1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/personality.h>
34 * If a non-root user executes a setuid-root binary in
35 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
36 * However if fE is also set, then the intent is for only
37 * the file capabilities to be applied, and the setuid-root
38 * bit is left on either to change the uid (plausible) or
39 * to get full privilege on a kernel without file capabilities
40 * support. So in that case we do not raise capabilities.
42 * Warn if that happens, once per boot.
44 static void warn_setuid_and_fcaps_mixed(const char *fname
)
48 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
49 " effective capabilities. Therefore not raising all"
50 " capabilities.\n", fname
);
55 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
60 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
62 if (!cap_raised(current_cap(), cap
))
66 EXPORT_SYMBOL(cap_netlink_recv
);
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @ns: The user namespace in which we need the capability
73 * @cap: The capability to check for
74 * @audit: Whether to write an audit message or not
76 * Determine whether the nominated task has the specified capability amongst
77 * its effective set, returning 0 if it does, -ve if it does not.
79 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
80 * and has_capability() functions. That is, it has the reverse semantics:
81 * cap_has_capability() returns 0 when a task has a capability, but the
82 * kernel's capable() and has_capability() returns 1 for this case.
84 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
,
85 struct user_namespace
*targ_ns
, int cap
, int audit
)
88 /* The creator of the user namespace has all caps. */
89 if (targ_ns
!= &init_user_ns
&& targ_ns
->creator
== cred
->user
)
92 /* Do we have the necessary capabilities? */
93 if (targ_ns
== cred
->user
->user_ns
)
94 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
96 /* Have we tried all of the parent namespaces? */
97 if (targ_ns
== &init_user_ns
)
101 *If you have a capability in a parent user ns, then you have
102 * it over all children user namespaces as well.
104 targ_ns
= targ_ns
->creator
->user_ns
;
107 /* We never get here */
111 * cap_settime - Determine whether the current process may set the system clock
112 * @ts: The time to set
113 * @tz: The timezone to set
115 * Determine whether the current process may set the system clock and timezone
116 * information, returning 0 if permission granted, -ve if denied.
118 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
120 if (!capable(CAP_SYS_TIME
))
126 * cap_ptrace_access_check - Determine whether the current process may access
128 * @child: The process to be accessed
129 * @mode: The mode of attachment.
131 * If we are in the same or an ancestor user_ns and have all the target
132 * task's capabilities, then ptrace access is allowed.
133 * If we have the ptrace capability to the target user_ns, then ptrace
137 * Determine whether a process may access another, returning 0 if permission
138 * granted, -ve if denied.
140 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
143 const struct cred
*cred
, *child_cred
;
146 cred
= current_cred();
147 child_cred
= __task_cred(child
);
148 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
149 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
151 if (ns_capable(child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
160 * cap_ptrace_traceme - Determine whether another process may trace the current
161 * @parent: The task proposed to be the tracer
163 * If parent is in the same or an ancestor user_ns and has all current's
164 * capabilities, then ptrace access is allowed.
165 * If parent has the ptrace capability to current's user_ns, then ptrace
169 * Determine whether the nominated task is permitted to trace the current
170 * process, returning 0 if permission is granted, -ve if denied.
172 int cap_ptrace_traceme(struct task_struct
*parent
)
175 const struct cred
*cred
, *child_cred
;
178 cred
= __task_cred(parent
);
179 child_cred
= current_cred();
180 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
181 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
183 if (has_ns_capability(parent
, child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
192 * cap_capget - Retrieve a task's capability sets
193 * @target: The task from which to retrieve the capability sets
194 * @effective: The place to record the effective set
195 * @inheritable: The place to record the inheritable set
196 * @permitted: The place to record the permitted set
198 * This function retrieves the capabilities of the nominated task and returns
199 * them to the caller.
201 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
202 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
204 const struct cred
*cred
;
206 /* Derived from kernel/capability.c:sys_capget. */
208 cred
= __task_cred(target
);
209 *effective
= cred
->cap_effective
;
210 *inheritable
= cred
->cap_inheritable
;
211 *permitted
= cred
->cap_permitted
;
217 * Determine whether the inheritable capabilities are limited to the old
218 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 static inline int cap_inh_is_capped(void)
223 /* they are so limited unless the current task has the CAP_SETPCAP
226 if (cap_capable(current
, current_cred(),
227 current_cred()->user
->user_ns
, CAP_SETPCAP
,
228 SECURITY_CAP_AUDIT
) == 0)
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred
*new,
246 const struct cred
*old
,
247 const kernel_cap_t
*effective
,
248 const kernel_cap_t
*inheritable
,
249 const kernel_cap_t
*permitted
)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable
,
253 cap_combine(old
->cap_inheritable
,
254 old
->cap_permitted
)))
255 /* incapable of using this inheritable set */
258 if (!cap_issubset(*inheritable
,
259 cap_combine(old
->cap_inheritable
,
261 /* no new pI capabilities outside bounding set */
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted
, old
->cap_permitted
))
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective
, *permitted
))
272 new->cap_effective
= *effective
;
273 new->cap_inheritable
= *inheritable
;
274 new->cap_permitted
= *permitted
;
279 * Clear proposed capability sets for execve().
281 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
283 cap_clear(bprm
->cred
->cap_permitted
);
284 bprm
->cap_effective
= false;
288 * cap_inode_need_killpriv - Determine if inode change affects privileges
289 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
291 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
292 * affects the security markings on that inode, and if it is, should
293 * inode_killpriv() be invoked or the change rejected?
295 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
296 * -ve to deny the change.
298 int cap_inode_need_killpriv(struct dentry
*dentry
)
300 struct inode
*inode
= dentry
->d_inode
;
303 if (!inode
->i_op
->getxattr
)
306 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
313 * cap_inode_killpriv - Erase the security markings on an inode
314 * @dentry: The inode/dentry to alter
316 * Erase the privilege-enhancing security markings on an inode.
318 * Returns 0 if successful, -ve on error.
320 int cap_inode_killpriv(struct dentry
*dentry
)
322 struct inode
*inode
= dentry
->d_inode
;
324 if (!inode
->i_op
->removexattr
)
327 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
331 * Calculate the new process capability sets from the capability sets attached
334 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
335 struct linux_binprm
*bprm
,
338 struct cred
*new = bprm
->cred
;
342 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
345 CAP_FOR_EACH_U32(i
) {
346 __u32 permitted
= caps
->permitted
.cap
[i
];
347 __u32 inheritable
= caps
->inheritable
.cap
[i
];
350 * pP' = (X & fP) | (pI & fI)
352 new->cap_permitted
.cap
[i
] =
353 (new->cap_bset
.cap
[i
] & permitted
) |
354 (new->cap_inheritable
.cap
[i
] & inheritable
);
356 if (permitted
& ~new->cap_permitted
.cap
[i
])
357 /* insufficient to execute correctly */
362 * For legacy apps, with no internal support for recognizing they
363 * do not have enough capabilities, we return an error if they are
364 * missing some "forced" (aka file-permitted) capabilities.
366 return *effective
? ret
: 0;
370 * Extract the on-exec-apply capability sets for an executable file.
372 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
374 struct inode
*inode
= dentry
->d_inode
;
378 struct vfs_cap_data caps
;
380 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
382 if (!inode
|| !inode
->i_op
->getxattr
)
385 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
387 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
388 /* no data, that's ok */
393 if (size
< sizeof(magic_etc
))
396 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
398 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
399 case VFS_CAP_REVISION_1
:
400 if (size
!= XATTR_CAPS_SZ_1
)
402 tocopy
= VFS_CAP_U32_1
;
404 case VFS_CAP_REVISION_2
:
405 if (size
!= XATTR_CAPS_SZ_2
)
407 tocopy
= VFS_CAP_U32_2
;
413 CAP_FOR_EACH_U32(i
) {
416 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
417 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
424 * Attempt to get the on-exec apply capability sets for an executable file from
425 * its xattrs and, if present, apply them to the proposed credentials being
426 * constructed by execve().
428 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
)
430 struct dentry
*dentry
;
432 struct cpu_vfs_cap_data vcaps
;
434 bprm_clear_caps(bprm
);
436 if (!file_caps_enabled
)
439 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
442 dentry
= dget(bprm
->file
->f_dentry
);
444 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
447 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
448 __func__
, rc
, bprm
->filename
);
449 else if (rc
== -ENODATA
)
454 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
);
456 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
457 __func__
, rc
, bprm
->filename
);
462 bprm_clear_caps(bprm
);
468 * cap_bprm_set_creds - Set up the proposed credentials for execve().
469 * @bprm: The execution parameters, including the proposed creds
471 * Set up the proposed credentials for a new execution context being
472 * constructed by execve(). The proposed creds in @bprm->cred is altered,
473 * which won't take effect immediately. Returns 0 if successful, -ve on error.
475 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
477 const struct cred
*old
= current_cred();
478 struct cred
*new = bprm
->cred
;
483 ret
= get_file_caps(bprm
, &effective
);
487 if (!issecure(SECURE_NOROOT
)) {
489 * If the legacy file capability is set, then don't set privs
490 * for a setuid root binary run by a non-root user. Do set it
491 * for a root user just to cause least surprise to an admin.
493 if (effective
&& new->uid
!= 0 && new->euid
== 0) {
494 warn_setuid_and_fcaps_mixed(bprm
->filename
);
498 * To support inheritance of root-permissions and suid-root
499 * executables under compatibility mode, we override the
500 * capability sets for the file.
502 * If only the real uid is 0, we do not set the effective bit.
504 if (new->euid
== 0 || new->uid
== 0) {
505 /* pP' = (cap_bset & ~0) | (pI & ~0) */
506 new->cap_permitted
= cap_combine(old
->cap_bset
,
507 old
->cap_inheritable
);
514 /* if we have fs caps, clear dangerous personality flags */
515 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
516 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
519 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
520 * credentials unless they have the appropriate permit
522 if ((new->euid
!= old
->uid
||
523 new->egid
!= old
->gid
||
524 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
525 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
526 /* downgrade; they get no more than they had, and maybe less */
527 if (!capable(CAP_SETUID
)) {
528 new->euid
= new->uid
;
529 new->egid
= new->gid
;
531 new->cap_permitted
= cap_intersect(new->cap_permitted
,
535 new->suid
= new->fsuid
= new->euid
;
536 new->sgid
= new->fsgid
= new->egid
;
539 new->cap_effective
= new->cap_permitted
;
541 cap_clear(new->cap_effective
);
542 bprm
->cap_effective
= effective
;
545 * Audit candidate if current->cap_effective is set
547 * We do not bother to audit if 3 things are true:
548 * 1) cap_effective has all caps
550 * 3) root is supposed to have all caps (SECURE_NOROOT)
551 * Since this is just a normal root execing a process.
553 * Number 1 above might fail if you don't have a full bset, but I think
554 * that is interesting information to audit.
556 if (!cap_isclear(new->cap_effective
)) {
557 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
558 new->euid
!= 0 || new->uid
!= 0 ||
559 issecure(SECURE_NOROOT
)) {
560 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
566 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
571 * cap_bprm_secureexec - Determine whether a secure execution is required
572 * @bprm: The execution parameters
574 * Determine whether a secure execution is required, return 1 if it is, and 0
577 * The credentials have been committed by this point, and so are no longer
578 * available through @bprm->cred.
580 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
582 const struct cred
*cred
= current_cred();
584 if (cred
->uid
!= 0) {
585 if (bprm
->cap_effective
)
587 if (!cap_isclear(cred
->cap_permitted
))
591 return (cred
->euid
!= cred
->uid
||
592 cred
->egid
!= cred
->gid
);
596 * cap_inode_setxattr - Determine whether an xattr may be altered
597 * @dentry: The inode/dentry being altered
598 * @name: The name of the xattr to be changed
599 * @value: The value that the xattr will be changed to
600 * @size: The size of value
601 * @flags: The replacement flag
603 * Determine whether an xattr may be altered or set on an inode, returning 0 if
604 * permission is granted, -ve if denied.
606 * This is used to make sure security xattrs don't get updated or set by those
607 * who aren't privileged to do so.
609 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
610 const void *value
, size_t size
, int flags
)
612 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
613 if (!capable(CAP_SETFCAP
))
618 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
619 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
620 !capable(CAP_SYS_ADMIN
))
626 * cap_inode_removexattr - Determine whether an xattr may be removed
627 * @dentry: The inode/dentry being altered
628 * @name: The name of the xattr to be changed
630 * Determine whether an xattr may be removed from an inode, returning 0 if
631 * permission is granted, -ve if denied.
633 * This is used to make sure security xattrs don't get removed by those who
634 * aren't privileged to remove them.
636 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
638 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
639 if (!capable(CAP_SETFCAP
))
644 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
645 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
646 !capable(CAP_SYS_ADMIN
))
652 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
653 * a process after a call to setuid, setreuid, or setresuid.
655 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
656 * {r,e,s}uid != 0, the permitted and effective capabilities are
659 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
660 * capabilities of the process are cleared.
662 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
663 * capabilities are set to the permitted capabilities.
665 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
670 * cevans - New behaviour, Oct '99
671 * A process may, via prctl(), elect to keep its capabilities when it
672 * calls setuid() and switches away from uid==0. Both permitted and
673 * effective sets will be retained.
674 * Without this change, it was impossible for a daemon to drop only some
675 * of its privilege. The call to setuid(!=0) would drop all privileges!
676 * Keeping uid 0 is not an option because uid 0 owns too many vital
678 * Thanks to Olaf Kirch and Peter Benie for spotting this.
680 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
682 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
683 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
684 !issecure(SECURE_KEEP_CAPS
)) {
685 cap_clear(new->cap_permitted
);
686 cap_clear(new->cap_effective
);
688 if (old
->euid
== 0 && new->euid
!= 0)
689 cap_clear(new->cap_effective
);
690 if (old
->euid
!= 0 && new->euid
== 0)
691 new->cap_effective
= new->cap_permitted
;
695 * cap_task_fix_setuid - Fix up the results of setuid() call
696 * @new: The proposed credentials
697 * @old: The current task's current credentials
698 * @flags: Indications of what has changed
700 * Fix up the results of setuid() call before the credential changes are
701 * actually applied, returning 0 to grant the changes, -ve to deny them.
703 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
709 /* juggle the capabilities to follow [RES]UID changes unless
710 * otherwise suppressed */
711 if (!issecure(SECURE_NO_SETUID_FIXUP
))
712 cap_emulate_setxuid(new, old
);
716 /* juggle the capabilties to follow FSUID changes, unless
717 * otherwise suppressed
719 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
720 * if not, we might be a bit too harsh here.
722 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
723 if (old
->fsuid
== 0 && new->fsuid
!= 0)
725 cap_drop_fs_set(new->cap_effective
);
727 if (old
->fsuid
!= 0 && new->fsuid
== 0)
729 cap_raise_fs_set(new->cap_effective
,
742 * Rationale: code calling task_setscheduler, task_setioprio, and
743 * task_setnice, assumes that
744 * . if capable(cap_sys_nice), then those actions should be allowed
745 * . if not capable(cap_sys_nice), but acting on your own processes,
746 * then those actions should be allowed
747 * This is insufficient now since you can call code without suid, but
748 * yet with increased caps.
749 * So we check for increased caps on the target process.
751 static int cap_safe_nice(struct task_struct
*p
)
756 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
757 current_cred()->cap_permitted
);
760 if (!is_subset
&& !capable(CAP_SYS_NICE
))
766 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
767 * @p: The task to affect
769 * Detemine if the requested scheduler policy change is permitted for the
770 * specified task, returning 0 if permission is granted, -ve if denied.
772 int cap_task_setscheduler(struct task_struct
*p
)
774 return cap_safe_nice(p
);
778 * cap_task_ioprio - Detemine if I/O priority change is permitted
779 * @p: The task to affect
780 * @ioprio: The I/O priority to set
782 * Detemine if the requested I/O priority change is permitted for the specified
783 * task, returning 0 if permission is granted, -ve if denied.
785 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
787 return cap_safe_nice(p
);
791 * cap_task_ioprio - Detemine if task priority change is permitted
792 * @p: The task to affect
793 * @nice: The nice value to set
795 * Detemine if the requested task priority change is permitted for the
796 * specified task, returning 0 if permission is granted, -ve if denied.
798 int cap_task_setnice(struct task_struct
*p
, int nice
)
800 return cap_safe_nice(p
);
804 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
805 * the current task's bounding set. Returns 0 on success, -ve on error.
807 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
809 if (!capable(CAP_SETPCAP
))
814 cap_lower(new->cap_bset
, cap
);
819 * cap_task_prctl - Implement process control functions for this security module
820 * @option: The process control function requested
821 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
823 * Allow process control functions (sys_prctl()) to alter capabilities; may
824 * also deny access to other functions not otherwise implemented here.
826 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
827 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
828 * modules will consider performing the function.
830 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
831 unsigned long arg4
, unsigned long arg5
)
836 new = prepare_creds();
841 case PR_CAPBSET_READ
:
843 if (!cap_valid(arg2
))
845 error
= !!cap_raised(new->cap_bset
, arg2
);
848 case PR_CAPBSET_DROP
:
849 error
= cap_prctl_drop(new, arg2
);
855 * The next four prctl's remain to assist with transitioning a
856 * system from legacy UID=0 based privilege (when filesystem
857 * capabilities are not in use) to a system using filesystem
858 * capabilities only - as the POSIX.1e draft intended.
862 * PR_SET_SECUREBITS =
863 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
864 * | issecure_mask(SECURE_NOROOT)
865 * | issecure_mask(SECURE_NOROOT_LOCKED)
866 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
867 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
869 * will ensure that the current process and all of its
870 * children will be locked into a pure
871 * capability-based-privilege environment.
873 case PR_SET_SECUREBITS
:
875 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
876 & (new->securebits
^ arg2
)) /*[1]*/
877 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
878 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
879 || (cap_capable(current
, current_cred(),
880 current_cred()->user
->user_ns
, CAP_SETPCAP
,
881 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
883 * [1] no changing of bits that are locked
884 * [2] no unlocking of locks
885 * [3] no setting of unsupported bits
886 * [4] doing anything requires privilege (go read about
887 * the "sendmail capabilities bug")
890 /* cannot change a locked bit */
892 new->securebits
= arg2
;
895 case PR_GET_SECUREBITS
:
896 error
= new->securebits
;
899 case PR_GET_KEEPCAPS
:
900 if (issecure(SECURE_KEEP_CAPS
))
904 case PR_SET_KEEPCAPS
:
906 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
909 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
912 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
914 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
918 /* No functionality available - continue with default */
923 /* Functionality provided */
925 return commit_creds(new);
934 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
935 * @mm: The VM space in which the new mapping is to be made
936 * @pages: The size of the mapping
938 * Determine whether the allocation of a new virtual mapping by the current
939 * task is permitted, returning 0 if permission is granted, -ve if not.
941 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
943 int cap_sys_admin
= 0;
945 if (cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
946 SECURITY_CAP_NOAUDIT
) == 0)
948 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
952 * cap_file_mmap - check if able to map given addr
957 * @addr: address attempting to be mapped
960 * If the process is attempting to map memory below dac_mmap_min_addr they need
961 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
962 * capability security module. Returns 0 if this mapping should be allowed
965 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
966 unsigned long prot
, unsigned long flags
,
967 unsigned long addr
, unsigned long addr_only
)
971 if (addr
< dac_mmap_min_addr
) {
972 ret
= cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
974 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
976 current
->flags
|= PF_SUPERPRIV
;