag);
3090 return;
3093 /* MTU probe failure: don't reduce cwnd */
3094 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3095 icsk->icsk_mtup.probe_size &&
3096 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3097 tcp_mtup_probe_failed(sk);
3098 /* Restores the reduction we did in tcp_mtup_probe() */
3099 tp->snd_cwnd++;
3100 tcp_simple_retransmit(sk);
3101 return;
3104 /* Otherwise enter Recovery state */
3106 if (tcp_is_reno(tp))
3107 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3108 else
3109 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3111 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3113 tp->high_seq = tp->snd_nxt;
3114 tp->prior_ssthresh = 0;
3115 tp->undo_marker = tp->snd_una;
3116 tp->undo_retrans = tp->retrans_out;
3118 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3119 if (!(flag & FLAG_ECE))
3120 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3121 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3122 TCP_ECN_queue_cwr(tp);
3125 tp->bytes_acked = 0;
3126 tp->snd_cwnd_cnt = 0;
3127 tcp_set_ca_state(sk, TCP_CA_Recovery);
3128 fast_rexmit = 1;
3131 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3132 tcp_update_scoreboard(sk, fast_rexmit);
3133 tcp_cwnd_down(sk, flag);
3134 tcp_xmit_retransmit_queue(sk);
3137 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3139 tcp_rtt_estimator(sk, seq_rtt);
3140 tcp_set_rto(sk);
3141 inet_csk(sk)->icsk_backoff = 0;
3144 /* Read draft-ietf-tcplw-high-performance before mucking
3145 * with this code. (Supersedes RFC1323)
3147 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3149 /* RTTM Rule: A TSecr value received in a segment is used to
3150 * update the averaged RTT measurement only if the segment
3151 * acknowledges some new data, i.e., only if it advances the
3152 * left edge of the send window.
3154 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3155 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3157 * Changed: reset backoff as soon as we see the first valid sample.
3158 * If we do not, we get strongly overestimated rto. With timestamps
3159 * samples are accepted even from very old segments: f.e., when rtt=1
3160 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3161 * answer arrives rto becomes 120 seconds! If at least one of segments
3162 * in window is lost... Voila. --ANK (010210)
3164 struct tcp_sock *tp = tcp_sk(sk);
3166 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3169 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3171 /* We don't have a timestamp. Can only use
3172 * packets that are not retransmitted to determine
3173 * rtt estimates. Also, we must not reset the
3174 * backoff for rto until we get a non-retransmitted
3175 * packet. This allows us to deal with a situation
3176 * where the network delay has increased suddenly.
3177 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3180 if (flag & FLAG_RETRANS_DATA_ACKED)
3181 return;
3183 tcp_valid_rtt_meas(sk, seq_rtt);
3186 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3187 const s32 seq_rtt)
3189 const struct tcp_sock *tp = tcp_sk(sk);
3190 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3191 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3192 tcp_ack_saw_tstamp(sk, flag);
3193 else if (seq_rtt >= 0)
3194 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3197 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3199 const struct inet_connection_sock *icsk = inet_csk(sk);
3200 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3201 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3204 /* Restart timer after forward progress on connection.
3205 * RFC2988 recommends to restart timer to now+rto.
3207 static void tcp_rearm_rto(struct sock *sk)
3209 struct tcp_sock *tp = tcp_sk(sk);
3211 if (!tp->packets_out) {
3212 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213 } else {
3214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3215 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3219 /* If we get here, the whole TSO packet has not been acked. */
3220 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3222 struct tcp_sock *tp = tcp_sk(sk);
3223 u32 packets_acked;
3225 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3227 packets_acked = tcp_skb_pcount(skb);
3228 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3229 return 0;
3230 packets_acked -= tcp_skb_pcount(skb);
3232 if (packets_acked) {
3233 BUG_ON(tcp_skb_pcount(skb) == 0);
3234 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3237 return packets_acked;
3240 /* Remove acknowledged frames from the retransmission queue. If our packet
3241 * is before the ack sequence we can discard it as it's confirmed to have
3242 * arrived at the other end.
3244 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3245 u32 prior_snd_una)
3247 struct tcp_sock *tp = tcp_sk(sk);
3248 const struct inet_connection_sock *icsk = inet_csk(sk);
3249 struct sk_buff *skb;
3250 u32 now = tcp_time_stamp;
3251 int fully_acked = 1;
3252 int flag = 0;
3253 u32 pkts_acked = 0;
3254 u32 reord = tp->packets_out;
3255 u32 prior_sacked = tp->sacked_out;
3256 s32 seq_rtt = -1;
3257 s32 ca_seq_rtt = -1;
3258 ktime_t last_ackt = net_invalid_timestamp();
3260 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3261 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3262 u32 acked_pcount;
3263 u8 sacked = scb->sacked;
3265 /* Determine how many packets and what bytes were acked, tso and else */
3266 if (after(scb->end_seq, tp->snd_una)) {
3267 if (tcp_skb_pcount(skb) == 1 ||
3268 !after(tp->snd_una, scb->seq))
3269 break;
3271 acked_pcount = tcp_tso_acked(sk, skb);
3272 if (!acked_pcount)
3273 break;
3275 fully_acked = 0;
3276 } else {
3277 acked_pcount = tcp_skb_pcount(skb);
3280 if (sacked & TCPCB_RETRANS) {
3281 if (sacked & TCPCB_SACKED_RETRANS)
3282 tp->retrans_out -= acked_pcount;
3283 flag |= FLAG_RETRANS_DATA_ACKED;
3284 ca_seq_rtt = -1;
3285 seq_rtt = -1;
3286 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3287 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3288 } else {
3289 ca_seq_rtt = now - scb->when;
3290 last_ackt = skb->tstamp;
3291 if (seq_rtt < 0) {
3292 seq_rtt = ca_seq_rtt;
3294 if (!(sacked & TCPCB_SACKED_ACKED))
3295 reord = min(pkts_acked, reord);
3298 if (sacked & TCPCB_SACKED_ACKED)
3299 tp->sacked_out -= acked_pcount;
3300 if (sacked & TCPCB_LOST)
3301 tp->lost_out -= acked_pcount;
3303 tp->packets_out -= acked_pcount;
3304 pkts_acked += acked_pcount;
3306 /* Initial outgoing SYN's get put onto the write_queue
3307 * just like anything else we transmit. It is not
3308 * true data, and if we misinform our callers that
3309 * this ACK acks real data, we will erroneously exit
3310 * connection startup slow start one packet too
3311 * quickly. This is severely frowned upon behavior.
3313 if (!(scb->flags & TCPHDR_SYN)) {
3314 flag |= FLAG_DATA_ACKED;
3315 } else {
3316 flag |= FLAG_SYN_ACKED;
3317 tp->retrans_stamp = 0;
3320 if (!fully_acked)
3321 break;
3323 tcp_unlink_write_queue(skb, sk);
3324 sk_wmem_free_skb(sk, skb);
3325 tp->scoreboard_skb_hint = NULL;
3326 if (skb == tp->retransmit_skb_hint)
3327 tp->retransmit_skb_hint = NULL;
3328 if (skb == tp->lost_skb_hint)
3329 tp->lost_skb_hint = NULL;
3332 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3333 tp->snd_up = tp->snd_una;
3335 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3336 flag |= FLAG_SACK_RENEGING;
3338 if (flag & FLAG_ACKED) {
3339 const struct tcp_congestion_ops *ca_ops
3340 = inet_csk(sk)->icsk_ca_ops;
3342 if (unlikely(icsk->icsk_mtup.probe_size &&
3343 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3344 tcp_mtup_probe_success(sk);
3347 tcp_ack_update_rtt(sk, flag, seq_rtt);
3348 tcp_rearm_rto(sk);
3350 if (tcp_is_reno(tp)) {
3351 tcp_remove_reno_sacks(sk, pkts_acked);
3352 } else {
3353 int delta;
3355 /* Non-retransmitted hole got filled? That's reordering */
3356 if (reord < prior_fackets)
3357 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3359 delta = tcp_is_fack(tp) ? pkts_acked :
3360 prior_sacked - tp->sacked_out;
3361 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3364 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3366 if (ca_ops->pkts_acked) {
3367 s32 rtt_us = -1;
3369 /* Is the ACK triggering packet unambiguous? */
3370 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3371 /* High resolution needed and available? */
3372 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3373 !ktime_equal(last_ackt,
3374 net_invalid_timestamp()))
3375 rtt_us = ktime_us_delta(ktime_get_real(),
3376 last_ackt);
3377 else if (ca_seq_rtt >= 0)
3378 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3381 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3385 #if FASTRETRANS_DEBUG > 0
3386 WARN_ON((int)tp->sacked_out < 0);
3387 WARN_ON((int)tp->lost_out < 0);
3388 WARN_ON((int)tp->retrans_out < 0);
3389 if (!tp->packets_out && tcp_is_sack(tp)) {
3390 icsk = inet_csk(sk);
3391 if (tp->lost_out) {
3392 printk(KERN_DEBUG "Leak l=%u %d\n",
3393 tp->lost_out, icsk->icsk_ca_state);
3394 tp->lost_out = 0;
3396 if (tp->sacked_out) {
3397 printk(KERN_DEBUG "Leak s=%u %d\n",
3398 tp->sacked_out, icsk->icsk_ca_state);
3399 tp->sacked_out = 0;
3401 if (tp->retrans_out) {
3402 printk(KERN_DEBUG "Leak r=%u %d\n",
3403 tp->retrans_out, icsk->icsk_ca_state);
3404 tp->retrans_out = 0;
3407 #endif
3408 return flag;
3411 static void tcp_ack_probe(struct sock *sk)
3413 const struct tcp_sock *tp = tcp_sk(sk);
3414 struct inet_connection_sock *icsk = inet_csk(sk);
3416 /* Was it a usable window open? */
3418 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3419 icsk->icsk_backoff = 0;
3420 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3421 /* Socket must be waked up by subsequent tcp_data_snd_check().
3422 * This function is not for random using!
3424 } else {
3425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3426 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3427 TCP_RTO_MAX);
3431 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3433 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3434 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3437 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3439 const struct tcp_sock *tp = tcp_sk(sk);
3440 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3441 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3444 /* Check that window update is acceptable.
3445 * The function assumes that snd_una<=ack<=snd_next.
3447 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3448 const u32 ack, const u32 ack_seq,
3449 const u32 nwin)
3451 return after(ack, tp->snd_una) ||
3452 after(ack_seq, tp->snd_wl1) ||
3453 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3456 /* Update our send window.
3458 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3459 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3461 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3462 u32 ack_seq)
3464 struct tcp_sock *tp = tcp_sk(sk);
3465 int flag = 0;
3466 u32 nwin = ntohs(tcp_hdr(skb)->window);
3468 if (likely(!tcp_hdr(skb)->syn))
3469 nwin <<= tp->rx_opt.snd_wscale;
3471 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3472 flag |= FLAG_WIN_UPDATE;
3473 tcp_update_wl(tp, ack_seq);
3475 if (tp->snd_wnd != nwin) {
3476 tp->snd_wnd = nwin;
3478 /* Note, it is the only place, where
3479 * fast path is recovered for sending TCP.
3481 tp->pred_flags = 0;
3482 tcp_fast_path_check(sk);
3484 if (nwin > tp->max_window) {
3485 tp->max_window = nwin;
3486 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3491 tp->snd_una = ack;
3493 return flag;
3496 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3497 * continue in congestion avoidance.
3499 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3501 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3502 tp->snd_cwnd_cnt = 0;
3503 tp->bytes_acked = 0;
3504 TCP_ECN_queue_cwr(tp);
3505 tcp_moderate_cwnd(tp);
3508 /* A conservative spurious RTO response algorithm: reduce cwnd using
3509 * rate halving and continue in congestion avoidance.
3511 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3513 tcp_enter_cwr(sk, 0);
3516 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3518 if (flag & FLAG_ECE)
3519 tcp_ratehalving_spur_to_response(sk);
3520 else
3521 tcp_undo_cwr(sk, true);
3524 /* F-RTO spurious RTO detection algorithm (RFC4138)
3526 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3527 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3528 * window (but not to or beyond highest sequence sent before RTO):
3529 * On First ACK, send two new segments out.
3530 * On Second ACK, RTO was likely spurious. Do spurious response (response
3531 * algorithm is not part of the F-RTO detection algorithm
3532 * given in RFC4138 but can be selected separately).
3533 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3534 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3535 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3536 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3538 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3539 * original window even after we transmit two new data segments.
3541 * SACK version:
3542 * on first step, wait until first cumulative ACK arrives, then move to
3543 * the second step. In second step, the next ACK decides.
3545 * F-RTO is implemented (mainly) in four functions:
3546 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3547 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3548 * called when tcp_use_frto() showed green light
3549 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3550 * - tcp_enter_frto_loss() is called if there is not enough evidence
3551 * to prove that the RTO is indeed spurious. It transfers the control
3552 * from F-RTO to the conventional RTO recovery
3554 static int tcp_process_frto(struct sock *sk, int flag)
3556 struct tcp_sock *tp = tcp_sk(sk);
3558 tcp_verify_left_out(tp);
3560 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3561 if (flag & FLAG_DATA_ACKED)
3562 inet_csk(sk)->icsk_retransmits = 0;
3564 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3565 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3566 tp->undo_marker = 0;
3568 if (!before(tp->snd_una, tp->frto_highmark)) {
3569 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3570 return 1;
3573 if (!tcp_is_sackfrto(tp)) {
3574 /* RFC4138 shortcoming in step 2; should also have case c):
3575 * ACK isn't duplicate nor advances window, e.g., opposite dir
3576 * data, winupdate
3578 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3579 return 1;
3581 if (!(flag & FLAG_DATA_ACKED)) {
3582 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3583 flag);
3584 return 1;
3586 } else {
3587 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3588 /* Prevent sending of new data. */
3589 tp->snd_cwnd = min(tp->snd_cwnd,
3590 tcp_packets_in_flight(tp));
3591 return 1;
3594 if ((tp->frto_counter >= 2) &&
3595 (!(flag & FLAG_FORWARD_PROGRESS) ||
3596 ((flag & FLAG_DATA_SACKED) &&
3597 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3598 /* RFC4138 shortcoming (see comment above) */
3599 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3600 (flag & FLAG_NOT_DUP))
3601 return 1;
3603 tcp_enter_frto_loss(sk, 3, flag);
3604 return 1;
3608 if (tp->frto_counter == 1) {
3609 /* tcp_may_send_now needs to see updated state */
3610 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3611 tp->frto_counter = 2;
3613 if (!tcp_may_send_now(sk))
3614 tcp_enter_frto_loss(sk, 2, flag);
3616 return 1;
3617 } else {
3618 switch (sysctl_tcp_frto_response) {
3619 case 2:
3620 tcp_undo_spur_to_response(sk, flag);
3621 break;
3622 case 1:
3623 tcp_conservative_spur_to_response(tp);
3624 break;
3625 default:
3626 tcp_ratehalving_spur_to_response(sk);
3627 break;
3629 tp->frto_counter = 0;
3630 tp->undo_marker = 0;
3631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3633 return 0;
3636 /* This routine deals with incoming acks, but not outgoing ones. */
3637 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3639 struct inet_connection_sock *icsk = inet_csk(sk);
3640 struct tcp_sock *tp = tcp_sk(sk);
3641 u32 prior_snd_una = tp->snd_una;
3642 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3643 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3644 u32 prior_in_flight;
3645 u32 prior_fackets;
3646 int prior_packets;
3647 int frto_cwnd = 0;
3649 /* If the ack is older than previous acks
3650 * then we can probably ignore it.
3652 if (before(ack, prior_snd_una))
3653 goto old_ack;
3655 /* If the ack includes data we haven't sent yet, discard
3656 * this segment (RFC793 Section 3.9).
3658 if (after(ack, tp->snd_nxt))
3659 goto invalid_ack;
3661 if (after(ack, prior_snd_una))
3662 flag |= FLAG_SND_UNA_ADVANCED;
3664 if (sysctl_tcp_abc) {
3665 if (icsk->icsk_ca_state < TCP_CA_CWR)
3666 tp->bytes_acked += ack - prior_snd_una;
3667 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3668 /* we assume just one segment left network */
3669 tp->bytes_acked += min(ack - prior_snd_una,
3670 tp->mss_cache);
3673 prior_fackets = tp->fackets_out;
3674 prior_in_flight = tcp_packets_in_flight(tp);
3676 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3677 /* Window is constant, pure forward advance.
3678 * No more checks are required.
3679 * Note, we use the fact that SND.UNA>=SND.WL2.
3681 tcp_update_wl(tp, ack_seq);
3682 tp->snd_una = ack;
3683 flag |= FLAG_WIN_UPDATE;
3685 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3687 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3688 } else {
3689 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3690 flag |= FLAG_DATA;
3691 else
3692 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3694 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3696 if (TCP_SKB_CB(skb)->sacked)
3697 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3699 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3700 flag |= FLAG_ECE;
3702 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3705 /* We passed data and got it acked, remove any soft error
3706 * log. Something worked...
3708 sk->sk_err_soft = 0;
3709 icsk->icsk_probes_out = 0;
3710 tp->rcv_tstamp = tcp_time_stamp;
3711 prior_packets = tp->packets_out;
3712 if (!prior_packets)
3713 goto no_queue;
3715 /* See if we can take anything off of the retransmit queue. */
3716 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3718 if (tp->frto_counter)
3719 frto_cwnd = tcp_process_frto(sk, flag);
3720 /* Guarantee sacktag reordering detection against wrap-arounds */
3721 if (before(tp->frto_highmark, tp->snd_una))
3722 tp->frto_highmark = 0;
3724 if (tcp_ack_is_dubious(sk, flag)) {
3725 /* Advance CWND, if state allows this. */
3726 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3727 tcp_may_raise_cwnd(sk, flag))
3728 tcp_cong_avoid(sk, ack, prior_in_flight);
3729 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3730 flag);
3731 } else {
3732 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3733 tcp_cong_avoid(sk, ack, prior_in_flight);
3736 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3737 dst_confirm(__sk_dst_get(sk));
3739 return 1;
3741 no_queue:
3742 /* If this ack opens up a zero window, clear backoff. It was
3743 * being used to time the probes, and is probably far higher than
3744 * it needs to be for normal retransmission.
3746 if (tcp_send_head(sk))
3747 tcp_ack_probe(sk);
3748 return 1;
3750 invalid_ack:
3751 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3752 return -1;
3754 old_ack:
3755 if (TCP_SKB_CB(skb)->sacked) {
3756 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3757 if (icsk->icsk_ca_state == TCP_CA_Open)
3758 tcp_try_keep_open(sk);
3761 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3762 return 0;
3765 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3766 * But, this can also be called on packets in the established flow when
3767 * the fast version below fails.
3769 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3770 u8 **hvpp, int estab)
3772 unsigned char *ptr;
3773 struct tcphdr *th = tcp_hdr(skb);
3774 int length = (th->doff * 4) - sizeof(struct tcphdr);
3776 ptr = (unsigned char *)(th + 1);
3777 opt_rx->saw_tstamp = 0;
3779 while (length > 0) {
3780 int opcode = *ptr++;
3781 int opsize;
3783 switch (opcode) {
3784 case TCPOPT_EOL:
3785 return;
3786 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3787 length--;
3788 continue;
3789 default:
3790 opsize = *ptr++;
3791 if (opsize < 2) /* "silly options" */
3792 return;
3793 if (opsize > length)
3794 return; /* don't parse partial options */
3795 switch (opcode) {
3796 case TCPOPT_MSS:
3797 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3798 u16 in_mss = get_unaligned_be16(ptr);
3799 if (in_mss) {
3800 if (opt_rx->user_mss &&
3801 opt_rx->user_mss < in_mss)
3802 in_mss = opt_rx->user_mss;
3803 opt_rx->mss_clamp = in_mss;
3806 break;
3807 case TCPOPT_WINDOW:
3808 if (opsize == TCPOLEN_WINDOW && th->syn &&
3809 !estab && sysctl_tcp_window_scaling) {
3810 __u8 snd_wscale = *(__u8 *)ptr;
3811 opt_rx->wscale_ok = 1;
3812 if (snd_wscale > 14) {
3813 if (net_ratelimit())
3814 printk(KERN_INFO "tcp_parse_options: Illegal window "
3815 "scaling value %d >14 received.\n",
3816 snd_wscale);
3817 snd_wscale = 14;
3819 opt_rx->snd_wscale = snd_wscale;
3821 break;
3822 case TCPOPT_TIMESTAMP:
3823 if ((opsize == TCPOLEN_TIMESTAMP) &&
3824 ((estab && opt_rx->tstamp_ok) ||
3825 (!estab && sysctl_tcp_timestamps))) {
3826 opt_rx->saw_tstamp = 1;
3827 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3828 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3830 break;
3831 case TCPOPT_SACK_PERM:
3832 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3833 !estab && sysctl_tcp_sack) {
3834 opt_rx->sack_ok = 1;
3835 tcp_sack_reset(opt_rx);
3837 break;
3839 case TCPOPT_SACK:
3840 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3841 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3842 opt_rx->sack_ok) {
3843 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3845 break;
3846 #ifdef CONFIG_TCP_MD5SIG
3847 case TCPOPT_MD5SIG:
3849 * The MD5 Hash has already been
3850 * checked (see tcp_v{4,6}_do_rcv()).
3852 break;
3853 #endif
3854 case TCPOPT_COOKIE:
3855 /* This option is variable length.
3857 switch (opsize) {
3858 case TCPOLEN_COOKIE_BASE:
3859 /* not yet implemented */
3860 break;
3861 case TCPOLEN_COOKIE_PAIR:
3862 /* not yet implemented */
3863 break;
3864 case TCPOLEN_COOKIE_MIN+0:
3865 case TCPOLEN_COOKIE_MIN+2:
3866 case TCPOLEN_COOKIE_MIN+4:
3867 case TCPOLEN_COOKIE_MIN+6:
3868 case TCPOLEN_COOKIE_MAX:
3869 /* 16-bit multiple */
3870 opt_rx->cookie_plus = opsize;
3871 *hvpp = ptr;
3872 break;
3873 default:
3874 /* ignore option */
3875 break;
3877 break;
3880 ptr += opsize-2;
3881 length -= opsize;
3885 EXPORT_SYMBOL(tcp_parse_options);
3887 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3889 __be32 *ptr = (__be32 *)(th + 1);
3891 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3892 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3893 tp->rx_opt.saw_tstamp = 1;
3894 ++ptr;
3895 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3896 ++ptr;
3897 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3898 return 1;
3900 return 0;
3903 /* Fast parse options. This hopes to only see timestamps.
3904 * If it is wrong it falls back on tcp_parse_options().
3906 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3907 struct tcp_sock *tp, u8 **hvpp)
3909 /* In the spirit of fast parsing, compare doff directly to constant
3910 * values. Because equality is used, short doff can be ignored here.
3912 if (th->doff == (sizeof(*th) / 4)) {
3913 tp->rx_opt.saw_tstamp = 0;
3914 return 0;
3915 } else if (tp->rx_opt.tstamp_ok &&
3916 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3917 if (tcp_parse_aligned_timestamp(tp, th))
3918 return 1;
3920 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3921 return 1;
3924 #ifdef CONFIG_TCP_MD5SIG
3926 * Parse MD5 Signature option
3928 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3930 int length = (th->doff << 2) - sizeof (*th);
3931 u8 *ptr = (u8*)(th + 1);
3933 /* If the TCP option is too short, we can short cut */
3934 if (length < TCPOLEN_MD5SIG)
3935 return NULL;
3937 while (length > 0) {
3938 int opcode = *ptr++;
3939 int opsize;
3941 switch(opcode) {
3942 case TCPOPT_EOL:
3943 return NULL;
3944 case TCPOPT_NOP:
3945 length--;
3946 continue;
3947 default:
3948 opsize = *ptr++;
3949 if (opsize < 2 || opsize > length)
3950 return NULL;
3951 if (opcode == TCPOPT_MD5SIG)
3952 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3954 ptr += opsize - 2;
3955 length -= opsize;
3957 return NULL;
3959 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3960 #endif
3962 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3964 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3965 tp->rx_opt.ts_recent_stamp = get_seconds();
3968 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3970 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3971 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3972 * extra check below makes sure this can only happen
3973 * for pure ACK frames. -DaveM
3975 * Not only, also it occurs for expired timestamps.
3978 if (tcp_paws_check(&tp->rx_opt, 0))
3979 tcp_store_ts_recent(tp);
3983 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3985 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3986 * it can pass through stack. So, the following predicate verifies that
3987 * this segment is not used for anything but congestion avoidance or
3988 * fast retransmit. Moreover, we even are able to eliminate most of such
3989 * second order effects, if we apply some small "replay" window (~RTO)
3990 * to timestamp space.
3992 * All these measures still do not guarantee that we reject wrapped ACKs
3993 * on networks with high bandwidth, when sequence space is recycled fastly,
3994 * but it guarantees that such events will be very rare and do not affect
3995 * connection seriously. This doesn't look nice, but alas, PAWS is really
3996 * buggy extension.
3998 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3999 * states that events when retransmit arrives after original data are rare.
4000 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4001 * the biggest problem on large power networks even with minor reordering.
4002 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4003 * up to bandwidth of 18Gigabit/sec. 8) ]
4006 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4008 struct tcp_sock *tp = tcp_sk(sk);
4009 struct tcphdr *th = tcp_hdr(skb);
4010 u32 seq = TCP_SKB_CB(skb)->seq;
4011 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4013 return (/* 1. Pure ACK with correct sequence number. */
4014 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4016 /* 2. ... and duplicate ACK. */
4017 ack == tp->snd_una &&
4019 /* 3. ... and does not update window. */
4020 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4022 /* 4. ... and sits in replay window. */
4023 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4026 static inline int tcp_paws_discard(const struct sock *sk,
4027 const struct sk_buff *skb)
4029 const struct tcp_sock *tp = tcp_sk(sk);
4031 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4032 !tcp_disordered_ack(sk, skb);
4035 /* Check segment sequence number for validity.
4037 * Segment controls are considered valid, if the segment
4038 * fits to the window after truncation to the window. Acceptability
4039 * of data (and SYN, FIN, of course) is checked separately.
4040 * See tcp_data_queue(), for example.
4042 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4043 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4044 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4045 * (borrowed from freebsd)
4048 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4050 return !before(end_seq, tp->rcv_wup) &&
4051 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4054 /* When we get a reset we do this. */
4055 static void tcp_reset(struct sock *sk)
4057 /* We want the right error as BSD sees it (and indeed as we do). */
4058 switch (sk->sk_state) {
4059 case TCP_SYN_SENT:
4060 sk->sk_err = ECONNREFUSED;
4061 break;
4062 case TCP_CLOSE_WAIT:
4063 sk->sk_err = EPIPE;
4064 break;
4065 case TCP_CLOSE:
4066 return;
4067 default:
4068 sk->sk_err = ECONNRESET;
4070 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4071 smp_wmb();
4073 if (!sock_flag(sk, SOCK_DEAD))
4074 sk->sk_error_report(sk);
4076 tcp_done(sk);
4080 * Process the FIN bit. This now behaves as it is supposed to work
4081 * and the FIN takes effect when it is validly part of sequence
4082 * space. Not before when we get holes.
4084 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4085 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4086 * TIME-WAIT)
4088 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4089 * close and we go into CLOSING (and later onto TIME-WAIT)
4091 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4093 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4095 struct tcp_sock *tp = tcp_sk(sk);
4097 inet_csk_schedule_ack(sk);
4099 sk->sk_shutdown |= RCV_SHUTDOWN;
4100 sock_set_flag(sk, SOCK_DONE);
4102 switch (sk->sk_state) {
4103 case TCP_SYN_RECV:
4104 case TCP_ESTABLISHED:
4105 /* Move to CLOSE_WAIT */
4106 tcp_set_state(sk, TCP_CLOSE_WAIT);
4107 inet_csk(sk)->icsk_ack.pingpong = 1;
4108 break;
4110 case TCP_CLOSE_WAIT:
4111 case TCP_CLOSING:
4112 /* Received a retransmission of the FIN, do
4113 * nothing.
4115 break;
4116 case TCP_LAST_ACK:
4117 /* RFC793: Remain in the LAST-ACK state. */
4118 break;
4120 case TCP_FIN_WAIT1:
4121 /* This case occurs when a simultaneous close
4122 * happens, we must ack the received FIN and
4123 * enter the CLOSING state.
4125 tcp_send_ack(sk);
4126 tcp_set_state(sk, TCP_CLOSING);
4127 break;
4128 case TCP_FIN_WAIT2:
4129 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4130 tcp_send_ack(sk);
4131 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4132 break;
4133 default:
4134 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4135 * cases we should never reach this piece of code.
4137 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4138 __func__, sk->sk_state);
4139 break;
4142 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4143 * Probably, we should reset in this case. For now drop them.
4145 __skb_queue_purge(&tp->out_of_order_queue);
4146 if (tcp_is_sack(tp))
4147 tcp_sack_reset(&tp->rx_opt);
4148 sk_mem_reclaim(sk);
4150 if (!sock_flag(sk, SOCK_DEAD)) {
4151 sk->sk_state_change(sk);
4153 /* Do not send POLL_HUP for half duplex close. */
4154 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4155 sk->sk_state == TCP_CLOSE)
4156 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4157 else
4158 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4162 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4163 u32 end_seq)
4165 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4166 if (before(seq, sp->start_seq))
4167 sp->start_seq = seq;
4168 if (after(end_seq, sp->end_seq))
4169 sp->end_seq = end_seq;
4170 return 1;
4172 return 0;
4175 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4177 struct tcp_sock *tp = tcp_sk(sk);
4179 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4180 int mib_idx;
4182 if (before(seq, tp->rcv_nxt))
4183 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4184 else
4185 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4187 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4189 tp->rx_opt.dsack = 1;
4190 tp->duplicate_sack[0].start_seq = seq;
4191 tp->duplicate_sack[0].end_seq = end_seq;
4195 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4197 struct tcp_sock *tp = tcp_sk(sk);
4199 if (!tp->rx_opt.dsack)
4200 tcp_dsack_set(sk, seq, end_seq);
4201 else
4202 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4205 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4207 struct tcp_sock *tp = tcp_sk(sk);
4209 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4210 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4211 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4212 tcp_enter_quickack_mode(sk);
4214 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4215 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4217 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4218 end_seq = tp->rcv_nxt;
4219 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4223 tcp_send_ack(sk);
4226 /* These routines update the SACK block as out-of-order packets arrive or
4227 * in-order packets close up the sequence space.
4229 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4231 int this_sack;
4232 struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 struct tcp_sack_block *swalk = sp + 1;
4235 /* See if the recent change to the first SACK eats into
4236 * or hits the sequence space of other SACK blocks, if so coalesce.
4238 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4239 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4240 int i;
4242 /* Zap SWALK, by moving every further SACK up by one slot.
4243 * Decrease num_sacks.
4245 tp->rx_opt.num_sacks--;
4246 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4247 sp[i] = sp[i + 1];
4248 continue;
4250 this_sack++, swalk++;
4254 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4256 struct tcp_sock *tp = tcp_sk(sk);
4257 struct tcp_sack_block *sp = &tp->selective_acks[0];
4258 int cur_sacks = tp->rx_opt.num_sacks;
4259 int this_sack;
4261 if (!cur_sacks)
4262 goto new_sack;
4264 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4265 if (tcp_sack_extend(sp, seq, end_seq)) {
4266 /* Rotate this_sack to the first one. */
4267 for (; this_sack > 0; this_sack--, sp--)
4268 swap(*sp, *(sp - 1));
4269 if (cur_sacks > 1)
4270 tcp_sack_maybe_coalesce(tp);
4271 return;
4275 /* Could not find an adjacent existing SACK, build a new one,
4276 * put it at the front, and shift everyone else down. We
4277 * always know there is at least one SACK present already here.
4279 * If the sack array is full, forget about the last one.
4281 if (this_sack >= TCP_NUM_SACKS) {
4282 this_sack--;
4283 tp->rx_opt.num_sacks--;
4284 sp--;
4286 for (; this_sack > 0; this_sack--, sp--)
4287 *sp = *(sp - 1);
4289 new_sack:
4290 /* Build the new head SACK, and we're done. */
4291 sp->start_seq = seq;
4292 sp->end_seq = end_seq;
4293 tp->rx_opt.num_sacks++;
4296 /* RCV.NXT advances, some SACKs should be eaten. */
4298 static void tcp_sack_remove(struct tcp_sock *tp)
4300 struct tcp_sack_block *sp = &tp->selective_acks[0];
4301 int num_sacks = tp->rx_opt.num_sacks;
4302 int this_sack;
4304 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4305 if (skb_queue_empty(&tp->out_of_order_queue)) {
4306 tp->rx_opt.num_sacks = 0;
4307 return;
4310 for (this_sack = 0; this_sack < num_sacks;) {
4311 /* Check if the start of the sack is covered by RCV.NXT. */
4312 if (!before(tp->rcv_nxt, sp->start_seq)) {
4313 int i;
4315 /* RCV.NXT must cover all the block! */
4316 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4318 /* Zap this SACK, by moving forward any other SACKS. */
4319 for (i=this_sack+1; i < num_sacks; i++)
4320 tp->selective_acks[i-1] = tp->selective_acks[i];
4321 num_sacks--;
4322 continue;
4324 this_sack++;
4325 sp++;
4327 tp->rx_opt.num_sacks = num_sacks;
4330 /* This one checks to see if we can put data from the
4331 * out_of_order queue into the receive_queue.
4333 static void tcp_ofo_queue(struct sock *sk)
4335 struct tcp_sock *tp = tcp_sk(sk);
4336 __u32 dsack_high = tp->rcv_nxt;
4337 struct sk_buff *skb;
4339 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4340 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4341 break;
4343 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4344 __u32 dsack = dsack_high;
4345 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4346 dsack_high = TCP_SKB_CB(skb)->end_seq;
4347 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4350 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4351 SOCK_DEBUG(sk, "ofo packet was already received\n");
4352 __skb_unlink(skb, &tp->out_of_order_queue);
4353 __kfree_skb(skb);
4354 continue;
4356 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4357 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4358 TCP_SKB_CB(skb)->end_seq);
4360 __skb_unlink(skb, &tp->out_of_order_queue);
4361 __skb_queue_tail(&sk->sk_receive_queue, skb);
4362 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4363 if (tcp_hdr(skb)->fin)
4364 tcp_fin(skb, sk, tcp_hdr(skb));
4368 static int tcp_prune_ofo_queue(struct sock *sk);
4369 static int tcp_prune_queue(struct sock *sk);
4371 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4373 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4374 !sk_rmem_schedule(sk, size)) {
4376 if (tcp_prune_queue(sk) < 0)
4377 return -1;
4379 if (!sk_rmem_schedule(sk, size)) {
4380 if (!tcp_prune_ofo_queue(sk))
4381 return -1;
4383 if (!sk_rmem_schedule(sk, size))
4384 return -1;
4387 return 0;
4390 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4392 struct tcphdr *th = tcp_hdr(skb);
4393 struct tcp_sock *tp = tcp_sk(sk);
4394 int eaten = -1;
4396 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4397 goto drop;
4399 skb_dst_drop(skb);
4400 __skb_pull(skb, th->doff * 4);
4402 TCP_ECN_accept_cwr(tp, skb);
4404 tp->rx_opt.dsack = 0;
4406 /* Queue data for delivery to the user.
4407 * Packets in sequence go to the receive queue.
4408 * Out of sequence packets to the out_of_order_queue.
4410 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4411 if (tcp_receive_window(tp) == 0)
4412 goto out_of_window;
4414 /* Ok. In sequence. In window. */
4415 if (tp->ucopy.task == current &&
4416 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4417 sock_owned_by_user(sk) && !tp->urg_data) {
4418 int chunk = min_t(unsigned int, skb->len,
4419 tp->ucopy.len);
4421 __set_current_state(TASK_RUNNING);
4423 local_bh_enable();
4424 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4425 tp->ucopy.len -= chunk;
4426 tp->copied_seq += chunk;
4427 eaten = (chunk == skb->len);
4428 tcp_rcv_space_adjust(sk);
4430 local_bh_disable();
4433 if (eaten <= 0) {
4434 queue_and_out:
4435 if (eaten < 0 &&
4436 tcp_try_rmem_schedule(sk, skb->truesize))
4437 goto drop;
4439 skb_set_owner_r(skb, sk);
4440 __skb_queue_tail(&sk->sk_receive_queue, skb);
4442 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4443 if (skb->len)
4444 tcp_event_data_recv(sk, skb);
4445 if (th->fin)
4446 tcp_fin(skb, sk, th);
4448 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4449 tcp_ofo_queue(sk);
4451 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4452 * gap in queue is filled.
4454 if (skb_queue_empty(&tp->out_of_order_queue))
4455 inet_csk(sk)->icsk_ack.pingpong = 0;
4458 if (tp->rx_opt.num_sacks)
4459 tcp_sack_remove(tp);
4461 tcp_fast_path_check(sk);
4463 if (eaten > 0)
4464 __kfree_skb(skb);
4465 else if (!sock_flag(sk, SOCK_DEAD))
4466 sk->sk_data_ready(sk, 0);
4467 return;
4470 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4471 /* A retransmit, 2nd most common case. Force an immediate ack. */
4472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4473 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4475 out_of_window:
4476 tcp_enter_quickack_mode(sk);
4477 inet_csk_schedule_ack(sk);
4478 drop:
4479 __kfree_skb(skb);
4480 return;
4483 /* Out of window. F.e. zero window probe. */
4484 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4485 goto out_of_window;
4487 tcp_enter_quickack_mode(sk);
4489 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4490 /* Partial packet, seq < rcv_next < end_seq */
4491 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4492 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4493 TCP_SKB_CB(skb)->end_seq);
4495 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4497 /* If window is closed, drop tail of packet. But after
4498 * remembering D-SACK for its head made in previous line.
4500 if (!tcp_receive_window(tp))
4501 goto out_of_window;
4502 goto queue_and_out;
4505 TCP_ECN_check_ce(tp, skb);
4507 if (tcp_try_rmem_schedule(sk, skb->truesize))
4508 goto drop;
4510 /* Disable header prediction. */
4511 tp->pred_flags = 0;
4512 inet_csk_schedule_ack(sk);
4514 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4515 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4517 skb_set_owner_r(skb, sk);
4519 if (!skb_peek(&tp->out_of_order_queue)) {
4520 /* Initial out of order segment, build 1 SACK. */
4521 if (tcp_is_sack(tp)) {
4522 tp->rx_opt.num_sacks = 1;
4523 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4524 tp->selective_acks[0].end_seq =
4525 TCP_SKB_CB(skb)->end_seq;
4527 __skb_queue_head(&tp->out_of_order_queue, skb);
4528 } else {
4529 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4530 u32 seq = TCP_SKB_CB(skb)->seq;
4531 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4533 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4534 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4536 if (!tp->rx_opt.num_sacks ||
4537 tp->selective_acks[0].end_seq != seq)
4538 goto add_sack;
4540 /* Common case: data arrive in order after hole. */
4541 tp->selective_acks[0].end_seq = end_seq;
4542 return;
4545 /* Find place to insert this segment. */
4546 while (1) {
4547 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4548 break;
4549 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4550 skb1 = NULL;
4551 break;
4553 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4556 /* Do skb overlap to previous one? */
4557 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4558 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4559 /* All the bits are present. Drop. */
4560 __kfree_skb(skb);
4561 tcp_dsack_set(sk, seq, end_seq);
4562 goto add_sack;
4564 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4565 /* Partial overlap. */
4566 tcp_dsack_set(sk, seq,
4567 TCP_SKB_CB(skb1)->end_seq);
4568 } else {
4569 if (skb_queue_is_first(&tp->out_of_order_queue,
4570 skb1))
4571 skb1 = NULL;
4572 else
4573 skb1 = skb_queue_prev(
4574 &tp->out_of_order_queue,
4575 skb1);
4578 if (!skb1)
4579 __skb_queue_head(&tp->out_of_order_queue, skb);
4580 else
4581 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4583 /* And clean segments covered by new one as whole. */
4584 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4585 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4587 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4588 break;
4589 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4590 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4591 end_seq);
4592 break;
4594 __skb_unlink(skb1, &tp->out_of_order_queue);
4595 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4596 TCP_SKB_CB(skb1)->end_seq);
4597 __kfree_skb(skb1);
4600 add_sack:
4601 if (tcp_is_sack(tp))
4602 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4606 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4607 struct sk_buff_head *list)
4609 struct sk_buff *next = NULL;
4611 if (!skb_queue_is_last(list, skb))
4612 next = skb_queue_next(list, skb);
4614 __skb_unlink(skb, list);
4615 __kfree_skb(skb);
4616 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4618 return next;
4621 /* Collapse contiguous sequence of skbs head..tail with
4622 * sequence numbers start..end.
4624 * If tail is NULL, this means until the end of the list.
4626 * Segments with FIN/SYN are not collapsed (only because this
4627 * simplifies code)
4629 static void
4630 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4631 struct sk_buff *head, struct sk_buff *tail,
4632 u32 start, u32 end)
4634 struct sk_buff *skb, *n;
4635 bool end_of_skbs;
4637 /* First, check that queue is collapsible and find
4638 * the point where collapsing can be useful. */
4639 skb = head;
4640 restart:
4641 end_of_skbs = true;
4642 skb_queue_walk_from_safe(list, skb, n) {
4643 if (skb == tail)
4644 break;
4645 /* No new bits? It is possible on ofo queue. */
4646 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4647 skb = tcp_collapse_one(sk, skb, list);
4648 if (!skb)
4649 break;
4650 goto restart;
4653 /* The first skb to collapse is:
4654 * - not SYN/FIN and
4655 * - bloated or contains data before "start" or
4656 * overlaps to the next one.
4658 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4659 (tcp_win_from_space(skb->truesize) > skb->len ||
4660 before(TCP_SKB_CB(skb)->seq, start))) {
4661 end_of_skbs = false;
4662 break;
4665 if (!skb_queue_is_last(list, skb)) {
4666 struct sk_buff *next = skb_queue_next(list, skb);
4667 if (next != tail &&
4668 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4669 end_of_skbs = false;
4670 break;
4674 /* Decided to skip this, advance start seq. */
4675 start = TCP_SKB_CB(skb)->end_seq;
4677 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4678 return;
4680 while (before(start, end)) {
4681 struct sk_buff *nskb;
4682 unsigned int header = skb_headroom(skb);
4683 int copy = SKB_MAX_ORDER(header, 0);
4685 /* Too big header? This can happen with IPv6. */
4686 if (copy < 0)
4687 return;
4688 if (end - start < copy)
4689 copy = end - start;
4690 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4691 if (!nskb)
4692 return;
4694 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4695 skb_set_network_header(nskb, (skb_network_header(skb) -
4696 skb->head));
4697 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4698 skb->head));
4699 skb_reserve(nskb, header);
4700 memcpy(nskb->head, skb->head, header);
4701 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4702 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4703 __skb_queue_before(list, skb, nskb);
4704 skb_set_owner_r(nskb, sk);
4706 /* Copy data, releasing collapsed skbs. */
4707 while (copy > 0) {
4708 int offset = start - TCP_SKB_CB(skb)->seq;
4709 int size = TCP_SKB_CB(skb)->end_seq - start;
4711 BUG_ON(offset < 0);
4712 if (size > 0) {
4713 size = min(copy, size);
4714 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4715 BUG();
4716 TCP_SKB_CB(nskb)->end_seq += size;
4717 copy -= size;
4718 start += size;
4720 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4721 skb = tcp_collapse_one(sk, skb, list);
4722 if (!skb ||
4723 skb == tail ||
4724 tcp_hdr(skb)->syn ||
4725 tcp_hdr(skb)->fin)
4726 return;
4732 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4733 * and tcp_collapse() them until all the queue is collapsed.
4735 static void tcp_collapse_ofo_queue(struct sock *sk)
4737 struct tcp_sock *tp = tcp_sk(sk);
4738 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4739 struct sk_buff *head;
4740 u32 start, end;
4742 if (skb == NULL)
4743 return;
4745 start = TCP_SKB_CB(skb)->seq;
4746 end = TCP_SKB_CB(skb)->end_seq;
4747 head = skb;
4749 for (;;) {
4750 struct sk_buff *next = NULL;
4752 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4753 next = skb_queue_next(&tp->out_of_order_queue, skb);
4754 skb = next;
4756 /* Segment is terminated when we see gap or when
4757 * we are at the end of all the queue. */
4758 if (!skb ||
4759 after(TCP_SKB_CB(skb)->seq, end) ||
4760 before(TCP_SKB_CB(skb)->end_seq, start)) {
4761 tcp_collapse(sk, &tp->out_of_order_queue,
4762 head, skb, start, end);
4763 head = skb;
4764 if (!skb)
4765 break;
4766 /* Start new segment */
4767 start = TCP_SKB_CB(skb)->seq;
4768 end = TCP_SKB_CB(skb)->end_seq;
4769 } else {
4770 if (before(TCP_SKB_CB(skb)->seq, start))
4771 start = TCP_SKB_CB(skb)->seq;
4772 if (after(TCP_SKB_CB(skb)->end_seq, end))
4773 end = TCP_SKB_CB(skb)->end_seq;
4779 * Purge the out-of-order queue.
4780 * Return true if queue was pruned.
4782 static int tcp_prune_ofo_queue(struct sock *sk)
4784 struct tcp_sock *tp = tcp_sk(sk);
4785 int res = 0;
4787 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4788 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4789 __skb_queue_purge(&tp->out_of_order_queue);
4791 /* Reset SACK state. A conforming SACK implementation will
4792 * do the same at a timeout based retransmit. When a connection
4793 * is in a sad state like this, we care only about integrity
4794 * of the connection not performance.
4796 if (tp->rx_opt.sack_ok)
4797 tcp_sack_reset(&tp->rx_opt);
4798 sk_mem_reclaim(sk);
4799 res = 1;
4801 return res;
4804 /* Reduce allocated memory if we can, trying to get
4805 * the socket within its memory limits again.
4807 * Return less than zero if we should start dropping frames
4808 * until the socket owning process reads some of the data
4809 * to stabilize the situation.
4811 static int tcp_prune_queue(struct sock *sk)
4813 struct tcp_sock *tp = tcp_sk(sk);
4815 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4817 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4819 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4820 tcp_clamp_window(sk);
4821 else if (tcp_memory_pressure)
4822 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4824 tcp_collapse_ofo_queue(sk);
4825 if (!skb_queue_empty(&sk->sk_receive_queue))
4826 tcp_collapse(sk, &sk->sk_receive_queue,
4827 skb_peek(&sk->sk_receive_queue),
4828 NULL,
4829 tp->copied_seq, tp->rcv_nxt);
4830 sk_mem_reclaim(sk);
4832 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4833 return 0;
4835 /* Collapsing did not help, destructive actions follow.
4836 * This must not ever occur. */
4838 tcp_prune_ofo_queue(sk);
4840 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4841 return 0;
4843 /* If we are really being abused, tell the caller to silently
4844 * drop receive data on the floor. It will get retransmitted
4845 * and hopefully then we'll have sufficient space.
4847 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4849 /* Massive buffer overcommit. */
4850 tp->pred_flags = 0;
4851 return -1;
4854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4855 * As additional protections, we do not touch cwnd in retransmission phases,
4856 * and if application hit its sndbuf limit recently.
4858 void tcp_cwnd_application_limited(struct sock *sk)
4860 struct tcp_sock *tp = tcp_sk(sk);
4862 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4863 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4864 /* Limited by application or receiver window. */
4865 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4866 u32 win_used = max(tp->snd_cwnd_used, init_win);
4867 if (win_used < tp->snd_cwnd) {
4868 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4869 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4871 tp->snd_cwnd_used = 0;
4873 tp->snd_cwnd_stamp = tcp_time_stamp;
4876 static int tcp_should_expand_sndbuf(struct sock *sk)
4878 struct tcp_sock *tp = tcp_sk(sk);
4880 /* If the user specified a specific send buffer setting, do
4881 * not modify it.
4883 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4884 return 0;
4886 /* If we are under global TCP memory pressure, do not expand. */
4887 if (tcp_memory_pressure)
4888 return 0;
4890 /* If we are under soft global TCP memory pressure, do not expand. */
4891 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4892 return 0;
4894 /* If we filled the congestion window, do not expand. */
4895 if (tp->packets_out >= tp->snd_cwnd)
4896 return 0;
4898 return 1;
4901 /* When incoming ACK allowed to free some skb from write_queue,
4902 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4903 * on the exit from tcp input handler.
4905 * PROBLEM: sndbuf expansion does not work well with largesend.
4907 static void tcp_new_space(struct sock *sk)
4909 struct tcp_sock *tp = tcp_sk(sk);
4911 if (tcp_should_expand_sndbuf(sk)) {
4912 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4913 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4914 int demanded = max_t(unsigned int, tp->snd_cwnd,
4915 tp->reordering + 1);
4916 sndmem *= 2 * demanded;
4917 if (sndmem > sk->sk_sndbuf)
4918 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4919 tp->snd_cwnd_stamp = tcp_time_stamp;
4922 sk->sk_write_space(sk);
4925 static void tcp_check_space(struct sock *sk)
4927 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4928 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4929 if (sk->sk_socket &&
4930 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4931 tcp_new_space(sk);
4935 static inline void tcp_data_snd_check(struct sock *sk)
4937 tcp_push_pending_frames(sk);
4938 tcp_check_space(sk);
4942 * Check if sending an ack is needed.
4944 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4946 struct tcp_sock *tp = tcp_sk(sk);
4948 /* More than one full frame received... */
4949 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4950 /* ... and right edge of window advances far enough.
4951 * (tcp_recvmsg() will send ACK otherwise). Or...
4953 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4954 /* We ACK each frame or... */
4955 tcp_in_quickack_mode(sk) ||
4956 /* We have out of order data. */
4957 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4958 /* Then ack it now */
4959 tcp_send_ack(sk);
4960 } else {
4961 /* Else, send delayed ack. */
4962 tcp_send_delayed_ack(sk);
4966 static inline void tcp_ack_snd_check(struct sock *sk)
4968 if (!inet_csk_ack_scheduled(sk)) {
4969 /* We sent a data segment already. */
4970 return;
4972 __tcp_ack_snd_check(sk, 1);
4976 * This routine is only called when we have urgent data
4977 * signaled. Its the 'slow' part of tcp_urg. It could be
4978 * moved inline now as tcp_urg is only called from one
4979 * place. We handle URGent data wrong. We have to - as
4980 * BSD still doesn't use the correction from RFC961.
4981 * For 1003.1g we should support a new option TCP_STDURG to permit
4982 * either form (or just set the sysctl tcp_stdurg).
4985 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4987 struct tcp_sock *tp = tcp_sk(sk);
4988 u32 ptr = ntohs(th->urg_ptr);
4990 if (ptr && !sysctl_tcp_stdurg)
4991 ptr--;
4992 ptr += ntohl(th->seq);
4994 /* Ignore urgent data that we've already seen and read. */
4995 if (after(tp->copied_seq, ptr))
4996 return;
4998 /* Do not replay urg ptr.
5000 * NOTE: interesting situation not covered by specs.
5001 * Misbehaving sender may send urg ptr, pointing to segment,
5002 * which we already have in ofo queue. We are not able to fetch
5003 * such data and will stay in TCP_URG_NOTYET until will be eaten
5004 * by recvmsg(). Seems, we are not obliged to handle such wicked
5005 * situations. But it is worth to think about possibility of some
5006 * DoSes using some hypothetical application level deadlock.
5008 if (before(ptr, tp->rcv_nxt))
5009 return;
5011 /* Do we already have a newer (or duplicate) urgent pointer? */
5012 if (tp->urg_data && !after(ptr, tp->urg_seq))
5013 return;
5015 /* Tell the world about our new urgent pointer. */
5016 sk_send_sigurg(sk);
5018 /* We may be adding urgent data when the last byte read was
5019 * urgent. To do this requires some care. We cannot just ignore
5020 * tp->copied_seq since we would read the last urgent byte again
5021 * as data, nor can we alter copied_seq until this data arrives
5022 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5024 * NOTE. Double Dutch. Rendering to plain English: author of comment
5025 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5026 * and expect that both A and B disappear from stream. This is _wrong_.
5027 * Though this happens in BSD with high probability, this is occasional.
5028 * Any application relying on this is buggy. Note also, that fix "works"
5029 * only in this artificial test. Insert some normal data between A and B and we will
5030 * decline of BSD again. Verdict: it is better to remove to trap
5031 * buggy users.
5033 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5034 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5035 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5036 tp->copied_seq++;
5037 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5038 __skb_unlink(skb, &sk->sk_receive_queue);
5039 __kfree_skb(skb);
5043 tp->urg_data = TCP_URG_NOTYET;
5044 tp->urg_seq = ptr;
5046 /* Disable header prediction. */
5047 tp->pred_flags = 0;
5050 /* This is the 'fast' part of urgent handling. */
5051 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5053 struct tcp_sock *tp = tcp_sk(sk);
5055 /* Check if we get a new urgent pointer - normally not. */
5056 if (th->urg)
5057 tcp_check_urg(sk, th);
5059 /* Do we wait for any urgent data? - normally not... */
5060 if (tp->urg_data == TCP_URG_NOTYET) {
5061 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5062 th->syn;
5064 /* Is the urgent pointer pointing into this packet? */
5065 if (ptr < skb->len) {
5066 u8 tmp;
5067 if (skb_copy_bits(skb, ptr, &tmp, 1))
5068 BUG();
5069 tp->urg_data = TCP_URG_VALID | tmp;
5070 if (!sock_flag(sk, SOCK_DEAD))
5071 sk->sk_data_ready(sk, 0);
5076 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5078 struct tcp_sock *tp = tcp_sk(sk);
5079 int chunk = skb->len - hlen;
5080 int err;
5082 local_bh_enable();
5083 if (skb_csum_unnecessary(skb))
5084 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5085 else
5086 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5087 tp->ucopy.iov);
5089 if (!err) {
5090 tp->ucopy.len -= chunk;
5091 tp->copied_seq += chunk;
5092 tcp_rcv_space_adjust(sk);
5095 local_bh_disable();
5096 return err;
5099 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5100 struct sk_buff *skb)
5102 __sum16 result;
5104 if (sock_owned_by_user(sk)) {
5105 local_bh_enable();
5106 result = __tcp_checksum_complete(skb);
5107 local_bh_disable();
5108 } else {
5109 result = __tcp_checksum_complete(skb);
5111 return result;
5114 static inline int tcp_checksum_complete_user(struct sock *sk,
5115 struct sk_buff *skb)
5117 return !skb_csum_unnecessary(skb) &&
5118 __tcp_checksum_complete_user(sk, skb);
5121 #ifdef CONFIG_NET_DMA
5122 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5123 int hlen)
5125 struct tcp_sock *tp = tcp_sk(sk);
5126 int chunk = skb->len - hlen;
5127 int dma_cookie;
5128 int copied_early = 0;
5130 if (tp->ucopy.wakeup)
5131 return 0;
5133 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5134 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5136 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5138 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5139 skb, hlen,
5140 tp->ucopy.iov, chunk,
5141 tp->ucopy.pinned_list);
5143 if (dma_cookie < 0)
5144 goto out;
5146 tp->ucopy.dma_cookie = dma_cookie;
5147 copied_early = 1;
5149 tp->ucopy.len -= chunk;
5150 tp->copied_seq += chunk;
5151 tcp_rcv_space_adjust(sk);
5153 if ((tp->ucopy.len == 0) ||
5154 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5155 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5156 tp->ucopy.wakeup = 1;
5157 sk->sk_data_ready(sk, 0);
5159 } else if (chunk > 0) {
5160 tp->ucopy.wakeup = 1;
5161 sk->sk_data_ready(sk, 0);
5163 out:
5164 return copied_early;
5166 #endif /* CONFIG_NET_DMA */
5168 /* Does PAWS and seqno based validation of an incoming segment, flags will
5169 * play significant role here.
5171 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5172 struct tcphdr *th, int syn_inerr)
5174 u8 *hash_location;
5175 struct tcp_sock *tp = tcp_sk(sk);
5177 /* RFC1323: H1. Apply PAWS check first. */
5178 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5179 tp->rx_opt.saw_tstamp &&
5180 tcp_paws_discard(sk, skb)) {
5181 if (!th->rst) {
5182 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5183 tcp_send_dupack(sk, skb);
5184 goto discard;
5186 /* Reset is accepted even if it did not pass PAWS. */
5189 /* Step 1: check sequence number */
5190 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5191 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5192 * (RST) segments are validated by checking their SEQ-fields."
5193 * And page 69: "If an incoming segment is not acceptable,
5194 * an acknowledgment should be sent in reply (unless the RST
5195 * bit is set, if so drop the segment and return)".
5197 if (!th->rst)
5198 tcp_send_dupack(sk, skb);
5199 goto discard;
5202 /* Step 2: check RST bit */
5203 if (th->rst) {
5204 tcp_reset(sk);
5205 goto discard;
5208 /* ts_recent update must be made after we are sure that the packet
5209 * is in window.
5211 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5213 /* step 3: check security and precedence [ignored] */
5215 /* step 4: Check for a SYN in window. */
5216 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5217 if (syn_inerr)
5218 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5219 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5220 tcp_reset(sk);
5221 return -1;
5224 return 1;
5226 discard:
5227 __kfree_skb(skb);
5228 return 0;
5232 * TCP receive function for the ESTABLISHED state.
5234 * It is split into a fast path and a slow path. The fast path is
5235 * disabled when:
5236 * - A zero window was announced from us - zero window probing
5237 * is only handled properly in the slow path.
5238 * - Out of order segments arrived.
5239 * - Urgent data is expected.
5240 * - There is no buffer space left
5241 * - Unexpected TCP flags/window values/header lengths are received
5242 * (detected by checking the TCP header against pred_flags)
5243 * - Data is sent in both directions. Fast path only supports pure senders
5244 * or pure receivers (this means either the sequence number or the ack
5245 * value must stay constant)
5246 * - Unexpected TCP option.
5248 * When these conditions are not satisfied it drops into a standard
5249 * receive procedure patterned after RFC793 to handle all cases.
5250 * The first three cases are guaranteed by proper pred_flags setting,
5251 * the rest is checked inline. Fast processing is turned on in
5252 * tcp_data_queue when everything is OK.
5254 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5255 struct tcphdr *th, unsigned len)
5257 struct tcp_sock *tp = tcp_sk(sk);
5258 int res;
5261 * Header prediction.
5262 * The code loosely follows the one in the famous
5263 * "30 instruction TCP receive" Van Jacobson mail.
5265 * Van's trick is to deposit buffers into socket queue
5266 * on a device interrupt, to call tcp_recv function
5267 * on the receive process context and checksum and copy
5268 * the buffer to user space. smart...
5270 * Our current scheme is not silly either but we take the
5271 * extra cost of the net_bh soft interrupt processing...
5272 * We do checksum and copy also but from device to kernel.
5275 tp->rx_opt.saw_tstamp = 0;
5277 /* pred_flags is 0xS?10 << 16 + snd_wnd
5278 * if header_prediction is to be made
5279 * 'S' will always be tp->tcp_header_len >> 2
5280 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5281 * turn it off (when there are holes in the receive
5282 * space for instance)
5283 * PSH flag is ignored.
5286 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5287 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5288 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5289 int tcp_header_len = tp->tcp_header_len;
5291 /* Timestamp header prediction: tcp_header_len
5292 * is automatically equal to th->doff*4 due to pred_flags
5293 * match.
5296 /* Check timestamp */
5297 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5298 /* No? Slow path! */
5299 if (!tcp_parse_aligned_timestamp(tp, th))
5300 goto slow_path;
5302 /* If PAWS failed, check it more carefully in slow path */
5303 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5304 goto slow_path;
5306 /* DO NOT update ts_recent here, if checksum fails
5307 * and timestamp was corrupted part, it will result
5308 * in a hung connection since we will drop all
5309 * future packets due to the PAWS test.
5313 if (len <= tcp_header_len) {
5314 /* Bulk data transfer: sender */
5315 if (len == tcp_header_len) {
5316 /* Predicted packet is in window by definition.
5317 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5318 * Hence, check seq<=rcv_wup reduces to:
5320 if (tcp_header_len ==
5321 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5322 tp->rcv_nxt == tp->rcv_wup)
5323 tcp_store_ts_recent(tp);
5325 /* We know that such packets are checksummed
5326 * on entry.
5328 tcp_ack(sk, skb, 0);
5329 __kfree_skb(skb);
5330 tcp_data_snd_check(sk);
5331 return 0;
5332 } else { /* Header too small */
5333 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5334 goto discard;
5336 } else {
5337 int eaten = 0;
5338 int copied_early = 0;
5340 if (tp->copied_seq == tp->rcv_nxt &&
5341 len - tcp_header_len <= tp->ucopy.len) {
5342 #ifdef CONFIG_NET_DMA
5343 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5344 copied_early = 1;
5345 eaten = 1;
5347 #endif
5348 if (tp->ucopy.task == current &&
5349 sock_owned_by_user(sk) && !copied_early) {
5350 __set_current_state(TASK_RUNNING);
5352 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5353 eaten = 1;
5355 if (eaten) {
5356 /* Predicted packet is in window by definition.
5357 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5358 * Hence, check seq<=rcv_wup reduces to:
5360 if (tcp_header_len ==
5361 (sizeof(struct tcphdr) +
5362 TCPOLEN_TSTAMP_ALIGNED) &&
5363 tp->rcv_nxt == tp->rcv_wup)
5364 tcp_store_ts_recent(tp);
5366 tcp_rcv_rtt_measure_ts(sk, skb);
5368 __skb_pull(skb, tcp_header_len);
5369 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5370 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5372 if (copied_early)
5373 tcp_cleanup_rbuf(sk, skb->len);
5375 if (!eaten) {
5376 if (tcp_checksum_complete_user(sk, skb))
5377 goto csum_error;
5379 /* Predicted packet is in window by definition.
5380 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5381 * Hence, check seq<=rcv_wup reduces to:
5383 if (tcp_header_len ==
5384 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5385 tp->rcv_nxt == tp->rcv_wup)
5386 tcp_store_ts_recent(tp);
5388 tcp_rcv_rtt_measure_ts(sk, skb);
5390 if ((int)skb->truesize > sk->sk_forward_alloc)
5391 goto step5;
5393 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5395 /* Bulk data transfer: receiver */
5396 __skb_pull(skb, tcp_header_len);
5397 __skb_queue_tail(&sk->sk_receive_queue, skb);
5398 skb_set_owner_r(skb, sk);
5399 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5402 tcp_event_data_recv(sk, skb);
5404 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5405 /* Well, only one small jumplet in fast path... */
5406 tcp_ack(sk, skb, FLAG_DATA);
5407 tcp_data_snd_check(sk);
5408 if (!inet_csk_ack_scheduled(sk))
5409 goto no_ack;
5412 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5413 __tcp_ack_snd_check(sk, 0);
5414 no_ack:
5415 #ifdef CONFIG_NET_DMA
5416 if (copied_early)
5417 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5418 else
5419 #endif
5420 if (eaten)
5421 __kfree_skb(skb);
5422 else
5423 sk->sk_data_ready(sk, 0);
5424 return 0;
5428 slow_path:
5429 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5430 goto csum_error;
5433 * Standard slow path.
5436 res = tcp_validate_incoming(sk, skb, th, 1);
5437 if (res <= 0)
5438 return -res;
5440 step5:
5441 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5442 goto discard;
5444 tcp_rcv_rtt_measure_ts(sk, skb);
5446 /* Process urgent data. */
5447 tcp_urg(sk, skb, th);
5449 /* step 7: process the segment text */
5450 tcp_data_queue(sk, skb);
5452 tcp_data_snd_check(sk);
5453 tcp_ack_snd_check(sk);
5454 return 0;
5456 csum_error:
5457 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5459 discard:
5460 __kfree_skb(skb);
5461 return 0;
5463 EXPORT_SYMBOL(tcp_rcv_established);
5465 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5466 struct tcphdr *th, unsigned len)
5468 u8 *hash_location;
5469 struct inet_connection_sock *icsk = inet_csk(sk);
5470 struct tcp_sock *tp = tcp_sk(sk);
5471 struct tcp_cookie_values *cvp = tp->cookie_values;
5472 int saved_clamp = tp->rx_opt.mss_clamp;
5474 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5476 if (th->ack) {
5477 /* rfc793:
5478 * "If the state is SYN-SENT then
5479 * first check the ACK bit
5480 * If the ACK bit is set
5481 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5482 * a reset (unless the RST bit is set, if so drop
5483 * the segment and return)"
5485 * We do not send data with SYN, so that RFC-correct
5486 * test reduces to:
5488 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5489 goto reset_and_undo;
5491 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5492 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5493 tcp_time_stamp)) {
5494 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5495 goto reset_and_undo;
5498 /* Now ACK is acceptable.
5500 * "If the RST bit is set
5501 * If the ACK was acceptable then signal the user "error:
5502 * connection reset", drop the segment, enter CLOSED state,
5503 * delete TCB, and return."
5506 if (th->rst) {
5507 tcp_reset(sk);
5508 goto discard;
5511 /* rfc793:
5512 * "fifth, if neither of the SYN or RST bits is set then
5513 * drop the segment and return."
5515 * See note below!
5516 * --ANK(990513)
5518 if (!th->syn)
5519 goto discard_and_undo;
5521 /* rfc793:
5522 * "If the SYN bit is on ...
5523 * are acceptable then ...
5524 * (our SYN has been ACKed), change the connection
5525 * state to ESTABLISHED..."
5528 TCP_ECN_rcv_synack(tp, th);
5530 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5531 tcp_ack(sk, skb, FLAG_SLOWPATH);
5533 /* Ok.. it's good. Set up sequence numbers and
5534 * move to established.
5536 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5537 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5539 /* RFC1323: The window in SYN & SYN/ACK segments is
5540 * never scaled.
5542 tp->snd_wnd = ntohs(th->window);
5543 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5545 if (!tp->rx_opt.wscale_ok) {
5546 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5547 tp->window_clamp = min(tp->window_clamp, 65535U);
5550 if (tp->rx_opt.saw_tstamp) {
5551 tp->rx_opt.tstamp_ok = 1;
5552 tp->tcp_header_len =
5553 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5554 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5555 tcp_store_ts_recent(tp);
5556 } else {
5557 tp->tcp_header_len = sizeof(struct tcphdr);
5560 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5561 tcp_enable_fack(tp);
5563 tcp_mtup_init(sk);
5564 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5565 tcp_initialize_rcv_mss(sk);
5567 /* Remember, tcp_poll() does not lock socket!
5568 * Change state from SYN-SENT only after copied_seq
5569 * is initialized. */
5570 tp->copied_seq = tp->rcv_nxt;
5572 if (cvp != NULL &&
5573 cvp->cookie_pair_size > 0 &&
5574 tp->rx_opt.cookie_plus > 0) {
5575 int cookie_size = tp->rx_opt.cookie_plus
5576 - TCPOLEN_COOKIE_BASE;
5577 int cookie_pair_size = cookie_size
5578 + cvp->cookie_desired;
5580 /* A cookie extension option was sent and returned.
5581 * Note that each incoming SYNACK replaces the
5582 * Responder cookie. The initial exchange is most
5583 * fragile, as protection against spoofing relies
5584 * entirely upon the sequence and timestamp (above).
5585 * This replacement strategy allows the correct pair to
5586 * pass through, while any others will be filtered via
5587 * Responder verification later.
5589 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5590 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5591 hash_location, cookie_size);
5592 cvp->cookie_pair_size = cookie_pair_size;
5596 smp_mb();
5597 tcp_set_state(sk, TCP_ESTABLISHED);
5599 security_inet_conn_established(sk, skb);
5601 /* Make sure socket is routed, for correct metrics. */
5602 icsk->icsk_af_ops->rebuild_header(sk);
5604 tcp_init_metrics(sk);
5606 tcp_init_congestion_control(sk);
5608 /* Prevent spurious tcp_cwnd_restart() on first data
5609 * packet.
5611 tp->lsndtime = tcp_time_stamp;
5613 tcp_init_buffer_space(sk);
5615 if (sock_flag(sk, SOCK_KEEPOPEN))
5616 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5618 if (!tp->rx_opt.snd_wscale)
5619 __tcp_fast_path_on(tp, tp->snd_wnd);
5620 else
5621 tp->pred_flags = 0;
5623 if (!sock_flag(sk, SOCK_DEAD)) {
5624 sk->sk_state_change(sk);
5625 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5628 if (sk->sk_write_pending ||
5629 icsk->icsk_accept_queue.rskq_defer_accept ||
5630 icsk->icsk_ack.pingpong) {
5631 /* Save one ACK. Data will be ready after
5632 * several ticks, if write_pending is set.
5634 * It may be deleted, but with this feature tcpdumps
5635 * look so _wonderfully_ clever, that I was not able
5636 * to stand against the temptation 8) --ANK
5638 inet_csk_schedule_ack(sk);
5639 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5640 icsk->icsk_ack.ato = TCP_ATO_MIN;
5641 tcp_incr_quickack(sk);
5642 tcp_enter_quickack_mode(sk);
5643 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5644 TCP_DELACK_MAX, TCP_RTO_MAX);
5646 discard:
5647 __kfree_skb(skb);
5648 return 0;
5649 } else {
5650 tcp_send_ack(sk);
5652 return -1;
5655 /* No ACK in the segment */
5657 if (th->rst) {
5658 /* rfc793:
5659 * "If the RST bit is set
5661 * Otherwise (no ACK) drop the segment and return."
5664 goto discard_and_undo;
5667 /* PAWS check. */
5668 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5669 tcp_paws_reject(&tp->rx_opt, 0))
5670 goto discard_and_undo;
5672 if (th->syn) {
5673 /* We see SYN without ACK. It is attempt of
5674 * simultaneous connect with crossed SYNs.
5675 * Particularly, it can be connect to self.
5677 tcp_set_state(sk, TCP_SYN_RECV);
5679 if (tp->rx_opt.saw_tstamp) {
5680 tp->rx_opt.tstamp_ok = 1;
5681 tcp_store_ts_recent(tp);
5682 tp->tcp_header_len =
5683 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5684 } else {
5685 tp->tcp_header_len = sizeof(struct tcphdr);
5688 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5689 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5691 /* RFC1323: The window in SYN & SYN/ACK segments is
5692 * never scaled.
5694 tp->snd_wnd = ntohs(th->window);
5695 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5696 tp->max_window = tp->snd_wnd;
5698 TCP_ECN_rcv_syn(tp, th);
5700 tcp_mtup_init(sk);
5701 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5702 tcp_initialize_rcv_mss(sk);
5704 tcp_send_synack(sk);
5705 #if 0
5706 /* Note, we could accept data and URG from this segment.
5707 * There are no obstacles to make this.
5709 * However, if we ignore data in ACKless segments sometimes,
5710 * we have no reasons to accept it sometimes.
5711 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5712 * is not flawless. So, discard packet for sanity.
5713 * Uncomment this return to process the data.
5715 return -1;
5716 #else
5717 goto discard;
5718 #endif
5720 /* "fifth, if neither of the SYN or RST bits is set then
5721 * drop the segment and return."
5724 discard_and_undo:
5725 tcp_clear_options(&tp->rx_opt);
5726 tp->rx_opt.mss_clamp = saved_clamp;
5727 goto discard;
5729 reset_and_undo:
5730 tcp_clear_options(&tp->rx_opt);
5731 tp->rx_opt.mss_clamp = saved_clamp;
5732 return 1;
5736 * This function implements the receiving procedure of RFC 793 for
5737 * all states except ESTABLISHED and TIME_WAIT.
5738 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5739 * address independent.
5742 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5743 struct tcphdr *th, unsigned len)
5745 struct tcp_sock *tp = tcp_sk(sk);
5746 struct inet_connection_sock *icsk = inet_csk(sk);
5747 int queued = 0;
5748 int res;
5750 tp->rx_opt.saw_tstamp = 0;
5752 switch (sk->sk_state) {
5753 case TCP_CLOSE:
5754 goto discard;
5756 case TCP_LISTEN:
5757 if (th->ack)
5758 return 1;
5760 if (th->rst)
5761 goto discard;
5763 if (th->syn) {
5764 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5765 return 1;
5767 /* Now we have several options: In theory there is
5768 * nothing else in the frame. KA9Q has an option to
5769 * send data with the syn, BSD accepts data with the
5770 * syn up to the [to be] advertised window and
5771 * Solaris 2.1 gives you a protocol error. For now
5772 * we just ignore it, that fits the spec precisely
5773 * and avoids incompatibilities. It would be nice in
5774 * future to drop through and process the data.
5776 * Now that TTCP is starting to be used we ought to
5777 * queue this data.
5778 * But, this leaves one open to an easy denial of
5779 * service attack, and SYN cookies can't defend
5780 * against this problem. So, we drop the data
5781 * in the interest of security over speed unless
5782 * it's still in use.
5784 kfree_skb(skb);
5785 return 0;
5787 goto discard;
5789 case TCP_SYN_SENT:
5790 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5791 if (queued >= 0)
5792 return queued;
5794 /* Do step6 onward by hand. */
5795 tcp_urg(sk, skb, th);
5796 __kfree_skb(skb);
5797 tcp_data_snd_check(sk);
5798 return 0;
5801 res = tcp_validate_incoming(sk, skb, th, 0);
5802 if (res <= 0)
5803 return -res;
5805 /* step 5: check the ACK field */
5806 if (th->ack) {
5807 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5809 switch (sk->sk_state) {
5810 case TCP_SYN_RECV:
5811 if (acceptable) {
5812 tp->copied_seq = tp->rcv_nxt;
5813 smp_mb();
5814 tcp_set_state(sk, TCP_ESTABLISHED);
5815 sk->sk_state_change(sk);
5817 /* Note, that this wakeup is only for marginal
5818 * crossed SYN case. Passively open sockets
5819 * are not waked up, because sk->sk_sleep ==
5820 * NULL and sk->sk_socket == NULL.
5822 if (sk->sk_socket)
5823 sk_wake_async(sk,
5824 SOCK_WAKE_IO, POLL_OUT);
5826 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5827 tp->snd_wnd = ntohs(th->window) <<
5828 tp->rx_opt.snd_wscale;
5829 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5831 /* tcp_ack considers this ACK as duplicate
5832 * and does not calculate rtt.
5833 * Force it here.
5835 tcp_ack_update_rtt(sk, 0, 0);
5837 if (tp->rx_opt.tstamp_ok)
5838 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5840 /* Make sure socket is routed, for
5841 * correct metrics.
5843 icsk->icsk_af_ops->rebuild_header(sk);
5845 tcp_init_metrics(sk);
5847 tcp_init_congestion_control(sk);
5849 /* Prevent spurious tcp_cwnd_restart() on
5850 * first data packet.
5852 tp->lsndtime = tcp_time_stamp;
5854 tcp_mtup_init(sk);
5855 tcp_initialize_rcv_mss(sk);
5856 tcp_init_buffer_space(sk);
5857 tcp_fast_path_on(tp);
5858 } else {
5859 return 1;
5861 break;
5863 case TCP_FIN_WAIT1:
5864 if (tp->snd_una == tp->write_seq) {
5865 tcp_set_state(sk, TCP_FIN_WAIT2);
5866 sk->sk_shutdown |= SEND_SHUTDOWN;
5867 dst_confirm(__sk_dst_get(sk));
5869 if (!sock_flag(sk, SOCK_DEAD))
5870 /* Wake up lingering close() */
5871 sk->sk_state_change(sk);
5872 else {
5873 int tmo;
5875 if (tp->linger2 < 0 ||
5876 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5877 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5878 tcp_done(sk);
5879 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5880 return 1;
5883 tmo = tcp_fin_time(sk);
5884 if (tmo > TCP_TIMEWAIT_LEN) {
5885 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5886 } else if (th->fin || sock_owned_by_user(sk)) {
5887 /* Bad case. We could lose such FIN otherwise.
5888 * It is not a big problem, but it looks confusing
5889 * and not so rare event. We still can lose it now,
5890 * if it spins in bh_lock_sock(), but it is really
5891 * marginal case.
5893 inet_csk_reset_keepalive_timer(sk, tmo);
5894 } else {
5895 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5896 goto discard;
5900 break;
5902 case TCP_CLOSING:
5903 if (tp->snd_una == tp->write_seq) {
5904 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5905 goto discard;
5907 break;
5909 case TCP_LAST_ACK:
5910 if (tp->snd_una == tp->write_seq) {
5911 tcp_update_metrics(sk);
5912 tcp_done(sk);
5913 goto discard;
5915 break;
5917 } else
5918 goto discard;
5920 /* step 6: check the URG bit */
5921 tcp_urg(sk, skb, th);
5923 /* step 7: process the segment text */
5924 switch (sk->sk_state) {
5925 case TCP_CLOSE_WAIT:
5926 case TCP_CLOSING:
5927 case TCP_LAST_ACK:
5928 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5929 break;
5930 case TCP_FIN_WAIT1:
5931 case TCP_FIN_WAIT2:
5932 /* RFC 793 says to queue data in these states,
5933 * RFC 1122 says we MUST send a reset.
5934 * BSD 4.4 also does reset.
5936 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5937 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5938 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5939 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5940 tcp_reset(sk);
5941 return 1;
5944 /* Fall through */
5945 case TCP_ESTABLISHED:
5946 tcp_data_queue(sk, skb);
5947 queued = 1;
5948 break;
5951 /* tcp_data could move socket to TIME-WAIT */
5952 if (sk->sk_state != TCP_CLOSE) {
5953 tcp_data_snd_check(sk);
5954 tcp_ack_snd_check(sk);
5957 if (!queued) {
5958 discard:
5959 __kfree_skb(skb);
5961 return 0;
5963 EXPORT_SYMBOL(tcp_rcv_state_process);