ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / net / wireless / reg.c
blob7457697016e327925557726fd4435f00f46e4f3f
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 do { \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
55 } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 static struct regulatory_request core_request_world = {
61 .initiator = NL80211_REGDOM_SET_BY_CORE,
62 .alpha2[0] = '0',
63 .alpha2[1] = '0',
64 .intersect = false,
65 .processed = true,
66 .country_ie_env = ENVIRON_ANY,
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
75 static struct device_type reg_device_type = {
76 .uevent = reg_device_uevent,
80 * Central wireless core regulatory domains, we only need two,
81 * the current one and a world regulatory domain in case we have no
82 * information to give us an alpha2
84 const struct ieee80211_regdomain *cfg80211_regdomain;
87 * Protects static reg.c components:
88 * - cfg80211_world_regdom
89 * - cfg80211_regdom
90 * - last_request
92 static DEFINE_MUTEX(reg_mutex);
94 static inline void assert_reg_lock(void)
96 lockdep_assert_held(&reg_mutex);
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
110 struct reg_beacon {
111 struct list_head list;
112 struct ieee80211_channel chan;
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123 .n_reg_rules = 5,
124 .alpha2 = "00",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 /* IEEE 802.11b/g, channels 12..13. No HT40
129 * channel fits here. */
130 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131 NL80211_RRF_PASSIVE_SCAN |
132 NL80211_RRF_NO_IBSS),
133 /* IEEE 802.11 channel 14 - Only JP enables
134 * this and for 802.11b only */
135 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136 NL80211_RRF_PASSIVE_SCAN |
137 NL80211_RRF_NO_IBSS |
138 NL80211_RRF_NO_OFDM),
139 /* IEEE 802.11a, channel 36..48 */
140 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141 NL80211_RRF_PASSIVE_SCAN |
142 NL80211_RRF_NO_IBSS),
144 /* NB: 5260 MHz - 5700 MHz requies DFS */
146 /* IEEE 802.11a, channel 149..165 */
147 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148 NL80211_RRF_PASSIVE_SCAN |
149 NL80211_RRF_NO_IBSS),
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154 &world_regdom;
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
162 static void reset_regdomains(bool full_reset)
164 /* avoid freeing static information or freeing something twice */
165 if (cfg80211_regdomain == cfg80211_world_regdom)
166 cfg80211_regdomain = NULL;
167 if (cfg80211_world_regdom == &world_regdom)
168 cfg80211_world_regdom = NULL;
169 if (cfg80211_regdomain == &world_regdom)
170 cfg80211_regdomain = NULL;
172 kfree(cfg80211_regdomain);
173 kfree(cfg80211_world_regdom);
175 cfg80211_world_regdom = &world_regdom;
176 cfg80211_regdomain = NULL;
178 if (!full_reset)
179 return;
181 if (last_request != &core_request_world)
182 kfree(last_request);
183 last_request = &core_request_world;
187 * Dynamic world regulatory domain requested by the wireless
188 * core upon initialization
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
192 BUG_ON(!last_request);
194 reset_regdomains(false);
196 cfg80211_world_regdom = rd;
197 cfg80211_regdomain = rd;
200 bool is_world_regdom(const char *alpha2)
202 if (!alpha2)
203 return false;
204 if (alpha2[0] == '0' && alpha2[1] == '0')
205 return true;
206 return false;
209 static bool is_alpha2_set(const char *alpha2)
211 if (!alpha2)
212 return false;
213 if (alpha2[0] != 0 && alpha2[1] != 0)
214 return true;
215 return false;
218 static bool is_unknown_alpha2(const char *alpha2)
220 if (!alpha2)
221 return false;
223 * Special case where regulatory domain was built by driver
224 * but a specific alpha2 cannot be determined
226 if (alpha2[0] == '9' && alpha2[1] == '9')
227 return true;
228 return false;
231 static bool is_intersected_alpha2(const char *alpha2)
233 if (!alpha2)
234 return false;
236 * Special case where regulatory domain is the
237 * result of an intersection between two regulatory domain
238 * structures
240 if (alpha2[0] == '9' && alpha2[1] == '8')
241 return true;
242 return false;
245 static bool is_an_alpha2(const char *alpha2)
247 if (!alpha2)
248 return false;
249 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250 return true;
251 return false;
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
256 if (!alpha2_x || !alpha2_y)
257 return false;
258 if (alpha2_x[0] == alpha2_y[0] &&
259 alpha2_x[1] == alpha2_y[1])
260 return true;
261 return false;
264 static bool regdom_changes(const char *alpha2)
266 assert_cfg80211_lock();
268 if (!cfg80211_regdomain)
269 return true;
270 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271 return false;
272 return true;
276 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278 * has ever been issued.
280 static bool is_user_regdom_saved(void)
282 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283 return false;
285 /* This would indicate a mistake on the design */
286 if (WARN((!is_world_regdom(user_alpha2) &&
287 !is_an_alpha2(user_alpha2)),
288 "Unexpected user alpha2: %c%c\n",
289 user_alpha2[0],
290 user_alpha2[1]))
291 return false;
293 return true;
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297 const struct ieee80211_regdomain *src_regd)
299 struct ieee80211_regdomain *regd;
300 int size_of_regd = 0;
301 unsigned int i;
303 size_of_regd = sizeof(struct ieee80211_regdomain) +
304 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
306 regd = kzalloc(size_of_regd, GFP_KERNEL);
307 if (!regd)
308 return -ENOMEM;
310 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
312 for (i = 0; i < src_regd->n_reg_rules; i++)
313 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314 sizeof(struct ieee80211_reg_rule));
316 *dst_regd = regd;
317 return 0;
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322 char alpha2[2];
323 struct list_head list;
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
329 static void reg_regdb_search(struct work_struct *work)
331 struct reg_regdb_search_request *request;
332 const struct ieee80211_regdomain *curdom, *regdom;
333 int i, r;
335 mutex_lock(&reg_regdb_search_mutex);
336 while (!list_empty(&reg_regdb_search_list)) {
337 request = list_first_entry(&reg_regdb_search_list,
338 struct reg_regdb_search_request,
339 list);
340 list_del(&request->list);
342 for (i=0; i<reg_regdb_size; i++) {
343 curdom = reg_regdb[i];
345 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346 r = reg_copy_regd(&regdom, curdom);
347 if (r)
348 break;
349 mutex_lock(&cfg80211_mutex);
350 set_regdom(regdom);
351 mutex_unlock(&cfg80211_mutex);
352 break;
356 kfree(request);
358 mutex_unlock(&reg_regdb_search_mutex);
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
363 static void reg_regdb_query(const char *alpha2)
365 struct reg_regdb_search_request *request;
367 if (!alpha2)
368 return;
370 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371 if (!request)
372 return;
374 memcpy(request->alpha2, alpha2, 2);
376 mutex_lock(&reg_regdb_search_mutex);
377 list_add_tail(&request->list, &reg_regdb_search_list);
378 mutex_unlock(&reg_regdb_search_mutex);
380 schedule_work(&reg_regdb_work);
383 /* Feel free to add any other sanity checks here */
384 static void reg_regdb_size_check(void)
386 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
387 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
389 #else
390 static inline void reg_regdb_size_check(void) {}
391 static inline void reg_regdb_query(const char *alpha2) {}
392 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
395 * This lets us keep regulatory code which is updated on a regulatory
396 * basis in userspace. Country information is filled in by
397 * reg_device_uevent
399 static int call_crda(const char *alpha2)
401 if (!is_world_regdom((char *) alpha2))
402 pr_info("Calling CRDA for country: %c%c\n",
403 alpha2[0], alpha2[1]);
404 else
405 pr_info("Calling CRDA to update world regulatory domain\n");
407 /* query internal regulatory database (if it exists) */
408 reg_regdb_query(alpha2);
410 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
413 /* Used by nl80211 before kmalloc'ing our regulatory domain */
414 bool reg_is_valid_request(const char *alpha2)
416 assert_cfg80211_lock();
418 if (!last_request)
419 return false;
421 return alpha2_equal(last_request->alpha2, alpha2);
424 /* Sanity check on a regulatory rule */
425 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
428 u32 freq_diff;
430 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
431 return false;
433 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
434 return false;
436 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
438 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
439 freq_range->max_bandwidth_khz > freq_diff)
440 return false;
442 return true;
445 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447 const struct ieee80211_reg_rule *reg_rule = NULL;
448 unsigned int i;
450 if (!rd->n_reg_rules)
451 return false;
453 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
454 return false;
456 for (i = 0; i < rd->n_reg_rules; i++) {
457 reg_rule = &rd->reg_rules[i];
458 if (!is_valid_reg_rule(reg_rule))
459 return false;
462 return true;
465 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
466 u32 center_freq_khz,
467 u32 bw_khz)
469 u32 start_freq_khz, end_freq_khz;
471 start_freq_khz = center_freq_khz - (bw_khz/2);
472 end_freq_khz = center_freq_khz + (bw_khz/2);
474 if (start_freq_khz >= freq_range->start_freq_khz &&
475 end_freq_khz <= freq_range->end_freq_khz)
476 return true;
478 return false;
482 * freq_in_rule_band - tells us if a frequency is in a frequency band
483 * @freq_range: frequency rule we want to query
484 * @freq_khz: frequency we are inquiring about
486 * This lets us know if a specific frequency rule is or is not relevant to
487 * a specific frequency's band. Bands are device specific and artificial
488 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
489 * safe for now to assume that a frequency rule should not be part of a
490 * frequency's band if the start freq or end freq are off by more than 2 GHz.
491 * This resolution can be lowered and should be considered as we add
492 * regulatory rule support for other "bands".
494 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
495 u32 freq_khz)
497 #define ONE_GHZ_IN_KHZ 1000000
498 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
499 return true;
500 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
501 return true;
502 return false;
503 #undef ONE_GHZ_IN_KHZ
507 * Helper for regdom_intersect(), this does the real
508 * mathematical intersection fun
510 static int reg_rules_intersect(
511 const struct ieee80211_reg_rule *rule1,
512 const struct ieee80211_reg_rule *rule2,
513 struct ieee80211_reg_rule *intersected_rule)
515 const struct ieee80211_freq_range *freq_range1, *freq_range2;
516 struct ieee80211_freq_range *freq_range;
517 const struct ieee80211_power_rule *power_rule1, *power_rule2;
518 struct ieee80211_power_rule *power_rule;
519 u32 freq_diff;
521 freq_range1 = &rule1->freq_range;
522 freq_range2 = &rule2->freq_range;
523 freq_range = &intersected_rule->freq_range;
525 power_rule1 = &rule1->power_rule;
526 power_rule2 = &rule2->power_rule;
527 power_rule = &intersected_rule->power_rule;
529 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
530 freq_range2->start_freq_khz);
531 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
532 freq_range2->end_freq_khz);
533 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
534 freq_range2->max_bandwidth_khz);
536 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
537 if (freq_range->max_bandwidth_khz > freq_diff)
538 freq_range->max_bandwidth_khz = freq_diff;
540 power_rule->max_eirp = min(power_rule1->max_eirp,
541 power_rule2->max_eirp);
542 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
543 power_rule2->max_antenna_gain);
545 intersected_rule->flags = (rule1->flags | rule2->flags);
547 if (!is_valid_reg_rule(intersected_rule))
548 return -EINVAL;
550 return 0;
554 * regdom_intersect - do the intersection between two regulatory domains
555 * @rd1: first regulatory domain
556 * @rd2: second regulatory domain
558 * Use this function to get the intersection between two regulatory domains.
559 * Once completed we will mark the alpha2 for the rd as intersected, "98",
560 * as no one single alpha2 can represent this regulatory domain.
562 * Returns a pointer to the regulatory domain structure which will hold the
563 * resulting intersection of rules between rd1 and rd2. We will
564 * kzalloc() this structure for you.
566 static struct ieee80211_regdomain *regdom_intersect(
567 const struct ieee80211_regdomain *rd1,
568 const struct ieee80211_regdomain *rd2)
570 int r, size_of_regd;
571 unsigned int x, y;
572 unsigned int num_rules = 0, rule_idx = 0;
573 const struct ieee80211_reg_rule *rule1, *rule2;
574 struct ieee80211_reg_rule *intersected_rule;
575 struct ieee80211_regdomain *rd;
576 /* This is just a dummy holder to help us count */
577 struct ieee80211_reg_rule irule;
579 /* Uses the stack temporarily for counter arithmetic */
580 intersected_rule = &irule;
582 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
584 if (!rd1 || !rd2)
585 return NULL;
588 * First we get a count of the rules we'll need, then we actually
589 * build them. This is to so we can malloc() and free() a
590 * regdomain once. The reason we use reg_rules_intersect() here
591 * is it will return -EINVAL if the rule computed makes no sense.
592 * All rules that do check out OK are valid.
595 for (x = 0; x < rd1->n_reg_rules; x++) {
596 rule1 = &rd1->reg_rules[x];
597 for (y = 0; y < rd2->n_reg_rules; y++) {
598 rule2 = &rd2->reg_rules[y];
599 if (!reg_rules_intersect(rule1, rule2,
600 intersected_rule))
601 num_rules++;
602 memset(intersected_rule, 0,
603 sizeof(struct ieee80211_reg_rule));
607 if (!num_rules)
608 return NULL;
610 size_of_regd = sizeof(struct ieee80211_regdomain) +
611 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
613 rd = kzalloc(size_of_regd, GFP_KERNEL);
614 if (!rd)
615 return NULL;
617 for (x = 0; x < rd1->n_reg_rules; x++) {
618 rule1 = &rd1->reg_rules[x];
619 for (y = 0; y < rd2->n_reg_rules; y++) {
620 rule2 = &rd2->reg_rules[y];
622 * This time around instead of using the stack lets
623 * write to the target rule directly saving ourselves
624 * a memcpy()
626 intersected_rule = &rd->reg_rules[rule_idx];
627 r = reg_rules_intersect(rule1, rule2,
628 intersected_rule);
630 * No need to memset here the intersected rule here as
631 * we're not using the stack anymore
633 if (r)
634 continue;
635 rule_idx++;
639 if (rule_idx != num_rules) {
640 kfree(rd);
641 return NULL;
644 rd->n_reg_rules = num_rules;
645 rd->alpha2[0] = '9';
646 rd->alpha2[1] = '8';
648 return rd;
652 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
653 * want to just have the channel structure use these
655 static u32 map_regdom_flags(u32 rd_flags)
657 u32 channel_flags = 0;
658 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
659 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
660 if (rd_flags & NL80211_RRF_NO_IBSS)
661 channel_flags |= IEEE80211_CHAN_NO_IBSS;
662 if (rd_flags & NL80211_RRF_DFS)
663 channel_flags |= IEEE80211_CHAN_RADAR;
664 return channel_flags;
667 static int freq_reg_info_regd(struct wiphy *wiphy,
668 u32 center_freq,
669 u32 desired_bw_khz,
670 const struct ieee80211_reg_rule **reg_rule,
671 const struct ieee80211_regdomain *custom_regd)
673 int i;
674 bool band_rule_found = false;
675 const struct ieee80211_regdomain *regd;
676 bool bw_fits = false;
678 if (!desired_bw_khz)
679 desired_bw_khz = MHZ_TO_KHZ(20);
681 regd = custom_regd ? custom_regd : cfg80211_regdomain;
684 * Follow the driver's regulatory domain, if present, unless a country
685 * IE has been processed or a user wants to help complaince further
687 if (!custom_regd &&
688 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
689 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
690 wiphy->regd)
691 regd = wiphy->regd;
693 if (!regd)
694 return -EINVAL;
696 for (i = 0; i < regd->n_reg_rules; i++) {
697 const struct ieee80211_reg_rule *rr;
698 const struct ieee80211_freq_range *fr = NULL;
700 rr = &regd->reg_rules[i];
701 fr = &rr->freq_range;
704 * We only need to know if one frequency rule was
705 * was in center_freq's band, that's enough, so lets
706 * not overwrite it once found
708 if (!band_rule_found)
709 band_rule_found = freq_in_rule_band(fr, center_freq);
711 bw_fits = reg_does_bw_fit(fr,
712 center_freq,
713 desired_bw_khz);
715 if (band_rule_found && bw_fits) {
716 *reg_rule = rr;
717 return 0;
721 if (!band_rule_found)
722 return -ERANGE;
724 return -EINVAL;
727 int freq_reg_info(struct wiphy *wiphy,
728 u32 center_freq,
729 u32 desired_bw_khz,
730 const struct ieee80211_reg_rule **reg_rule)
732 assert_cfg80211_lock();
733 return freq_reg_info_regd(wiphy,
734 center_freq,
735 desired_bw_khz,
736 reg_rule,
737 NULL);
739 EXPORT_SYMBOL(freq_reg_info);
741 #ifdef CONFIG_CFG80211_REG_DEBUG
742 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
744 switch (initiator) {
745 case NL80211_REGDOM_SET_BY_CORE:
746 return "Set by core";
747 case NL80211_REGDOM_SET_BY_USER:
748 return "Set by user";
749 case NL80211_REGDOM_SET_BY_DRIVER:
750 return "Set by driver";
751 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
752 return "Set by country IE";
753 default:
754 WARN_ON(1);
755 return "Set by bug";
759 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
760 u32 desired_bw_khz,
761 const struct ieee80211_reg_rule *reg_rule)
763 const struct ieee80211_power_rule *power_rule;
764 const struct ieee80211_freq_range *freq_range;
765 char max_antenna_gain[32];
767 power_rule = &reg_rule->power_rule;
768 freq_range = &reg_rule->freq_range;
770 if (!power_rule->max_antenna_gain)
771 snprintf(max_antenna_gain, 32, "N/A");
772 else
773 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
775 REG_DBG_PRINT("Updating information on frequency %d MHz "
776 "for a %d MHz width channel with regulatory rule:\n",
777 chan->center_freq,
778 KHZ_TO_MHZ(desired_bw_khz));
780 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
781 freq_range->start_freq_khz,
782 freq_range->end_freq_khz,
783 max_antenna_gain,
784 power_rule->max_eirp);
786 #else
787 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
788 u32 desired_bw_khz,
789 const struct ieee80211_reg_rule *reg_rule)
791 return;
793 #endif
796 * Note that right now we assume the desired channel bandwidth
797 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
798 * per channel, the primary and the extension channel). To support
799 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
800 * new ieee80211_channel.target_bw and re run the regulatory check
801 * on the wiphy with the target_bw specified. Then we can simply use
802 * that below for the desired_bw_khz below.
804 static void handle_channel(struct wiphy *wiphy,
805 enum nl80211_reg_initiator initiator,
806 enum ieee80211_band band,
807 unsigned int chan_idx)
809 int r;
810 u32 flags, bw_flags = 0;
811 u32 desired_bw_khz = MHZ_TO_KHZ(20);
812 const struct ieee80211_reg_rule *reg_rule = NULL;
813 const struct ieee80211_power_rule *power_rule = NULL;
814 const struct ieee80211_freq_range *freq_range = NULL;
815 struct ieee80211_supported_band *sband;
816 struct ieee80211_channel *chan;
817 struct wiphy *request_wiphy = NULL;
819 assert_cfg80211_lock();
821 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
823 sband = wiphy->bands[band];
824 BUG_ON(chan_idx >= sband->n_channels);
825 chan = &sband->channels[chan_idx];
827 flags = chan->orig_flags;
829 r = freq_reg_info(wiphy,
830 MHZ_TO_KHZ(chan->center_freq),
831 desired_bw_khz,
832 &reg_rule);
834 if (r) {
836 * We will disable all channels that do not match our
837 * received regulatory rule unless the hint is coming
838 * from a Country IE and the Country IE had no information
839 * about a band. The IEEE 802.11 spec allows for an AP
840 * to send only a subset of the regulatory rules allowed,
841 * so an AP in the US that only supports 2.4 GHz may only send
842 * a country IE with information for the 2.4 GHz band
843 * while 5 GHz is still supported.
845 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
846 r == -ERANGE)
847 return;
849 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
850 chan->flags = IEEE80211_CHAN_DISABLED;
851 return;
854 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
856 power_rule = &reg_rule->power_rule;
857 freq_range = &reg_rule->freq_range;
859 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
860 bw_flags = IEEE80211_CHAN_NO_HT40;
862 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
863 request_wiphy && request_wiphy == wiphy &&
864 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
866 * This guarantees the driver's requested regulatory domain
867 * will always be used as a base for further regulatory
868 * settings
870 chan->flags = chan->orig_flags =
871 map_regdom_flags(reg_rule->flags) | bw_flags;
872 chan->max_antenna_gain = chan->orig_mag =
873 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
874 chan->max_power = chan->orig_mpwr =
875 (int) MBM_TO_DBM(power_rule->max_eirp);
876 return;
879 chan->beacon_found = false;
880 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
881 chan->max_antenna_gain = min(chan->orig_mag,
882 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
883 if (chan->orig_mpwr)
884 chan->max_power = min(chan->orig_mpwr,
885 (int) MBM_TO_DBM(power_rule->max_eirp));
886 else
887 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
890 static void handle_band(struct wiphy *wiphy,
891 enum ieee80211_band band,
892 enum nl80211_reg_initiator initiator)
894 unsigned int i;
895 struct ieee80211_supported_band *sband;
897 BUG_ON(!wiphy->bands[band]);
898 sband = wiphy->bands[band];
900 for (i = 0; i < sband->n_channels; i++)
901 handle_channel(wiphy, initiator, band, i);
904 static bool ignore_reg_update(struct wiphy *wiphy,
905 enum nl80211_reg_initiator initiator)
907 if (!last_request) {
908 REG_DBG_PRINT("Ignoring regulatory request %s since "
909 "last_request is not set\n",
910 reg_initiator_name(initiator));
911 return true;
914 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
915 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
916 REG_DBG_PRINT("Ignoring regulatory request %s "
917 "since the driver uses its own custom "
918 "regulatory domain ",
919 reg_initiator_name(initiator));
920 return true;
924 * wiphy->regd will be set once the device has its own
925 * desired regulatory domain set
927 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
928 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
929 !is_world_regdom(last_request->alpha2)) {
930 REG_DBG_PRINT("Ignoring regulatory request %s "
931 "since the driver requires its own regulaotry "
932 "domain to be set first",
933 reg_initiator_name(initiator));
934 return true;
937 return false;
940 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
942 struct cfg80211_registered_device *rdev;
944 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
945 wiphy_update_regulatory(&rdev->wiphy, initiator);
948 static void handle_reg_beacon(struct wiphy *wiphy,
949 unsigned int chan_idx,
950 struct reg_beacon *reg_beacon)
952 struct ieee80211_supported_band *sband;
953 struct ieee80211_channel *chan;
954 bool channel_changed = false;
955 struct ieee80211_channel chan_before;
957 assert_cfg80211_lock();
959 sband = wiphy->bands[reg_beacon->chan.band];
960 chan = &sband->channels[chan_idx];
962 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
963 return;
965 if (chan->beacon_found)
966 return;
968 chan->beacon_found = true;
970 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
971 return;
973 chan_before.center_freq = chan->center_freq;
974 chan_before.flags = chan->flags;
976 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
977 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
978 channel_changed = true;
981 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
982 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
983 channel_changed = true;
986 if (channel_changed)
987 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
991 * Called when a scan on a wiphy finds a beacon on
992 * new channel
994 static void wiphy_update_new_beacon(struct wiphy *wiphy,
995 struct reg_beacon *reg_beacon)
997 unsigned int i;
998 struct ieee80211_supported_band *sband;
1000 assert_cfg80211_lock();
1002 if (!wiphy->bands[reg_beacon->chan.band])
1003 return;
1005 sband = wiphy->bands[reg_beacon->chan.band];
1007 for (i = 0; i < sband->n_channels; i++)
1008 handle_reg_beacon(wiphy, i, reg_beacon);
1012 * Called upon reg changes or a new wiphy is added
1014 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1016 unsigned int i;
1017 struct ieee80211_supported_band *sband;
1018 struct reg_beacon *reg_beacon;
1020 assert_cfg80211_lock();
1022 if (list_empty(&reg_beacon_list))
1023 return;
1025 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1026 if (!wiphy->bands[reg_beacon->chan.band])
1027 continue;
1028 sband = wiphy->bands[reg_beacon->chan.band];
1029 for (i = 0; i < sband->n_channels; i++)
1030 handle_reg_beacon(wiphy, i, reg_beacon);
1034 static bool reg_is_world_roaming(struct wiphy *wiphy)
1036 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1037 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1038 return true;
1039 if (last_request &&
1040 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1041 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1042 return true;
1043 return false;
1046 /* Reap the advantages of previously found beacons */
1047 static void reg_process_beacons(struct wiphy *wiphy)
1050 * Means we are just firing up cfg80211, so no beacons would
1051 * have been processed yet.
1053 if (!last_request)
1054 return;
1055 if (!reg_is_world_roaming(wiphy))
1056 return;
1057 wiphy_update_beacon_reg(wiphy);
1060 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1062 if (!chan)
1063 return true;
1064 if (chan->flags & IEEE80211_CHAN_DISABLED)
1065 return true;
1066 /* This would happen when regulatory rules disallow HT40 completely */
1067 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1068 return true;
1069 return false;
1072 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1073 enum ieee80211_band band,
1074 unsigned int chan_idx)
1076 struct ieee80211_supported_band *sband;
1077 struct ieee80211_channel *channel;
1078 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1079 unsigned int i;
1081 assert_cfg80211_lock();
1083 sband = wiphy->bands[band];
1084 BUG_ON(chan_idx >= sband->n_channels);
1085 channel = &sband->channels[chan_idx];
1087 if (is_ht40_not_allowed(channel)) {
1088 channel->flags |= IEEE80211_CHAN_NO_HT40;
1089 return;
1093 * We need to ensure the extension channels exist to
1094 * be able to use HT40- or HT40+, this finds them (or not)
1096 for (i = 0; i < sband->n_channels; i++) {
1097 struct ieee80211_channel *c = &sband->channels[i];
1098 if (c->center_freq == (channel->center_freq - 20))
1099 channel_before = c;
1100 if (c->center_freq == (channel->center_freq + 20))
1101 channel_after = c;
1105 * Please note that this assumes target bandwidth is 20 MHz,
1106 * if that ever changes we also need to change the below logic
1107 * to include that as well.
1109 if (is_ht40_not_allowed(channel_before))
1110 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1111 else
1112 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1114 if (is_ht40_not_allowed(channel_after))
1115 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1116 else
1117 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1120 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1121 enum ieee80211_band band)
1123 unsigned int i;
1124 struct ieee80211_supported_band *sband;
1126 BUG_ON(!wiphy->bands[band]);
1127 sband = wiphy->bands[band];
1129 for (i = 0; i < sband->n_channels; i++)
1130 reg_process_ht_flags_channel(wiphy, band, i);
1133 static void reg_process_ht_flags(struct wiphy *wiphy)
1135 enum ieee80211_band band;
1137 if (!wiphy)
1138 return;
1140 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1141 if (wiphy->bands[band])
1142 reg_process_ht_flags_band(wiphy, band);
1147 void wiphy_update_regulatory(struct wiphy *wiphy,
1148 enum nl80211_reg_initiator initiator)
1150 enum ieee80211_band band;
1152 if (ignore_reg_update(wiphy, initiator))
1153 return;
1155 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1156 if (wiphy->bands[band])
1157 handle_band(wiphy, band, initiator);
1160 reg_process_beacons(wiphy);
1161 reg_process_ht_flags(wiphy);
1162 if (wiphy->reg_notifier)
1163 wiphy->reg_notifier(wiphy, last_request);
1166 static void handle_channel_custom(struct wiphy *wiphy,
1167 enum ieee80211_band band,
1168 unsigned int chan_idx,
1169 const struct ieee80211_regdomain *regd)
1171 int r;
1172 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1173 u32 bw_flags = 0;
1174 const struct ieee80211_reg_rule *reg_rule = NULL;
1175 const struct ieee80211_power_rule *power_rule = NULL;
1176 const struct ieee80211_freq_range *freq_range = NULL;
1177 struct ieee80211_supported_band *sband;
1178 struct ieee80211_channel *chan;
1180 assert_reg_lock();
1182 sband = wiphy->bands[band];
1183 BUG_ON(chan_idx >= sband->n_channels);
1184 chan = &sband->channels[chan_idx];
1186 r = freq_reg_info_regd(wiphy,
1187 MHZ_TO_KHZ(chan->center_freq),
1188 desired_bw_khz,
1189 &reg_rule,
1190 regd);
1192 if (r) {
1193 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1194 "regd has no rule that fits a %d MHz "
1195 "wide channel\n",
1196 chan->center_freq,
1197 KHZ_TO_MHZ(desired_bw_khz));
1198 chan->flags = IEEE80211_CHAN_DISABLED;
1199 return;
1202 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1204 power_rule = &reg_rule->power_rule;
1205 freq_range = &reg_rule->freq_range;
1207 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1208 bw_flags = IEEE80211_CHAN_NO_HT40;
1210 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1211 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1212 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1215 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1216 const struct ieee80211_regdomain *regd)
1218 unsigned int i;
1219 struct ieee80211_supported_band *sband;
1221 BUG_ON(!wiphy->bands[band]);
1222 sband = wiphy->bands[band];
1224 for (i = 0; i < sband->n_channels; i++)
1225 handle_channel_custom(wiphy, band, i, regd);
1228 /* Used by drivers prior to wiphy registration */
1229 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1230 const struct ieee80211_regdomain *regd)
1232 enum ieee80211_band band;
1233 unsigned int bands_set = 0;
1235 mutex_lock(&reg_mutex);
1236 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1237 if (!wiphy->bands[band])
1238 continue;
1239 handle_band_custom(wiphy, band, regd);
1240 bands_set++;
1242 mutex_unlock(&reg_mutex);
1245 * no point in calling this if it won't have any effect
1246 * on your device's supportd bands.
1248 WARN_ON(!bands_set);
1250 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1253 * Return value which can be used by ignore_request() to indicate
1254 * it has been determined we should intersect two regulatory domains
1256 #define REG_INTERSECT 1
1258 /* This has the logic which determines when a new request
1259 * should be ignored. */
1260 static int ignore_request(struct wiphy *wiphy,
1261 struct regulatory_request *pending_request)
1263 struct wiphy *last_wiphy = NULL;
1265 assert_cfg80211_lock();
1267 /* All initial requests are respected */
1268 if (!last_request)
1269 return 0;
1271 switch (pending_request->initiator) {
1272 case NL80211_REGDOM_SET_BY_CORE:
1273 return 0;
1274 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1276 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1278 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1279 return -EINVAL;
1280 if (last_request->initiator ==
1281 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1282 if (last_wiphy != wiphy) {
1284 * Two cards with two APs claiming different
1285 * Country IE alpha2s. We could
1286 * intersect them, but that seems unlikely
1287 * to be correct. Reject second one for now.
1289 if (regdom_changes(pending_request->alpha2))
1290 return -EOPNOTSUPP;
1291 return -EALREADY;
1294 * Two consecutive Country IE hints on the same wiphy.
1295 * This should be picked up early by the driver/stack
1297 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1298 return 0;
1299 return -EALREADY;
1301 return 0;
1302 case NL80211_REGDOM_SET_BY_DRIVER:
1303 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1304 if (regdom_changes(pending_request->alpha2))
1305 return 0;
1306 return -EALREADY;
1310 * This would happen if you unplug and plug your card
1311 * back in or if you add a new device for which the previously
1312 * loaded card also agrees on the regulatory domain.
1314 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1315 !regdom_changes(pending_request->alpha2))
1316 return -EALREADY;
1318 return REG_INTERSECT;
1319 case NL80211_REGDOM_SET_BY_USER:
1320 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1321 return REG_INTERSECT;
1323 * If the user knows better the user should set the regdom
1324 * to their country before the IE is picked up
1326 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1327 last_request->intersect)
1328 return -EOPNOTSUPP;
1330 * Process user requests only after previous user/driver/core
1331 * requests have been processed
1333 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1334 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1335 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1336 if (regdom_changes(last_request->alpha2))
1337 return -EAGAIN;
1340 if (!regdom_changes(pending_request->alpha2))
1341 return -EALREADY;
1343 return 0;
1346 return -EINVAL;
1349 static void reg_set_request_processed(void)
1351 bool need_more_processing = false;
1353 last_request->processed = true;
1355 spin_lock(&reg_requests_lock);
1356 if (!list_empty(&reg_requests_list))
1357 need_more_processing = true;
1358 spin_unlock(&reg_requests_lock);
1360 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1361 cancel_delayed_work_sync(&reg_timeout);
1363 if (need_more_processing)
1364 schedule_work(&reg_work);
1368 * __regulatory_hint - hint to the wireless core a regulatory domain
1369 * @wiphy: if the hint comes from country information from an AP, this
1370 * is required to be set to the wiphy that received the information
1371 * @pending_request: the regulatory request currently being processed
1373 * The Wireless subsystem can use this function to hint to the wireless core
1374 * what it believes should be the current regulatory domain.
1376 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1377 * already been set or other standard error codes.
1379 * Caller must hold &cfg80211_mutex and &reg_mutex
1381 static int __regulatory_hint(struct wiphy *wiphy,
1382 struct regulatory_request *pending_request)
1384 bool intersect = false;
1385 int r = 0;
1387 assert_cfg80211_lock();
1389 r = ignore_request(wiphy, pending_request);
1391 if (r == REG_INTERSECT) {
1392 if (pending_request->initiator ==
1393 NL80211_REGDOM_SET_BY_DRIVER) {
1394 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1395 if (r) {
1396 kfree(pending_request);
1397 return r;
1400 intersect = true;
1401 } else if (r) {
1403 * If the regulatory domain being requested by the
1404 * driver has already been set just copy it to the
1405 * wiphy
1407 if (r == -EALREADY &&
1408 pending_request->initiator ==
1409 NL80211_REGDOM_SET_BY_DRIVER) {
1410 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1411 if (r) {
1412 kfree(pending_request);
1413 return r;
1415 r = -EALREADY;
1416 goto new_request;
1418 kfree(pending_request);
1419 return r;
1422 new_request:
1423 if (last_request != &core_request_world)
1424 kfree(last_request);
1426 last_request = pending_request;
1427 last_request->intersect = intersect;
1429 pending_request = NULL;
1431 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1432 user_alpha2[0] = last_request->alpha2[0];
1433 user_alpha2[1] = last_request->alpha2[1];
1436 /* When r == REG_INTERSECT we do need to call CRDA */
1437 if (r < 0) {
1439 * Since CRDA will not be called in this case as we already
1440 * have applied the requested regulatory domain before we just
1441 * inform userspace we have processed the request
1443 if (r == -EALREADY) {
1444 nl80211_send_reg_change_event(last_request);
1445 reg_set_request_processed();
1447 return r;
1450 return call_crda(last_request->alpha2);
1453 /* This processes *all* regulatory hints */
1454 static void reg_process_hint(struct regulatory_request *reg_request)
1456 int r = 0;
1457 struct wiphy *wiphy = NULL;
1458 enum nl80211_reg_initiator initiator = reg_request->initiator;
1460 BUG_ON(!reg_request->alpha2);
1462 if (wiphy_idx_valid(reg_request->wiphy_idx))
1463 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1465 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1466 !wiphy) {
1467 kfree(reg_request);
1468 return;
1471 r = __regulatory_hint(wiphy, reg_request);
1472 /* This is required so that the orig_* parameters are saved */
1473 if (r == -EALREADY && wiphy &&
1474 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1475 wiphy_update_regulatory(wiphy, initiator);
1476 return;
1480 * We only time out user hints, given that they should be the only
1481 * source of bogus requests.
1483 if (r != -EALREADY &&
1484 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1485 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1489 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1490 * Regulatory hints come on a first come first serve basis and we
1491 * must process each one atomically.
1493 static void reg_process_pending_hints(void)
1495 struct regulatory_request *reg_request;
1497 mutex_lock(&cfg80211_mutex);
1498 mutex_lock(&reg_mutex);
1500 /* When last_request->processed becomes true this will be rescheduled */
1501 if (last_request && !last_request->processed) {
1502 REG_DBG_PRINT("Pending regulatory request, waiting "
1503 "for it to be processed...");
1504 goto out;
1507 spin_lock(&reg_requests_lock);
1509 if (list_empty(&reg_requests_list)) {
1510 spin_unlock(&reg_requests_lock);
1511 goto out;
1514 reg_request = list_first_entry(&reg_requests_list,
1515 struct regulatory_request,
1516 list);
1517 list_del_init(&reg_request->list);
1519 spin_unlock(&reg_requests_lock);
1521 reg_process_hint(reg_request);
1523 out:
1524 mutex_unlock(&reg_mutex);
1525 mutex_unlock(&cfg80211_mutex);
1528 /* Processes beacon hints -- this has nothing to do with country IEs */
1529 static void reg_process_pending_beacon_hints(void)
1531 struct cfg80211_registered_device *rdev;
1532 struct reg_beacon *pending_beacon, *tmp;
1535 * No need to hold the reg_mutex here as we just touch wiphys
1536 * and do not read or access regulatory variables.
1538 mutex_lock(&cfg80211_mutex);
1540 /* This goes through the _pending_ beacon list */
1541 spin_lock_bh(&reg_pending_beacons_lock);
1543 if (list_empty(&reg_pending_beacons)) {
1544 spin_unlock_bh(&reg_pending_beacons_lock);
1545 goto out;
1548 list_for_each_entry_safe(pending_beacon, tmp,
1549 &reg_pending_beacons, list) {
1551 list_del_init(&pending_beacon->list);
1553 /* Applies the beacon hint to current wiphys */
1554 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1555 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1557 /* Remembers the beacon hint for new wiphys or reg changes */
1558 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1561 spin_unlock_bh(&reg_pending_beacons_lock);
1562 out:
1563 mutex_unlock(&cfg80211_mutex);
1566 static void reg_todo(struct work_struct *work)
1568 reg_process_pending_hints();
1569 reg_process_pending_beacon_hints();
1572 static void queue_regulatory_request(struct regulatory_request *request)
1574 if (isalpha(request->alpha2[0]))
1575 request->alpha2[0] = toupper(request->alpha2[0]);
1576 if (isalpha(request->alpha2[1]))
1577 request->alpha2[1] = toupper(request->alpha2[1]);
1579 spin_lock(&reg_requests_lock);
1580 list_add_tail(&request->list, &reg_requests_list);
1581 spin_unlock(&reg_requests_lock);
1583 schedule_work(&reg_work);
1587 * Core regulatory hint -- happens during cfg80211_init()
1588 * and when we restore regulatory settings.
1590 static int regulatory_hint_core(const char *alpha2)
1592 struct regulatory_request *request;
1594 request = kzalloc(sizeof(struct regulatory_request),
1595 GFP_KERNEL);
1596 if (!request)
1597 return -ENOMEM;
1599 request->alpha2[0] = alpha2[0];
1600 request->alpha2[1] = alpha2[1];
1601 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1603 queue_regulatory_request(request);
1605 return 0;
1608 /* User hints */
1609 int regulatory_hint_user(const char *alpha2)
1611 struct regulatory_request *request;
1613 BUG_ON(!alpha2);
1615 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1616 if (!request)
1617 return -ENOMEM;
1619 request->wiphy_idx = WIPHY_IDX_STALE;
1620 request->alpha2[0] = alpha2[0];
1621 request->alpha2[1] = alpha2[1];
1622 request->initiator = NL80211_REGDOM_SET_BY_USER;
1624 queue_regulatory_request(request);
1626 return 0;
1629 /* Driver hints */
1630 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1632 struct regulatory_request *request;
1634 BUG_ON(!alpha2);
1635 BUG_ON(!wiphy);
1637 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1638 if (!request)
1639 return -ENOMEM;
1641 request->wiphy_idx = get_wiphy_idx(wiphy);
1643 /* Must have registered wiphy first */
1644 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1646 request->alpha2[0] = alpha2[0];
1647 request->alpha2[1] = alpha2[1];
1648 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1650 queue_regulatory_request(request);
1652 return 0;
1654 EXPORT_SYMBOL(regulatory_hint);
1657 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1658 * therefore cannot iterate over the rdev list here.
1660 void regulatory_hint_11d(struct wiphy *wiphy,
1661 enum ieee80211_band band,
1662 u8 *country_ie,
1663 u8 country_ie_len)
1665 char alpha2[2];
1666 enum environment_cap env = ENVIRON_ANY;
1667 struct regulatory_request *request;
1669 mutex_lock(&reg_mutex);
1671 if (unlikely(!last_request))
1672 goto out;
1674 /* IE len must be evenly divisible by 2 */
1675 if (country_ie_len & 0x01)
1676 goto out;
1678 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1679 goto out;
1681 alpha2[0] = country_ie[0];
1682 alpha2[1] = country_ie[1];
1684 if (country_ie[2] == 'I')
1685 env = ENVIRON_INDOOR;
1686 else if (country_ie[2] == 'O')
1687 env = ENVIRON_OUTDOOR;
1690 * We will run this only upon a successful connection on cfg80211.
1691 * We leave conflict resolution to the workqueue, where can hold
1692 * cfg80211_mutex.
1694 if (likely(last_request->initiator ==
1695 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1696 wiphy_idx_valid(last_request->wiphy_idx)))
1697 goto out;
1699 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1700 if (!request)
1701 goto out;
1703 request->wiphy_idx = get_wiphy_idx(wiphy);
1704 request->alpha2[0] = alpha2[0];
1705 request->alpha2[1] = alpha2[1];
1706 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1707 request->country_ie_env = env;
1709 mutex_unlock(&reg_mutex);
1711 queue_regulatory_request(request);
1713 return;
1715 out:
1716 mutex_unlock(&reg_mutex);
1719 static void restore_alpha2(char *alpha2, bool reset_user)
1721 /* indicates there is no alpha2 to consider for restoration */
1722 alpha2[0] = '9';
1723 alpha2[1] = '7';
1725 /* The user setting has precedence over the module parameter */
1726 if (is_user_regdom_saved()) {
1727 /* Unless we're asked to ignore it and reset it */
1728 if (reset_user) {
1729 REG_DBG_PRINT("Restoring regulatory settings "
1730 "including user preference\n");
1731 user_alpha2[0] = '9';
1732 user_alpha2[1] = '7';
1735 * If we're ignoring user settings, we still need to
1736 * check the module parameter to ensure we put things
1737 * back as they were for a full restore.
1739 if (!is_world_regdom(ieee80211_regdom)) {
1740 REG_DBG_PRINT("Keeping preference on "
1741 "module parameter ieee80211_regdom: %c%c\n",
1742 ieee80211_regdom[0],
1743 ieee80211_regdom[1]);
1744 alpha2[0] = ieee80211_regdom[0];
1745 alpha2[1] = ieee80211_regdom[1];
1747 } else {
1748 REG_DBG_PRINT("Restoring regulatory settings "
1749 "while preserving user preference for: %c%c\n",
1750 user_alpha2[0],
1751 user_alpha2[1]);
1752 alpha2[0] = user_alpha2[0];
1753 alpha2[1] = user_alpha2[1];
1755 } else if (!is_world_regdom(ieee80211_regdom)) {
1756 REG_DBG_PRINT("Keeping preference on "
1757 "module parameter ieee80211_regdom: %c%c\n",
1758 ieee80211_regdom[0],
1759 ieee80211_regdom[1]);
1760 alpha2[0] = ieee80211_regdom[0];
1761 alpha2[1] = ieee80211_regdom[1];
1762 } else
1763 REG_DBG_PRINT("Restoring regulatory settings\n");
1767 * Restoring regulatory settings involves ingoring any
1768 * possibly stale country IE information and user regulatory
1769 * settings if so desired, this includes any beacon hints
1770 * learned as we could have traveled outside to another country
1771 * after disconnection. To restore regulatory settings we do
1772 * exactly what we did at bootup:
1774 * - send a core regulatory hint
1775 * - send a user regulatory hint if applicable
1777 * Device drivers that send a regulatory hint for a specific country
1778 * keep their own regulatory domain on wiphy->regd so that does does
1779 * not need to be remembered.
1781 static void restore_regulatory_settings(bool reset_user)
1783 char alpha2[2];
1784 struct reg_beacon *reg_beacon, *btmp;
1785 struct regulatory_request *reg_request, *tmp;
1786 LIST_HEAD(tmp_reg_req_list);
1788 mutex_lock(&cfg80211_mutex);
1789 mutex_lock(&reg_mutex);
1791 reset_regdomains(true);
1792 restore_alpha2(alpha2, reset_user);
1795 * If there's any pending requests we simply
1796 * stash them to a temporary pending queue and
1797 * add then after we've restored regulatory
1798 * settings.
1800 spin_lock(&reg_requests_lock);
1801 if (!list_empty(&reg_requests_list)) {
1802 list_for_each_entry_safe(reg_request, tmp,
1803 &reg_requests_list, list) {
1804 if (reg_request->initiator !=
1805 NL80211_REGDOM_SET_BY_USER)
1806 continue;
1807 list_del(&reg_request->list);
1808 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1811 spin_unlock(&reg_requests_lock);
1813 /* Clear beacon hints */
1814 spin_lock_bh(&reg_pending_beacons_lock);
1815 if (!list_empty(&reg_pending_beacons)) {
1816 list_for_each_entry_safe(reg_beacon, btmp,
1817 &reg_pending_beacons, list) {
1818 list_del(&reg_beacon->list);
1819 kfree(reg_beacon);
1822 spin_unlock_bh(&reg_pending_beacons_lock);
1824 if (!list_empty(&reg_beacon_list)) {
1825 list_for_each_entry_safe(reg_beacon, btmp,
1826 &reg_beacon_list, list) {
1827 list_del(&reg_beacon->list);
1828 kfree(reg_beacon);
1832 /* First restore to the basic regulatory settings */
1833 cfg80211_regdomain = cfg80211_world_regdom;
1835 mutex_unlock(&reg_mutex);
1836 mutex_unlock(&cfg80211_mutex);
1838 regulatory_hint_core(cfg80211_regdomain->alpha2);
1841 * This restores the ieee80211_regdom module parameter
1842 * preference or the last user requested regulatory
1843 * settings, user regulatory settings takes precedence.
1845 if (is_an_alpha2(alpha2))
1846 regulatory_hint_user(user_alpha2);
1848 if (list_empty(&tmp_reg_req_list))
1849 return;
1851 mutex_lock(&cfg80211_mutex);
1852 mutex_lock(&reg_mutex);
1854 spin_lock(&reg_requests_lock);
1855 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1856 REG_DBG_PRINT("Adding request for country %c%c back "
1857 "into the queue\n",
1858 reg_request->alpha2[0],
1859 reg_request->alpha2[1]);
1860 list_del(&reg_request->list);
1861 list_add_tail(&reg_request->list, &reg_requests_list);
1863 spin_unlock(&reg_requests_lock);
1865 mutex_unlock(&reg_mutex);
1866 mutex_unlock(&cfg80211_mutex);
1868 REG_DBG_PRINT("Kicking the queue\n");
1870 schedule_work(&reg_work);
1873 void regulatory_hint_disconnect(void)
1875 REG_DBG_PRINT("All devices are disconnected, going to "
1876 "restore regulatory settings\n");
1877 restore_regulatory_settings(false);
1880 static bool freq_is_chan_12_13_14(u16 freq)
1882 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1883 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1884 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1885 return true;
1886 return false;
1889 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1890 struct ieee80211_channel *beacon_chan,
1891 gfp_t gfp)
1893 struct reg_beacon *reg_beacon;
1895 if (likely((beacon_chan->beacon_found ||
1896 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1897 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1898 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1899 return 0;
1901 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1902 if (!reg_beacon)
1903 return -ENOMEM;
1905 REG_DBG_PRINT("Found new beacon on "
1906 "frequency: %d MHz (Ch %d) on %s\n",
1907 beacon_chan->center_freq,
1908 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1909 wiphy_name(wiphy));
1911 memcpy(&reg_beacon->chan, beacon_chan,
1912 sizeof(struct ieee80211_channel));
1916 * Since we can be called from BH or and non-BH context
1917 * we must use spin_lock_bh()
1919 spin_lock_bh(&reg_pending_beacons_lock);
1920 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1921 spin_unlock_bh(&reg_pending_beacons_lock);
1923 schedule_work(&reg_work);
1925 return 0;
1928 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1930 unsigned int i;
1931 const struct ieee80211_reg_rule *reg_rule = NULL;
1932 const struct ieee80211_freq_range *freq_range = NULL;
1933 const struct ieee80211_power_rule *power_rule = NULL;
1935 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1937 for (i = 0; i < rd->n_reg_rules; i++) {
1938 reg_rule = &rd->reg_rules[i];
1939 freq_range = &reg_rule->freq_range;
1940 power_rule = &reg_rule->power_rule;
1943 * There may not be documentation for max antenna gain
1944 * in certain regions
1946 if (power_rule->max_antenna_gain)
1947 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1948 freq_range->start_freq_khz,
1949 freq_range->end_freq_khz,
1950 freq_range->max_bandwidth_khz,
1951 power_rule->max_antenna_gain,
1952 power_rule->max_eirp);
1953 else
1954 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1955 freq_range->start_freq_khz,
1956 freq_range->end_freq_khz,
1957 freq_range->max_bandwidth_khz,
1958 power_rule->max_eirp);
1962 static void print_regdomain(const struct ieee80211_regdomain *rd)
1965 if (is_intersected_alpha2(rd->alpha2)) {
1967 if (last_request->initiator ==
1968 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1969 struct cfg80211_registered_device *rdev;
1970 rdev = cfg80211_rdev_by_wiphy_idx(
1971 last_request->wiphy_idx);
1972 if (rdev) {
1973 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1974 rdev->country_ie_alpha2[0],
1975 rdev->country_ie_alpha2[1]);
1976 } else
1977 pr_info("Current regulatory domain intersected:\n");
1978 } else
1979 pr_info("Current regulatory domain intersected:\n");
1980 } else if (is_world_regdom(rd->alpha2))
1981 pr_info("World regulatory domain updated:\n");
1982 else {
1983 if (is_unknown_alpha2(rd->alpha2))
1984 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1985 else
1986 pr_info("Regulatory domain changed to country: %c%c\n",
1987 rd->alpha2[0], rd->alpha2[1]);
1989 print_rd_rules(rd);
1992 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1994 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1995 print_rd_rules(rd);
1998 /* Takes ownership of rd only if it doesn't fail */
1999 static int __set_regdom(const struct ieee80211_regdomain *rd)
2001 const struct ieee80211_regdomain *intersected_rd = NULL;
2002 struct cfg80211_registered_device *rdev = NULL;
2003 struct wiphy *request_wiphy;
2004 /* Some basic sanity checks first */
2006 if (is_world_regdom(rd->alpha2)) {
2007 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2008 return -EINVAL;
2009 update_world_regdomain(rd);
2010 return 0;
2013 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2014 !is_unknown_alpha2(rd->alpha2))
2015 return -EINVAL;
2017 if (!last_request)
2018 return -EINVAL;
2021 * Lets only bother proceeding on the same alpha2 if the current
2022 * rd is non static (it means CRDA was present and was used last)
2023 * and the pending request came in from a country IE
2025 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2027 * If someone else asked us to change the rd lets only bother
2028 * checking if the alpha2 changes if CRDA was already called
2030 if (!regdom_changes(rd->alpha2))
2031 return -EINVAL;
2035 * Now lets set the regulatory domain, update all driver channels
2036 * and finally inform them of what we have done, in case they want
2037 * to review or adjust their own settings based on their own
2038 * internal EEPROM data
2041 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2042 return -EINVAL;
2044 if (!is_valid_rd(rd)) {
2045 pr_err("Invalid regulatory domain detected:\n");
2046 print_regdomain_info(rd);
2047 return -EINVAL;
2050 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2051 if (!request_wiphy &&
2052 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2053 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2054 schedule_delayed_work(&reg_timeout, 0);
2055 return -ENODEV;
2058 if (!last_request->intersect) {
2059 int r;
2061 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2062 reset_regdomains(false);
2063 cfg80211_regdomain = rd;
2064 return 0;
2068 * For a driver hint, lets copy the regulatory domain the
2069 * driver wanted to the wiphy to deal with conflicts
2073 * Userspace could have sent two replies with only
2074 * one kernel request.
2076 if (request_wiphy->regd)
2077 return -EALREADY;
2079 r = reg_copy_regd(&request_wiphy->regd, rd);
2080 if (r)
2081 return r;
2083 reset_regdomains(false);
2084 cfg80211_regdomain = rd;
2085 return 0;
2088 /* Intersection requires a bit more work */
2090 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2092 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2093 if (!intersected_rd)
2094 return -EINVAL;
2097 * We can trash what CRDA provided now.
2098 * However if a driver requested this specific regulatory
2099 * domain we keep it for its private use
2101 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2102 request_wiphy->regd = rd;
2103 else
2104 kfree(rd);
2106 rd = NULL;
2108 reset_regdomains(false);
2109 cfg80211_regdomain = intersected_rd;
2111 return 0;
2114 if (!intersected_rd)
2115 return -EINVAL;
2117 rdev = wiphy_to_dev(request_wiphy);
2119 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2120 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2121 rdev->env = last_request->country_ie_env;
2123 BUG_ON(intersected_rd == rd);
2125 kfree(rd);
2126 rd = NULL;
2128 reset_regdomains(false);
2129 cfg80211_regdomain = intersected_rd;
2131 return 0;
2136 * Use this call to set the current regulatory domain. Conflicts with
2137 * multiple drivers can be ironed out later. Caller must've already
2138 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2140 int set_regdom(const struct ieee80211_regdomain *rd)
2142 int r;
2144 assert_cfg80211_lock();
2146 mutex_lock(&reg_mutex);
2148 /* Note that this doesn't update the wiphys, this is done below */
2149 r = __set_regdom(rd);
2150 if (r) {
2151 kfree(rd);
2152 mutex_unlock(&reg_mutex);
2153 return r;
2156 /* This would make this whole thing pointless */
2157 if (!last_request->intersect)
2158 BUG_ON(rd != cfg80211_regdomain);
2160 /* update all wiphys now with the new established regulatory domain */
2161 update_all_wiphy_regulatory(last_request->initiator);
2163 print_regdomain(cfg80211_regdomain);
2165 nl80211_send_reg_change_event(last_request);
2167 reg_set_request_processed();
2169 mutex_unlock(&reg_mutex);
2171 return r;
2174 #ifdef CONFIG_HOTPLUG
2175 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2177 if (last_request && !last_request->processed) {
2178 if (add_uevent_var(env, "COUNTRY=%c%c",
2179 last_request->alpha2[0],
2180 last_request->alpha2[1]))
2181 return -ENOMEM;
2184 return 0;
2186 #else
2187 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2189 return -ENODEV;
2191 #endif /* CONFIG_HOTPLUG */
2193 /* Caller must hold cfg80211_mutex */
2194 void reg_device_remove(struct wiphy *wiphy)
2196 struct wiphy *request_wiphy = NULL;
2198 assert_cfg80211_lock();
2200 mutex_lock(&reg_mutex);
2202 kfree(wiphy->regd);
2204 if (last_request)
2205 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2207 if (!request_wiphy || request_wiphy != wiphy)
2208 goto out;
2210 last_request->wiphy_idx = WIPHY_IDX_STALE;
2211 last_request->country_ie_env = ENVIRON_ANY;
2212 out:
2213 mutex_unlock(&reg_mutex);
2216 static void reg_timeout_work(struct work_struct *work)
2218 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2219 "restoring regulatory settings");
2220 restore_regulatory_settings(true);
2223 int __init regulatory_init(void)
2225 int err = 0;
2227 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2228 if (IS_ERR(reg_pdev))
2229 return PTR_ERR(reg_pdev);
2231 reg_pdev->dev.type = &reg_device_type;
2233 spin_lock_init(&reg_requests_lock);
2234 spin_lock_init(&reg_pending_beacons_lock);
2236 reg_regdb_size_check();
2238 cfg80211_regdomain = cfg80211_world_regdom;
2240 user_alpha2[0] = '9';
2241 user_alpha2[1] = '7';
2243 /* We always try to get an update for the static regdomain */
2244 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2245 if (err) {
2246 if (err == -ENOMEM)
2247 return err;
2249 * N.B. kobject_uevent_env() can fail mainly for when we're out
2250 * memory which is handled and propagated appropriately above
2251 * but it can also fail during a netlink_broadcast() or during
2252 * early boot for call_usermodehelper(). For now treat these
2253 * errors as non-fatal.
2255 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2256 #ifdef CONFIG_CFG80211_REG_DEBUG
2257 /* We want to find out exactly why when debugging */
2258 WARN_ON(err);
2259 #endif
2263 * Finally, if the user set the module parameter treat it
2264 * as a user hint.
2266 if (!is_world_regdom(ieee80211_regdom))
2267 regulatory_hint_user(ieee80211_regdom);
2269 return 0;
2272 void /* __init_or_exit */ regulatory_exit(void)
2274 struct regulatory_request *reg_request, *tmp;
2275 struct reg_beacon *reg_beacon, *btmp;
2277 cancel_work_sync(&reg_work);
2278 cancel_delayed_work_sync(&reg_timeout);
2280 mutex_lock(&cfg80211_mutex);
2281 mutex_lock(&reg_mutex);
2283 reset_regdomains(true);
2285 dev_set_uevent_suppress(&reg_pdev->dev, true);
2287 platform_device_unregister(reg_pdev);
2289 spin_lock_bh(&reg_pending_beacons_lock);
2290 if (!list_empty(&reg_pending_beacons)) {
2291 list_for_each_entry_safe(reg_beacon, btmp,
2292 &reg_pending_beacons, list) {
2293 list_del(&reg_beacon->list);
2294 kfree(reg_beacon);
2297 spin_unlock_bh(&reg_pending_beacons_lock);
2299 if (!list_empty(&reg_beacon_list)) {
2300 list_for_each_entry_safe(reg_beacon, btmp,
2301 &reg_beacon_list, list) {
2302 list_del(&reg_beacon->list);
2303 kfree(reg_beacon);
2307 spin_lock(&reg_requests_lock);
2308 if (!list_empty(&reg_requests_list)) {
2309 list_for_each_entry_safe(reg_request, tmp,
2310 &reg_requests_list, list) {
2311 list_del(&reg_request->list);
2312 kfree(reg_request);
2315 spin_unlock(&reg_requests_lock);
2317 mutex_unlock(&reg_mutex);
2318 mutex_unlock(&cfg80211_mutex);