2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <asm/types.h>
19 #include <asm/percpu.h>
20 #include <asm/uv/uv_mmrs.h>
24 * Addressing Terminology
26 * M - The low M bits of a physical address represent the offset
27 * into the blade local memory. RAM memory on a blade is physically
28 * contiguous (although various IO spaces may punch holes in
31 * N - Number of bits in the node portion of a socket physical
34 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
35 * routers always have low bit of 1, C/MBricks have low bit
36 * equal to 0. Most addressing macros that target UV hub chips
37 * right shift the NASID by 1 to exclude the always-zero bit.
38 * NASIDs contain up to 15 bits.
40 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
43 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
44 * of the nasid for socket usage.
47 * NumaLink Global Physical Address Format:
48 * +--------------------------------+---------------------+
49 * |00..000| GNODE | NodeOffset |
50 * +--------------------------------+---------------------+
51 * |<-------53 - M bits --->|<--------M bits ----->
53 * M - number of node offset bits (35 .. 40)
56 * Memory/UV-HUB Processor Socket Address Format:
57 * +----------------+---------------+---------------------+
58 * |00..000000000000| PNODE | NodeOffset |
59 * +----------------+---------------+---------------------+
60 * <--- N bits --->|<--------M bits ----->
62 * M - number of node offset bits (35 .. 40)
63 * N - number of PNODE bits (0 .. 10)
65 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
66 * The actual values are configuration dependent and are set at
67 * boot time. M & N values are set by the hardware/BIOS at boot.
71 * NOTE!!!!!! This is the current format of the APICID. However, code
72 * should assume that this will change in the future. Use functions
73 * in this file for all APICID bit manipulations and conversion.
81 * l = socket number on board
84 * s = bits that are in the SOCKET_ID CSR
86 * Note: Processor only supports 12 bits in the APICID register. The ACPI
87 * tables hold all 16 bits. Software needs to be aware of this.
89 * Unless otherwise specified, all references to APICID refer to
90 * the FULL value contained in ACPI tables, not the subset in the
91 * processor APICID register.
96 * Maximum number of bricks in all partitions and in all coherency domains.
97 * This is the total number of bricks accessible in the numalink fabric. It
98 * includes all C & M bricks. Routers are NOT included.
100 * This value is also the value of the maximum number of non-router NASIDs
101 * in the numalink fabric.
103 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
105 #define UV_MAX_NUMALINK_BLADES 16384
108 * Maximum number of C/Mbricks within a software SSI (hardware may support
111 #define UV_MAX_SSI_BLADES 256
114 * The largest possible NASID of a C or M brick (+ 2)
116 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
119 struct timer_list timer
;
120 unsigned long offset
;
122 unsigned long idle_on
;
123 unsigned long idle_off
;
125 unsigned char enabled
;
129 * The following defines attributes of the HUB chip. These attributes are
130 * frequently referenced and are kept in the per-cpu data areas of each cpu.
131 * They are kept together in a struct to minimize cache misses.
133 struct uv_hub_info_s
{
134 unsigned long global_mmr_base
;
135 unsigned long gpa_mask
;
136 unsigned int gnode_extra
;
137 unsigned long gnode_upper
;
138 unsigned long lowmem_remap_top
;
139 unsigned long lowmem_remap_base
;
140 unsigned short pnode
;
141 unsigned short pnode_mask
;
142 unsigned short coherency_domain_number
;
143 unsigned short numa_blade_id
;
144 unsigned char blade_processor_id
;
147 struct uv_scir_s scir
;
150 DECLARE_PER_CPU(struct uv_hub_info_s
, __uv_hub_info
);
151 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
152 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
155 * Local & Global MMR space macros.
156 * Note: macros are intended to be used ONLY by inline functions
157 * in this file - not by other kernel code.
158 * n - NASID (full 15-bit global nasid)
159 * g - GNODE (full 15-bit global nasid, right shifted 1)
160 * p - PNODE (local part of nsids, right shifted 1)
162 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
163 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
164 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
166 #define UV_LOCAL_MMR_BASE 0xf4000000UL
167 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
168 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
169 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
170 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
172 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
173 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
175 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
177 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
178 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
180 #define UV_APIC_PNODE_SHIFT 6
182 /* Local Bus from cpu's perspective */
183 #define LOCAL_BUS_BASE 0x1c00000
184 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
187 * System Controller Interface Reg
189 * Note there are NO leds on a UV system. This register is only
190 * used by the system controller to monitor system-wide operation.
191 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
192 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
195 * The window is located at top of ACPI MMR space
197 #define SCIR_WINDOW_COUNT 64
198 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
202 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
203 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
204 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
206 /* Loop through all installed blades */
207 #define for_each_possible_blade(bid) \
208 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
211 * Macros for converting between kernel virtual addresses, socket local physical
212 * addresses, and UV global physical addresses.
213 * Note: use the standard __pa() & __va() macros for converting
214 * between socket virtual and socket physical addresses.
217 /* socket phys RAM --> UV global physical address */
218 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
220 if (paddr
< uv_hub_info
->lowmem_remap_top
)
221 paddr
|= uv_hub_info
->lowmem_remap_base
;
222 return paddr
| uv_hub_info
->gnode_upper
;
226 /* socket virtual --> UV global physical address */
227 static inline unsigned long uv_gpa(void *v
)
229 return uv_soc_phys_ram_to_gpa(__pa(v
));
232 /* pnode, offset --> socket virtual */
233 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
235 return __va(((unsigned long)pnode
<< uv_hub_info
->m_val
) | offset
);
240 * Extract a PNODE from an APICID (full apicid, not processor subset)
242 static inline int uv_apicid_to_pnode(int apicid
)
244 return (apicid
>> UV_APIC_PNODE_SHIFT
);
248 * Access global MMRs using the low memory MMR32 space. This region supports
249 * faster MMR access but not all MMRs are accessible in this space.
251 static inline unsigned long *uv_global_mmr32_address(int pnode
,
252 unsigned long offset
)
254 return __va(UV_GLOBAL_MMR32_BASE
|
255 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
258 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
,
261 *uv_global_mmr32_address(pnode
, offset
) = val
;
264 static inline unsigned long uv_read_global_mmr32(int pnode
,
265 unsigned long offset
)
267 return *uv_global_mmr32_address(pnode
, offset
);
271 * Access Global MMR space using the MMR space located at the top of physical
274 static inline unsigned long *uv_global_mmr64_address(int pnode
,
275 unsigned long offset
)
277 return __va(UV_GLOBAL_MMR64_BASE
|
278 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
281 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
,
284 *uv_global_mmr64_address(pnode
, offset
) = val
;
287 static inline unsigned long uv_read_global_mmr64(int pnode
,
288 unsigned long offset
)
290 return *uv_global_mmr64_address(pnode
, offset
);
294 * Access hub local MMRs. Faster than using global space but only local MMRs
297 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
299 return __va(UV_LOCAL_MMR_BASE
| offset
);
302 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
304 return *uv_local_mmr_address(offset
);
307 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
309 *uv_local_mmr_address(offset
) = val
;
312 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
314 return *((unsigned char *)uv_local_mmr_address(offset
));
317 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
319 *((unsigned char *)uv_local_mmr_address(offset
)) = val
;
323 * Structures and definitions for converting between cpu, node, pnode, and blade
326 struct uv_blade_info
{
327 unsigned short nr_possible_cpus
;
328 unsigned short nr_online_cpus
;
329 unsigned short pnode
;
332 extern struct uv_blade_info
*uv_blade_info
;
333 extern short *uv_node_to_blade
;
334 extern short *uv_cpu_to_blade
;
335 extern short uv_possible_blades
;
337 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
338 static inline int uv_blade_processor_id(void)
340 return uv_hub_info
->blade_processor_id
;
343 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
344 static inline int uv_numa_blade_id(void)
346 return uv_hub_info
->numa_blade_id
;
349 /* Convert a cpu number to the the UV blade number */
350 static inline int uv_cpu_to_blade_id(int cpu
)
352 return uv_cpu_to_blade
[cpu
];
355 /* Convert linux node number to the UV blade number */
356 static inline int uv_node_to_blade_id(int nid
)
358 return uv_node_to_blade
[nid
];
361 /* Convert a blade id to the PNODE of the blade */
362 static inline int uv_blade_to_pnode(int bid
)
364 return uv_blade_info
[bid
].pnode
;
367 /* Nid of memory node on blade. -1 if no blade-local memory */
368 static inline int uv_blade_to_memory_nid(int bid
)
370 return uv_blade_info
[bid
].memory_nid
;
373 /* Determine the number of possible cpus on a blade */
374 static inline int uv_blade_nr_possible_cpus(int bid
)
376 return uv_blade_info
[bid
].nr_possible_cpus
;
379 /* Determine the number of online cpus on a blade */
380 static inline int uv_blade_nr_online_cpus(int bid
)
382 return uv_blade_info
[bid
].nr_online_cpus
;
385 /* Convert a cpu id to the PNODE of the blade containing the cpu */
386 static inline int uv_cpu_to_pnode(int cpu
)
388 return uv_blade_info
[uv_cpu_to_blade_id(cpu
)].pnode
;
391 /* Convert a linux node number to the PNODE of the blade */
392 static inline int uv_node_to_pnode(int nid
)
394 return uv_blade_info
[uv_node_to_blade_id(nid
)].pnode
;
397 /* Maximum possible number of blades */
398 static inline int uv_num_possible_blades(void)
400 return uv_possible_blades
;
403 /* Update SCIR state */
404 static inline void uv_set_scir_bits(unsigned char value
)
406 if (uv_hub_info
->scir
.state
!= value
) {
407 uv_hub_info
->scir
.state
= value
;
408 uv_write_local_mmr8(uv_hub_info
->scir
.offset
, value
);
412 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
414 if (uv_cpu_hub_info(cpu
)->scir
.state
!= value
) {
415 uv_cpu_hub_info(cpu
)->scir
.state
= value
;
416 uv_write_local_mmr8(uv_cpu_hub_info(cpu
)->scir
.offset
, value
);
420 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
424 val
= (1UL << UVH_IPI_INT_SEND_SHFT
) |
425 ((apicid
& 0x3f) << UVH_IPI_INT_APIC_ID_SHFT
) |
426 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
427 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
430 #endif /* CONFIG_X86_64 */
431 #endif /* _ASM_X86_UV_UV_HUB_H */