4 * Copyright (C) 2008 Paul Mundt
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
12 #include <linux/kgdb.h>
13 #include <linux/kdebug.h>
14 #include <linux/irq.h>
16 #include <asm/cacheflush.h>
18 char in_nmi
= 0; /* Set during NMI to prevent re-entry */
20 /* Macros for single step instruction identification */
21 #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
22 #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
23 #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
24 (((op) & 0x7f ) << 1))
25 #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
26 #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
27 #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
28 #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
29 (((op) & 0x7ff) << 1))
30 #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
31 #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
32 #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
33 #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
34 (((op) & 0x7ff) << 1))
35 #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
36 #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
37 #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
38 #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
39 #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
40 #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
41 #define OPCODE_RTS(op) ((op) == 0xb)
42 #define OPCODE_RTE(op) ((op) == 0x2b)
44 #define SR_T_BIT_MASK 0x1
45 #define STEP_OPCODE 0xc33d
47 /* Calculate the new address for after a step */
48 static short *get_step_address(struct pt_regs
*linux_regs
)
50 insn_size_t op
= __raw_readw(linux_regs
->pc
);
55 if (linux_regs
->sr
& SR_T_BIT_MASK
)
56 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
58 addr
= linux_regs
->pc
+ 2;
62 else if (OPCODE_BTS(op
)) {
63 if (linux_regs
->sr
& SR_T_BIT_MASK
)
64 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
66 addr
= linux_regs
->pc
+ 4; /* Not in delay slot */
70 else if (OPCODE_BF(op
)) {
71 if (!(linux_regs
->sr
& SR_T_BIT_MASK
))
72 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
74 addr
= linux_regs
->pc
+ 2;
78 else if (OPCODE_BFS(op
)) {
79 if (!(linux_regs
->sr
& SR_T_BIT_MASK
))
80 addr
= linux_regs
->pc
+ 4 + OPCODE_BTF_DISP(op
);
82 addr
= linux_regs
->pc
+ 4; /* Not in delay slot */
86 else if (OPCODE_BRA(op
))
87 addr
= linux_regs
->pc
+ 4 + OPCODE_BRA_DISP(op
);
90 else if (OPCODE_BRAF(op
))
91 addr
= linux_regs
->pc
+ 4
92 + linux_regs
->regs
[OPCODE_BRAF_REG(op
)];
95 else if (OPCODE_BSR(op
))
96 addr
= linux_regs
->pc
+ 4 + OPCODE_BSR_DISP(op
);
99 else if (OPCODE_BSRF(op
))
100 addr
= linux_regs
->pc
+ 4
101 + linux_regs
->regs
[OPCODE_BSRF_REG(op
)];
104 else if (OPCODE_JMP(op
))
105 addr
= linux_regs
->regs
[OPCODE_JMP_REG(op
)];
108 else if (OPCODE_JSR(op
))
109 addr
= linux_regs
->regs
[OPCODE_JSR_REG(op
)];
112 else if (OPCODE_RTS(op
))
113 addr
= linux_regs
->pr
;
116 else if (OPCODE_RTE(op
))
117 addr
= linux_regs
->regs
[15];
121 addr
= linux_regs
->pc
+ instruction_size(op
);
123 flush_icache_range(addr
, addr
+ instruction_size(op
));
124 return (short *)addr
;
128 * Replace the instruction immediately after the current instruction
129 * (i.e. next in the expected flow of control) with a trap instruction,
130 * so that returning will cause only a single instruction to be executed.
131 * Note that this model is slightly broken for instructions with delay
132 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133 * instruction in the delay slot will be executed.
136 static unsigned long stepped_address
;
137 static insn_size_t stepped_opcode
;
139 static void do_single_step(struct pt_regs
*linux_regs
)
141 /* Determine where the target instruction will send us to */
142 unsigned short *addr
= get_step_address(linux_regs
);
144 stepped_address
= (int)addr
;
147 stepped_opcode
= __raw_readw((long)addr
);
150 /* Flush and return */
151 flush_icache_range((long)addr
, (long)addr
+
152 instruction_size(stepped_opcode
));
155 /* Undo a single step */
156 static void undo_single_step(struct pt_regs
*linux_regs
)
158 /* If we have stepped, put back the old instruction */
159 /* Use stepped_address in case we stopped elsewhere */
160 if (stepped_opcode
!= 0) {
161 __raw_writew(stepped_opcode
, stepped_address
);
162 flush_icache_range(stepped_address
, stepped_address
+ 2);
168 void pt_regs_to_gdb_regs(unsigned long *gdb_regs
, struct pt_regs
*regs
)
172 for (i
= 0; i
< 16; i
++)
173 gdb_regs
[GDB_R0
+ i
] = regs
->regs
[i
];
175 gdb_regs
[GDB_PC
] = regs
->pc
;
176 gdb_regs
[GDB_PR
] = regs
->pr
;
177 gdb_regs
[GDB_SR
] = regs
->sr
;
178 gdb_regs
[GDB_GBR
] = regs
->gbr
;
179 gdb_regs
[GDB_MACH
] = regs
->mach
;
180 gdb_regs
[GDB_MACL
] = regs
->macl
;
182 __asm__
__volatile__ ("stc vbr, %0" : "=r" (gdb_regs
[GDB_VBR
]));
185 void gdb_regs_to_pt_regs(unsigned long *gdb_regs
, struct pt_regs
*regs
)
189 for (i
= 0; i
< 16; i
++)
190 regs
->regs
[GDB_R0
+ i
] = gdb_regs
[GDB_R0
+ i
];
192 regs
->pc
= gdb_regs
[GDB_PC
];
193 regs
->pr
= gdb_regs
[GDB_PR
];
194 regs
->sr
= gdb_regs
[GDB_SR
];
195 regs
->gbr
= gdb_regs
[GDB_GBR
];
196 regs
->mach
= gdb_regs
[GDB_MACH
];
197 regs
->macl
= gdb_regs
[GDB_MACL
];
199 __asm__
__volatile__ ("ldc %0, vbr" : : "r" (gdb_regs
[GDB_VBR
]));
202 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs
, struct task_struct
*p
)
204 gdb_regs
[GDB_R15
] = p
->thread
.sp
;
205 gdb_regs
[GDB_PC
] = p
->thread
.pc
;
208 int kgdb_arch_handle_exception(int e_vector
, int signo
, int err_code
,
209 char *remcomInBuffer
, char *remcomOutBuffer
,
210 struct pt_regs
*linux_regs
)
215 /* Undo any stepping we may have done */
216 undo_single_step(linux_regs
);
218 switch (remcomInBuffer
[0]) {
221 /* try to read optional parameter, pc unchanged if no parm */
222 ptr
= &remcomInBuffer
[1];
223 if (kgdb_hex2long(&ptr
, &addr
))
224 linux_regs
->pc
= addr
;
227 atomic_set(&kgdb_cpu_doing_single_step
, -1);
229 if (remcomInBuffer
[0] == 's') {
230 do_single_step(linux_regs
);
231 kgdb_single_step
= 1;
233 atomic_set(&kgdb_cpu_doing_single_step
,
234 raw_smp_processor_id());
240 /* this means that we do not want to exit from the handler: */
245 * The primary entry points for the kgdb debug trap table entries.
247 BUILD_TRAP_HANDLER(singlestep
)
252 local_irq_save(flags
);
253 regs
->pc
-= instruction_size(__raw_readw(regs
->pc
- 4));
254 kgdb_handle_exception(vec
>> 2, SIGTRAP
, 0, regs
);
255 local_irq_restore(flags
);
259 BUILD_TRAP_HANDLER(breakpoint
)
264 local_irq_save(flags
);
265 kgdb_handle_exception(vec
>> 2, SIGTRAP
, 0, regs
);
266 local_irq_restore(flags
);
269 int kgdb_arch_init(void)
274 void kgdb_arch_exit(void)
278 struct kgdb_arch arch_kgdb_ops
= {
279 /* Breakpoint instruction: trapa #0x3c */
280 #ifdef CONFIG_CPU_LITTLE_ENDIAN
281 .gdb_bpt_instr
= { 0x3c, 0xc3 },
283 .gdb_bpt_instr
= { 0xc3, 0x3c },