2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
61 #include <linux/acpi.h>
65 #define SERIAL_AMBA_MAJOR 204
66 #define SERIAL_AMBA_MINOR 64
67 #define SERIAL_AMBA_NR UART_NR
69 #define AMBA_ISR_PASS_LIMIT 256
71 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
72 #define UART_DUMMY_DR_RX (1 << 16)
74 /* There is by now at least one vendor with differing details, so handle it */
81 bool cts_event_workaround
;
85 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
88 /* Max address offset of register in use is 0x48 */
89 #define REG_NR (0x48 >> 2)
90 #define IDX(x) (x >> 2)
92 REG_DR
= IDX(UART01x_DR
),
93 REG_RSR
= IDX(UART01x_RSR
),
94 REG_ST_DMAWM
= IDX(ST_UART011_DMAWM
),
95 REG_FR
= IDX(UART01x_FR
),
96 REG_ST_LCRH_RX
= IDX(ST_UART011_LCRH_RX
),
97 REG_ILPR
= IDX(UART01x_ILPR
),
98 REG_IBRD
= IDX(UART011_IBRD
),
99 REG_FBRD
= IDX(UART011_FBRD
),
100 REG_LCRH
= IDX(UART011_LCRH
),
101 REG_CR
= IDX(UART011_CR
),
102 REG_IFLS
= IDX(UART011_IFLS
),
103 REG_IMSC
= IDX(UART011_IMSC
),
104 REG_RIS
= IDX(UART011_RIS
),
105 REG_MIS
= IDX(UART011_MIS
),
106 REG_ICR
= IDX(UART011_ICR
),
107 REG_DMACR
= IDX(UART011_DMACR
),
110 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
112 return amba_rev(dev
) < 3 ? 16 : 32;
115 static struct vendor_data vendor_arm
= {
116 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
119 .oversampling
= false,
120 .dma_threshold
= false,
121 .cts_event_workaround
= false,
122 .always_enabled
= false,
123 .fixed_options
= false,
124 .get_fifosize
= get_fifosize_arm
,
127 static struct vendor_data vendor_sbsa
= {
128 .oversampling
= false,
129 .dma_threshold
= false,
130 .cts_event_workaround
= false,
131 .always_enabled
= true,
132 .fixed_options
= true,
135 static unsigned int get_fifosize_st(struct amba_device
*dev
)
140 static struct vendor_data vendor_st
= {
141 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
143 .lcrh_rx
= REG_ST_LCRH_RX
,
144 .oversampling
= true,
145 .dma_threshold
= true,
146 .cts_event_workaround
= true,
147 .always_enabled
= false,
148 .fixed_options
= false,
149 .get_fifosize
= get_fifosize_st
,
152 /* Deals with DMA transactions */
155 struct scatterlist sg
;
159 struct pl011_dmarx_data
{
160 struct dma_chan
*chan
;
161 struct completion complete
;
163 struct pl011_sgbuf sgbuf_a
;
164 struct pl011_sgbuf sgbuf_b
;
167 struct timer_list timer
;
168 unsigned int last_residue
;
169 unsigned long last_jiffies
;
171 unsigned int poll_rate
;
172 unsigned int poll_timeout
;
175 struct pl011_dmatx_data
{
176 struct dma_chan
*chan
;
177 struct scatterlist sg
;
183 * We wrap our port structure around the generic uart_port.
185 struct uart_amba_port
{
186 struct uart_port port
;
188 const struct vendor_data
*vendor
;
189 unsigned int dmacr
; /* dma control reg */
190 unsigned int im
; /* interrupt mask */
191 unsigned int old_status
;
192 unsigned int fifosize
; /* vendor-specific */
193 unsigned int lcrh_tx
; /* vendor-specific */
194 unsigned int lcrh_rx
; /* vendor-specific */
195 unsigned int old_cr
; /* state during shutdown */
197 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
199 #ifdef CONFIG_DMA_ENGINE
203 struct pl011_dmarx_data dmarx
;
204 struct pl011_dmatx_data dmatx
;
209 static unsigned int pl011_readw(struct uart_amba_port
*uap
, int index
)
211 WARN_ON(index
> REG_NR
);
212 return readw_relaxed(uap
->port
.membase
+ (index
<< 2));
215 static void pl011_writew(struct uart_amba_port
*uap
, int val
, int index
)
217 WARN_ON(index
> REG_NR
);
218 writew_relaxed(val
, uap
->port
.membase
+ (index
<< 2));
221 static void pl011_writeb(struct uart_amba_port
*uap
, u8 val
, int index
)
223 WARN_ON(index
> REG_NR
);
224 writeb_relaxed(val
, uap
->port
.membase
+ (index
<< 2));
228 * Reads up to 256 characters from the FIFO or until it's empty and
229 * inserts them into the TTY layer. Returns the number of characters
230 * read from the FIFO.
232 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
235 unsigned int flag
, max_count
= 256;
238 while (max_count
--) {
239 status
= pl011_readw(uap
, REG_FR
);
240 if (status
& UART01x_FR_RXFE
)
243 /* Take chars from the FIFO and update status */
244 ch
= pl011_readw(uap
, REG_DR
) |
247 uap
->port
.icount
.rx
++;
250 if (unlikely(ch
& UART_DR_ERROR
)) {
251 if (ch
& UART011_DR_BE
) {
252 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
253 uap
->port
.icount
.brk
++;
254 if (uart_handle_break(&uap
->port
))
256 } else if (ch
& UART011_DR_PE
)
257 uap
->port
.icount
.parity
++;
258 else if (ch
& UART011_DR_FE
)
259 uap
->port
.icount
.frame
++;
260 if (ch
& UART011_DR_OE
)
261 uap
->port
.icount
.overrun
++;
263 ch
&= uap
->port
.read_status_mask
;
265 if (ch
& UART011_DR_BE
)
267 else if (ch
& UART011_DR_PE
)
269 else if (ch
& UART011_DR_FE
)
273 if (uart_handle_sysrq_char(&uap
->port
, ch
& 255))
276 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
284 * All the DMA operation mode stuff goes inside this ifdef.
285 * This assumes that you have a generic DMA device interface,
286 * no custom DMA interfaces are supported.
288 #ifdef CONFIG_DMA_ENGINE
290 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
292 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
293 enum dma_data_direction dir
)
297 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
298 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
302 sg_init_table(&sg
->sg
, 1);
303 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
304 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
305 sg_dma_address(&sg
->sg
) = dma_addr
;
306 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
311 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
312 enum dma_data_direction dir
)
315 dma_free_coherent(chan
->device
->dev
,
316 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
317 sg_dma_address(&sg
->sg
));
321 static void pl011_dma_probe(struct uart_amba_port
*uap
)
323 /* DMA is the sole user of the platform data right now */
324 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
325 struct device
*dev
= uap
->port
.dev
;
326 struct dma_slave_config tx_conf
= {
327 .dst_addr
= uap
->port
.mapbase
+ REG_DR
,
328 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
329 .direction
= DMA_MEM_TO_DEV
,
330 .dst_maxburst
= uap
->fifosize
>> 1,
333 struct dma_chan
*chan
;
336 uap
->dma_probed
= true;
337 chan
= dma_request_slave_channel_reason(dev
, "tx");
339 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
340 uap
->dma_probed
= false;
344 /* We need platform data */
345 if (!plat
|| !plat
->dma_filter
) {
346 dev_info(uap
->port
.dev
, "no DMA platform data\n");
350 /* Try to acquire a generic DMA engine slave TX channel */
352 dma_cap_set(DMA_SLAVE
, mask
);
354 chan
= dma_request_channel(mask
, plat
->dma_filter
,
357 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
362 dmaengine_slave_config(chan
, &tx_conf
);
363 uap
->dmatx
.chan
= chan
;
365 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
366 dma_chan_name(uap
->dmatx
.chan
));
368 /* Optionally make use of an RX channel as well */
369 chan
= dma_request_slave_channel(dev
, "rx");
371 if (!chan
&& plat
->dma_rx_param
) {
372 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
375 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
381 struct dma_slave_config rx_conf
= {
382 .src_addr
= uap
->port
.mapbase
+ REG_DR
,
383 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
384 .direction
= DMA_DEV_TO_MEM
,
385 .src_maxburst
= uap
->fifosize
>> 2,
388 struct dma_slave_caps caps
;
391 * Some DMA controllers provide information on their capabilities.
392 * If the controller does, check for suitable residue processing
393 * otherwise assime all is well.
395 if (0 == dma_get_slave_caps(chan
, &caps
)) {
396 if (caps
.residue_granularity
==
397 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
398 dma_release_channel(chan
);
399 dev_info(uap
->port
.dev
,
400 "RX DMA disabled - no residue processing\n");
404 dmaengine_slave_config(chan
, &rx_conf
);
405 uap
->dmarx
.chan
= chan
;
407 uap
->dmarx
.auto_poll_rate
= false;
408 if (plat
&& plat
->dma_rx_poll_enable
) {
409 /* Set poll rate if specified. */
410 if (plat
->dma_rx_poll_rate
) {
411 uap
->dmarx
.auto_poll_rate
= false;
412 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
415 * 100 ms defaults to poll rate if not
416 * specified. This will be adjusted with
417 * the baud rate at set_termios.
419 uap
->dmarx
.auto_poll_rate
= true;
420 uap
->dmarx
.poll_rate
= 100;
422 /* 3 secs defaults poll_timeout if not specified. */
423 if (plat
->dma_rx_poll_timeout
)
424 uap
->dmarx
.poll_timeout
=
425 plat
->dma_rx_poll_timeout
;
427 uap
->dmarx
.poll_timeout
= 3000;
428 } else if (!plat
&& dev
->of_node
) {
429 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
430 dev
->of_node
, "auto-poll");
431 if (uap
->dmarx
.auto_poll_rate
) {
434 if (0 == of_property_read_u32(dev
->of_node
,
436 uap
->dmarx
.poll_rate
= x
;
438 uap
->dmarx
.poll_rate
= 100;
439 if (0 == of_property_read_u32(dev
->of_node
,
440 "poll-timeout-ms", &x
))
441 uap
->dmarx
.poll_timeout
= x
;
443 uap
->dmarx
.poll_timeout
= 3000;
446 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
447 dma_chan_name(uap
->dmarx
.chan
));
451 static void pl011_dma_remove(struct uart_amba_port
*uap
)
454 dma_release_channel(uap
->dmatx
.chan
);
456 dma_release_channel(uap
->dmarx
.chan
);
459 /* Forward declare these for the refill routine */
460 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
461 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
464 * The current DMA TX buffer has been sent.
465 * Try to queue up another DMA buffer.
467 static void pl011_dma_tx_callback(void *data
)
469 struct uart_amba_port
*uap
= data
;
470 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
474 spin_lock_irqsave(&uap
->port
.lock
, flags
);
475 if (uap
->dmatx
.queued
)
476 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
480 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
481 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
484 * If TX DMA was disabled, it means that we've stopped the DMA for
485 * some reason (eg, XOFF received, or we want to send an X-char.)
487 * Note: we need to be careful here of a potential race between DMA
488 * and the rest of the driver - if the driver disables TX DMA while
489 * a TX buffer completing, we must update the tx queued status to
490 * get further refills (hence we check dmacr).
492 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
493 uart_circ_empty(&uap
->port
.state
->xmit
)) {
494 uap
->dmatx
.queued
= false;
495 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
499 if (pl011_dma_tx_refill(uap
) <= 0)
501 * We didn't queue a DMA buffer for some reason, but we
502 * have data pending to be sent. Re-enable the TX IRQ.
504 pl011_start_tx_pio(uap
);
506 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
510 * Try to refill the TX DMA buffer.
511 * Locking: called with port lock held and IRQs disabled.
513 * 1 if we queued up a TX DMA buffer.
514 * 0 if we didn't want to handle this by DMA
517 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
519 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
520 struct dma_chan
*chan
= dmatx
->chan
;
521 struct dma_device
*dma_dev
= chan
->device
;
522 struct dma_async_tx_descriptor
*desc
;
523 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
527 * Try to avoid the overhead involved in using DMA if the
528 * transaction fits in the first half of the FIFO, by using
529 * the standard interrupt handling. This ensures that we
530 * issue a uart_write_wakeup() at the appropriate time.
532 count
= uart_circ_chars_pending(xmit
);
533 if (count
< (uap
->fifosize
>> 1)) {
534 uap
->dmatx
.queued
= false;
539 * Bodge: don't send the last character by DMA, as this
540 * will prevent XON from notifying us to restart DMA.
544 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
545 if (count
> PL011_DMA_BUFFER_SIZE
)
546 count
= PL011_DMA_BUFFER_SIZE
;
548 if (xmit
->tail
< xmit
->head
)
549 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
551 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
556 second
= count
- first
;
558 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
560 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
563 dmatx
->sg
.length
= count
;
565 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
566 uap
->dmatx
.queued
= false;
567 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
571 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
572 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
574 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
575 uap
->dmatx
.queued
= false;
577 * If DMA cannot be used right now, we complete this
578 * transaction via IRQ and let the TTY layer retry.
580 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
584 /* Some data to go along to the callback */
585 desc
->callback
= pl011_dma_tx_callback
;
586 desc
->callback_param
= uap
;
588 /* All errors should happen at prepare time */
589 dmaengine_submit(desc
);
591 /* Fire the DMA transaction */
592 dma_dev
->device_issue_pending(chan
);
594 uap
->dmacr
|= UART011_TXDMAE
;
595 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
596 uap
->dmatx
.queued
= true;
599 * Now we know that DMA will fire, so advance the ring buffer
600 * with the stuff we just dispatched.
602 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
603 uap
->port
.icount
.tx
+= count
;
605 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
606 uart_write_wakeup(&uap
->port
);
612 * We received a transmit interrupt without a pending X-char but with
613 * pending characters.
614 * Locking: called with port lock held and IRQs disabled.
616 * false if we want to use PIO to transmit
617 * true if we queued a DMA buffer
619 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
621 if (!uap
->using_tx_dma
)
625 * If we already have a TX buffer queued, but received a
626 * TX interrupt, it will be because we've just sent an X-char.
627 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
629 if (uap
->dmatx
.queued
) {
630 uap
->dmacr
|= UART011_TXDMAE
;
631 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
632 uap
->im
&= ~UART011_TXIM
;
633 pl011_writew(uap
, uap
->im
, REG_IMSC
);
638 * We don't have a TX buffer queued, so try to queue one.
639 * If we successfully queued a buffer, mask the TX IRQ.
641 if (pl011_dma_tx_refill(uap
) > 0) {
642 uap
->im
&= ~UART011_TXIM
;
643 pl011_writew(uap
, uap
->im
, REG_IMSC
);
650 * Stop the DMA transmit (eg, due to received XOFF).
651 * Locking: called with port lock held and IRQs disabled.
653 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
655 if (uap
->dmatx
.queued
) {
656 uap
->dmacr
&= ~UART011_TXDMAE
;
657 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
662 * Try to start a DMA transmit, or in the case of an XON/OFF
663 * character queued for send, try to get that character out ASAP.
664 * Locking: called with port lock held and IRQs disabled.
666 * false if we want the TX IRQ to be enabled
667 * true if we have a buffer queued
669 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
673 if (!uap
->using_tx_dma
)
676 if (!uap
->port
.x_char
) {
677 /* no X-char, try to push chars out in DMA mode */
680 if (!uap
->dmatx
.queued
) {
681 if (pl011_dma_tx_refill(uap
) > 0) {
682 uap
->im
&= ~UART011_TXIM
;
683 pl011_writew(uap
, uap
->im
, REG_IMSC
);
686 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
687 uap
->dmacr
|= UART011_TXDMAE
;
688 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
694 * We have an X-char to send. Disable DMA to prevent it loading
695 * the TX fifo, and then see if we can stuff it into the FIFO.
698 uap
->dmacr
&= ~UART011_TXDMAE
;
699 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
701 if (pl011_readw(uap
, REG_FR
) & UART01x_FR_TXFF
) {
703 * No space in the FIFO, so enable the transmit interrupt
704 * so we know when there is space. Note that once we've
705 * loaded the character, we should just re-enable DMA.
710 pl011_writew(uap
, uap
->port
.x_char
, REG_DR
);
711 uap
->port
.icount
.tx
++;
712 uap
->port
.x_char
= 0;
714 /* Success - restore the DMA state */
716 pl011_writew(uap
, dmacr
, REG_DMACR
);
722 * Flush the transmit buffer.
723 * Locking: called with port lock held and IRQs disabled.
725 static void pl011_dma_flush_buffer(struct uart_port
*port
)
726 __releases(&uap
->port
.lock
)
727 __acquires(&uap
->port
.lock
)
729 struct uart_amba_port
*uap
=
730 container_of(port
, struct uart_amba_port
, port
);
732 if (!uap
->using_tx_dma
)
735 /* Avoid deadlock with the DMA engine callback */
736 spin_unlock(&uap
->port
.lock
);
737 dmaengine_terminate_all(uap
->dmatx
.chan
);
738 spin_lock(&uap
->port
.lock
);
739 if (uap
->dmatx
.queued
) {
740 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
742 uap
->dmatx
.queued
= false;
743 uap
->dmacr
&= ~UART011_TXDMAE
;
744 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
748 static void pl011_dma_rx_callback(void *data
);
750 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
752 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
753 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
754 struct dma_async_tx_descriptor
*desc
;
755 struct pl011_sgbuf
*sgbuf
;
760 /* Start the RX DMA job */
761 sgbuf
= uap
->dmarx
.use_buf_b
?
762 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
763 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
765 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
767 * If the DMA engine is busy and cannot prepare a
768 * channel, no big deal, the driver will fall back
769 * to interrupt mode as a result of this error code.
772 uap
->dmarx
.running
= false;
773 dmaengine_terminate_all(rxchan
);
777 /* Some data to go along to the callback */
778 desc
->callback
= pl011_dma_rx_callback
;
779 desc
->callback_param
= uap
;
780 dmarx
->cookie
= dmaengine_submit(desc
);
781 dma_async_issue_pending(rxchan
);
783 uap
->dmacr
|= UART011_RXDMAE
;
784 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
785 uap
->dmarx
.running
= true;
787 uap
->im
&= ~UART011_RXIM
;
788 pl011_writew(uap
, uap
->im
, REG_IMSC
);
794 * This is called when either the DMA job is complete, or
795 * the FIFO timeout interrupt occurred. This must be called
796 * with the port spinlock uap->port.lock held.
798 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
799 u32 pending
, bool use_buf_b
,
802 struct tty_port
*port
= &uap
->port
.state
->port
;
803 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
804 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
806 u32 fifotaken
= 0; /* only used for vdbg() */
808 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
811 if (uap
->dmarx
.poll_rate
) {
812 /* The data can be taken by polling */
813 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
814 /* Recalculate the pending size */
815 if (pending
>= dmataken
)
819 /* Pick the remain data from the DMA */
823 * First take all chars in the DMA pipe, then look in the FIFO.
824 * Note that tty_insert_flip_buf() tries to take as many chars
827 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
830 uap
->port
.icount
.rx
+= dma_count
;
831 if (dma_count
< pending
)
832 dev_warn(uap
->port
.dev
,
833 "couldn't insert all characters (TTY is full?)\n");
836 /* Reset the last_residue for Rx DMA poll */
837 if (uap
->dmarx
.poll_rate
)
838 dmarx
->last_residue
= sgbuf
->sg
.length
;
841 * Only continue with trying to read the FIFO if all DMA chars have
844 if (dma_count
== pending
&& readfifo
) {
845 /* Clear any error flags */
847 UART011_OEIS
| UART011_BEIS
| UART011_PEIS
848 | UART011_FEIS
, REG_ICR
);
851 * If we read all the DMA'd characters, and we had an
852 * incomplete buffer, that could be due to an rx error, or
853 * maybe we just timed out. Read any pending chars and check
856 * Error conditions will only occur in the FIFO, these will
857 * trigger an immediate interrupt and stop the DMA job, so we
858 * will always find the error in the FIFO, never in the DMA
861 fifotaken
= pl011_fifo_to_tty(uap
);
864 spin_unlock(&uap
->port
.lock
);
865 dev_vdbg(uap
->port
.dev
,
866 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
867 dma_count
, fifotaken
);
868 tty_flip_buffer_push(port
);
869 spin_lock(&uap
->port
.lock
);
872 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
874 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
875 struct dma_chan
*rxchan
= dmarx
->chan
;
876 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
877 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
879 struct dma_tx_state state
;
880 enum dma_status dmastat
;
883 * Pause the transfer so we can trust the current counter,
884 * do this before we pause the PL011 block, else we may
887 if (dmaengine_pause(rxchan
))
888 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
889 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
890 dmarx
->cookie
, &state
);
891 if (dmastat
!= DMA_PAUSED
)
892 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
894 /* Disable RX DMA - incoming data will wait in the FIFO */
895 uap
->dmacr
&= ~UART011_RXDMAE
;
896 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
897 uap
->dmarx
.running
= false;
899 pending
= sgbuf
->sg
.length
- state
.residue
;
900 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
901 /* Then we terminate the transfer - we now know our residue */
902 dmaengine_terminate_all(rxchan
);
905 * This will take the chars we have so far and insert
906 * into the framework.
908 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
910 /* Switch buffer & re-trigger DMA job */
911 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
912 if (pl011_dma_rx_trigger_dma(uap
)) {
913 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
914 "fall back to interrupt mode\n");
915 uap
->im
|= UART011_RXIM
;
916 pl011_writew(uap
, uap
->im
, REG_IMSC
);
920 static void pl011_dma_rx_callback(void *data
)
922 struct uart_amba_port
*uap
= data
;
923 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
924 struct dma_chan
*rxchan
= dmarx
->chan
;
925 bool lastbuf
= dmarx
->use_buf_b
;
926 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
927 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
929 struct dma_tx_state state
;
933 * This completion interrupt occurs typically when the
934 * RX buffer is totally stuffed but no timeout has yet
935 * occurred. When that happens, we just want the RX
936 * routine to flush out the secondary DMA buffer while
937 * we immediately trigger the next DMA job.
939 spin_lock_irq(&uap
->port
.lock
);
941 * Rx data can be taken by the UART interrupts during
942 * the DMA irq handler. So we check the residue here.
944 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
945 pending
= sgbuf
->sg
.length
- state
.residue
;
946 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
947 /* Then we terminate the transfer - we now know our residue */
948 dmaengine_terminate_all(rxchan
);
950 uap
->dmarx
.running
= false;
951 dmarx
->use_buf_b
= !lastbuf
;
952 ret
= pl011_dma_rx_trigger_dma(uap
);
954 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
955 spin_unlock_irq(&uap
->port
.lock
);
957 * Do this check after we picked the DMA chars so we don't
958 * get some IRQ immediately from RX.
961 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
962 "fall back to interrupt mode\n");
963 uap
->im
|= UART011_RXIM
;
964 pl011_writew(uap
, uap
->im
, REG_IMSC
);
969 * Stop accepting received characters, when we're shutting down or
970 * suspending this port.
971 * Locking: called with port lock held and IRQs disabled.
973 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
975 /* FIXME. Just disable the DMA enable */
976 uap
->dmacr
&= ~UART011_RXDMAE
;
977 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
981 * Timer handler for Rx DMA polling.
982 * Every polling, It checks the residue in the dma buffer and transfer
983 * data to the tty. Also, last_residue is updated for the next polling.
985 static void pl011_dma_rx_poll(unsigned long args
)
987 struct uart_amba_port
*uap
= (struct uart_amba_port
*)args
;
988 struct tty_port
*port
= &uap
->port
.state
->port
;
989 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
990 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
991 unsigned long flags
= 0;
992 unsigned int dmataken
= 0;
993 unsigned int size
= 0;
994 struct pl011_sgbuf
*sgbuf
;
996 struct dma_tx_state state
;
998 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
999 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1000 if (likely(state
.residue
< dmarx
->last_residue
)) {
1001 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1002 size
= dmarx
->last_residue
- state
.residue
;
1003 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1005 if (dma_count
== size
)
1006 dmarx
->last_residue
= state
.residue
;
1007 dmarx
->last_jiffies
= jiffies
;
1009 tty_flip_buffer_push(port
);
1012 * If no data is received in poll_timeout, the driver will fall back
1013 * to interrupt mode. We will retrigger DMA at the first interrupt.
1015 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1016 > uap
->dmarx
.poll_timeout
) {
1018 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1019 pl011_dma_rx_stop(uap
);
1020 uap
->im
|= UART011_RXIM
;
1021 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1022 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1024 uap
->dmarx
.running
= false;
1025 dmaengine_terminate_all(rxchan
);
1026 del_timer(&uap
->dmarx
.timer
);
1028 mod_timer(&uap
->dmarx
.timer
,
1029 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1033 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1037 if (!uap
->dma_probed
)
1038 pl011_dma_probe(uap
);
1040 if (!uap
->dmatx
.chan
)
1043 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1044 if (!uap
->dmatx
.buf
) {
1045 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1046 uap
->port
.fifosize
= uap
->fifosize
;
1050 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1052 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1053 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1054 uap
->using_tx_dma
= true;
1056 if (!uap
->dmarx
.chan
)
1059 /* Allocate and map DMA RX buffers */
1060 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1063 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1064 "RX buffer A", ret
);
1068 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1071 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1072 "RX buffer B", ret
);
1073 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1078 uap
->using_rx_dma
= true;
1081 /* Turn on DMA error (RX/TX will be enabled on demand) */
1082 uap
->dmacr
|= UART011_DMAONERR
;
1083 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
1086 * ST Micro variants has some specific dma burst threshold
1087 * compensation. Set this to 16 bytes, so burst will only
1088 * be issued above/below 16 bytes.
1090 if (uap
->vendor
->dma_threshold
)
1092 ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1095 if (uap
->using_rx_dma
) {
1096 if (pl011_dma_rx_trigger_dma(uap
))
1097 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1098 "RX DMA job, fall back to interrupt mode\n");
1099 if (uap
->dmarx
.poll_rate
) {
1100 init_timer(&(uap
->dmarx
.timer
));
1101 uap
->dmarx
.timer
.function
= pl011_dma_rx_poll
;
1102 uap
->dmarx
.timer
.data
= (unsigned long)uap
;
1103 mod_timer(&uap
->dmarx
.timer
,
1105 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1106 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1107 uap
->dmarx
.last_jiffies
= jiffies
;
1112 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1114 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1117 /* Disable RX and TX DMA */
1118 while (pl011_readw(uap
, REG_FR
) & UART01x_FR_BUSY
)
1121 spin_lock_irq(&uap
->port
.lock
);
1122 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1123 pl011_writew(uap
, uap
->dmacr
, REG_DMACR
);
1124 spin_unlock_irq(&uap
->port
.lock
);
1126 if (uap
->using_tx_dma
) {
1127 /* In theory, this should already be done by pl011_dma_flush_buffer */
1128 dmaengine_terminate_all(uap
->dmatx
.chan
);
1129 if (uap
->dmatx
.queued
) {
1130 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1132 uap
->dmatx
.queued
= false;
1135 kfree(uap
->dmatx
.buf
);
1136 uap
->using_tx_dma
= false;
1139 if (uap
->using_rx_dma
) {
1140 dmaengine_terminate_all(uap
->dmarx
.chan
);
1141 /* Clean up the RX DMA */
1142 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1143 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1144 if (uap
->dmarx
.poll_rate
)
1145 del_timer_sync(&uap
->dmarx
.timer
);
1146 uap
->using_rx_dma
= false;
1150 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1152 return uap
->using_rx_dma
;
1155 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1157 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1161 /* Blank functions if the DMA engine is not available */
1162 static inline void pl011_dma_probe(struct uart_amba_port
*uap
)
1166 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1170 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1174 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1178 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1183 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1187 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1192 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1196 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1200 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1205 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1210 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1215 #define pl011_dma_flush_buffer NULL
1218 static void pl011_stop_tx(struct uart_port
*port
)
1220 struct uart_amba_port
*uap
=
1221 container_of(port
, struct uart_amba_port
, port
);
1223 uap
->im
&= ~UART011_TXIM
;
1224 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1225 pl011_dma_tx_stop(uap
);
1228 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1230 /* Start TX with programmed I/O only (no DMA) */
1231 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1233 uap
->im
|= UART011_TXIM
;
1234 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1235 pl011_tx_chars(uap
, false);
1238 static void pl011_start_tx(struct uart_port
*port
)
1240 struct uart_amba_port
*uap
=
1241 container_of(port
, struct uart_amba_port
, port
);
1243 if (!pl011_dma_tx_start(uap
))
1244 pl011_start_tx_pio(uap
);
1247 static void pl011_stop_rx(struct uart_port
*port
)
1249 struct uart_amba_port
*uap
=
1250 container_of(port
, struct uart_amba_port
, port
);
1252 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1253 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1254 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1256 pl011_dma_rx_stop(uap
);
1259 static void pl011_enable_ms(struct uart_port
*port
)
1261 struct uart_amba_port
*uap
=
1262 container_of(port
, struct uart_amba_port
, port
);
1264 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1265 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1268 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1269 __releases(&uap
->port
.lock
)
1270 __acquires(&uap
->port
.lock
)
1272 pl011_fifo_to_tty(uap
);
1274 spin_unlock(&uap
->port
.lock
);
1275 tty_flip_buffer_push(&uap
->port
.state
->port
);
1277 * If we were temporarily out of DMA mode for a while,
1278 * attempt to switch back to DMA mode again.
1280 if (pl011_dma_rx_available(uap
)) {
1281 if (pl011_dma_rx_trigger_dma(uap
)) {
1282 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1283 "fall back to interrupt mode again\n");
1284 uap
->im
|= UART011_RXIM
;
1285 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1287 #ifdef CONFIG_DMA_ENGINE
1288 /* Start Rx DMA poll */
1289 if (uap
->dmarx
.poll_rate
) {
1290 uap
->dmarx
.last_jiffies
= jiffies
;
1291 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1292 mod_timer(&uap
->dmarx
.timer
,
1294 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1299 spin_lock(&uap
->port
.lock
);
1302 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1305 if (unlikely(!from_irq
) &&
1306 pl011_readw(uap
, REG_FR
) & UART01x_FR_TXFF
)
1307 return false; /* unable to transmit character */
1309 pl011_writew(uap
, c
, REG_DR
);
1310 uap
->port
.icount
.tx
++;
1315 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1317 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1318 int count
= uap
->fifosize
>> 1;
1320 if (uap
->port
.x_char
) {
1321 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1323 uap
->port
.x_char
= 0;
1326 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1327 pl011_stop_tx(&uap
->port
);
1331 /* If we are using DMA mode, try to send some characters. */
1332 if (pl011_dma_tx_irq(uap
))
1336 if (likely(from_irq
) && count
-- == 0)
1339 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1342 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1343 } while (!uart_circ_empty(xmit
));
1345 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1346 uart_write_wakeup(&uap
->port
);
1348 if (uart_circ_empty(xmit
))
1349 pl011_stop_tx(&uap
->port
);
1352 static void pl011_modem_status(struct uart_amba_port
*uap
)
1354 unsigned int status
, delta
;
1356 status
= pl011_readw(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1358 delta
= status
^ uap
->old_status
;
1359 uap
->old_status
= status
;
1364 if (delta
& UART01x_FR_DCD
)
1365 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1367 if (delta
& UART01x_FR_DSR
)
1368 uap
->port
.icount
.dsr
++;
1370 if (delta
& UART01x_FR_CTS
)
1371 uart_handle_cts_change(&uap
->port
, status
& UART01x_FR_CTS
);
1373 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1376 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1378 unsigned int dummy_read
;
1380 if (!uap
->vendor
->cts_event_workaround
)
1383 /* workaround to make sure that all bits are unlocked.. */
1384 pl011_writew(uap
, 0x00, REG_ICR
);
1387 * WA: introduce 26ns(1 uart clk) delay before W1C;
1388 * single apb access will incur 2 pclk(133.12Mhz) delay,
1389 * so add 2 dummy reads
1391 dummy_read
= pl011_readw(uap
, REG_ICR
);
1392 dummy_read
= pl011_readw(uap
, REG_ICR
);
1395 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1397 struct uart_amba_port
*uap
= dev_id
;
1398 unsigned long flags
;
1399 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1403 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1404 imsc
= pl011_readw(uap
, REG_IMSC
);
1405 status
= pl011_readw(uap
, REG_RIS
) & imsc
;
1408 check_apply_cts_event_workaround(uap
);
1409 pl011_writew(uap
, status
& ~(UART011_TXIS
|UART011_RTIS
|
1410 UART011_RXIS
), REG_ICR
);
1412 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1413 if (pl011_dma_rx_running(uap
))
1414 pl011_dma_rx_irq(uap
);
1416 pl011_rx_chars(uap
);
1418 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1419 UART011_CTSMIS
|UART011_RIMIS
))
1420 pl011_modem_status(uap
);
1421 if (status
& UART011_TXIS
)
1422 pl011_tx_chars(uap
, true);
1424 if (pass_counter
-- == 0)
1427 status
= pl011_readw(uap
, REG_RIS
) & imsc
;
1428 } while (status
!= 0);
1432 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1434 return IRQ_RETVAL(handled
);
1437 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1439 struct uart_amba_port
*uap
=
1440 container_of(port
, struct uart_amba_port
, port
);
1441 unsigned int status
= pl011_readw(uap
, REG_FR
);
1442 return status
& (UART01x_FR_BUSY
|UART01x_FR_TXFF
) ? 0 : TIOCSER_TEMT
;
1445 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1447 struct uart_amba_port
*uap
=
1448 container_of(port
, struct uart_amba_port
, port
);
1449 unsigned int result
= 0;
1450 unsigned int status
= pl011_readw(uap
, REG_FR
);
1452 #define TIOCMBIT(uartbit, tiocmbit) \
1453 if (status & uartbit) \
1456 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1457 TIOCMBIT(UART01x_FR_DSR
, TIOCM_DSR
);
1458 TIOCMBIT(UART01x_FR_CTS
, TIOCM_CTS
);
1459 TIOCMBIT(UART011_FR_RI
, TIOCM_RNG
);
1464 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1466 struct uart_amba_port
*uap
=
1467 container_of(port
, struct uart_amba_port
, port
);
1470 cr
= pl011_readw(uap
, REG_CR
);
1472 #define TIOCMBIT(tiocmbit, uartbit) \
1473 if (mctrl & tiocmbit) \
1478 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1479 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1480 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1481 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1482 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1485 /* We need to disable auto-RTS if we want to turn RTS off */
1486 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1490 pl011_writew(uap
, cr
, REG_CR
);
1493 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1495 struct uart_amba_port
*uap
=
1496 container_of(port
, struct uart_amba_port
, port
);
1497 unsigned long flags
;
1500 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1501 lcr_h
= pl011_readw(uap
, uap
->lcrh_tx
);
1502 if (break_state
== -1)
1503 lcr_h
|= UART01x_LCRH_BRK
;
1505 lcr_h
&= ~UART01x_LCRH_BRK
;
1506 pl011_writew(uap
, lcr_h
, uap
->lcrh_tx
);
1507 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1510 #ifdef CONFIG_CONSOLE_POLL
1512 static void pl011_quiesce_irqs(struct uart_port
*port
)
1514 struct uart_amba_port
*uap
=
1515 container_of(port
, struct uart_amba_port
, port
);
1517 pl011_writew(uap
, pl011_readw(uap
, REG_MIS
), REG_ICR
);
1519 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1520 * we simply mask it. start_tx() will unmask it.
1522 * Note we can race with start_tx(), and if the race happens, the
1523 * polling user might get another interrupt just after we clear it.
1524 * But it should be OK and can happen even w/o the race, e.g.
1525 * controller immediately got some new data and raised the IRQ.
1527 * And whoever uses polling routines assumes that it manages the device
1528 * (including tx queue), so we're also fine with start_tx()'s caller
1531 pl011_writew(uap
, pl011_readw(uap
, REG_IMSC
) & ~UART011_TXIM
, REG_IMSC
);
1534 static int pl011_get_poll_char(struct uart_port
*port
)
1536 struct uart_amba_port
*uap
=
1537 container_of(port
, struct uart_amba_port
, port
);
1538 unsigned int status
;
1541 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1544 pl011_quiesce_irqs(port
);
1546 status
= pl011_readw(uap
, REG_FR
);
1547 if (status
& UART01x_FR_RXFE
)
1548 return NO_POLL_CHAR
;
1550 return pl011_readw(uap
, REG_DR
);
1553 static void pl011_put_poll_char(struct uart_port
*port
,
1556 struct uart_amba_port
*uap
=
1557 container_of(port
, struct uart_amba_port
, port
);
1559 while (pl011_readw(uap
, REG_FR
) & UART01x_FR_TXFF
)
1562 pl011_writew(uap
, ch
, REG_DR
);
1565 #endif /* CONFIG_CONSOLE_POLL */
1567 static int pl011_hwinit(struct uart_port
*port
)
1569 struct uart_amba_port
*uap
=
1570 container_of(port
, struct uart_amba_port
, port
);
1573 /* Optionaly enable pins to be muxed in and configured */
1574 pinctrl_pm_select_default_state(port
->dev
);
1577 * Try to enable the clock producer.
1579 retval
= clk_prepare_enable(uap
->clk
);
1583 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1585 /* Clear pending error and receive interrupts */
1586 pl011_writew(uap
, UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1587 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
, REG_ICR
);
1590 * Save interrupts enable mask, and enable RX interrupts in case if
1591 * the interrupt is used for NMI entry.
1593 uap
->im
= pl011_readw(uap
, REG_IMSC
);
1594 pl011_writew(uap
, UART011_RTIM
| UART011_RXIM
, REG_IMSC
);
1596 if (dev_get_platdata(uap
->port
.dev
)) {
1597 struct amba_pl011_data
*plat
;
1599 plat
= dev_get_platdata(uap
->port
.dev
);
1606 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1608 pl011_writew(uap
, lcr_h
, uap
->lcrh_rx
);
1609 if (uap
->lcrh_rx
!= uap
->lcrh_tx
) {
1612 * Wait 10 PCLKs before writing LCRH_TX register,
1613 * to get this delay write read only register 10 times
1615 for (i
= 0; i
< 10; ++i
)
1616 pl011_writew(uap
, 0xff, REG_MIS
);
1617 pl011_writew(uap
, lcr_h
, uap
->lcrh_tx
);
1621 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1623 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1625 return request_irq(uap
->port
.irq
, pl011_int
, 0, "uart-pl011", uap
);
1629 * Enable interrupts, only timeouts when using DMA
1630 * if initial RX DMA job failed, start in interrupt mode
1633 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1635 spin_lock_irq(&uap
->port
.lock
);
1637 /* Clear out any spuriously appearing RX interrupts */
1638 pl011_writew(uap
, UART011_RTIS
| UART011_RXIS
, REG_ICR
);
1639 uap
->im
= UART011_RTIM
;
1640 if (!pl011_dma_rx_running(uap
))
1641 uap
->im
|= UART011_RXIM
;
1642 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1643 spin_unlock_irq(&uap
->port
.lock
);
1646 static int pl011_startup(struct uart_port
*port
)
1648 struct uart_amba_port
*uap
=
1649 container_of(port
, struct uart_amba_port
, port
);
1653 retval
= pl011_hwinit(port
);
1657 retval
= pl011_allocate_irq(uap
);
1661 pl011_writew(uap
, uap
->vendor
->ifls
, REG_IFLS
);
1663 spin_lock_irq(&uap
->port
.lock
);
1665 /* restore RTS and DTR */
1666 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1667 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1668 pl011_writew(uap
, cr
, REG_CR
);
1670 spin_unlock_irq(&uap
->port
.lock
);
1673 * initialise the old status of the modem signals
1675 uap
->old_status
= pl011_readw(uap
, REG_FR
) &
1676 UART01x_FR_MODEM_ANY
;
1679 pl011_dma_startup(uap
);
1681 pl011_enable_interrupts(uap
);
1686 clk_disable_unprepare(uap
->clk
);
1690 static int sbsa_uart_startup(struct uart_port
*port
)
1692 struct uart_amba_port
*uap
=
1693 container_of(port
, struct uart_amba_port
, port
);
1696 retval
= pl011_hwinit(port
);
1700 retval
= pl011_allocate_irq(uap
);
1704 /* The SBSA UART does not support any modem status lines. */
1705 uap
->old_status
= 0;
1707 pl011_enable_interrupts(uap
);
1712 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1717 val
= pl011_readw(uap
, lcrh
);
1718 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1719 pl011_writew(uap
, val
, lcrh
);
1723 * disable the port. It should not disable RTS and DTR.
1724 * Also RTS and DTR state should be preserved to restore
1725 * it during startup().
1727 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1731 uap
->autorts
= false;
1732 spin_lock_irq(&uap
->port
.lock
);
1733 cr
= pl011_readw(uap
, REG_CR
);
1735 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1736 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1737 pl011_writew(uap
, cr
, REG_CR
);
1738 spin_unlock_irq(&uap
->port
.lock
);
1741 * disable break condition and fifos
1743 pl011_shutdown_channel(uap
, uap
->lcrh_rx
);
1744 if (uap
->lcrh_rx
!= uap
->lcrh_tx
)
1745 pl011_shutdown_channel(uap
, uap
->lcrh_tx
);
1748 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1750 spin_lock_irq(&uap
->port
.lock
);
1752 /* mask all interrupts and clear all pending ones */
1754 pl011_writew(uap
, uap
->im
, REG_IMSC
);
1755 pl011_writew(0xffff, REG_ICR
);
1757 spin_unlock_irq(&uap
->port
.lock
);
1760 static void pl011_shutdown(struct uart_port
*port
)
1762 struct uart_amba_port
*uap
=
1763 container_of(port
, struct uart_amba_port
, port
);
1765 pl011_disable_interrupts(uap
);
1767 pl011_dma_shutdown(uap
);
1769 free_irq(uap
->port
.irq
, uap
);
1771 pl011_disable_uart(uap
);
1774 * Shut down the clock producer
1776 clk_disable_unprepare(uap
->clk
);
1777 /* Optionally let pins go into sleep states */
1778 pinctrl_pm_select_sleep_state(port
->dev
);
1780 if (dev_get_platdata(uap
->port
.dev
)) {
1781 struct amba_pl011_data
*plat
;
1783 plat
= dev_get_platdata(uap
->port
.dev
);
1788 if (uap
->port
.ops
->flush_buffer
)
1789 uap
->port
.ops
->flush_buffer(port
);
1792 static void sbsa_uart_shutdown(struct uart_port
*port
)
1794 struct uart_amba_port
*uap
=
1795 container_of(port
, struct uart_amba_port
, port
);
1797 pl011_disable_interrupts(uap
);
1799 free_irq(uap
->port
.irq
, uap
);
1801 if (uap
->port
.ops
->flush_buffer
)
1802 uap
->port
.ops
->flush_buffer(port
);
1806 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1808 port
->read_status_mask
= UART011_DR_OE
| 255;
1809 if (termios
->c_iflag
& INPCK
)
1810 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1811 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1812 port
->read_status_mask
|= UART011_DR_BE
;
1815 * Characters to ignore
1817 port
->ignore_status_mask
= 0;
1818 if (termios
->c_iflag
& IGNPAR
)
1819 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1820 if (termios
->c_iflag
& IGNBRK
) {
1821 port
->ignore_status_mask
|= UART011_DR_BE
;
1823 * If we're ignoring parity and break indicators,
1824 * ignore overruns too (for real raw support).
1826 if (termios
->c_iflag
& IGNPAR
)
1827 port
->ignore_status_mask
|= UART011_DR_OE
;
1831 * Ignore all characters if CREAD is not set.
1833 if ((termios
->c_cflag
& CREAD
) == 0)
1834 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1838 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1839 struct ktermios
*old
)
1841 struct uart_amba_port
*uap
=
1842 container_of(port
, struct uart_amba_port
, port
);
1843 unsigned int lcr_h
, old_cr
;
1844 unsigned long flags
;
1845 unsigned int baud
, quot
, clkdiv
;
1847 if (uap
->vendor
->oversampling
)
1853 * Ask the core to calculate the divisor for us.
1855 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1856 port
->uartclk
/ clkdiv
);
1857 #ifdef CONFIG_DMA_ENGINE
1859 * Adjust RX DMA polling rate with baud rate if not specified.
1861 if (uap
->dmarx
.auto_poll_rate
)
1862 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1865 if (baud
> port
->uartclk
/16)
1866 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1868 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1870 switch (termios
->c_cflag
& CSIZE
) {
1872 lcr_h
= UART01x_LCRH_WLEN_5
;
1875 lcr_h
= UART01x_LCRH_WLEN_6
;
1878 lcr_h
= UART01x_LCRH_WLEN_7
;
1881 lcr_h
= UART01x_LCRH_WLEN_8
;
1884 if (termios
->c_cflag
& CSTOPB
)
1885 lcr_h
|= UART01x_LCRH_STP2
;
1886 if (termios
->c_cflag
& PARENB
) {
1887 lcr_h
|= UART01x_LCRH_PEN
;
1888 if (!(termios
->c_cflag
& PARODD
))
1889 lcr_h
|= UART01x_LCRH_EPS
;
1891 if (uap
->fifosize
> 1)
1892 lcr_h
|= UART01x_LCRH_FEN
;
1894 spin_lock_irqsave(&port
->lock
, flags
);
1897 * Update the per-port timeout.
1899 uart_update_timeout(port
, termios
->c_cflag
, baud
);
1901 pl011_setup_status_masks(port
, termios
);
1903 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
1904 pl011_enable_ms(port
);
1906 /* first, disable everything */
1907 old_cr
= pl011_readw(uap
, REG_CR
);
1908 pl011_writew(uap
, 0, REG_CR
);
1910 if (termios
->c_cflag
& CRTSCTS
) {
1911 if (old_cr
& UART011_CR_RTS
)
1912 old_cr
|= UART011_CR_RTSEN
;
1914 old_cr
|= UART011_CR_CTSEN
;
1915 uap
->autorts
= true;
1917 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
1918 uap
->autorts
= false;
1921 if (uap
->vendor
->oversampling
) {
1922 if (baud
> port
->uartclk
/ 16)
1923 old_cr
|= ST_UART011_CR_OVSFACT
;
1925 old_cr
&= ~ST_UART011_CR_OVSFACT
;
1929 * Workaround for the ST Micro oversampling variants to
1930 * increase the bitrate slightly, by lowering the divisor,
1931 * to avoid delayed sampling of start bit at high speeds,
1932 * else we see data corruption.
1934 if (uap
->vendor
->oversampling
) {
1935 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
1937 else if ((baud
> 3250000) && (quot
> 2))
1941 pl011_writew(uap
, quot
& 0x3f, REG_FBRD
);
1942 pl011_writew(uap
, quot
>> 6, REG_IBRD
);
1945 * ----------v----------v----------v----------v-----
1946 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1947 * REG_FBRD & REG_IBRD.
1948 * ----------^----------^----------^----------^-----
1950 pl011_write_lcr_h(uap
, lcr_h
);
1951 pl011_writew(uap
, old_cr
, REG_CR
);
1953 spin_unlock_irqrestore(&port
->lock
, flags
);
1957 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1958 struct ktermios
*old
)
1960 struct uart_amba_port
*uap
=
1961 container_of(port
, struct uart_amba_port
, port
);
1962 unsigned long flags
;
1964 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
1966 /* The SBSA UART only supports 8n1 without hardware flow control. */
1967 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
1968 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
1969 termios
->c_cflag
|= CS8
| CLOCAL
;
1971 spin_lock_irqsave(&port
->lock
, flags
);
1972 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
1973 pl011_setup_status_masks(port
, termios
);
1974 spin_unlock_irqrestore(&port
->lock
, flags
);
1977 static const char *pl011_type(struct uart_port
*port
)
1979 struct uart_amba_port
*uap
=
1980 container_of(port
, struct uart_amba_port
, port
);
1981 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
1985 * Release the memory region(s) being used by 'port'
1987 static void pl011_release_port(struct uart_port
*port
)
1989 release_mem_region(port
->mapbase
, SZ_4K
);
1993 * Request the memory region(s) being used by 'port'
1995 static int pl011_request_port(struct uart_port
*port
)
1997 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
1998 != NULL
? 0 : -EBUSY
;
2002 * Configure/autoconfigure the port.
2004 static void pl011_config_port(struct uart_port
*port
, int flags
)
2006 if (flags
& UART_CONFIG_TYPE
) {
2007 port
->type
= PORT_AMBA
;
2008 pl011_request_port(port
);
2013 * verify the new serial_struct (for TIOCSSERIAL).
2015 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2018 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2020 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2022 if (ser
->baud_base
< 9600)
2027 static struct uart_ops amba_pl011_pops
= {
2028 .tx_empty
= pl011_tx_empty
,
2029 .set_mctrl
= pl011_set_mctrl
,
2030 .get_mctrl
= pl011_get_mctrl
,
2031 .stop_tx
= pl011_stop_tx
,
2032 .start_tx
= pl011_start_tx
,
2033 .stop_rx
= pl011_stop_rx
,
2034 .enable_ms
= pl011_enable_ms
,
2035 .break_ctl
= pl011_break_ctl
,
2036 .startup
= pl011_startup
,
2037 .shutdown
= pl011_shutdown
,
2038 .flush_buffer
= pl011_dma_flush_buffer
,
2039 .set_termios
= pl011_set_termios
,
2041 .release_port
= pl011_release_port
,
2042 .request_port
= pl011_request_port
,
2043 .config_port
= pl011_config_port
,
2044 .verify_port
= pl011_verify_port
,
2045 #ifdef CONFIG_CONSOLE_POLL
2046 .poll_init
= pl011_hwinit
,
2047 .poll_get_char
= pl011_get_poll_char
,
2048 .poll_put_char
= pl011_put_poll_char
,
2052 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2056 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2061 static const struct uart_ops sbsa_uart_pops
= {
2062 .tx_empty
= pl011_tx_empty
,
2063 .set_mctrl
= sbsa_uart_set_mctrl
,
2064 .get_mctrl
= sbsa_uart_get_mctrl
,
2065 .stop_tx
= pl011_stop_tx
,
2066 .start_tx
= pl011_start_tx
,
2067 .stop_rx
= pl011_stop_rx
,
2068 .startup
= sbsa_uart_startup
,
2069 .shutdown
= sbsa_uart_shutdown
,
2070 .set_termios
= sbsa_uart_set_termios
,
2072 .release_port
= pl011_release_port
,
2073 .request_port
= pl011_request_port
,
2074 .config_port
= pl011_config_port
,
2075 .verify_port
= pl011_verify_port
,
2076 #ifdef CONFIG_CONSOLE_POLL
2077 .poll_init
= pl011_hwinit
,
2078 .poll_get_char
= pl011_get_poll_char
,
2079 .poll_put_char
= pl011_put_poll_char
,
2083 static struct uart_amba_port
*amba_ports
[UART_NR
];
2085 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2087 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2089 struct uart_amba_port
*uap
=
2090 container_of(port
, struct uart_amba_port
, port
);
2092 while (pl011_readw(uap
, REG_FR
) & UART01x_FR_TXFF
)
2094 pl011_writew(uap
, ch
, REG_DR
);
2098 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2100 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2101 unsigned int status
, old_cr
= 0, new_cr
;
2102 unsigned long flags
;
2105 clk_enable(uap
->clk
);
2107 local_irq_save(flags
);
2108 if (uap
->port
.sysrq
)
2110 else if (oops_in_progress
)
2111 locked
= spin_trylock(&uap
->port
.lock
);
2113 spin_lock(&uap
->port
.lock
);
2116 * First save the CR then disable the interrupts
2118 if (!uap
->vendor
->always_enabled
) {
2119 old_cr
= pl011_readw(uap
, REG_CR
);
2120 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2121 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2122 pl011_writew(uap
, new_cr
, REG_CR
);
2125 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2128 * Finally, wait for transmitter to become empty
2129 * and restore the TCR
2132 status
= pl011_readw(uap
, REG_FR
);
2133 } while (status
& UART01x_FR_BUSY
);
2134 if (!uap
->vendor
->always_enabled
)
2135 pl011_writew(uap
, old_cr
, REG_CR
);
2138 spin_unlock(&uap
->port
.lock
);
2139 local_irq_restore(flags
);
2141 clk_disable(uap
->clk
);
2145 pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2146 int *parity
, int *bits
)
2148 if (pl011_readw(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2149 unsigned int lcr_h
, ibrd
, fbrd
;
2151 lcr_h
= pl011_readw(uap
, uap
->lcrh_tx
);
2154 if (lcr_h
& UART01x_LCRH_PEN
) {
2155 if (lcr_h
& UART01x_LCRH_EPS
)
2161 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2166 ibrd
= pl011_readw(uap
, REG_IBRD
);
2167 fbrd
= pl011_readw(uap
, REG_FBRD
);
2169 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2171 if (uap
->vendor
->oversampling
) {
2172 if (pl011_readw(uap
, REG_CR
)
2173 & ST_UART011_CR_OVSFACT
)
2179 static int __init
pl011_console_setup(struct console
*co
, char *options
)
2181 struct uart_amba_port
*uap
;
2189 * Check whether an invalid uart number has been specified, and
2190 * if so, search for the first available port that does have
2193 if (co
->index
>= UART_NR
)
2195 uap
= amba_ports
[co
->index
];
2199 /* Allow pins to be muxed in and configured */
2200 pinctrl_pm_select_default_state(uap
->port
.dev
);
2202 ret
= clk_prepare(uap
->clk
);
2206 if (dev_get_platdata(uap
->port
.dev
)) {
2207 struct amba_pl011_data
*plat
;
2209 plat
= dev_get_platdata(uap
->port
.dev
);
2214 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2216 if (uap
->vendor
->fixed_options
) {
2217 baud
= uap
->fixed_baud
;
2220 uart_parse_options(options
,
2221 &baud
, &parity
, &bits
, &flow
);
2223 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2226 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2229 static struct uart_driver amba_reg
;
2230 static struct console amba_console
= {
2232 .write
= pl011_console_write
,
2233 .device
= uart_console_device
,
2234 .setup
= pl011_console_setup
,
2235 .flags
= CON_PRINTBUFFER
,
2240 #define AMBA_CONSOLE (&amba_console)
2242 static void pl011_putc(struct uart_port
*port
, int c
)
2244 struct uart_amba_port
*uap
=
2245 container_of(port
, struct uart_amba_port
, port
);
2247 while (pl011_readw(uap
, REG_FR
) & UART01x_FR_TXFF
)
2249 pl011_writeb(uap
, c
, REG_DR
);
2250 while (pl011_readw(uap
, REG_FR
) & UART01x_FR_BUSY
)
2254 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2256 struct earlycon_device
*dev
= con
->data
;
2258 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2261 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2264 if (!device
->port
.membase
)
2267 device
->con
->write
= pl011_early_write
;
2270 EARLYCON_DECLARE(pl011
, pl011_early_console_setup
);
2271 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2274 #define AMBA_CONSOLE NULL
2277 static struct uart_driver amba_reg
= {
2278 .owner
= THIS_MODULE
,
2279 .driver_name
= "ttyAMA",
2280 .dev_name
= "ttyAMA",
2281 .major
= SERIAL_AMBA_MAJOR
,
2282 .minor
= SERIAL_AMBA_MINOR
,
2284 .cons
= AMBA_CONSOLE
,
2287 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2289 struct device_node
*np
;
2290 static bool seen_dev_with_alias
= false;
2291 static bool seen_dev_without_alias
= false;
2294 if (!IS_ENABLED(CONFIG_OF
))
2301 ret
= of_alias_get_id(np
, "serial");
2302 if (IS_ERR_VALUE(ret
)) {
2303 seen_dev_without_alias
= true;
2306 seen_dev_with_alias
= true;
2307 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2308 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2313 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2314 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2319 /* unregisters the driver also if no more ports are left */
2320 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2325 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2326 if (amba_ports
[i
] == uap
)
2327 amba_ports
[i
] = NULL
;
2328 else if (amba_ports
[i
])
2331 pl011_dma_remove(uap
);
2333 uart_unregister_driver(&amba_reg
);
2336 static int pl011_find_free_port(void)
2340 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2341 if (amba_ports
[i
] == NULL
)
2347 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2348 struct resource
*mmiobase
, int index
)
2352 base
= devm_ioremap_resource(dev
, mmiobase
);
2354 return PTR_ERR(base
);
2356 index
= pl011_probe_dt_alias(index
, dev
);
2359 uap
->port
.dev
= dev
;
2360 uap
->port
.mapbase
= mmiobase
->start
;
2361 uap
->port
.membase
= base
;
2362 uap
->port
.iotype
= UPIO_MEM
;
2363 uap
->port
.fifosize
= uap
->fifosize
;
2364 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2365 uap
->port
.line
= index
;
2367 amba_ports
[index
] = uap
;
2372 static int pl011_register_port(struct uart_amba_port
*uap
)
2376 /* Ensure interrupts from this UART are masked and cleared */
2377 pl011_writew(uap
, 0, REG_IMSC
);
2378 pl011_writew(uap
, 0xffff, REG_ICR
);
2380 if (!amba_reg
.state
) {
2381 ret
= uart_register_driver(&amba_reg
);
2383 dev_err(uap
->port
.dev
,
2384 "Failed to register AMBA-PL011 driver\n");
2389 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2391 pl011_unregister_port(uap
);
2396 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2398 struct uart_amba_port
*uap
;
2399 struct vendor_data
*vendor
= id
->data
;
2402 portnr
= pl011_find_free_port();
2406 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2411 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2412 if (IS_ERR(uap
->clk
))
2413 return PTR_ERR(uap
->clk
);
2415 uap
->vendor
= vendor
;
2416 uap
->lcrh_rx
= vendor
->lcrh_rx
;
2417 uap
->lcrh_tx
= vendor
->lcrh_tx
;
2418 uap
->fifosize
= vendor
->get_fifosize(dev
);
2419 uap
->port
.irq
= dev
->irq
[0];
2420 uap
->port
.ops
= &amba_pl011_pops
;
2422 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2424 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2428 amba_set_drvdata(dev
, uap
);
2430 return pl011_register_port(uap
);
2433 static int pl011_remove(struct amba_device
*dev
)
2435 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2437 uart_remove_one_port(&amba_reg
, &uap
->port
);
2438 pl011_unregister_port(uap
);
2442 #ifdef CONFIG_PM_SLEEP
2443 static int pl011_suspend(struct device
*dev
)
2445 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2450 return uart_suspend_port(&amba_reg
, &uap
->port
);
2453 static int pl011_resume(struct device
*dev
)
2455 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2460 return uart_resume_port(&amba_reg
, &uap
->port
);
2464 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2466 static int sbsa_uart_probe(struct platform_device
*pdev
)
2468 struct uart_amba_port
*uap
;
2474 * Check the mandatory baud rate parameter in the DT node early
2475 * so that we can easily exit with the error.
2477 if (pdev
->dev
.of_node
) {
2478 struct device_node
*np
= pdev
->dev
.of_node
;
2480 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2487 portnr
= pl011_find_free_port();
2491 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2496 uap
->vendor
= &vendor_sbsa
;
2498 uap
->port
.irq
= platform_get_irq(pdev
, 0);
2499 uap
->port
.ops
= &sbsa_uart_pops
;
2500 uap
->fixed_baud
= baudrate
;
2502 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2504 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2506 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2510 platform_set_drvdata(pdev
, uap
);
2512 return pl011_register_port(uap
);
2515 static int sbsa_uart_remove(struct platform_device
*pdev
)
2517 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2519 uart_remove_one_port(&amba_reg
, &uap
->port
);
2520 pl011_unregister_port(uap
);
2524 static const struct of_device_id sbsa_uart_of_match
[] = {
2525 { .compatible
= "arm,sbsa-uart", },
2528 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2530 static const struct acpi_device_id sbsa_uart_acpi_match
[] = {
2534 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2536 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2537 .probe
= sbsa_uart_probe
,
2538 .remove
= sbsa_uart_remove
,
2540 .name
= "sbsa-uart",
2541 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2542 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2546 static struct amba_id pl011_ids
[] = {
2550 .data
= &vendor_arm
,
2560 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2562 static struct amba_driver pl011_driver
= {
2564 .name
= "uart-pl011",
2565 .pm
= &pl011_dev_pm_ops
,
2567 .id_table
= pl011_ids
,
2568 .probe
= pl011_probe
,
2569 .remove
= pl011_remove
,
2572 static int __init
pl011_init(void)
2574 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2576 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2577 pr_warn("could not register SBSA UART platform driver\n");
2578 return amba_driver_register(&pl011_driver
);
2581 static void __exit
pl011_exit(void)
2583 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2584 amba_driver_unregister(&pl011_driver
);
2588 * While this can be a module, if builtin it's most likely the console
2589 * So let's leave module_exit but move module_init to an earlier place
2591 arch_initcall(pl011_init
);
2592 module_exit(pl011_exit
);
2594 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2595 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2596 MODULE_LICENSE("GPL");