Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blob4426ee67ceca5d3d74c9b0dbe0f39c5b7e2b8538
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
27 #include <asm/mach/arch.h>
28 #include <asm/mach/map.h>
30 #include "mm.h"
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
42 * The pmd table for the upper-most set of pages.
44 pmd_t *top_pmd;
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
60 struct cachepolicy {
61 const char policy[16];
62 unsigned int cr_mask;
63 unsigned int pmd;
64 unsigned int pte;
67 static struct cachepolicy cache_policies[] __initdata = {
69 .policy = "uncached",
70 .cr_mask = CR_W|CR_C,
71 .pmd = PMD_SECT_UNCACHED,
72 .pte = L_PTE_MT_UNCACHED,
73 }, {
74 .policy = "buffered",
75 .cr_mask = CR_C,
76 .pmd = PMD_SECT_BUFFERED,
77 .pte = L_PTE_MT_BUFFERABLE,
78 }, {
79 .policy = "writethrough",
80 .cr_mask = 0,
81 .pmd = PMD_SECT_WT,
82 .pte = L_PTE_MT_WRITETHROUGH,
83 }, {
84 .policy = "writeback",
85 .cr_mask = 0,
86 .pmd = PMD_SECT_WB,
87 .pte = L_PTE_MT_WRITEBACK,
88 }, {
89 .policy = "writealloc",
90 .cr_mask = 0,
91 .pmd = PMD_SECT_WBWA,
92 .pte = L_PTE_MT_WRITEALLOC,
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
102 static void __init early_cachepolicy(char **p)
104 int i;
106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 int len = strlen(cache_policies[i].policy);
109 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
110 cachepolicy = i;
111 cr_alignment &= ~cache_policies[i].cr_mask;
112 cr_no_alignment &= ~cache_policies[i].cr_mask;
113 *p += len;
114 break;
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
120 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
121 cachepolicy = CPOLICY_WRITEBACK;
123 flush_cache_all();
124 set_cr(cr_alignment);
126 __early_param("cachepolicy=", early_cachepolicy);
128 static void __init early_nocache(char **__unused)
130 char *p = "buffered";
131 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
132 early_cachepolicy(&p);
134 __early_param("nocache", early_nocache);
136 static void __init early_nowrite(char **__unused)
138 char *p = "uncached";
139 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(&p);
142 __early_param("nowb", early_nowrite);
144 static void __init early_ecc(char **p)
146 if (memcmp(*p, "on", 2) == 0) {
147 ecc_mask = PMD_PROTECTION;
148 *p += 2;
149 } else if (memcmp(*p, "off", 3) == 0) {
150 ecc_mask = 0;
151 *p += 3;
154 __early_param("ecc=", early_ecc);
156 static int __init noalign_setup(char *__unused)
158 cr_alignment &= ~CR_A;
159 cr_no_alignment &= ~CR_A;
160 set_cr(cr_alignment);
161 return 1;
163 __setup("noalign", noalign_setup);
165 #ifndef CONFIG_SMP
166 void adjust_cr(unsigned long mask, unsigned long set)
168 unsigned long flags;
170 mask &= ~CR_A;
172 set &= mask;
174 local_irq_save(flags);
176 cr_no_alignment = (cr_no_alignment & ~mask) | set;
177 cr_alignment = (cr_alignment & ~mask) | set;
179 set_cr((get_cr() & ~mask) | set);
181 local_irq_restore(flags);
183 #endif
185 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
186 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
188 static struct mem_type mem_types[] = {
189 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
190 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
191 L_PTE_SHARED,
192 .prot_l1 = PMD_TYPE_TABLE,
193 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
194 .domain = DOMAIN_IO,
196 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
197 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
198 .prot_l1 = PMD_TYPE_TABLE,
199 .prot_sect = PROT_SECT_DEVICE,
200 .domain = DOMAIN_IO,
202 [MT_DEVICE_CACHED] = { /* ioremap_cached */
203 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204 .prot_l1 = PMD_TYPE_TABLE,
205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
206 .domain = DOMAIN_IO,
208 [MT_DEVICE_WC] = { /* ioremap_wc */
209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
210 .prot_l1 = PMD_TYPE_TABLE,
211 .prot_sect = PROT_SECT_DEVICE,
212 .domain = DOMAIN_IO,
214 [MT_UNCACHED] = {
215 .prot_pte = PROT_PTE_DEVICE,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
218 .domain = DOMAIN_IO,
220 [MT_CACHECLEAN] = {
221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222 .domain = DOMAIN_KERNEL,
224 [MT_MINICLEAN] = {
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226 .domain = DOMAIN_KERNEL,
228 [MT_LOW_VECTORS] = {
229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230 L_PTE_EXEC,
231 .prot_l1 = PMD_TYPE_TABLE,
232 .domain = DOMAIN_USER,
234 [MT_HIGH_VECTORS] = {
235 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236 L_PTE_USER | L_PTE_EXEC,
237 .prot_l1 = PMD_TYPE_TABLE,
238 .domain = DOMAIN_USER,
240 [MT_MEMORY] = {
241 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242 .domain = DOMAIN_KERNEL,
244 [MT_ROM] = {
245 .prot_sect = PMD_TYPE_SECT,
246 .domain = DOMAIN_KERNEL,
248 [MT_MEMORY_NONCACHED] = {
249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 .domain = DOMAIN_KERNEL,
254 const struct mem_type *get_mem_type(unsigned int type)
256 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
258 EXPORT_SYMBOL(get_mem_type);
261 * Adjust the PMD section entries according to the CPU in use.
263 static void __init build_mem_type_table(void)
265 struct cachepolicy *cp;
266 unsigned int cr = get_cr();
267 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
268 int cpu_arch = cpu_architecture();
269 int i;
271 if (cpu_arch < CPU_ARCH_ARMv6) {
272 #if defined(CONFIG_CPU_DCACHE_DISABLE)
273 if (cachepolicy > CPOLICY_BUFFERED)
274 cachepolicy = CPOLICY_BUFFERED;
275 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
276 if (cachepolicy > CPOLICY_WRITETHROUGH)
277 cachepolicy = CPOLICY_WRITETHROUGH;
278 #endif
280 if (cpu_arch < CPU_ARCH_ARMv5) {
281 if (cachepolicy >= CPOLICY_WRITEALLOC)
282 cachepolicy = CPOLICY_WRITEBACK;
283 ecc_mask = 0;
285 #ifdef CONFIG_SMP
286 cachepolicy = CPOLICY_WRITEALLOC;
287 #endif
290 * Strip out features not present on earlier architectures.
291 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
292 * without extended page tables don't have the 'Shared' bit.
294 if (cpu_arch < CPU_ARCH_ARMv5)
295 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
296 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
297 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
298 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
299 mem_types[i].prot_sect &= ~PMD_SECT_S;
302 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
303 * "update-able on write" bit on ARM610). However, Xscale and
304 * Xscale3 require this bit to be cleared.
306 if (cpu_is_xscale() || cpu_is_xsc3()) {
307 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
308 mem_types[i].prot_sect &= ~PMD_BIT4;
309 mem_types[i].prot_l1 &= ~PMD_BIT4;
311 } else if (cpu_arch < CPU_ARCH_ARMv6) {
312 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
313 if (mem_types[i].prot_l1)
314 mem_types[i].prot_l1 |= PMD_BIT4;
315 if (mem_types[i].prot_sect)
316 mem_types[i].prot_sect |= PMD_BIT4;
321 * Mark the device areas according to the CPU/architecture.
323 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
324 if (!cpu_is_xsc3()) {
326 * Mark device regions on ARMv6+ as execute-never
327 * to prevent speculative instruction fetches.
329 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
330 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
331 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
332 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
334 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
336 * For ARMv7 with TEX remapping,
337 * - shared device is SXCB=1100
338 * - nonshared device is SXCB=0100
339 * - write combine device mem is SXCB=0001
340 * (Uncached Normal memory)
342 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
343 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
344 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
345 } else if (cpu_is_xsc3()) {
347 * For Xscale3,
348 * - shared device is TEXCB=00101
349 * - nonshared device is TEXCB=01000
350 * - write combine device mem is TEXCB=00100
351 * (Inner/Outer Uncacheable in xsc3 parlance)
353 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
354 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
355 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
356 } else {
358 * For ARMv6 and ARMv7 without TEX remapping,
359 * - shared device is TEXCB=00001
360 * - nonshared device is TEXCB=01000
361 * - write combine device mem is TEXCB=00100
362 * (Uncached Normal in ARMv6 parlance).
364 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
365 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
366 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
368 } else {
370 * On others, write combining is "Uncached/Buffered"
372 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
376 * Now deal with the memory-type mappings
378 cp = &cache_policies[cachepolicy];
379 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
381 #ifndef CONFIG_SMP
383 * Only use write-through for non-SMP systems
385 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
386 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
387 #endif
390 * Enable CPU-specific coherency if supported.
391 * (Only available on XSC3 at the moment.)
393 if (arch_is_coherent() && cpu_is_xsc3())
394 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
397 * ARMv6 and above have extended page tables.
399 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
401 * Mark cache clean areas and XIP ROM read only
402 * from SVC mode and no access from userspace.
404 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
405 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
406 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
408 #ifdef CONFIG_SMP
410 * Mark memory with the "shared" attribute for SMP systems
412 user_pgprot |= L_PTE_SHARED;
413 kern_pgprot |= L_PTE_SHARED;
414 vecs_pgprot |= L_PTE_SHARED;
415 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
417 #endif
421 * Non-cacheable Normal - intended for memory areas that must
422 * not cause dirty cache line writebacks when used
424 if (cpu_arch >= CPU_ARCH_ARMv6) {
425 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
426 /* Non-cacheable Normal is XCB = 001 */
427 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
428 PMD_SECT_BUFFERED;
429 } else {
430 /* For both ARMv6 and non-TEX-remapping ARMv7 */
431 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
432 PMD_SECT_TEX(1);
434 } else {
435 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
438 for (i = 0; i < 16; i++) {
439 unsigned long v = pgprot_val(protection_map[i]);
440 protection_map[i] = __pgprot(v | user_pgprot);
443 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
444 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
446 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
447 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
448 L_PTE_DIRTY | L_PTE_WRITE |
449 L_PTE_EXEC | kern_pgprot);
451 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
452 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
453 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
454 mem_types[MT_ROM].prot_sect |= cp->pmd;
456 switch (cp->pmd) {
457 case PMD_SECT_WT:
458 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
459 break;
460 case PMD_SECT_WB:
461 case PMD_SECT_WBWA:
462 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
463 break;
465 printk("Memory policy: ECC %sabled, Data cache %s\n",
466 ecc_mask ? "en" : "dis", cp->policy);
468 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
469 struct mem_type *t = &mem_types[i];
470 if (t->prot_l1)
471 t->prot_l1 |= PMD_DOMAIN(t->domain);
472 if (t->prot_sect)
473 t->prot_sect |= PMD_DOMAIN(t->domain);
477 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
479 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
480 unsigned long end, unsigned long pfn,
481 const struct mem_type *type)
483 pte_t *pte;
485 if (pmd_none(*pmd)) {
486 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
487 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
490 pte = pte_offset_kernel(pmd, addr);
491 do {
492 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
493 pfn++;
494 } while (pte++, addr += PAGE_SIZE, addr != end);
497 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
498 unsigned long end, unsigned long phys,
499 const struct mem_type *type)
501 pmd_t *pmd = pmd_offset(pgd, addr);
504 * Try a section mapping - end, addr and phys must all be aligned
505 * to a section boundary. Note that PMDs refer to the individual
506 * L1 entries, whereas PGDs refer to a group of L1 entries making
507 * up one logical pointer to an L2 table.
509 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
510 pmd_t *p = pmd;
512 if (addr & SECTION_SIZE)
513 pmd++;
515 do {
516 *pmd = __pmd(phys | type->prot_sect);
517 phys += SECTION_SIZE;
518 } while (pmd++, addr += SECTION_SIZE, addr != end);
520 flush_pmd_entry(p);
521 } else {
523 * No need to loop; pte's aren't interested in the
524 * individual L1 entries.
526 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
530 static void __init create_36bit_mapping(struct map_desc *md,
531 const struct mem_type *type)
533 unsigned long phys, addr, length, end;
534 pgd_t *pgd;
536 addr = md->virtual;
537 phys = (unsigned long)__pfn_to_phys(md->pfn);
538 length = PAGE_ALIGN(md->length);
540 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
541 printk(KERN_ERR "MM: CPU does not support supersection "
542 "mapping for 0x%08llx at 0x%08lx\n",
543 __pfn_to_phys((u64)md->pfn), addr);
544 return;
547 /* N.B. ARMv6 supersections are only defined to work with domain 0.
548 * Since domain assignments can in fact be arbitrary, the
549 * 'domain == 0' check below is required to insure that ARMv6
550 * supersections are only allocated for domain 0 regardless
551 * of the actual domain assignments in use.
553 if (type->domain) {
554 printk(KERN_ERR "MM: invalid domain in supersection "
555 "mapping for 0x%08llx at 0x%08lx\n",
556 __pfn_to_phys((u64)md->pfn), addr);
557 return;
560 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
561 printk(KERN_ERR "MM: cannot create mapping for "
562 "0x%08llx at 0x%08lx invalid alignment\n",
563 __pfn_to_phys((u64)md->pfn), addr);
564 return;
568 * Shift bits [35:32] of address into bits [23:20] of PMD
569 * (See ARMv6 spec).
571 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
573 pgd = pgd_offset_k(addr);
574 end = addr + length;
575 do {
576 pmd_t *pmd = pmd_offset(pgd, addr);
577 int i;
579 for (i = 0; i < 16; i++)
580 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
582 addr += SUPERSECTION_SIZE;
583 phys += SUPERSECTION_SIZE;
584 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
585 } while (addr != end);
589 * Create the page directory entries and any necessary
590 * page tables for the mapping specified by `md'. We
591 * are able to cope here with varying sizes and address
592 * offsets, and we take full advantage of sections and
593 * supersections.
595 void __init create_mapping(struct map_desc *md)
597 unsigned long phys, addr, length, end;
598 const struct mem_type *type;
599 pgd_t *pgd;
601 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
602 printk(KERN_WARNING "BUG: not creating mapping for "
603 "0x%08llx at 0x%08lx in user region\n",
604 __pfn_to_phys((u64)md->pfn), md->virtual);
605 return;
608 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
609 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
610 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
611 "overlaps vmalloc space\n",
612 __pfn_to_phys((u64)md->pfn), md->virtual);
615 type = &mem_types[md->type];
618 * Catch 36-bit addresses
620 if (md->pfn >= 0x100000) {
621 create_36bit_mapping(md, type);
622 return;
625 addr = md->virtual & PAGE_MASK;
626 phys = (unsigned long)__pfn_to_phys(md->pfn);
627 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
629 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
630 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
631 "be mapped using pages, ignoring.\n",
632 __pfn_to_phys(md->pfn), addr);
633 return;
636 pgd = pgd_offset_k(addr);
637 end = addr + length;
638 do {
639 unsigned long next = pgd_addr_end(addr, end);
641 alloc_init_section(pgd, addr, next, phys, type);
643 phys += next - addr;
644 addr = next;
645 } while (pgd++, addr != end);
649 * Create the architecture specific mappings
651 void __init iotable_init(struct map_desc *io_desc, int nr)
653 int i;
655 for (i = 0; i < nr; i++)
656 create_mapping(io_desc + i);
659 static unsigned long __initdata vmalloc_reserve = SZ_128M;
662 * vmalloc=size forces the vmalloc area to be exactly 'size'
663 * bytes. This can be used to increase (or decrease) the vmalloc
664 * area - the default is 128m.
666 static void __init early_vmalloc(char **arg)
668 vmalloc_reserve = memparse(*arg, arg);
670 if (vmalloc_reserve < SZ_16M) {
671 vmalloc_reserve = SZ_16M;
672 printk(KERN_WARNING
673 "vmalloc area too small, limiting to %luMB\n",
674 vmalloc_reserve >> 20);
677 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
678 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
679 printk(KERN_WARNING
680 "vmalloc area is too big, limiting to %luMB\n",
681 vmalloc_reserve >> 20);
684 __early_param("vmalloc=", early_vmalloc);
686 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
688 static void __init sanity_check_meminfo(void)
690 int i, j, highmem = 0;
692 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
693 struct membank *bank = &meminfo.bank[j];
694 *bank = meminfo.bank[i];
696 #ifdef CONFIG_HIGHMEM
697 if (__va(bank->start) > VMALLOC_MIN ||
698 __va(bank->start) < (void *)PAGE_OFFSET)
699 highmem = 1;
701 bank->highmem = highmem;
704 * Split those memory banks which are partially overlapping
705 * the vmalloc area greatly simplifying things later.
707 if (__va(bank->start) < VMALLOC_MIN &&
708 bank->size > VMALLOC_MIN - __va(bank->start)) {
709 if (meminfo.nr_banks >= NR_BANKS) {
710 printk(KERN_CRIT "NR_BANKS too low, "
711 "ignoring high memory\n");
712 } else if (cache_is_vipt_aliasing()) {
713 printk(KERN_CRIT "HIGHMEM is not yet supported "
714 "with VIPT aliasing cache, "
715 "ignoring high memory\n");
716 } else {
717 memmove(bank + 1, bank,
718 (meminfo.nr_banks - i) * sizeof(*bank));
719 meminfo.nr_banks++;
720 i++;
721 bank[1].size -= VMALLOC_MIN - __va(bank->start);
722 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
723 bank[1].highmem = highmem = 1;
724 j++;
726 bank->size = VMALLOC_MIN - __va(bank->start);
728 #else
730 * Check whether this memory bank would entirely overlap
731 * the vmalloc area.
733 if (__va(bank->start) >= VMALLOC_MIN ||
734 __va(bank->start) < (void *)PAGE_OFFSET) {
735 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
736 "(vmalloc region overlap).\n",
737 bank->start, bank->start + bank->size - 1);
738 continue;
742 * Check whether this memory bank would partially overlap
743 * the vmalloc area.
745 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
746 __va(bank->start + bank->size) < __va(bank->start)) {
747 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
748 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
749 "to -%.8lx (vmalloc region overlap).\n",
750 bank->start, bank->start + bank->size - 1,
751 bank->start + newsize - 1);
752 bank->size = newsize;
754 #endif
755 j++;
757 meminfo.nr_banks = j;
760 static inline void prepare_page_table(void)
762 unsigned long addr;
765 * Clear out all the mappings below the kernel image.
767 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
768 pmd_clear(pmd_off_k(addr));
770 #ifdef CONFIG_XIP_KERNEL
771 /* The XIP kernel is mapped in the module area -- skip over it */
772 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
773 #endif
774 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
775 pmd_clear(pmd_off_k(addr));
778 * Clear out all the kernel space mappings, except for the first
779 * memory bank, up to the end of the vmalloc region.
781 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
782 addr < VMALLOC_END; addr += PGDIR_SIZE)
783 pmd_clear(pmd_off_k(addr));
787 * Reserve the various regions of node 0
789 void __init reserve_node_zero(pg_data_t *pgdat)
791 unsigned long res_size = 0;
794 * Register the kernel text and data with bootmem.
795 * Note that this can only be in node 0.
797 #ifdef CONFIG_XIP_KERNEL
798 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
799 BOOTMEM_DEFAULT);
800 #else
801 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
802 BOOTMEM_DEFAULT);
803 #endif
806 * Reserve the page tables. These are already in use,
807 * and can only be in node 0.
809 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
810 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
813 * Hmm... This should go elsewhere, but we really really need to
814 * stop things allocating the low memory; ideally we need a better
815 * implementation of GFP_DMA which does not assume that DMA-able
816 * memory starts at zero.
818 if (machine_is_integrator() || machine_is_cintegrator())
819 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
822 * These should likewise go elsewhere. They pre-reserve the
823 * screen memory region at the start of main system memory.
825 if (machine_is_edb7211())
826 res_size = 0x00020000;
827 if (machine_is_p720t())
828 res_size = 0x00014000;
830 /* H1940 and RX3715 need to reserve this for suspend */
832 if (machine_is_h1940() || machine_is_rx3715()) {
833 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
834 BOOTMEM_DEFAULT);
835 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
836 BOOTMEM_DEFAULT);
839 if (machine_is_palmld() || machine_is_palmtx()) {
840 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
841 BOOTMEM_EXCLUSIVE);
842 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
843 BOOTMEM_EXCLUSIVE);
846 if (machine_is_treo680()) {
847 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
848 BOOTMEM_EXCLUSIVE);
849 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
850 BOOTMEM_EXCLUSIVE);
853 if (machine_is_palmt5())
854 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
855 BOOTMEM_EXCLUSIVE);
858 * U300 - This platform family can share physical memory
859 * between two ARM cpus, one running Linux and the other
860 * running another OS.
862 if (machine_is_u300()) {
863 #ifdef CONFIG_MACH_U300_SINGLE_RAM
864 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
865 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
866 res_size = 0x00100000;
867 #endif
868 #endif
871 #ifdef CONFIG_SA1111
873 * Because of the SA1111 DMA bug, we want to preserve our
874 * precious DMA-able memory...
876 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
877 #endif
878 if (res_size)
879 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
880 BOOTMEM_DEFAULT);
884 * Set up device the mappings. Since we clear out the page tables for all
885 * mappings above VMALLOC_END, we will remove any debug device mappings.
886 * This means you have to be careful how you debug this function, or any
887 * called function. This means you can't use any function or debugging
888 * method which may touch any device, otherwise the kernel _will_ crash.
890 static void __init devicemaps_init(struct machine_desc *mdesc)
892 struct map_desc map;
893 unsigned long addr;
894 void *vectors;
897 * Allocate the vector page early.
899 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
901 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
902 pmd_clear(pmd_off_k(addr));
905 * Map the kernel if it is XIP.
906 * It is always first in the modulearea.
908 #ifdef CONFIG_XIP_KERNEL
909 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
910 map.virtual = MODULES_VADDR;
911 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
912 map.type = MT_ROM;
913 create_mapping(&map);
914 #endif
917 * Map the cache flushing regions.
919 #ifdef FLUSH_BASE
920 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
921 map.virtual = FLUSH_BASE;
922 map.length = SZ_1M;
923 map.type = MT_CACHECLEAN;
924 create_mapping(&map);
925 #endif
926 #ifdef FLUSH_BASE_MINICACHE
927 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
928 map.virtual = FLUSH_BASE_MINICACHE;
929 map.length = SZ_1M;
930 map.type = MT_MINICLEAN;
931 create_mapping(&map);
932 #endif
935 * Create a mapping for the machine vectors at the high-vectors
936 * location (0xffff0000). If we aren't using high-vectors, also
937 * create a mapping at the low-vectors virtual address.
939 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
940 map.virtual = 0xffff0000;
941 map.length = PAGE_SIZE;
942 map.type = MT_HIGH_VECTORS;
943 create_mapping(&map);
945 if (!vectors_high()) {
946 map.virtual = 0;
947 map.type = MT_LOW_VECTORS;
948 create_mapping(&map);
952 * Ask the machine support to map in the statically mapped devices.
954 if (mdesc->map_io)
955 mdesc->map_io();
958 * Finally flush the caches and tlb to ensure that we're in a
959 * consistent state wrt the writebuffer. This also ensures that
960 * any write-allocated cache lines in the vector page are written
961 * back. After this point, we can start to touch devices again.
963 local_flush_tlb_all();
964 flush_cache_all();
967 static void __init kmap_init(void)
969 #ifdef CONFIG_HIGHMEM
970 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
971 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
972 BUG_ON(!pmd_none(*pmd) || !pte);
973 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
974 pkmap_page_table = pte + PTRS_PER_PTE;
975 #endif
979 * paging_init() sets up the page tables, initialises the zone memory
980 * maps, and sets up the zero page, bad page and bad page tables.
982 void __init paging_init(struct machine_desc *mdesc)
984 void *zero_page;
986 build_mem_type_table();
987 sanity_check_meminfo();
988 prepare_page_table();
989 bootmem_init();
990 devicemaps_init(mdesc);
991 kmap_init();
993 top_pmd = pmd_off_k(0xffff0000);
996 * allocate the zero page. Note that this always succeeds and
997 * returns a zeroed result.
999 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1000 empty_zero_page = virt_to_page(zero_page);
1001 flush_dcache_page(empty_zero_page);
1005 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1006 * the user-mode pages. This will then ensure that we have predictable
1007 * results when turning the mmu off
1009 void setup_mm_for_reboot(char mode)
1011 unsigned long base_pmdval;
1012 pgd_t *pgd;
1013 int i;
1015 if (current->mm && current->mm->pgd)
1016 pgd = current->mm->pgd;
1017 else
1018 pgd = init_mm.pgd;
1020 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1021 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1022 base_pmdval |= PMD_BIT4;
1024 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1025 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1026 pmd_t *pmd;
1028 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1029 pmd[0] = __pmd(pmdval);
1030 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1031 flush_pmd_entry(pmd);