ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / net / ipv4 / udp.c
blob198f75b7bdd3d0d6b2c43f1e4f71183667948d24
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include "udp_impl.h"
110 struct udp_table udp_table __read_mostly;
111 EXPORT_SYMBOL(udp_table);
113 long sysctl_udp_mem[3] __read_mostly;
114 EXPORT_SYMBOL(sysctl_udp_mem);
116 int sysctl_udp_rmem_min __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_rmem_min);
119 int sysctl_udp_wmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 const struct udp_hslot *hslot,
130 unsigned long *bitmap,
131 struct sock *sk,
132 int (*saddr_comp)(const struct sock *sk1,
133 const struct sock *sk2),
134 unsigned int log)
136 struct sock *sk2;
137 struct hlist_nulls_node *node;
139 sk_nulls_for_each(sk2, node, &hslot->head)
140 if (net_eq(sock_net(sk2), net) &&
141 sk2 != sk &&
142 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 (!sk2->sk_reuse || !sk->sk_reuse) &&
144 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 (*saddr_comp)(sk, sk2)) {
147 if (bitmap)
148 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
149 bitmap);
150 else
151 return 1;
153 return 0;
157 * Note: we still hold spinlock of primary hash chain, so no other writer
158 * can insert/delete a socket with local_port == num
160 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
161 struct udp_hslot *hslot2,
162 struct sock *sk,
163 int (*saddr_comp)(const struct sock *sk1,
164 const struct sock *sk2))
166 struct sock *sk2;
167 struct hlist_nulls_node *node;
168 int res = 0;
170 spin_lock(&hslot2->lock);
171 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
172 if (net_eq(sock_net(sk2), net) &&
173 sk2 != sk &&
174 (udp_sk(sk2)->udp_port_hash == num) &&
175 (!sk2->sk_reuse || !sk->sk_reuse) &&
176 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
177 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
178 (*saddr_comp)(sk, sk2)) {
179 res = 1;
180 break;
182 spin_unlock(&hslot2->lock);
183 return res;
187 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
189 * @sk: socket struct in question
190 * @snum: port number to look up
191 * @saddr_comp: AF-dependent comparison of bound local IP addresses
192 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
193 * with NULL address
195 int udp_lib_get_port(struct sock *sk, unsigned short snum,
196 int (*saddr_comp)(const struct sock *sk1,
197 const struct sock *sk2),
198 unsigned int hash2_nulladdr)
200 struct udp_hslot *hslot, *hslot2;
201 struct udp_table *udptable = sk->sk_prot->h.udp_table;
202 int error = 1;
203 struct net *net = sock_net(sk);
205 if (!snum) {
206 int low, high, remaining;
207 unsigned rand;
208 unsigned short first, last;
209 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
211 inet_get_local_port_range(&low, &high);
212 remaining = (high - low) + 1;
214 rand = net_random();
215 first = (((u64)rand * remaining) >> 32) + low;
217 * force rand to be an odd multiple of UDP_HTABLE_SIZE
219 rand = (rand | 1) * (udptable->mask + 1);
220 last = first + udptable->mask + 1;
221 do {
222 hslot = udp_hashslot(udptable, net, first);
223 bitmap_zero(bitmap, PORTS_PER_CHAIN);
224 spin_lock_bh(&hslot->lock);
225 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
226 saddr_comp, udptable->log);
228 snum = first;
230 * Iterate on all possible values of snum for this hash.
231 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 * give us randomization and full range coverage.
234 do {
235 if (low <= snum && snum <= high &&
236 !test_bit(snum >> udptable->log, bitmap) &&
237 !inet_is_reserved_local_port(snum))
238 goto found;
239 snum += rand;
240 } while (snum != first);
241 spin_unlock_bh(&hslot->lock);
242 } while (++first != last);
243 goto fail;
244 } else {
245 hslot = udp_hashslot(udptable, net, snum);
246 spin_lock_bh(&hslot->lock);
247 if (hslot->count > 10) {
248 int exist;
249 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
251 slot2 &= udptable->mask;
252 hash2_nulladdr &= udptable->mask;
254 hslot2 = udp_hashslot2(udptable, slot2);
255 if (hslot->count < hslot2->count)
256 goto scan_primary_hash;
258 exist = udp_lib_lport_inuse2(net, snum, hslot2,
259 sk, saddr_comp);
260 if (!exist && (hash2_nulladdr != slot2)) {
261 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
262 exist = udp_lib_lport_inuse2(net, snum, hslot2,
263 sk, saddr_comp);
265 if (exist)
266 goto fail_unlock;
267 else
268 goto found;
270 scan_primary_hash:
271 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
272 saddr_comp, 0))
273 goto fail_unlock;
275 found:
276 inet_sk(sk)->inet_num = snum;
277 udp_sk(sk)->udp_port_hash = snum;
278 udp_sk(sk)->udp_portaddr_hash ^= snum;
279 if (sk_unhashed(sk)) {
280 sk_nulls_add_node_rcu(sk, &hslot->head);
281 hslot->count++;
282 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
284 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
285 spin_lock(&hslot2->lock);
286 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
287 &hslot2->head);
288 hslot2->count++;
289 spin_unlock(&hslot2->lock);
291 error = 0;
292 fail_unlock:
293 spin_unlock_bh(&hslot->lock);
294 fail:
295 return error;
297 EXPORT_SYMBOL(udp_lib_get_port);
299 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
301 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
303 return (!ipv6_only_sock(sk2) &&
304 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
305 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
308 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
309 unsigned int port)
311 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
314 int udp_v4_get_port(struct sock *sk, unsigned short snum)
316 unsigned int hash2_nulladdr =
317 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
318 unsigned int hash2_partial =
319 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
321 /* precompute partial secondary hash */
322 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
323 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
326 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
327 unsigned short hnum,
328 __be16 sport, __be32 daddr, __be16 dport, int dif)
330 int score = -1;
332 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
333 !ipv6_only_sock(sk)) {
334 struct inet_sock *inet = inet_sk(sk);
336 score = (sk->sk_family == PF_INET ? 1 : 0);
337 if (inet->inet_rcv_saddr) {
338 if (inet->inet_rcv_saddr != daddr)
339 return -1;
340 score += 2;
342 if (inet->inet_daddr) {
343 if (inet->inet_daddr != saddr)
344 return -1;
345 score += 2;
347 if (inet->inet_dport) {
348 if (inet->inet_dport != sport)
349 return -1;
350 score += 2;
352 if (sk->sk_bound_dev_if) {
353 if (sk->sk_bound_dev_if != dif)
354 return -1;
355 score += 2;
358 return score;
362 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
364 #define SCORE2_MAX (1 + 2 + 2 + 2)
365 static inline int compute_score2(struct sock *sk, struct net *net,
366 __be32 saddr, __be16 sport,
367 __be32 daddr, unsigned int hnum, int dif)
369 int score = -1;
371 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
372 struct inet_sock *inet = inet_sk(sk);
374 if (inet->inet_rcv_saddr != daddr)
375 return -1;
376 if (inet->inet_num != hnum)
377 return -1;
379 score = (sk->sk_family == PF_INET ? 1 : 0);
380 if (inet->inet_daddr) {
381 if (inet->inet_daddr != saddr)
382 return -1;
383 score += 2;
385 if (inet->inet_dport) {
386 if (inet->inet_dport != sport)
387 return -1;
388 score += 2;
390 if (sk->sk_bound_dev_if) {
391 if (sk->sk_bound_dev_if != dif)
392 return -1;
393 score += 2;
396 return score;
400 /* called with read_rcu_lock() */
401 static struct sock *udp4_lib_lookup2(struct net *net,
402 __be32 saddr, __be16 sport,
403 __be32 daddr, unsigned int hnum, int dif,
404 struct udp_hslot *hslot2, unsigned int slot2)
406 struct sock *sk, *result;
407 struct hlist_nulls_node *node;
408 int score, badness;
410 begin:
411 result = NULL;
412 badness = -1;
413 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
414 score = compute_score2(sk, net, saddr, sport,
415 daddr, hnum, dif);
416 if (score > badness) {
417 result = sk;
418 badness = score;
419 if (score == SCORE2_MAX)
420 goto exact_match;
424 * if the nulls value we got at the end of this lookup is
425 * not the expected one, we must restart lookup.
426 * We probably met an item that was moved to another chain.
428 if (get_nulls_value(node) != slot2)
429 goto begin;
431 if (result) {
432 exact_match:
433 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
434 result = NULL;
435 else if (unlikely(compute_score2(result, net, saddr, sport,
436 daddr, hnum, dif) < badness)) {
437 sock_put(result);
438 goto begin;
441 return result;
444 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
445 * harder than this. -DaveM
447 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
448 __be16 sport, __be32 daddr, __be16 dport,
449 int dif, struct udp_table *udptable)
451 struct sock *sk, *result;
452 struct hlist_nulls_node *node;
453 unsigned short hnum = ntohs(dport);
454 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
455 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
456 int score, badness;
458 rcu_read_lock();
459 if (hslot->count > 10) {
460 hash2 = udp4_portaddr_hash(net, daddr, hnum);
461 slot2 = hash2 & udptable->mask;
462 hslot2 = &udptable->hash2[slot2];
463 if (hslot->count < hslot2->count)
464 goto begin;
466 result = udp4_lib_lookup2(net, saddr, sport,
467 daddr, hnum, dif,
468 hslot2, slot2);
469 if (!result) {
470 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
471 slot2 = hash2 & udptable->mask;
472 hslot2 = &udptable->hash2[slot2];
473 if (hslot->count < hslot2->count)
474 goto begin;
476 result = udp4_lib_lookup2(net, saddr, sport,
477 htonl(INADDR_ANY), hnum, dif,
478 hslot2, slot2);
480 rcu_read_unlock();
481 return result;
483 begin:
484 result = NULL;
485 badness = -1;
486 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
487 score = compute_score(sk, net, saddr, hnum, sport,
488 daddr, dport, dif);
489 if (score > badness) {
490 result = sk;
491 badness = score;
495 * if the nulls value we got at the end of this lookup is
496 * not the expected one, we must restart lookup.
497 * We probably met an item that was moved to another chain.
499 if (get_nulls_value(node) != slot)
500 goto begin;
502 if (result) {
503 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
504 result = NULL;
505 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
506 daddr, dport, dif) < badness)) {
507 sock_put(result);
508 goto begin;
511 rcu_read_unlock();
512 return result;
515 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
516 __be16 sport, __be16 dport,
517 struct udp_table *udptable)
519 struct sock *sk;
520 const struct iphdr *iph = ip_hdr(skb);
522 if (unlikely(sk = skb_steal_sock(skb)))
523 return sk;
524 else
525 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
526 iph->daddr, dport, inet_iif(skb),
527 udptable);
530 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
531 __be32 daddr, __be16 dport, int dif)
533 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
535 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
537 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
538 __be16 loc_port, __be32 loc_addr,
539 __be16 rmt_port, __be32 rmt_addr,
540 int dif)
542 struct hlist_nulls_node *node;
543 struct sock *s = sk;
544 unsigned short hnum = ntohs(loc_port);
546 sk_nulls_for_each_from(s, node) {
547 struct inet_sock *inet = inet_sk(s);
549 if (!net_eq(sock_net(s), net) ||
550 udp_sk(s)->udp_port_hash != hnum ||
551 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
552 (inet->inet_dport != rmt_port && inet->inet_dport) ||
553 (inet->inet_rcv_saddr &&
554 inet->inet_rcv_saddr != loc_addr) ||
555 ipv6_only_sock(s) ||
556 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
557 continue;
558 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
559 continue;
560 goto found;
562 s = NULL;
563 found:
564 return s;
568 * This routine is called by the ICMP module when it gets some
569 * sort of error condition. If err < 0 then the socket should
570 * be closed and the error returned to the user. If err > 0
571 * it's just the icmp type << 8 | icmp code.
572 * Header points to the ip header of the error packet. We move
573 * on past this. Then (as it used to claim before adjustment)
574 * header points to the first 8 bytes of the udp header. We need
575 * to find the appropriate port.
578 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
580 struct inet_sock *inet;
581 const struct iphdr *iph = (const struct iphdr *)skb->data;
582 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
583 const int type = icmp_hdr(skb)->type;
584 const int code = icmp_hdr(skb)->code;
585 struct sock *sk;
586 int harderr;
587 int err;
588 struct net *net = dev_net(skb->dev);
590 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
591 iph->saddr, uh->source, skb->dev->ifindex, udptable);
592 if (sk == NULL) {
593 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 return; /* No socket for error */
597 err = 0;
598 harderr = 0;
599 inet = inet_sk(sk);
601 switch (type) {
602 default:
603 case ICMP_TIME_EXCEEDED:
604 err = EHOSTUNREACH;
605 break;
606 case ICMP_SOURCE_QUENCH:
607 goto out;
608 case ICMP_PARAMETERPROB:
609 err = EPROTO;
610 harderr = 1;
611 break;
612 case ICMP_DEST_UNREACH:
613 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
614 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
615 err = EMSGSIZE;
616 harderr = 1;
617 break;
619 goto out;
621 err = EHOSTUNREACH;
622 if (code <= NR_ICMP_UNREACH) {
623 harderr = icmp_err_convert[code].fatal;
624 err = icmp_err_convert[code].errno;
626 break;
630 * RFC1122: OK. Passes ICMP errors back to application, as per
631 * 4.1.3.3.
633 if (!inet->recverr) {
634 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
635 goto out;
636 } else
637 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
639 sk->sk_err = err;
640 sk->sk_error_report(sk);
641 out:
642 sock_put(sk);
645 void udp_err(struct sk_buff *skb, u32 info)
647 __udp4_lib_err(skb, info, &udp_table);
651 * Throw away all pending data and cancel the corking. Socket is locked.
653 void udp_flush_pending_frames(struct sock *sk)
655 struct udp_sock *up = udp_sk(sk);
657 if (up->pending) {
658 up->len = 0;
659 up->pending = 0;
660 ip_flush_pending_frames(sk);
663 EXPORT_SYMBOL(udp_flush_pending_frames);
666 * udp4_hwcsum - handle outgoing HW checksumming
667 * @skb: sk_buff containing the filled-in UDP header
668 * (checksum field must be zeroed out)
669 * @src: source IP address
670 * @dst: destination IP address
672 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
674 struct udphdr *uh = udp_hdr(skb);
675 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
676 int offset = skb_transport_offset(skb);
677 int len = skb->len - offset;
678 int hlen = len;
679 __wsum csum = 0;
681 if (!frags) {
683 * Only one fragment on the socket.
685 skb->csum_start = skb_transport_header(skb) - skb->head;
686 skb->csum_offset = offsetof(struct udphdr, check);
687 uh->check = ~csum_tcpudp_magic(src, dst, len,
688 IPPROTO_UDP, 0);
689 } else {
691 * HW-checksum won't work as there are two or more
692 * fragments on the socket so that all csums of sk_buffs
693 * should be together
695 do {
696 csum = csum_add(csum, frags->csum);
697 hlen -= frags->len;
698 } while ((frags = frags->next));
700 csum = skb_checksum(skb, offset, hlen, csum);
701 skb->ip_summed = CHECKSUM_NONE;
703 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
704 if (uh->check == 0)
705 uh->check = CSUM_MANGLED_0;
709 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
711 struct sock *sk = skb->sk;
712 struct inet_sock *inet = inet_sk(sk);
713 struct udphdr *uh;
714 int err = 0;
715 int is_udplite = IS_UDPLITE(sk);
716 int offset = skb_transport_offset(skb);
717 int len = skb->len - offset;
718 __wsum csum = 0;
721 * Create a UDP header
723 uh = udp_hdr(skb);
724 uh->source = inet->inet_sport;
725 uh->dest = fl4->fl4_dport;
726 uh->len = htons(len);
727 uh->check = 0;
729 if (is_udplite) /* UDP-Lite */
730 csum = udplite_csum(skb);
732 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
734 skb->ip_summed = CHECKSUM_NONE;
735 goto send;
737 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
739 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
740 goto send;
742 } else
743 csum = udp_csum(skb);
745 /* add protocol-dependent pseudo-header */
746 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
747 sk->sk_protocol, csum);
748 if (uh->check == 0)
749 uh->check = CSUM_MANGLED_0;
751 send:
752 err = ip_send_skb(skb);
753 if (err) {
754 if (err == -ENOBUFS && !inet->recverr) {
755 UDP_INC_STATS_USER(sock_net(sk),
756 UDP_MIB_SNDBUFERRORS, is_udplite);
757 err = 0;
759 } else
760 UDP_INC_STATS_USER(sock_net(sk),
761 UDP_MIB_OUTDATAGRAMS, is_udplite);
762 return err;
766 * Push out all pending data as one UDP datagram. Socket is locked.
768 static int udp_push_pending_frames(struct sock *sk)
770 struct udp_sock *up = udp_sk(sk);
771 struct inet_sock *inet = inet_sk(sk);
772 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
773 struct sk_buff *skb;
774 int err = 0;
776 skb = ip_finish_skb(sk, fl4);
777 if (!skb)
778 goto out;
780 err = udp_send_skb(skb, fl4);
782 out:
783 up->len = 0;
784 up->pending = 0;
785 return err;
788 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
789 size_t len)
791 struct inet_sock *inet = inet_sk(sk);
792 struct udp_sock *up = udp_sk(sk);
793 struct flowi4 fl4_stack;
794 struct flowi4 *fl4;
795 int ulen = len;
796 struct ipcm_cookie ipc;
797 struct rtable *rt = NULL;
798 int free = 0;
799 int connected = 0;
800 __be32 daddr, faddr, saddr;
801 __be16 dport;
802 u8 tos;
803 int err, is_udplite = IS_UDPLITE(sk);
804 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
805 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
806 struct sk_buff *skb;
807 struct ip_options_data opt_copy;
809 if (len > 0xFFFF)
810 return -EMSGSIZE;
813 * Check the flags.
816 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
817 return -EOPNOTSUPP;
819 ipc.opt = NULL;
820 ipc.tx_flags = 0;
822 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
824 fl4 = &inet->cork.fl.u.ip4;
825 if (up->pending) {
827 * There are pending frames.
828 * The socket lock must be held while it's corked.
830 lock_sock(sk);
831 if (likely(up->pending)) {
832 if (unlikely(up->pending != AF_INET)) {
833 release_sock(sk);
834 return -EINVAL;
836 goto do_append_data;
838 release_sock(sk);
840 ulen += sizeof(struct udphdr);
843 * Get and verify the address.
845 if (msg->msg_name) {
846 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
847 if (msg->msg_namelen < sizeof(*usin))
848 return -EINVAL;
849 if (usin->sin_family != AF_INET) {
850 if (usin->sin_family != AF_UNSPEC)
851 return -EAFNOSUPPORT;
854 daddr = usin->sin_addr.s_addr;
855 dport = usin->sin_port;
856 if (dport == 0)
857 return -EINVAL;
858 } else {
859 if (sk->sk_state != TCP_ESTABLISHED)
860 return -EDESTADDRREQ;
861 daddr = inet->inet_daddr;
862 dport = inet->inet_dport;
863 /* Open fast path for connected socket.
864 Route will not be used, if at least one option is set.
866 connected = 1;
868 ipc.addr = inet->inet_saddr;
870 ipc.oif = sk->sk_bound_dev_if;
871 err = sock_tx_timestamp(sk, &ipc.tx_flags);
872 if (err)
873 return err;
874 if (msg->msg_controllen) {
875 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
876 if (err)
877 return err;
878 if (ipc.opt)
879 free = 1;
880 connected = 0;
882 if (!ipc.opt) {
883 struct ip_options_rcu *inet_opt;
885 rcu_read_lock();
886 inet_opt = rcu_dereference(inet->inet_opt);
887 if (inet_opt) {
888 memcpy(&opt_copy, inet_opt,
889 sizeof(*inet_opt) + inet_opt->opt.optlen);
890 ipc.opt = &opt_copy.opt;
892 rcu_read_unlock();
895 saddr = ipc.addr;
896 ipc.addr = faddr = daddr;
898 if (ipc.opt && ipc.opt->opt.srr) {
899 if (!daddr)
900 return -EINVAL;
901 faddr = ipc.opt->opt.faddr;
902 connected = 0;
904 tos = RT_TOS(inet->tos);
905 if (sock_flag(sk, SOCK_LOCALROUTE) ||
906 (msg->msg_flags & MSG_DONTROUTE) ||
907 (ipc.opt && ipc.opt->opt.is_strictroute)) {
908 tos |= RTO_ONLINK;
909 connected = 0;
912 if (ipv4_is_multicast(daddr)) {
913 if (!ipc.oif)
914 ipc.oif = inet->mc_index;
915 if (!saddr)
916 saddr = inet->mc_addr;
917 connected = 0;
920 if (connected)
921 rt = (struct rtable *)sk_dst_check(sk, 0);
923 if (rt == NULL) {
924 struct net *net = sock_net(sk);
926 fl4 = &fl4_stack;
927 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
928 RT_SCOPE_UNIVERSE, sk->sk_protocol,
929 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
930 faddr, saddr, dport, inet->inet_sport);
932 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
933 rt = ip_route_output_flow(net, fl4, sk);
934 if (IS_ERR(rt)) {
935 err = PTR_ERR(rt);
936 rt = NULL;
937 if (err == -ENETUNREACH)
938 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
939 goto out;
942 err = -EACCES;
943 if ((rt->rt_flags & RTCF_BROADCAST) &&
944 !sock_flag(sk, SOCK_BROADCAST))
945 goto out;
946 if (connected)
947 sk_dst_set(sk, dst_clone(&rt->dst));
950 if (msg->msg_flags&MSG_CONFIRM)
951 goto do_confirm;
952 back_from_confirm:
954 saddr = fl4->saddr;
955 if (!ipc.addr)
956 daddr = ipc.addr = fl4->daddr;
958 /* Lockless fast path for the non-corking case. */
959 if (!corkreq) {
960 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
961 sizeof(struct udphdr), &ipc, &rt,
962 msg->msg_flags);
963 err = PTR_ERR(skb);
964 if (skb && !IS_ERR(skb))
965 err = udp_send_skb(skb, fl4);
966 goto out;
969 lock_sock(sk);
970 if (unlikely(up->pending)) {
971 /* The socket is already corked while preparing it. */
972 /* ... which is an evident application bug. --ANK */
973 release_sock(sk);
975 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
976 err = -EINVAL;
977 goto out;
980 * Now cork the socket to pend data.
982 fl4 = &inet->cork.fl.u.ip4;
983 fl4->daddr = daddr;
984 fl4->saddr = saddr;
985 fl4->fl4_dport = dport;
986 fl4->fl4_sport = inet->inet_sport;
987 up->pending = AF_INET;
989 do_append_data:
990 up->len += ulen;
991 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
992 sizeof(struct udphdr), &ipc, &rt,
993 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
994 if (err)
995 udp_flush_pending_frames(sk);
996 else if (!corkreq)
997 err = udp_push_pending_frames(sk);
998 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
999 up->pending = 0;
1000 release_sock(sk);
1002 out:
1003 ip_rt_put(rt);
1004 if (free)
1005 kfree(ipc.opt);
1006 if (!err)
1007 return len;
1009 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1010 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1011 * we don't have a good statistic (IpOutDiscards but it can be too many
1012 * things). We could add another new stat but at least for now that
1013 * seems like overkill.
1015 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1016 UDP_INC_STATS_USER(sock_net(sk),
1017 UDP_MIB_SNDBUFERRORS, is_udplite);
1019 return err;
1021 do_confirm:
1022 dst_confirm(&rt->dst);
1023 if (!(msg->msg_flags&MSG_PROBE) || len)
1024 goto back_from_confirm;
1025 err = 0;
1026 goto out;
1028 EXPORT_SYMBOL(udp_sendmsg);
1030 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1031 size_t size, int flags)
1033 struct inet_sock *inet = inet_sk(sk);
1034 struct udp_sock *up = udp_sk(sk);
1035 int ret;
1037 if (!up->pending) {
1038 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1040 /* Call udp_sendmsg to specify destination address which
1041 * sendpage interface can't pass.
1042 * This will succeed only when the socket is connected.
1044 ret = udp_sendmsg(NULL, sk, &msg, 0);
1045 if (ret < 0)
1046 return ret;
1049 lock_sock(sk);
1051 if (unlikely(!up->pending)) {
1052 release_sock(sk);
1054 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1055 return -EINVAL;
1058 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1059 page, offset, size, flags);
1060 if (ret == -EOPNOTSUPP) {
1061 release_sock(sk);
1062 return sock_no_sendpage(sk->sk_socket, page, offset,
1063 size, flags);
1065 if (ret < 0) {
1066 udp_flush_pending_frames(sk);
1067 goto out;
1070 up->len += size;
1071 if (!(up->corkflag || (flags&MSG_MORE)))
1072 ret = udp_push_pending_frames(sk);
1073 if (!ret)
1074 ret = size;
1075 out:
1076 release_sock(sk);
1077 return ret;
1082 * first_packet_length - return length of first packet in receive queue
1083 * @sk: socket
1085 * Drops all bad checksum frames, until a valid one is found.
1086 * Returns the length of found skb, or 0 if none is found.
1088 static unsigned int first_packet_length(struct sock *sk)
1090 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1091 struct sk_buff *skb;
1092 unsigned int res;
1094 __skb_queue_head_init(&list_kill);
1096 spin_lock_bh(&rcvq->lock);
1097 while ((skb = skb_peek(rcvq)) != NULL &&
1098 udp_lib_checksum_complete(skb)) {
1099 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1100 IS_UDPLITE(sk));
1101 atomic_inc(&sk->sk_drops);
1102 __skb_unlink(skb, rcvq);
1103 __skb_queue_tail(&list_kill, skb);
1105 res = skb ? skb->len : 0;
1106 spin_unlock_bh(&rcvq->lock);
1108 if (!skb_queue_empty(&list_kill)) {
1109 bool slow = lock_sock_fast(sk);
1111 __skb_queue_purge(&list_kill);
1112 sk_mem_reclaim_partial(sk);
1113 unlock_sock_fast(sk, slow);
1115 return res;
1119 * IOCTL requests applicable to the UDP protocol
1122 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1124 switch (cmd) {
1125 case SIOCOUTQ:
1127 int amount = sk_wmem_alloc_get(sk);
1129 return put_user(amount, (int __user *)arg);
1132 case SIOCINQ:
1134 unsigned int amount = first_packet_length(sk);
1136 if (amount)
1138 * We will only return the amount
1139 * of this packet since that is all
1140 * that will be read.
1142 amount -= sizeof(struct udphdr);
1144 return put_user(amount, (int __user *)arg);
1147 default:
1148 return -ENOIOCTLCMD;
1151 return 0;
1153 EXPORT_SYMBOL(udp_ioctl);
1156 * This should be easy, if there is something there we
1157 * return it, otherwise we block.
1160 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1161 size_t len, int noblock, int flags, int *addr_len)
1163 struct inet_sock *inet = inet_sk(sk);
1164 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1165 struct sk_buff *skb;
1166 unsigned int ulen;
1167 int peeked;
1168 int err;
1169 int is_udplite = IS_UDPLITE(sk);
1170 bool slow;
1173 * Check any passed addresses
1175 if (addr_len)
1176 *addr_len = sizeof(*sin);
1178 if (flags & MSG_ERRQUEUE)
1179 return ip_recv_error(sk, msg, len);
1181 try_again:
1182 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1183 &peeked, &err);
1184 if (!skb)
1185 goto out;
1187 ulen = skb->len - sizeof(struct udphdr);
1188 if (len > ulen)
1189 len = ulen;
1190 else if (len < ulen)
1191 msg->msg_flags |= MSG_TRUNC;
1194 * If checksum is needed at all, try to do it while copying the
1195 * data. If the data is truncated, or if we only want a partial
1196 * coverage checksum (UDP-Lite), do it before the copy.
1199 if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1200 if (udp_lib_checksum_complete(skb))
1201 goto csum_copy_err;
1204 if (skb_csum_unnecessary(skb))
1205 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1206 msg->msg_iov, len);
1207 else {
1208 err = skb_copy_and_csum_datagram_iovec(skb,
1209 sizeof(struct udphdr),
1210 msg->msg_iov);
1212 if (err == -EINVAL)
1213 goto csum_copy_err;
1216 if (err)
1217 goto out_free;
1219 if (!peeked)
1220 UDP_INC_STATS_USER(sock_net(sk),
1221 UDP_MIB_INDATAGRAMS, is_udplite);
1223 sock_recv_ts_and_drops(msg, sk, skb);
1225 /* Copy the address. */
1226 if (sin) {
1227 sin->sin_family = AF_INET;
1228 sin->sin_port = udp_hdr(skb)->source;
1229 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1230 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1232 if (inet->cmsg_flags)
1233 ip_cmsg_recv(msg, skb);
1235 err = len;
1236 if (flags & MSG_TRUNC)
1237 err = ulen;
1239 out_free:
1240 skb_free_datagram_locked(sk, skb);
1241 out:
1242 return err;
1244 csum_copy_err:
1245 slow = lock_sock_fast(sk);
1246 if (!skb_kill_datagram(sk, skb, flags))
1247 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1248 unlock_sock_fast(sk, slow);
1250 if (noblock)
1251 return -EAGAIN;
1253 /* starting over for a new packet */
1254 msg->msg_flags &= ~MSG_TRUNC;
1255 goto try_again;
1259 int udp_disconnect(struct sock *sk, int flags)
1261 struct inet_sock *inet = inet_sk(sk);
1263 * 1003.1g - break association.
1266 sk->sk_state = TCP_CLOSE;
1267 inet->inet_daddr = 0;
1268 inet->inet_dport = 0;
1269 sock_rps_save_rxhash(sk, 0);
1270 sk->sk_bound_dev_if = 0;
1271 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1272 inet_reset_saddr(sk);
1274 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1275 sk->sk_prot->unhash(sk);
1276 inet->inet_sport = 0;
1278 sk_dst_reset(sk);
1279 return 0;
1281 EXPORT_SYMBOL(udp_disconnect);
1283 void udp_lib_unhash(struct sock *sk)
1285 if (sk_hashed(sk)) {
1286 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1287 struct udp_hslot *hslot, *hslot2;
1289 hslot = udp_hashslot(udptable, sock_net(sk),
1290 udp_sk(sk)->udp_port_hash);
1291 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1293 spin_lock_bh(&hslot->lock);
1294 if (sk_nulls_del_node_init_rcu(sk)) {
1295 hslot->count--;
1296 inet_sk(sk)->inet_num = 0;
1297 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1299 spin_lock(&hslot2->lock);
1300 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1301 hslot2->count--;
1302 spin_unlock(&hslot2->lock);
1304 spin_unlock_bh(&hslot->lock);
1307 EXPORT_SYMBOL(udp_lib_unhash);
1310 * inet_rcv_saddr was changed, we must rehash secondary hash
1312 void udp_lib_rehash(struct sock *sk, u16 newhash)
1314 if (sk_hashed(sk)) {
1315 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1316 struct udp_hslot *hslot, *hslot2, *nhslot2;
1318 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1319 nhslot2 = udp_hashslot2(udptable, newhash);
1320 udp_sk(sk)->udp_portaddr_hash = newhash;
1321 if (hslot2 != nhslot2) {
1322 hslot = udp_hashslot(udptable, sock_net(sk),
1323 udp_sk(sk)->udp_port_hash);
1324 /* we must lock primary chain too */
1325 spin_lock_bh(&hslot->lock);
1327 spin_lock(&hslot2->lock);
1328 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1329 hslot2->count--;
1330 spin_unlock(&hslot2->lock);
1332 spin_lock(&nhslot2->lock);
1333 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1334 &nhslot2->head);
1335 nhslot2->count++;
1336 spin_unlock(&nhslot2->lock);
1338 spin_unlock_bh(&hslot->lock);
1342 EXPORT_SYMBOL(udp_lib_rehash);
1344 static void udp_v4_rehash(struct sock *sk)
1346 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1347 inet_sk(sk)->inet_rcv_saddr,
1348 inet_sk(sk)->inet_num);
1349 udp_lib_rehash(sk, new_hash);
1352 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1354 int rc;
1356 if (inet_sk(sk)->inet_daddr)
1357 sock_rps_save_rxhash(sk, skb->rxhash);
1359 rc = ip_queue_rcv_skb(sk, skb);
1360 if (rc < 0) {
1361 int is_udplite = IS_UDPLITE(sk);
1363 /* Note that an ENOMEM error is charged twice */
1364 if (rc == -ENOMEM)
1365 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1366 is_udplite);
1367 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1368 kfree_skb(skb);
1369 return -1;
1372 return 0;
1376 /* returns:
1377 * -1: error
1378 * 0: success
1379 * >0: "udp encap" protocol resubmission
1381 * Note that in the success and error cases, the skb is assumed to
1382 * have either been requeued or freed.
1384 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1386 struct udp_sock *up = udp_sk(sk);
1387 int rc;
1388 int is_udplite = IS_UDPLITE(sk);
1391 * Charge it to the socket, dropping if the queue is full.
1393 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1394 goto drop;
1395 nf_reset(skb);
1397 if (up->encap_type) {
1399 * This is an encapsulation socket so pass the skb to
1400 * the socket's udp_encap_rcv() hook. Otherwise, just
1401 * fall through and pass this up the UDP socket.
1402 * up->encap_rcv() returns the following value:
1403 * =0 if skb was successfully passed to the encap
1404 * handler or was discarded by it.
1405 * >0 if skb should be passed on to UDP.
1406 * <0 if skb should be resubmitted as proto -N
1409 /* if we're overly short, let UDP handle it */
1410 if (skb->len > sizeof(struct udphdr) &&
1411 up->encap_rcv != NULL) {
1412 int ret;
1414 ret = (*up->encap_rcv)(sk, skb);
1415 if (ret <= 0) {
1416 UDP_INC_STATS_BH(sock_net(sk),
1417 UDP_MIB_INDATAGRAMS,
1418 is_udplite);
1419 return -ret;
1423 /* FALLTHROUGH -- it's a UDP Packet */
1427 * UDP-Lite specific tests, ignored on UDP sockets
1429 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1432 * MIB statistics other than incrementing the error count are
1433 * disabled for the following two types of errors: these depend
1434 * on the application settings, not on the functioning of the
1435 * protocol stack as such.
1437 * RFC 3828 here recommends (sec 3.3): "There should also be a
1438 * way ... to ... at least let the receiving application block
1439 * delivery of packets with coverage values less than a value
1440 * provided by the application."
1442 if (up->pcrlen == 0) { /* full coverage was set */
1443 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1444 "%d while full coverage %d requested\n",
1445 UDP_SKB_CB(skb)->cscov, skb->len);
1446 goto drop;
1448 /* The next case involves violating the min. coverage requested
1449 * by the receiver. This is subtle: if receiver wants x and x is
1450 * greater than the buffersize/MTU then receiver will complain
1451 * that it wants x while sender emits packets of smaller size y.
1452 * Therefore the above ...()->partial_cov statement is essential.
1454 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1455 LIMIT_NETDEBUG(KERN_WARNING
1456 "UDPLITE: coverage %d too small, need min %d\n",
1457 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1458 goto drop;
1462 if (rcu_dereference_raw(sk->sk_filter)) {
1463 if (udp_lib_checksum_complete(skb))
1464 goto drop;
1468 if (sk_rcvqueues_full(sk, skb))
1469 goto drop;
1471 rc = 0;
1473 bh_lock_sock(sk);
1474 if (!sock_owned_by_user(sk))
1475 rc = __udp_queue_rcv_skb(sk, skb);
1476 else if (sk_add_backlog(sk, skb)) {
1477 bh_unlock_sock(sk);
1478 goto drop;
1480 bh_unlock_sock(sk);
1482 return rc;
1484 drop:
1485 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1486 atomic_inc(&sk->sk_drops);
1487 kfree_skb(skb);
1488 return -1;
1492 static void flush_stack(struct sock **stack, unsigned int count,
1493 struct sk_buff *skb, unsigned int final)
1495 unsigned int i;
1496 struct sk_buff *skb1 = NULL;
1497 struct sock *sk;
1499 for (i = 0; i < count; i++) {
1500 sk = stack[i];
1501 if (likely(skb1 == NULL))
1502 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1504 if (!skb1) {
1505 atomic_inc(&sk->sk_drops);
1506 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1507 IS_UDPLITE(sk));
1508 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1509 IS_UDPLITE(sk));
1512 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1513 skb1 = NULL;
1515 if (unlikely(skb1))
1516 kfree_skb(skb1);
1520 * Multicasts and broadcasts go to each listener.
1522 * Note: called only from the BH handler context.
1524 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1525 struct udphdr *uh,
1526 __be32 saddr, __be32 daddr,
1527 struct udp_table *udptable)
1529 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1530 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1531 int dif;
1532 unsigned int i, count = 0;
1534 spin_lock(&hslot->lock);
1535 sk = sk_nulls_head(&hslot->head);
1536 dif = skb->dev->ifindex;
1537 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1538 while (sk) {
1539 stack[count++] = sk;
1540 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1541 daddr, uh->source, saddr, dif);
1542 if (unlikely(count == ARRAY_SIZE(stack))) {
1543 if (!sk)
1544 break;
1545 flush_stack(stack, count, skb, ~0);
1546 count = 0;
1550 * before releasing chain lock, we must take a reference on sockets
1552 for (i = 0; i < count; i++)
1553 sock_hold(stack[i]);
1555 spin_unlock(&hslot->lock);
1558 * do the slow work with no lock held
1560 if (count) {
1561 flush_stack(stack, count, skb, count - 1);
1563 for (i = 0; i < count; i++)
1564 sock_put(stack[i]);
1565 } else {
1566 kfree_skb(skb);
1568 return 0;
1571 /* Initialize UDP checksum. If exited with zero value (success),
1572 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1573 * Otherwise, csum completion requires chacksumming packet body,
1574 * including udp header and folding it to skb->csum.
1576 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1577 int proto)
1579 const struct iphdr *iph;
1580 int err;
1582 UDP_SKB_CB(skb)->partial_cov = 0;
1583 UDP_SKB_CB(skb)->cscov = skb->len;
1585 if (proto == IPPROTO_UDPLITE) {
1586 err = udplite_checksum_init(skb, uh);
1587 if (err)
1588 return err;
1591 iph = ip_hdr(skb);
1592 if (uh->check == 0) {
1593 skb->ip_summed = CHECKSUM_UNNECESSARY;
1594 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1595 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1596 proto, skb->csum))
1597 skb->ip_summed = CHECKSUM_UNNECESSARY;
1599 if (!skb_csum_unnecessary(skb))
1600 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1601 skb->len, proto, 0);
1602 /* Probably, we should checksum udp header (it should be in cache
1603 * in any case) and data in tiny packets (< rx copybreak).
1606 return 0;
1610 * All we need to do is get the socket, and then do a checksum.
1613 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1614 int proto)
1616 struct sock *sk;
1617 struct udphdr *uh;
1618 unsigned short ulen;
1619 struct rtable *rt = skb_rtable(skb);
1620 __be32 saddr, daddr;
1621 struct net *net = dev_net(skb->dev);
1624 * Validate the packet.
1626 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1627 goto drop; /* No space for header. */
1629 uh = udp_hdr(skb);
1630 ulen = ntohs(uh->len);
1631 saddr = ip_hdr(skb)->saddr;
1632 daddr = ip_hdr(skb)->daddr;
1634 if (ulen > skb->len)
1635 goto short_packet;
1637 if (proto == IPPROTO_UDP) {
1638 /* UDP validates ulen. */
1639 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1640 goto short_packet;
1641 uh = udp_hdr(skb);
1644 if (udp4_csum_init(skb, uh, proto))
1645 goto csum_error;
1647 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1648 return __udp4_lib_mcast_deliver(net, skb, uh,
1649 saddr, daddr, udptable);
1651 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1653 if (sk != NULL) {
1654 int ret = udp_queue_rcv_skb(sk, skb);
1655 sock_put(sk);
1657 /* a return value > 0 means to resubmit the input, but
1658 * it wants the return to be -protocol, or 0
1660 if (ret > 0)
1661 return -ret;
1662 return 0;
1665 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1666 goto drop;
1667 nf_reset(skb);
1669 /* No socket. Drop packet silently, if checksum is wrong */
1670 if (udp_lib_checksum_complete(skb))
1671 goto csum_error;
1673 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1674 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1677 * Hmm. We got an UDP packet to a port to which we
1678 * don't wanna listen. Ignore it.
1680 kfree_skb(skb);
1681 return 0;
1683 short_packet:
1684 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1685 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1686 &saddr,
1687 ntohs(uh->source),
1688 ulen,
1689 skb->len,
1690 &daddr,
1691 ntohs(uh->dest));
1692 goto drop;
1694 csum_error:
1696 * RFC1122: OK. Discards the bad packet silently (as far as
1697 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1699 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1700 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1701 &saddr,
1702 ntohs(uh->source),
1703 &daddr,
1704 ntohs(uh->dest),
1705 ulen);
1706 drop:
1707 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1708 kfree_skb(skb);
1709 return 0;
1712 int udp_rcv(struct sk_buff *skb)
1714 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1717 void udp_destroy_sock(struct sock *sk)
1719 bool slow = lock_sock_fast(sk);
1720 udp_flush_pending_frames(sk);
1721 unlock_sock_fast(sk, slow);
1725 * Socket option code for UDP
1727 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1728 char __user *optval, unsigned int optlen,
1729 int (*push_pending_frames)(struct sock *))
1731 struct udp_sock *up = udp_sk(sk);
1732 int val;
1733 int err = 0;
1734 int is_udplite = IS_UDPLITE(sk);
1736 if (optlen < sizeof(int))
1737 return -EINVAL;
1739 if (get_user(val, (int __user *)optval))
1740 return -EFAULT;
1742 switch (optname) {
1743 case UDP_CORK:
1744 if (val != 0) {
1745 up->corkflag = 1;
1746 } else {
1747 up->corkflag = 0;
1748 lock_sock(sk);
1749 (*push_pending_frames)(sk);
1750 release_sock(sk);
1752 break;
1754 case UDP_ENCAP:
1755 switch (val) {
1756 case 0:
1757 case UDP_ENCAP_ESPINUDP:
1758 case UDP_ENCAP_ESPINUDP_NON_IKE:
1759 up->encap_rcv = xfrm4_udp_encap_rcv;
1760 /* FALLTHROUGH */
1761 case UDP_ENCAP_L2TPINUDP:
1762 up->encap_type = val;
1763 break;
1764 default:
1765 err = -ENOPROTOOPT;
1766 break;
1768 break;
1771 * UDP-Lite's partial checksum coverage (RFC 3828).
1773 /* The sender sets actual checksum coverage length via this option.
1774 * The case coverage > packet length is handled by send module. */
1775 case UDPLITE_SEND_CSCOV:
1776 if (!is_udplite) /* Disable the option on UDP sockets */
1777 return -ENOPROTOOPT;
1778 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1779 val = 8;
1780 else if (val > USHRT_MAX)
1781 val = USHRT_MAX;
1782 up->pcslen = val;
1783 up->pcflag |= UDPLITE_SEND_CC;
1784 break;
1786 /* The receiver specifies a minimum checksum coverage value. To make
1787 * sense, this should be set to at least 8 (as done below). If zero is
1788 * used, this again means full checksum coverage. */
1789 case UDPLITE_RECV_CSCOV:
1790 if (!is_udplite) /* Disable the option on UDP sockets */
1791 return -ENOPROTOOPT;
1792 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1793 val = 8;
1794 else if (val > USHRT_MAX)
1795 val = USHRT_MAX;
1796 up->pcrlen = val;
1797 up->pcflag |= UDPLITE_RECV_CC;
1798 break;
1800 default:
1801 err = -ENOPROTOOPT;
1802 break;
1805 return err;
1807 EXPORT_SYMBOL(udp_lib_setsockopt);
1809 int udp_setsockopt(struct sock *sk, int level, int optname,
1810 char __user *optval, unsigned int optlen)
1812 if (level == SOL_UDP || level == SOL_UDPLITE)
1813 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1814 udp_push_pending_frames);
1815 return ip_setsockopt(sk, level, optname, optval, optlen);
1818 #ifdef CONFIG_COMPAT
1819 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1820 char __user *optval, unsigned int optlen)
1822 if (level == SOL_UDP || level == SOL_UDPLITE)
1823 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1824 udp_push_pending_frames);
1825 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1827 #endif
1829 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1830 char __user *optval, int __user *optlen)
1832 struct udp_sock *up = udp_sk(sk);
1833 int val, len;
1835 if (get_user(len, optlen))
1836 return -EFAULT;
1838 len = min_t(unsigned int, len, sizeof(int));
1840 if (len < 0)
1841 return -EINVAL;
1843 switch (optname) {
1844 case UDP_CORK:
1845 val = up->corkflag;
1846 break;
1848 case UDP_ENCAP:
1849 val = up->encap_type;
1850 break;
1852 /* The following two cannot be changed on UDP sockets, the return is
1853 * always 0 (which corresponds to the full checksum coverage of UDP). */
1854 case UDPLITE_SEND_CSCOV:
1855 val = up->pcslen;
1856 break;
1858 case UDPLITE_RECV_CSCOV:
1859 val = up->pcrlen;
1860 break;
1862 default:
1863 return -ENOPROTOOPT;
1866 if (put_user(len, optlen))
1867 return -EFAULT;
1868 if (copy_to_user(optval, &val, len))
1869 return -EFAULT;
1870 return 0;
1872 EXPORT_SYMBOL(udp_lib_getsockopt);
1874 int udp_getsockopt(struct sock *sk, int level, int optname,
1875 char __user *optval, int __user *optlen)
1877 if (level == SOL_UDP || level == SOL_UDPLITE)
1878 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1879 return ip_getsockopt(sk, level, optname, optval, optlen);
1882 #ifdef CONFIG_COMPAT
1883 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1884 char __user *optval, int __user *optlen)
1886 if (level == SOL_UDP || level == SOL_UDPLITE)
1887 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1888 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1890 #endif
1892 * udp_poll - wait for a UDP event.
1893 * @file - file struct
1894 * @sock - socket
1895 * @wait - poll table
1897 * This is same as datagram poll, except for the special case of
1898 * blocking sockets. If application is using a blocking fd
1899 * and a packet with checksum error is in the queue;
1900 * then it could get return from select indicating data available
1901 * but then block when reading it. Add special case code
1902 * to work around these arguably broken applications.
1904 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1906 unsigned int mask = datagram_poll(file, sock, wait);
1907 struct sock *sk = sock->sk;
1909 /* Check for false positives due to checksum errors */
1910 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1911 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1912 mask &= ~(POLLIN | POLLRDNORM);
1914 return mask;
1917 EXPORT_SYMBOL(udp_poll);
1919 struct proto udp_prot = {
1920 .name = "UDP",
1921 .owner = THIS_MODULE,
1922 .close = udp_lib_close,
1923 .connect = ip4_datagram_connect,
1924 .disconnect = udp_disconnect,
1925 .ioctl = udp_ioctl,
1926 .destroy = udp_destroy_sock,
1927 .setsockopt = udp_setsockopt,
1928 .getsockopt = udp_getsockopt,
1929 .sendmsg = udp_sendmsg,
1930 .recvmsg = udp_recvmsg,
1931 .sendpage = udp_sendpage,
1932 .backlog_rcv = __udp_queue_rcv_skb,
1933 .hash = udp_lib_hash,
1934 .unhash = udp_lib_unhash,
1935 .rehash = udp_v4_rehash,
1936 .get_port = udp_v4_get_port,
1937 .memory_allocated = &udp_memory_allocated,
1938 .sysctl_mem = sysctl_udp_mem,
1939 .sysctl_wmem = &sysctl_udp_wmem_min,
1940 .sysctl_rmem = &sysctl_udp_rmem_min,
1941 .obj_size = sizeof(struct udp_sock),
1942 .slab_flags = SLAB_DESTROY_BY_RCU,
1943 .h.udp_table = &udp_table,
1944 #ifdef CONFIG_COMPAT
1945 .compat_setsockopt = compat_udp_setsockopt,
1946 .compat_getsockopt = compat_udp_getsockopt,
1947 #endif
1948 .clear_sk = sk_prot_clear_portaddr_nulls,
1950 EXPORT_SYMBOL(udp_prot);
1952 /* ------------------------------------------------------------------------ */
1953 #ifdef CONFIG_PROC_FS
1955 static struct sock *udp_get_first(struct seq_file *seq, int start)
1957 struct sock *sk;
1958 struct udp_iter_state *state = seq->private;
1959 struct net *net = seq_file_net(seq);
1961 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1962 ++state->bucket) {
1963 struct hlist_nulls_node *node;
1964 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1966 if (hlist_nulls_empty(&hslot->head))
1967 continue;
1969 spin_lock_bh(&hslot->lock);
1970 sk_nulls_for_each(sk, node, &hslot->head) {
1971 if (!net_eq(sock_net(sk), net))
1972 continue;
1973 if (sk->sk_family == state->family)
1974 goto found;
1976 spin_unlock_bh(&hslot->lock);
1978 sk = NULL;
1979 found:
1980 return sk;
1983 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1985 struct udp_iter_state *state = seq->private;
1986 struct net *net = seq_file_net(seq);
1988 do {
1989 sk = sk_nulls_next(sk);
1990 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1992 if (!sk) {
1993 if (state->bucket <= state->udp_table->mask)
1994 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1995 return udp_get_first(seq, state->bucket + 1);
1997 return sk;
2000 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2002 struct sock *sk = udp_get_first(seq, 0);
2004 if (sk)
2005 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2006 --pos;
2007 return pos ? NULL : sk;
2010 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2012 struct udp_iter_state *state = seq->private;
2013 state->bucket = MAX_UDP_PORTS;
2015 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2018 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2020 struct sock *sk;
2022 if (v == SEQ_START_TOKEN)
2023 sk = udp_get_idx(seq, 0);
2024 else
2025 sk = udp_get_next(seq, v);
2027 ++*pos;
2028 return sk;
2031 static void udp_seq_stop(struct seq_file *seq, void *v)
2033 struct udp_iter_state *state = seq->private;
2035 if (state->bucket <= state->udp_table->mask)
2036 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2039 static int udp_seq_open(struct inode *inode, struct file *file)
2041 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2042 struct udp_iter_state *s;
2043 int err;
2045 err = seq_open_net(inode, file, &afinfo->seq_ops,
2046 sizeof(struct udp_iter_state));
2047 if (err < 0)
2048 return err;
2050 s = ((struct seq_file *)file->private_data)->private;
2051 s->family = afinfo->family;
2052 s->udp_table = afinfo->udp_table;
2053 return err;
2056 /* ------------------------------------------------------------------------ */
2057 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2059 struct proc_dir_entry *p;
2060 int rc = 0;
2062 afinfo->seq_fops.open = udp_seq_open;
2063 afinfo->seq_fops.read = seq_read;
2064 afinfo->seq_fops.llseek = seq_lseek;
2065 afinfo->seq_fops.release = seq_release_net;
2067 afinfo->seq_ops.start = udp_seq_start;
2068 afinfo->seq_ops.next = udp_seq_next;
2069 afinfo->seq_ops.stop = udp_seq_stop;
2071 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2072 &afinfo->seq_fops, afinfo);
2073 if (!p)
2074 rc = -ENOMEM;
2075 return rc;
2077 EXPORT_SYMBOL(udp_proc_register);
2079 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2081 proc_net_remove(net, afinfo->name);
2083 EXPORT_SYMBOL(udp_proc_unregister);
2085 /* ------------------------------------------------------------------------ */
2086 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2087 int bucket, int *len)
2089 struct inet_sock *inet = inet_sk(sp);
2090 __be32 dest = inet->inet_daddr;
2091 __be32 src = inet->inet_rcv_saddr;
2092 __u16 destp = ntohs(inet->inet_dport);
2093 __u16 srcp = ntohs(inet->inet_sport);
2095 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2096 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2097 bucket, src, srcp, dest, destp, sp->sk_state,
2098 sk_wmem_alloc_get(sp),
2099 sk_rmem_alloc_get(sp),
2100 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2101 atomic_read(&sp->sk_refcnt), sp,
2102 atomic_read(&sp->sk_drops), len);
2105 int udp4_seq_show(struct seq_file *seq, void *v)
2107 if (v == SEQ_START_TOKEN)
2108 seq_printf(seq, "%-127s\n",
2109 " sl local_address rem_address st tx_queue "
2110 "rx_queue tr tm->when retrnsmt uid timeout "
2111 "inode ref pointer drops");
2112 else {
2113 struct udp_iter_state *state = seq->private;
2114 int len;
2116 udp4_format_sock(v, seq, state->bucket, &len);
2117 seq_printf(seq, "%*s\n", 127 - len, "");
2119 return 0;
2122 /* ------------------------------------------------------------------------ */
2123 static struct udp_seq_afinfo udp4_seq_afinfo = {
2124 .name = "udp",
2125 .family = AF_INET,
2126 .udp_table = &udp_table,
2127 .seq_fops = {
2128 .owner = THIS_MODULE,
2130 .seq_ops = {
2131 .show = udp4_seq_show,
2135 static int __net_init udp4_proc_init_net(struct net *net)
2137 return udp_proc_register(net, &udp4_seq_afinfo);
2140 static void __net_exit udp4_proc_exit_net(struct net *net)
2142 udp_proc_unregister(net, &udp4_seq_afinfo);
2145 static struct pernet_operations udp4_net_ops = {
2146 .init = udp4_proc_init_net,
2147 .exit = udp4_proc_exit_net,
2150 int __init udp4_proc_init(void)
2152 return register_pernet_subsys(&udp4_net_ops);
2155 void udp4_proc_exit(void)
2157 unregister_pernet_subsys(&udp4_net_ops);
2159 #endif /* CONFIG_PROC_FS */
2161 static __initdata unsigned long uhash_entries;
2162 static int __init set_uhash_entries(char *str)
2164 if (!str)
2165 return 0;
2166 uhash_entries = simple_strtoul(str, &str, 0);
2167 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2168 uhash_entries = UDP_HTABLE_SIZE_MIN;
2169 return 1;
2171 __setup("uhash_entries=", set_uhash_entries);
2173 void __init udp_table_init(struct udp_table *table, const char *name)
2175 unsigned int i;
2177 if (!CONFIG_BASE_SMALL)
2178 table->hash = alloc_large_system_hash(name,
2179 2 * sizeof(struct udp_hslot),
2180 uhash_entries,
2181 21, /* one slot per 2 MB */
2183 &table->log,
2184 &table->mask,
2185 64 * 1024);
2187 * Make sure hash table has the minimum size
2189 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2190 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2191 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2192 if (!table->hash)
2193 panic(name);
2194 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2195 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2197 table->hash2 = table->hash + (table->mask + 1);
2198 for (i = 0; i <= table->mask; i++) {
2199 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2200 table->hash[i].count = 0;
2201 spin_lock_init(&table->hash[i].lock);
2203 for (i = 0; i <= table->mask; i++) {
2204 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2205 table->hash2[i].count = 0;
2206 spin_lock_init(&table->hash2[i].lock);
2210 void __init udp_init(void)
2212 unsigned long limit;
2214 udp_table_init(&udp_table, "UDP");
2215 limit = nr_free_buffer_pages() / 8;
2216 limit = max(limit, 128UL);
2217 sysctl_udp_mem[0] = limit / 4 * 3;
2218 sysctl_udp_mem[1] = limit;
2219 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2221 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2222 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2225 int udp4_ufo_send_check(struct sk_buff *skb)
2227 const struct iphdr *iph;
2228 struct udphdr *uh;
2230 if (!pskb_may_pull(skb, sizeof(*uh)))
2231 return -EINVAL;
2233 iph = ip_hdr(skb);
2234 uh = udp_hdr(skb);
2236 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2237 IPPROTO_UDP, 0);
2238 skb->csum_start = skb_transport_header(skb) - skb->head;
2239 skb->csum_offset = offsetof(struct udphdr, check);
2240 skb->ip_summed = CHECKSUM_PARTIAL;
2241 return 0;
2244 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, u32 features)
2246 struct sk_buff *segs = ERR_PTR(-EINVAL);
2247 unsigned int mss;
2248 int offset;
2249 __wsum csum;
2251 mss = skb_shinfo(skb)->gso_size;
2252 if (unlikely(skb->len <= mss))
2253 goto out;
2255 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2256 /* Packet is from an untrusted source, reset gso_segs. */
2257 int type = skb_shinfo(skb)->gso_type;
2259 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2260 !(type & (SKB_GSO_UDP))))
2261 goto out;
2263 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2265 segs = NULL;
2266 goto out;
2269 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2270 * do checksum of UDP packets sent as multiple IP fragments.
2272 offset = skb_checksum_start_offset(skb);
2273 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2274 offset += skb->csum_offset;
2275 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2276 skb->ip_summed = CHECKSUM_NONE;
2278 /* Fragment the skb. IP headers of the fragments are updated in
2279 * inet_gso_segment()
2281 segs = skb_segment(skb, features);
2282 out:
2283 return segs;