Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[linux/fpc-iii.git] / arch / blackfin / mm / sram-alloc.c
blob99e4dbb1dfd12502becc3d2506f3d51a1076433d
1 /*
2 * File: arch/blackfin/mm/sram-alloc.c
3 * Based on:
4 * Author:
6 * Created:
7 * Description: SRAM allocator for Blackfin L1 and L2 memory
9 * Modified:
10 * Copyright 2004-2008 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include <asm/mem_map.h>
43 #include "blackfin_sram.h"
45 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
46 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
47 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
48 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
50 /* the data structure for L1 scratchpad and DATA SRAM */
51 struct sram_piece {
52 void *paddr;
53 int size;
54 pid_t pid;
55 struct sram_piece *next;
58 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
59 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
61 #if L1_DATA_A_LENGTH != 0
62 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
63 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
64 #endif
66 #if L1_DATA_B_LENGTH != 0
67 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
68 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
69 #endif
71 #if L1_CODE_LENGTH != 0
72 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
73 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
74 #endif
76 #if L2_LENGTH != 0
77 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
78 #endif
80 static struct kmem_cache *sram_piece_cache;
82 /* L1 Scratchpad SRAM initialization function */
83 static void __init l1sram_init(void)
85 unsigned int cpu;
86 unsigned long reserve;
88 #ifdef CONFIG_SMP
89 reserve = 0;
90 #else
91 reserve = sizeof(struct l1_scratch_task_info);
92 #endif
94 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
95 per_cpu(free_l1_ssram_head, cpu).next =
96 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
97 if (!per_cpu(free_l1_ssram_head, cpu).next) {
98 printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
99 return;
102 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
103 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
104 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
105 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
107 per_cpu(used_l1_ssram_head, cpu).next = NULL;
109 /* mutex initialize */
110 spin_lock_init(&per_cpu(l1sram_lock, cpu));
111 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
112 L1_SCRATCH_LENGTH >> 10);
116 static void __init l1_data_sram_init(void)
118 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
119 unsigned int cpu;
120 #endif
121 #if L1_DATA_A_LENGTH != 0
122 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
123 per_cpu(free_l1_data_A_sram_head, cpu).next =
124 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
125 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
126 printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
127 return;
130 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
131 (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
132 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
133 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
134 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
135 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
137 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
139 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
140 L1_DATA_A_LENGTH >> 10,
141 per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
143 #endif
144 #if L1_DATA_B_LENGTH != 0
145 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
146 per_cpu(free_l1_data_B_sram_head, cpu).next =
147 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
148 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
149 printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
150 return;
153 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
154 (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
155 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
156 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
157 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
158 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
160 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
162 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
163 L1_DATA_B_LENGTH >> 10,
164 per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
165 /* mutex initialize */
167 #endif
169 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
170 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
171 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
172 #endif
175 static void __init l1_inst_sram_init(void)
177 #if L1_CODE_LENGTH != 0
178 unsigned int cpu;
179 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
180 per_cpu(free_l1_inst_sram_head, cpu).next =
181 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
182 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
183 printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
184 return;
187 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
188 (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
189 per_cpu(free_l1_inst_sram_head, cpu).next->size =
190 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
191 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
192 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
194 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
196 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
197 L1_CODE_LENGTH >> 10,
198 per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
200 /* mutex initialize */
201 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
203 #endif
206 static void __init l2_sram_init(void)
208 #if L2_LENGTH != 0
209 free_l2_sram_head.next =
210 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
211 if (!free_l2_sram_head.next) {
212 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
213 return;
216 free_l2_sram_head.next->paddr =
217 (void *)L2_START + (_ebss_l2 - _stext_l2);
218 free_l2_sram_head.next->size =
219 L2_LENGTH - (_ebss_l2 - _stext_l2);
220 free_l2_sram_head.next->pid = 0;
221 free_l2_sram_head.next->next = NULL;
223 used_l2_sram_head.next = NULL;
225 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
226 L2_LENGTH >> 10,
227 free_l2_sram_head.next->size >> 10);
228 #endif
230 /* mutex initialize */
231 spin_lock_init(&l2_sram_lock);
234 static int __init bfin_sram_init(void)
236 sram_piece_cache = kmem_cache_create("sram_piece_cache",
237 sizeof(struct sram_piece),
238 0, SLAB_PANIC, NULL);
240 l1sram_init();
241 l1_data_sram_init();
242 l1_inst_sram_init();
243 l2_sram_init();
245 return 0;
247 pure_initcall(bfin_sram_init);
249 /* SRAM allocate function */
250 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
251 struct sram_piece *pused_head)
253 struct sram_piece *pslot, *plast, *pavail;
255 if (size <= 0 || !pfree_head || !pused_head)
256 return NULL;
258 /* Align the size */
259 size = (size + 3) & ~3;
261 pslot = pfree_head->next;
262 plast = pfree_head;
264 /* search an available piece slot */
265 while (pslot != NULL && size > pslot->size) {
266 plast = pslot;
267 pslot = pslot->next;
270 if (!pslot)
271 return NULL;
273 if (pslot->size == size) {
274 plast->next = pslot->next;
275 pavail = pslot;
276 } else {
277 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
279 if (!pavail)
280 return NULL;
282 pavail->paddr = pslot->paddr;
283 pavail->size = size;
284 pslot->paddr += size;
285 pslot->size -= size;
288 pavail->pid = current->pid;
290 pslot = pused_head->next;
291 plast = pused_head;
293 /* insert new piece into used piece list !!! */
294 while (pslot != NULL && pavail->paddr < pslot->paddr) {
295 plast = pslot;
296 pslot = pslot->next;
299 pavail->next = pslot;
300 plast->next = pavail;
302 return pavail->paddr;
305 /* Allocate the largest available block. */
306 static void *_sram_alloc_max(struct sram_piece *pfree_head,
307 struct sram_piece *pused_head,
308 unsigned long *psize)
310 struct sram_piece *pslot, *pmax;
312 if (!pfree_head || !pused_head)
313 return NULL;
315 pmax = pslot = pfree_head->next;
317 /* search an available piece slot */
318 while (pslot != NULL) {
319 if (pslot->size > pmax->size)
320 pmax = pslot;
321 pslot = pslot->next;
324 if (!pmax)
325 return NULL;
327 *psize = pmax->size;
329 return _sram_alloc(*psize, pfree_head, pused_head);
332 /* SRAM free function */
333 static int _sram_free(const void *addr,
334 struct sram_piece *pfree_head,
335 struct sram_piece *pused_head)
337 struct sram_piece *pslot, *plast, *pavail;
339 if (!pfree_head || !pused_head)
340 return -1;
342 /* search the relevant memory slot */
343 pslot = pused_head->next;
344 plast = pused_head;
346 /* search an available piece slot */
347 while (pslot != NULL && pslot->paddr != addr) {
348 plast = pslot;
349 pslot = pslot->next;
352 if (!pslot)
353 return -1;
355 plast->next = pslot->next;
356 pavail = pslot;
357 pavail->pid = 0;
359 /* insert free pieces back to the free list */
360 pslot = pfree_head->next;
361 plast = pfree_head;
363 while (pslot != NULL && addr > pslot->paddr) {
364 plast = pslot;
365 pslot = pslot->next;
368 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
369 plast->size += pavail->size;
370 kmem_cache_free(sram_piece_cache, pavail);
371 } else {
372 pavail->next = plast->next;
373 plast->next = pavail;
374 plast = pavail;
377 if (pslot && plast->paddr + plast->size == pslot->paddr) {
378 plast->size += pslot->size;
379 plast->next = pslot->next;
380 kmem_cache_free(sram_piece_cache, pslot);
383 return 0;
386 int sram_free(const void *addr)
389 #if L1_CODE_LENGTH != 0
390 if (addr >= (void *)get_l1_code_start()
391 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
392 return l1_inst_sram_free(addr);
393 else
394 #endif
395 #if L1_DATA_A_LENGTH != 0
396 if (addr >= (void *)get_l1_data_a_start()
397 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
398 return l1_data_A_sram_free(addr);
399 else
400 #endif
401 #if L1_DATA_B_LENGTH != 0
402 if (addr >= (void *)get_l1_data_b_start()
403 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
404 return l1_data_B_sram_free(addr);
405 else
406 #endif
407 #if L2_LENGTH != 0
408 if (addr >= (void *)L2_START
409 && addr < (void *)(L2_START + L2_LENGTH))
410 return l2_sram_free(addr);
411 else
412 #endif
413 return -1;
415 EXPORT_SYMBOL(sram_free);
417 void *l1_data_A_sram_alloc(size_t size)
419 unsigned long flags;
420 void *addr = NULL;
421 unsigned int cpu;
423 cpu = get_cpu();
424 /* add mutex operation */
425 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
427 #if L1_DATA_A_LENGTH != 0
428 addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
429 &per_cpu(used_l1_data_A_sram_head, cpu));
430 #endif
432 /* add mutex operation */
433 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
434 put_cpu();
436 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
437 (long unsigned int)addr, size);
439 return addr;
441 EXPORT_SYMBOL(l1_data_A_sram_alloc);
443 int l1_data_A_sram_free(const void *addr)
445 unsigned long flags;
446 int ret;
447 unsigned int cpu;
449 cpu = get_cpu();
450 /* add mutex operation */
451 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
453 #if L1_DATA_A_LENGTH != 0
454 ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
455 &per_cpu(used_l1_data_A_sram_head, cpu));
456 #else
457 ret = -1;
458 #endif
460 /* add mutex operation */
461 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
462 put_cpu();
464 return ret;
466 EXPORT_SYMBOL(l1_data_A_sram_free);
468 void *l1_data_B_sram_alloc(size_t size)
470 #if L1_DATA_B_LENGTH != 0
471 unsigned long flags;
472 void *addr;
473 unsigned int cpu;
475 cpu = get_cpu();
476 /* add mutex operation */
477 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
479 addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
480 &per_cpu(used_l1_data_B_sram_head, cpu));
482 /* add mutex operation */
483 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
484 put_cpu();
486 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
487 (long unsigned int)addr, size);
489 return addr;
490 #else
491 return NULL;
492 #endif
494 EXPORT_SYMBOL(l1_data_B_sram_alloc);
496 int l1_data_B_sram_free(const void *addr)
498 #if L1_DATA_B_LENGTH != 0
499 unsigned long flags;
500 int ret;
501 unsigned int cpu;
503 cpu = get_cpu();
504 /* add mutex operation */
505 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
507 ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
508 &per_cpu(used_l1_data_B_sram_head, cpu));
510 /* add mutex operation */
511 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
512 put_cpu();
514 return ret;
515 #else
516 return -1;
517 #endif
519 EXPORT_SYMBOL(l1_data_B_sram_free);
521 void *l1_data_sram_alloc(size_t size)
523 void *addr = l1_data_A_sram_alloc(size);
525 if (!addr)
526 addr = l1_data_B_sram_alloc(size);
528 return addr;
530 EXPORT_SYMBOL(l1_data_sram_alloc);
532 void *l1_data_sram_zalloc(size_t size)
534 void *addr = l1_data_sram_alloc(size);
536 if (addr)
537 memset(addr, 0x00, size);
539 return addr;
541 EXPORT_SYMBOL(l1_data_sram_zalloc);
543 int l1_data_sram_free(const void *addr)
545 int ret;
546 ret = l1_data_A_sram_free(addr);
547 if (ret == -1)
548 ret = l1_data_B_sram_free(addr);
549 return ret;
551 EXPORT_SYMBOL(l1_data_sram_free);
553 void *l1_inst_sram_alloc(size_t size)
555 #if L1_CODE_LENGTH != 0
556 unsigned long flags;
557 void *addr;
558 unsigned int cpu;
560 cpu = get_cpu();
561 /* add mutex operation */
562 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
564 addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
565 &per_cpu(used_l1_inst_sram_head, cpu));
567 /* add mutex operation */
568 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
569 put_cpu();
571 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
572 (long unsigned int)addr, size);
574 return addr;
575 #else
576 return NULL;
577 #endif
579 EXPORT_SYMBOL(l1_inst_sram_alloc);
581 int l1_inst_sram_free(const void *addr)
583 #if L1_CODE_LENGTH != 0
584 unsigned long flags;
585 int ret;
586 unsigned int cpu;
588 cpu = get_cpu();
589 /* add mutex operation */
590 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
592 ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
593 &per_cpu(used_l1_inst_sram_head, cpu));
595 /* add mutex operation */
596 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
597 put_cpu();
599 return ret;
600 #else
601 return -1;
602 #endif
604 EXPORT_SYMBOL(l1_inst_sram_free);
606 /* L1 Scratchpad memory allocate function */
607 void *l1sram_alloc(size_t size)
609 unsigned long flags;
610 void *addr;
611 unsigned int cpu;
613 cpu = get_cpu();
614 /* add mutex operation */
615 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
617 addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
618 &per_cpu(used_l1_ssram_head, cpu));
620 /* add mutex operation */
621 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
622 put_cpu();
624 return addr;
627 /* L1 Scratchpad memory allocate function */
628 void *l1sram_alloc_max(size_t *psize)
630 unsigned long flags;
631 void *addr;
632 unsigned int cpu;
634 cpu = get_cpu();
635 /* add mutex operation */
636 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
638 addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
639 &per_cpu(used_l1_ssram_head, cpu), psize);
641 /* add mutex operation */
642 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
643 put_cpu();
645 return addr;
648 /* L1 Scratchpad memory free function */
649 int l1sram_free(const void *addr)
651 unsigned long flags;
652 int ret;
653 unsigned int cpu;
655 cpu = get_cpu();
656 /* add mutex operation */
657 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
659 ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
660 &per_cpu(used_l1_ssram_head, cpu));
662 /* add mutex operation */
663 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
664 put_cpu();
666 return ret;
669 void *l2_sram_alloc(size_t size)
671 #if L2_LENGTH != 0
672 unsigned long flags;
673 void *addr;
675 /* add mutex operation */
676 spin_lock_irqsave(&l2_sram_lock, flags);
678 addr = _sram_alloc(size, &free_l2_sram_head,
679 &used_l2_sram_head);
681 /* add mutex operation */
682 spin_unlock_irqrestore(&l2_sram_lock, flags);
684 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
685 (long unsigned int)addr, size);
687 return addr;
688 #else
689 return NULL;
690 #endif
692 EXPORT_SYMBOL(l2_sram_alloc);
694 void *l2_sram_zalloc(size_t size)
696 void *addr = l2_sram_alloc(size);
698 if (addr)
699 memset(addr, 0x00, size);
701 return addr;
703 EXPORT_SYMBOL(l2_sram_zalloc);
705 int l2_sram_free(const void *addr)
707 #if L2_LENGTH != 0
708 unsigned long flags;
709 int ret;
711 /* add mutex operation */
712 spin_lock_irqsave(&l2_sram_lock, flags);
714 ret = _sram_free(addr, &free_l2_sram_head,
715 &used_l2_sram_head);
717 /* add mutex operation */
718 spin_unlock_irqrestore(&l2_sram_lock, flags);
720 return ret;
721 #else
722 return -1;
723 #endif
725 EXPORT_SYMBOL(l2_sram_free);
727 int sram_free_with_lsl(const void *addr)
729 struct sram_list_struct *lsl, **tmp;
730 struct mm_struct *mm = current->mm;
732 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
733 if ((*tmp)->addr == addr)
734 goto found;
735 return -1;
736 found:
737 lsl = *tmp;
738 sram_free(addr);
739 *tmp = lsl->next;
740 kfree(lsl);
742 return 0;
744 EXPORT_SYMBOL(sram_free_with_lsl);
746 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
747 * tracked. These are designed for userspace so that when a process exits,
748 * we can safely reap their resources.
750 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
752 void *addr = NULL;
753 struct sram_list_struct *lsl = NULL;
754 struct mm_struct *mm = current->mm;
756 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
757 if (!lsl)
758 return NULL;
760 if (flags & L1_INST_SRAM)
761 addr = l1_inst_sram_alloc(size);
763 if (addr == NULL && (flags & L1_DATA_A_SRAM))
764 addr = l1_data_A_sram_alloc(size);
766 if (addr == NULL && (flags & L1_DATA_B_SRAM))
767 addr = l1_data_B_sram_alloc(size);
769 if (addr == NULL && (flags & L2_SRAM))
770 addr = l2_sram_alloc(size);
772 if (addr == NULL) {
773 kfree(lsl);
774 return NULL;
776 lsl->addr = addr;
777 lsl->length = size;
778 lsl->next = mm->context.sram_list;
779 mm->context.sram_list = lsl;
780 return addr;
782 EXPORT_SYMBOL(sram_alloc_with_lsl);
784 #ifdef CONFIG_PROC_FS
785 /* Once we get a real allocator, we'll throw all of this away.
786 * Until then, we need some sort of visibility into the L1 alloc.
788 /* Need to keep line of output the same. Currently, that is 44 bytes
789 * (including newline).
791 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
792 struct sram_piece *pfree_head,
793 struct sram_piece *pused_head)
795 struct sram_piece *pslot;
797 if (!pfree_head || !pused_head)
798 return -1;
800 *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
802 /* search the relevant memory slot */
803 pslot = pused_head->next;
805 while (pslot != NULL) {
806 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
807 pslot->paddr, pslot->paddr + pslot->size,
808 pslot->size, pslot->pid, "ALLOCATED");
810 pslot = pslot->next;
813 pslot = pfree_head->next;
815 while (pslot != NULL) {
816 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
817 pslot->paddr, pslot->paddr + pslot->size,
818 pslot->size, pslot->pid, "FREE");
820 pslot = pslot->next;
823 return 0;
825 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
826 int *eof, void *data)
828 int len = 0;
829 unsigned int cpu;
831 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
832 if (_sram_proc_read(buf, &len, count, "Scratchpad",
833 &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
834 goto not_done;
835 #if L1_DATA_A_LENGTH != 0
836 if (_sram_proc_read(buf, &len, count, "L1 Data A",
837 &per_cpu(free_l1_data_A_sram_head, cpu),
838 &per_cpu(used_l1_data_A_sram_head, cpu)))
839 goto not_done;
840 #endif
841 #if L1_DATA_B_LENGTH != 0
842 if (_sram_proc_read(buf, &len, count, "L1 Data B",
843 &per_cpu(free_l1_data_B_sram_head, cpu),
844 &per_cpu(used_l1_data_B_sram_head, cpu)))
845 goto not_done;
846 #endif
847 #if L1_CODE_LENGTH != 0
848 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
849 &per_cpu(free_l1_inst_sram_head, cpu),
850 &per_cpu(used_l1_inst_sram_head, cpu)))
851 goto not_done;
852 #endif
854 #if L2_LENGTH != 0
855 if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
856 &used_l2_sram_head))
857 goto not_done;
858 #endif
859 *eof = 1;
860 not_done:
861 return len;
864 static int __init sram_proc_init(void)
866 struct proc_dir_entry *ptr;
867 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
868 if (!ptr) {
869 printk(KERN_WARNING "unable to create /proc/sram\n");
870 return -1;
872 ptr->read_proc = sram_proc_read;
873 return 0;
875 late_initcall(sram_proc_init);
876 #endif