2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
45 #include <asm/uaccess.h>
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
72 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
74 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
82 struct kvm_cpuid_entry2 __user
*entries
);
84 struct kvm_x86_ops
*kvm_x86_ops
;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
88 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
90 struct kvm_stats_debugfs_item debugfs_entries
[] = {
91 { "pf_fixed", VCPU_STAT(pf_fixed
) },
92 { "pf_guest", VCPU_STAT(pf_guest
) },
93 { "tlb_flush", VCPU_STAT(tlb_flush
) },
94 { "invlpg", VCPU_STAT(invlpg
) },
95 { "exits", VCPU_STAT(exits
) },
96 { "io_exits", VCPU_STAT(io_exits
) },
97 { "mmio_exits", VCPU_STAT(mmio_exits
) },
98 { "signal_exits", VCPU_STAT(signal_exits
) },
99 { "irq_window", VCPU_STAT(irq_window_exits
) },
100 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
101 { "halt_exits", VCPU_STAT(halt_exits
) },
102 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
103 { "hypercalls", VCPU_STAT(hypercalls
) },
104 { "request_irq", VCPU_STAT(request_irq_exits
) },
105 { "irq_exits", VCPU_STAT(irq_exits
) },
106 { "host_state_reload", VCPU_STAT(host_state_reload
) },
107 { "efer_reload", VCPU_STAT(efer_reload
) },
108 { "fpu_reload", VCPU_STAT(fpu_reload
) },
109 { "insn_emulation", VCPU_STAT(insn_emulation
) },
110 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
111 { "irq_injections", VCPU_STAT(irq_injections
) },
112 { "nmi_injections", VCPU_STAT(nmi_injections
) },
113 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
114 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
115 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
116 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
117 { "mmu_flooded", VM_STAT(mmu_flooded
) },
118 { "mmu_recycled", VM_STAT(mmu_recycled
) },
119 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
120 { "mmu_unsync", VM_STAT(mmu_unsync
) },
121 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
122 { "largepages", VM_STAT(lpages
) },
126 unsigned long segment_base(u16 selector
)
128 struct descriptor_table gdt
;
129 struct desc_struct
*d
;
130 unsigned long table_base
;
137 table_base
= gdt
.base
;
139 if (selector
& 4) { /* from ldt */
140 u16 ldt_selector
= kvm_read_ldt();
142 table_base
= segment_base(ldt_selector
);
144 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
145 v
= get_desc_base(d
);
147 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
148 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
152 EXPORT_SYMBOL_GPL(segment_base
);
154 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
156 if (irqchip_in_kernel(vcpu
->kvm
))
157 return vcpu
->arch
.apic_base
;
159 return vcpu
->arch
.apic_base
;
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
163 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
165 /* TODO: reserve bits check */
166 if (irqchip_in_kernel(vcpu
->kvm
))
167 kvm_lapic_set_base(vcpu
, data
);
169 vcpu
->arch
.apic_base
= data
;
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
173 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
175 WARN_ON(vcpu
->arch
.exception
.pending
);
176 vcpu
->arch
.exception
.pending
= true;
177 vcpu
->arch
.exception
.has_error_code
= false;
178 vcpu
->arch
.exception
.nr
= nr
;
180 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
182 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
185 ++vcpu
->stat
.pf_guest
;
187 if (vcpu
->arch
.exception
.pending
) {
188 switch(vcpu
->arch
.exception
.nr
) {
190 /* triple fault -> shutdown */
191 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
194 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
195 vcpu
->arch
.exception
.error_code
= 0;
198 /* replace previous exception with a new one in a hope
199 that instruction re-execution will regenerate lost
201 vcpu
->arch
.exception
.pending
= false;
205 vcpu
->arch
.cr2
= addr
;
206 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
209 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
211 vcpu
->arch
.nmi_pending
= 1;
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
215 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
217 WARN_ON(vcpu
->arch
.exception
.pending
);
218 vcpu
->arch
.exception
.pending
= true;
219 vcpu
->arch
.exception
.has_error_code
= true;
220 vcpu
->arch
.exception
.nr
= nr
;
221 vcpu
->arch
.exception
.error_code
= error_code
;
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
226 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
227 * a #GP and return false.
229 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
231 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
233 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
236 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
239 * Load the pae pdptrs. Return true is they are all valid.
241 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
243 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
244 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
247 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
249 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
250 offset
* sizeof(u64
), sizeof(pdpte
));
255 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
256 if (is_present_gpte(pdpte
[i
]) &&
257 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
264 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
265 __set_bit(VCPU_EXREG_PDPTR
,
266 (unsigned long *)&vcpu
->arch
.regs_avail
);
267 __set_bit(VCPU_EXREG_PDPTR
,
268 (unsigned long *)&vcpu
->arch
.regs_dirty
);
273 EXPORT_SYMBOL_GPL(load_pdptrs
);
275 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
277 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
281 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
284 if (!test_bit(VCPU_EXREG_PDPTR
,
285 (unsigned long *)&vcpu
->arch
.regs_avail
))
288 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
291 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
297 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
299 if (cr0
& CR0_RESERVED_BITS
) {
300 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
301 cr0
, vcpu
->arch
.cr0
);
302 kvm_inject_gp(vcpu
, 0);
306 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
307 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
308 kvm_inject_gp(vcpu
, 0);
312 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
313 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
314 "and a clear PE flag\n");
315 kvm_inject_gp(vcpu
, 0);
319 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
321 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
325 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
326 "in long mode while PAE is disabled\n");
327 kvm_inject_gp(vcpu
, 0);
330 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
332 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
333 "in long mode while CS.L == 1\n");
334 kvm_inject_gp(vcpu
, 0);
340 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
341 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
343 kvm_inject_gp(vcpu
, 0);
349 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
350 vcpu
->arch
.cr0
= cr0
;
352 kvm_mmu_reset_context(vcpu
);
355 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
357 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
359 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
361 EXPORT_SYMBOL_GPL(kvm_lmsw
);
363 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
365 unsigned long old_cr4
= vcpu
->arch
.cr4
;
366 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
368 if (cr4
& CR4_RESERVED_BITS
) {
369 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
370 kvm_inject_gp(vcpu
, 0);
374 if (is_long_mode(vcpu
)) {
375 if (!(cr4
& X86_CR4_PAE
)) {
376 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
378 kvm_inject_gp(vcpu
, 0);
381 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
382 && ((cr4
^ old_cr4
) & pdptr_bits
)
383 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
384 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
385 kvm_inject_gp(vcpu
, 0);
389 if (cr4
& X86_CR4_VMXE
) {
390 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
391 kvm_inject_gp(vcpu
, 0);
394 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
395 vcpu
->arch
.cr4
= cr4
;
396 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
397 kvm_mmu_reset_context(vcpu
);
399 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
401 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
403 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
404 kvm_mmu_sync_roots(vcpu
);
405 kvm_mmu_flush_tlb(vcpu
);
409 if (is_long_mode(vcpu
)) {
410 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
411 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
412 kvm_inject_gp(vcpu
, 0);
417 if (cr3
& CR3_PAE_RESERVED_BITS
) {
419 "set_cr3: #GP, reserved bits\n");
420 kvm_inject_gp(vcpu
, 0);
423 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
424 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
426 kvm_inject_gp(vcpu
, 0);
431 * We don't check reserved bits in nonpae mode, because
432 * this isn't enforced, and VMware depends on this.
437 * Does the new cr3 value map to physical memory? (Note, we
438 * catch an invalid cr3 even in real-mode, because it would
439 * cause trouble later on when we turn on paging anyway.)
441 * A real CPU would silently accept an invalid cr3 and would
442 * attempt to use it - with largely undefined (and often hard
443 * to debug) behavior on the guest side.
445 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
446 kvm_inject_gp(vcpu
, 0);
448 vcpu
->arch
.cr3
= cr3
;
449 vcpu
->arch
.mmu
.new_cr3(vcpu
);
452 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
454 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
456 if (cr8
& CR8_RESERVED_BITS
) {
457 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
458 kvm_inject_gp(vcpu
, 0);
461 if (irqchip_in_kernel(vcpu
->kvm
))
462 kvm_lapic_set_tpr(vcpu
, cr8
);
464 vcpu
->arch
.cr8
= cr8
;
466 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
468 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
470 if (irqchip_in_kernel(vcpu
->kvm
))
471 return kvm_lapic_get_cr8(vcpu
);
473 return vcpu
->arch
.cr8
;
475 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
477 static inline u32
bit(int bitno
)
479 return 1 << (bitno
& 31);
483 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
484 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
486 * This list is modified at module load time to reflect the
487 * capabilities of the host cpu.
489 static u32 msrs_to_save
[] = {
490 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
493 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
495 MSR_IA32_TSC
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
496 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
499 static unsigned num_msrs_to_save
;
501 static u32 emulated_msrs
[] = {
502 MSR_IA32_MISC_ENABLE
,
505 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
507 if (efer
& efer_reserved_bits
) {
508 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
510 kvm_inject_gp(vcpu
, 0);
515 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
516 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
517 kvm_inject_gp(vcpu
, 0);
521 if (efer
& EFER_FFXSR
) {
522 struct kvm_cpuid_entry2
*feat
;
524 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
525 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
526 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
527 kvm_inject_gp(vcpu
, 0);
532 if (efer
& EFER_SVME
) {
533 struct kvm_cpuid_entry2
*feat
;
535 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
536 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
537 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
538 kvm_inject_gp(vcpu
, 0);
543 kvm_x86_ops
->set_efer(vcpu
, efer
);
546 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
548 vcpu
->arch
.shadow_efer
= efer
;
550 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
551 kvm_mmu_reset_context(vcpu
);
554 void kvm_enable_efer_bits(u64 mask
)
556 efer_reserved_bits
&= ~mask
;
558 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
562 * Writes msr value into into the appropriate "register".
563 * Returns 0 on success, non-0 otherwise.
564 * Assumes vcpu_load() was already called.
566 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
568 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
572 * Adapt set_msr() to msr_io()'s calling convention
574 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
576 return kvm_set_msr(vcpu
, index
, *data
);
579 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
582 struct pvclock_wall_clock wc
;
583 struct timespec now
, sys
, boot
;
590 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
593 * The guest calculates current wall clock time by adding
594 * system time (updated by kvm_write_guest_time below) to the
595 * wall clock specified here. guest system time equals host
596 * system time for us, thus we must fill in host boot time here.
598 now
= current_kernel_time();
600 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
602 wc
.sec
= boot
.tv_sec
;
603 wc
.nsec
= boot
.tv_nsec
;
604 wc
.version
= version
;
606 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
609 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
612 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
614 uint32_t quotient
, remainder
;
616 /* Don't try to replace with do_div(), this one calculates
617 * "(dividend << 32) / divisor" */
619 : "=a" (quotient
), "=d" (remainder
)
620 : "0" (0), "1" (dividend
), "r" (divisor
) );
624 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
626 uint64_t nsecs
= 1000000000LL;
631 tps64
= tsc_khz
* 1000LL;
632 while (tps64
> nsecs
*2) {
637 tps32
= (uint32_t)tps64
;
638 while (tps32
<= (uint32_t)nsecs
) {
643 hv_clock
->tsc_shift
= shift
;
644 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
646 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
647 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
648 hv_clock
->tsc_to_system_mul
);
651 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
653 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
657 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
659 unsigned long this_tsc_khz
;
661 if ((!vcpu
->time_page
))
664 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
665 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
666 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
667 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
669 put_cpu_var(cpu_tsc_khz
);
671 /* Keep irq disabled to prevent changes to the clock */
672 local_irq_save(flags
);
673 kvm_get_msr(v
, MSR_IA32_TSC
, &vcpu
->hv_clock
.tsc_timestamp
);
675 local_irq_restore(flags
);
677 /* With all the info we got, fill in the values */
679 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
680 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
682 * The interface expects us to write an even number signaling that the
683 * update is finished. Since the guest won't see the intermediate
684 * state, we just increase by 2 at the end.
686 vcpu
->hv_clock
.version
+= 2;
688 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
690 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
691 sizeof(vcpu
->hv_clock
));
693 kunmap_atomic(shared_kaddr
, KM_USER0
);
695 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
698 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
700 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
702 if (!vcpu
->time_page
)
704 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
708 static bool msr_mtrr_valid(unsigned msr
)
711 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
712 case MSR_MTRRfix64K_00000
:
713 case MSR_MTRRfix16K_80000
:
714 case MSR_MTRRfix16K_A0000
:
715 case MSR_MTRRfix4K_C0000
:
716 case MSR_MTRRfix4K_C8000
:
717 case MSR_MTRRfix4K_D0000
:
718 case MSR_MTRRfix4K_D8000
:
719 case MSR_MTRRfix4K_E0000
:
720 case MSR_MTRRfix4K_E8000
:
721 case MSR_MTRRfix4K_F0000
:
722 case MSR_MTRRfix4K_F8000
:
723 case MSR_MTRRdefType
:
724 case MSR_IA32_CR_PAT
:
732 static bool valid_pat_type(unsigned t
)
734 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
737 static bool valid_mtrr_type(unsigned t
)
739 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
742 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
746 if (!msr_mtrr_valid(msr
))
749 if (msr
== MSR_IA32_CR_PAT
) {
750 for (i
= 0; i
< 8; i
++)
751 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
754 } else if (msr
== MSR_MTRRdefType
) {
757 return valid_mtrr_type(data
& 0xff);
758 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
759 for (i
= 0; i
< 8 ; i
++)
760 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
766 return valid_mtrr_type(data
& 0xff);
769 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
771 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
773 if (!mtrr_valid(vcpu
, msr
, data
))
776 if (msr
== MSR_MTRRdefType
) {
777 vcpu
->arch
.mtrr_state
.def_type
= data
;
778 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
779 } else if (msr
== MSR_MTRRfix64K_00000
)
781 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
782 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
783 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
784 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
785 else if (msr
== MSR_IA32_CR_PAT
)
786 vcpu
->arch
.pat
= data
;
787 else { /* Variable MTRRs */
788 int idx
, is_mtrr_mask
;
791 idx
= (msr
- 0x200) / 2;
792 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
795 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
798 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
802 kvm_mmu_reset_context(vcpu
);
806 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
808 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
809 unsigned bank_num
= mcg_cap
& 0xff;
812 case MSR_IA32_MCG_STATUS
:
813 vcpu
->arch
.mcg_status
= data
;
815 case MSR_IA32_MCG_CTL
:
816 if (!(mcg_cap
& MCG_CTL_P
))
818 if (data
!= 0 && data
!= ~(u64
)0)
820 vcpu
->arch
.mcg_ctl
= data
;
823 if (msr
>= MSR_IA32_MC0_CTL
&&
824 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
825 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
826 /* only 0 or all 1s can be written to IA32_MCi_CTL */
827 if ((offset
& 0x3) == 0 &&
828 data
!= 0 && data
!= ~(u64
)0)
830 vcpu
->arch
.mce_banks
[offset
] = data
;
838 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
842 set_efer(vcpu
, data
);
845 data
&= ~(u64
)0x40; /* ignore flush filter disable */
847 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
852 case MSR_FAM10H_MMIO_CONF_BASE
:
854 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
859 case MSR_AMD64_NB_CFG
:
861 case MSR_IA32_DEBUGCTLMSR
:
863 /* We support the non-activated case already */
865 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
866 /* Values other than LBR and BTF are vendor-specific,
867 thus reserved and should throw a #GP */
870 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
873 case MSR_IA32_UCODE_REV
:
874 case MSR_IA32_UCODE_WRITE
:
875 case MSR_VM_HSAVE_PA
:
876 case MSR_AMD64_PATCH_LOADER
:
878 case 0x200 ... 0x2ff:
879 return set_msr_mtrr(vcpu
, msr
, data
);
880 case MSR_IA32_APICBASE
:
881 kvm_set_apic_base(vcpu
, data
);
883 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
884 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
885 case MSR_IA32_MISC_ENABLE
:
886 vcpu
->arch
.ia32_misc_enable_msr
= data
;
888 case MSR_KVM_WALL_CLOCK
:
889 vcpu
->kvm
->arch
.wall_clock
= data
;
890 kvm_write_wall_clock(vcpu
->kvm
, data
);
892 case MSR_KVM_SYSTEM_TIME
: {
893 if (vcpu
->arch
.time_page
) {
894 kvm_release_page_dirty(vcpu
->arch
.time_page
);
895 vcpu
->arch
.time_page
= NULL
;
898 vcpu
->arch
.time
= data
;
900 /* we verify if the enable bit is set... */
904 /* ...but clean it before doing the actual write */
905 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
907 vcpu
->arch
.time_page
=
908 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
910 if (is_error_page(vcpu
->arch
.time_page
)) {
911 kvm_release_page_clean(vcpu
->arch
.time_page
);
912 vcpu
->arch
.time_page
= NULL
;
915 kvm_request_guest_time_update(vcpu
);
918 case MSR_IA32_MCG_CTL
:
919 case MSR_IA32_MCG_STATUS
:
920 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
921 return set_msr_mce(vcpu
, msr
, data
);
923 /* Performance counters are not protected by a CPUID bit,
924 * so we should check all of them in the generic path for the sake of
925 * cross vendor migration.
926 * Writing a zero into the event select MSRs disables them,
927 * which we perfectly emulate ;-). Any other value should be at least
928 * reported, some guests depend on them.
930 case MSR_P6_EVNTSEL0
:
931 case MSR_P6_EVNTSEL1
:
932 case MSR_K7_EVNTSEL0
:
933 case MSR_K7_EVNTSEL1
:
934 case MSR_K7_EVNTSEL2
:
935 case MSR_K7_EVNTSEL3
:
937 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
938 "0x%x data 0x%llx\n", msr
, data
);
940 /* at least RHEL 4 unconditionally writes to the perfctr registers,
941 * so we ignore writes to make it happy.
943 case MSR_P6_PERFCTR0
:
944 case MSR_P6_PERFCTR1
:
945 case MSR_K7_PERFCTR0
:
946 case MSR_K7_PERFCTR1
:
947 case MSR_K7_PERFCTR2
:
948 case MSR_K7_PERFCTR3
:
949 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
950 "0x%x data 0x%llx\n", msr
, data
);
954 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
958 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
965 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
969 * Reads an msr value (of 'msr_index') into 'pdata'.
970 * Returns 0 on success, non-0 otherwise.
971 * Assumes vcpu_load() was already called.
973 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
975 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
978 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
980 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
982 if (!msr_mtrr_valid(msr
))
985 if (msr
== MSR_MTRRdefType
)
986 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
987 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
988 else if (msr
== MSR_MTRRfix64K_00000
)
990 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
991 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
992 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
993 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
994 else if (msr
== MSR_IA32_CR_PAT
)
995 *pdata
= vcpu
->arch
.pat
;
996 else { /* Variable MTRRs */
997 int idx
, is_mtrr_mask
;
1000 idx
= (msr
- 0x200) / 2;
1001 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1004 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1007 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1014 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1017 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1018 unsigned bank_num
= mcg_cap
& 0xff;
1021 case MSR_IA32_P5_MC_ADDR
:
1022 case MSR_IA32_P5_MC_TYPE
:
1025 case MSR_IA32_MCG_CAP
:
1026 data
= vcpu
->arch
.mcg_cap
;
1028 case MSR_IA32_MCG_CTL
:
1029 if (!(mcg_cap
& MCG_CTL_P
))
1031 data
= vcpu
->arch
.mcg_ctl
;
1033 case MSR_IA32_MCG_STATUS
:
1034 data
= vcpu
->arch
.mcg_status
;
1037 if (msr
>= MSR_IA32_MC0_CTL
&&
1038 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1039 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1040 data
= vcpu
->arch
.mce_banks
[offset
];
1049 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1054 case MSR_IA32_PLATFORM_ID
:
1055 case MSR_IA32_UCODE_REV
:
1056 case MSR_IA32_EBL_CR_POWERON
:
1057 case MSR_IA32_DEBUGCTLMSR
:
1058 case MSR_IA32_LASTBRANCHFROMIP
:
1059 case MSR_IA32_LASTBRANCHTOIP
:
1060 case MSR_IA32_LASTINTFROMIP
:
1061 case MSR_IA32_LASTINTTOIP
:
1064 case MSR_VM_HSAVE_PA
:
1065 case MSR_P6_PERFCTR0
:
1066 case MSR_P6_PERFCTR1
:
1067 case MSR_P6_EVNTSEL0
:
1068 case MSR_P6_EVNTSEL1
:
1069 case MSR_K7_EVNTSEL0
:
1070 case MSR_K7_PERFCTR0
:
1071 case MSR_K8_INT_PENDING_MSG
:
1072 case MSR_AMD64_NB_CFG
:
1073 case MSR_FAM10H_MMIO_CONF_BASE
:
1077 data
= 0x500 | KVM_NR_VAR_MTRR
;
1079 case 0x200 ... 0x2ff:
1080 return get_msr_mtrr(vcpu
, msr
, pdata
);
1081 case 0xcd: /* fsb frequency */
1084 case MSR_IA32_APICBASE
:
1085 data
= kvm_get_apic_base(vcpu
);
1087 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1088 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1090 case MSR_IA32_MISC_ENABLE
:
1091 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1093 case MSR_IA32_PERF_STATUS
:
1094 /* TSC increment by tick */
1096 /* CPU multiplier */
1097 data
|= (((uint64_t)4ULL) << 40);
1100 data
= vcpu
->arch
.shadow_efer
;
1102 case MSR_KVM_WALL_CLOCK
:
1103 data
= vcpu
->kvm
->arch
.wall_clock
;
1105 case MSR_KVM_SYSTEM_TIME
:
1106 data
= vcpu
->arch
.time
;
1108 case MSR_IA32_P5_MC_ADDR
:
1109 case MSR_IA32_P5_MC_TYPE
:
1110 case MSR_IA32_MCG_CAP
:
1111 case MSR_IA32_MCG_CTL
:
1112 case MSR_IA32_MCG_STATUS
:
1113 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1114 return get_msr_mce(vcpu
, msr
, pdata
);
1117 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1120 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1128 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1131 * Read or write a bunch of msrs. All parameters are kernel addresses.
1133 * @return number of msrs set successfully.
1135 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1136 struct kvm_msr_entry
*entries
,
1137 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1138 unsigned index
, u64
*data
))
1144 down_read(&vcpu
->kvm
->slots_lock
);
1145 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1146 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1148 up_read(&vcpu
->kvm
->slots_lock
);
1156 * Read or write a bunch of msrs. Parameters are user addresses.
1158 * @return number of msrs set successfully.
1160 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1161 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1162 unsigned index
, u64
*data
),
1165 struct kvm_msrs msrs
;
1166 struct kvm_msr_entry
*entries
;
1171 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1175 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1179 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1180 entries
= vmalloc(size
);
1185 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1188 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1193 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1204 int kvm_dev_ioctl_check_extension(long ext
)
1209 case KVM_CAP_IRQCHIP
:
1211 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1212 case KVM_CAP_SET_TSS_ADDR
:
1213 case KVM_CAP_EXT_CPUID
:
1214 case KVM_CAP_CLOCKSOURCE
:
1216 case KVM_CAP_NOP_IO_DELAY
:
1217 case KVM_CAP_MP_STATE
:
1218 case KVM_CAP_SYNC_MMU
:
1219 case KVM_CAP_REINJECT_CONTROL
:
1220 case KVM_CAP_IRQ_INJECT_STATUS
:
1221 case KVM_CAP_ASSIGN_DEV_IRQ
:
1223 case KVM_CAP_IOEVENTFD
:
1225 case KVM_CAP_PIT_STATE2
:
1226 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
1229 case KVM_CAP_COALESCED_MMIO
:
1230 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1233 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1235 case KVM_CAP_NR_VCPUS
:
1238 case KVM_CAP_NR_MEMSLOTS
:
1239 r
= KVM_MEMORY_SLOTS
;
1241 case KVM_CAP_PV_MMU
:
1248 r
= KVM_MAX_MCE_BANKS
;
1258 long kvm_arch_dev_ioctl(struct file
*filp
,
1259 unsigned int ioctl
, unsigned long arg
)
1261 void __user
*argp
= (void __user
*)arg
;
1265 case KVM_GET_MSR_INDEX_LIST
: {
1266 struct kvm_msr_list __user
*user_msr_list
= argp
;
1267 struct kvm_msr_list msr_list
;
1271 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1274 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1275 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1278 if (n
< msr_list
.nmsrs
)
1281 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1282 num_msrs_to_save
* sizeof(u32
)))
1284 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1286 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1291 case KVM_GET_SUPPORTED_CPUID
: {
1292 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1293 struct kvm_cpuid2 cpuid
;
1296 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1298 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1299 cpuid_arg
->entries
);
1304 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1309 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
1312 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
1314 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
1326 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1328 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1329 kvm_request_guest_time_update(vcpu
);
1332 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1334 kvm_x86_ops
->vcpu_put(vcpu
);
1335 kvm_put_guest_fpu(vcpu
);
1338 static int is_efer_nx(void)
1340 unsigned long long efer
= 0;
1342 rdmsrl_safe(MSR_EFER
, &efer
);
1343 return efer
& EFER_NX
;
1346 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1349 struct kvm_cpuid_entry2
*e
, *entry
;
1352 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1353 e
= &vcpu
->arch
.cpuid_entries
[i
];
1354 if (e
->function
== 0x80000001) {
1359 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1360 entry
->edx
&= ~(1 << 20);
1361 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1365 /* when an old userspace process fills a new kernel module */
1366 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1367 struct kvm_cpuid
*cpuid
,
1368 struct kvm_cpuid_entry __user
*entries
)
1371 struct kvm_cpuid_entry
*cpuid_entries
;
1374 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1377 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1381 if (copy_from_user(cpuid_entries
, entries
,
1382 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1384 for (i
= 0; i
< cpuid
->nent
; i
++) {
1385 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1386 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1387 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1388 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1389 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1390 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1391 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1392 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1393 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1394 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1396 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1397 cpuid_fix_nx_cap(vcpu
);
1399 kvm_apic_set_version(vcpu
);
1402 vfree(cpuid_entries
);
1407 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1408 struct kvm_cpuid2
*cpuid
,
1409 struct kvm_cpuid_entry2 __user
*entries
)
1414 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1417 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1418 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1420 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1421 kvm_apic_set_version(vcpu
);
1428 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1429 struct kvm_cpuid2
*cpuid
,
1430 struct kvm_cpuid_entry2 __user
*entries
)
1435 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1438 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1439 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1444 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1448 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1451 entry
->function
= function
;
1452 entry
->index
= index
;
1453 cpuid_count(entry
->function
, entry
->index
,
1454 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1458 #define F(x) bit(X86_FEATURE_##x)
1460 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1461 u32 index
, int *nent
, int maxnent
)
1463 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1464 unsigned f_gbpages
= kvm_x86_ops
->gb_page_enable() ? F(GBPAGES
) : 0;
1465 #ifdef CONFIG_X86_64
1466 unsigned f_lm
= F(LM
);
1472 const u32 kvm_supported_word0_x86_features
=
1473 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1474 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1475 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1476 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1477 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1478 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1479 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1480 0 /* HTT, TM, Reserved, PBE */;
1481 /* cpuid 0x80000001.edx */
1482 const u32 kvm_supported_word1_x86_features
=
1483 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1484 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1485 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1486 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1487 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1488 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1489 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| 0 /* RDTSCP */ |
1490 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1492 const u32 kvm_supported_word4_x86_features
=
1493 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1494 0 /* DS-CPL, VMX, SMX, EST */ |
1495 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1496 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1497 0 /* Reserved, DCA */ | F(XMM4_1
) |
1498 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
1499 0 /* Reserved, XSAVE, OSXSAVE */;
1500 /* cpuid 0x80000001.ecx */
1501 const u32 kvm_supported_word6_x86_features
=
1502 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1503 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1504 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
1505 0 /* SKINIT */ | 0 /* WDT */;
1507 /* all calls to cpuid_count() should be made on the same cpu */
1509 do_cpuid_1_ent(entry
, function
, index
);
1514 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1517 entry
->edx
&= kvm_supported_word0_x86_features
;
1518 entry
->ecx
&= kvm_supported_word4_x86_features
;
1519 /* we support x2apic emulation even if host does not support
1520 * it since we emulate x2apic in software */
1521 entry
->ecx
|= F(X2APIC
);
1523 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1524 * may return different values. This forces us to get_cpu() before
1525 * issuing the first command, and also to emulate this annoying behavior
1526 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1528 int t
, times
= entry
->eax
& 0xff;
1530 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1531 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1532 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1533 do_cpuid_1_ent(&entry
[t
], function
, 0);
1534 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1539 /* function 4 and 0xb have additional index. */
1543 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1544 /* read more entries until cache_type is zero */
1545 for (i
= 1; *nent
< maxnent
; ++i
) {
1546 cache_type
= entry
[i
- 1].eax
& 0x1f;
1549 do_cpuid_1_ent(&entry
[i
], function
, i
);
1551 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1559 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1560 /* read more entries until level_type is zero */
1561 for (i
= 1; *nent
< maxnent
; ++i
) {
1562 level_type
= entry
[i
- 1].ecx
& 0xff00;
1565 do_cpuid_1_ent(&entry
[i
], function
, i
);
1567 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1573 entry
->eax
= min(entry
->eax
, 0x8000001a);
1576 entry
->edx
&= kvm_supported_word1_x86_features
;
1577 entry
->ecx
&= kvm_supported_word6_x86_features
;
1585 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1586 struct kvm_cpuid_entry2 __user
*entries
)
1588 struct kvm_cpuid_entry2
*cpuid_entries
;
1589 int limit
, nent
= 0, r
= -E2BIG
;
1592 if (cpuid
->nent
< 1)
1595 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1599 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1600 limit
= cpuid_entries
[0].eax
;
1601 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1602 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1603 &nent
, cpuid
->nent
);
1605 if (nent
>= cpuid
->nent
)
1608 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1609 limit
= cpuid_entries
[nent
- 1].eax
;
1610 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1611 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1612 &nent
, cpuid
->nent
);
1614 if (nent
>= cpuid
->nent
)
1618 if (copy_to_user(entries
, cpuid_entries
,
1619 nent
* sizeof(struct kvm_cpuid_entry2
)))
1625 vfree(cpuid_entries
);
1630 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1631 struct kvm_lapic_state
*s
)
1634 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1640 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1641 struct kvm_lapic_state
*s
)
1644 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1645 kvm_apic_post_state_restore(vcpu
);
1646 update_cr8_intercept(vcpu
);
1652 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1653 struct kvm_interrupt
*irq
)
1655 if (irq
->irq
< 0 || irq
->irq
>= 256)
1657 if (irqchip_in_kernel(vcpu
->kvm
))
1661 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1668 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1671 kvm_inject_nmi(vcpu
);
1677 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1678 struct kvm_tpr_access_ctl
*tac
)
1682 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1686 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
1690 unsigned bank_num
= mcg_cap
& 0xff, bank
;
1695 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
1698 vcpu
->arch
.mcg_cap
= mcg_cap
;
1699 /* Init IA32_MCG_CTL to all 1s */
1700 if (mcg_cap
& MCG_CTL_P
)
1701 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
1702 /* Init IA32_MCi_CTL to all 1s */
1703 for (bank
= 0; bank
< bank_num
; bank
++)
1704 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
1709 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
1710 struct kvm_x86_mce
*mce
)
1712 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1713 unsigned bank_num
= mcg_cap
& 0xff;
1714 u64
*banks
= vcpu
->arch
.mce_banks
;
1716 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
1719 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1720 * reporting is disabled
1722 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
1723 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
1725 banks
+= 4 * mce
->bank
;
1727 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1728 * reporting is disabled for the bank
1730 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
1732 if (mce
->status
& MCI_STATUS_UC
) {
1733 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
1734 !(vcpu
->arch
.cr4
& X86_CR4_MCE
)) {
1735 printk(KERN_DEBUG
"kvm: set_mce: "
1736 "injects mce exception while "
1737 "previous one is in progress!\n");
1738 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
1741 if (banks
[1] & MCI_STATUS_VAL
)
1742 mce
->status
|= MCI_STATUS_OVER
;
1743 banks
[2] = mce
->addr
;
1744 banks
[3] = mce
->misc
;
1745 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
1746 banks
[1] = mce
->status
;
1747 kvm_queue_exception(vcpu
, MC_VECTOR
);
1748 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1749 || !(banks
[1] & MCI_STATUS_UC
)) {
1750 if (banks
[1] & MCI_STATUS_VAL
)
1751 mce
->status
|= MCI_STATUS_OVER
;
1752 banks
[2] = mce
->addr
;
1753 banks
[3] = mce
->misc
;
1754 banks
[1] = mce
->status
;
1756 banks
[1] |= MCI_STATUS_OVER
;
1760 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1761 unsigned int ioctl
, unsigned long arg
)
1763 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1764 void __user
*argp
= (void __user
*)arg
;
1766 struct kvm_lapic_state
*lapic
= NULL
;
1769 case KVM_GET_LAPIC
: {
1770 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1775 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1779 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1784 case KVM_SET_LAPIC
: {
1785 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1790 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1792 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1798 case KVM_INTERRUPT
: {
1799 struct kvm_interrupt irq
;
1802 if (copy_from_user(&irq
, argp
, sizeof irq
))
1804 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1811 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1817 case KVM_SET_CPUID
: {
1818 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1819 struct kvm_cpuid cpuid
;
1822 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1824 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1829 case KVM_SET_CPUID2
: {
1830 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1831 struct kvm_cpuid2 cpuid
;
1834 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1836 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1837 cpuid_arg
->entries
);
1842 case KVM_GET_CPUID2
: {
1843 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1844 struct kvm_cpuid2 cpuid
;
1847 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1849 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1850 cpuid_arg
->entries
);
1854 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1860 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1863 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1865 case KVM_TPR_ACCESS_REPORTING
: {
1866 struct kvm_tpr_access_ctl tac
;
1869 if (copy_from_user(&tac
, argp
, sizeof tac
))
1871 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1875 if (copy_to_user(argp
, &tac
, sizeof tac
))
1880 case KVM_SET_VAPIC_ADDR
: {
1881 struct kvm_vapic_addr va
;
1884 if (!irqchip_in_kernel(vcpu
->kvm
))
1887 if (copy_from_user(&va
, argp
, sizeof va
))
1890 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1893 case KVM_X86_SETUP_MCE
: {
1897 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
1899 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
1902 case KVM_X86_SET_MCE
: {
1903 struct kvm_x86_mce mce
;
1906 if (copy_from_user(&mce
, argp
, sizeof mce
))
1908 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
1919 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1923 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1925 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1929 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
1932 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
1936 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1937 u32 kvm_nr_mmu_pages
)
1939 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1942 down_write(&kvm
->slots_lock
);
1943 spin_lock(&kvm
->mmu_lock
);
1945 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1946 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1948 spin_unlock(&kvm
->mmu_lock
);
1949 up_write(&kvm
->slots_lock
);
1953 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1955 return kvm
->arch
.n_alloc_mmu_pages
;
1958 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1961 struct kvm_mem_alias
*alias
;
1963 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1964 alias
= &kvm
->arch
.aliases
[i
];
1965 if (gfn
>= alias
->base_gfn
1966 && gfn
< alias
->base_gfn
+ alias
->npages
)
1967 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1973 * Set a new alias region. Aliases map a portion of physical memory into
1974 * another portion. This is useful for memory windows, for example the PC
1977 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1978 struct kvm_memory_alias
*alias
)
1981 struct kvm_mem_alias
*p
;
1984 /* General sanity checks */
1985 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1987 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1989 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1991 if (alias
->guest_phys_addr
+ alias
->memory_size
1992 < alias
->guest_phys_addr
)
1994 if (alias
->target_phys_addr
+ alias
->memory_size
1995 < alias
->target_phys_addr
)
1998 down_write(&kvm
->slots_lock
);
1999 spin_lock(&kvm
->mmu_lock
);
2001 p
= &kvm
->arch
.aliases
[alias
->slot
];
2002 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
2003 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
2004 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
2006 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
2007 if (kvm
->arch
.aliases
[n
- 1].npages
)
2009 kvm
->arch
.naliases
= n
;
2011 spin_unlock(&kvm
->mmu_lock
);
2012 kvm_mmu_zap_all(kvm
);
2014 up_write(&kvm
->slots_lock
);
2022 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2027 switch (chip
->chip_id
) {
2028 case KVM_IRQCHIP_PIC_MASTER
:
2029 memcpy(&chip
->chip
.pic
,
2030 &pic_irqchip(kvm
)->pics
[0],
2031 sizeof(struct kvm_pic_state
));
2033 case KVM_IRQCHIP_PIC_SLAVE
:
2034 memcpy(&chip
->chip
.pic
,
2035 &pic_irqchip(kvm
)->pics
[1],
2036 sizeof(struct kvm_pic_state
));
2038 case KVM_IRQCHIP_IOAPIC
:
2039 memcpy(&chip
->chip
.ioapic
,
2040 ioapic_irqchip(kvm
),
2041 sizeof(struct kvm_ioapic_state
));
2050 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2055 switch (chip
->chip_id
) {
2056 case KVM_IRQCHIP_PIC_MASTER
:
2057 spin_lock(&pic_irqchip(kvm
)->lock
);
2058 memcpy(&pic_irqchip(kvm
)->pics
[0],
2060 sizeof(struct kvm_pic_state
));
2061 spin_unlock(&pic_irqchip(kvm
)->lock
);
2063 case KVM_IRQCHIP_PIC_SLAVE
:
2064 spin_lock(&pic_irqchip(kvm
)->lock
);
2065 memcpy(&pic_irqchip(kvm
)->pics
[1],
2067 sizeof(struct kvm_pic_state
));
2068 spin_unlock(&pic_irqchip(kvm
)->lock
);
2070 case KVM_IRQCHIP_IOAPIC
:
2071 mutex_lock(&kvm
->irq_lock
);
2072 memcpy(ioapic_irqchip(kvm
),
2074 sizeof(struct kvm_ioapic_state
));
2075 mutex_unlock(&kvm
->irq_lock
);
2081 kvm_pic_update_irq(pic_irqchip(kvm
));
2085 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2089 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2090 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2091 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2095 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2099 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2100 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2101 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2102 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2106 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2110 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2111 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2112 sizeof(ps
->channels
));
2113 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2114 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2118 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2120 int r
= 0, start
= 0;
2121 u32 prev_legacy
, cur_legacy
;
2122 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2123 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2124 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2125 if (!prev_legacy
&& cur_legacy
)
2127 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2128 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2129 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2130 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2131 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2135 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2136 struct kvm_reinject_control
*control
)
2138 if (!kvm
->arch
.vpit
)
2140 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2141 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2142 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2147 * Get (and clear) the dirty memory log for a memory slot.
2149 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
2150 struct kvm_dirty_log
*log
)
2154 struct kvm_memory_slot
*memslot
;
2157 down_write(&kvm
->slots_lock
);
2159 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
2163 /* If nothing is dirty, don't bother messing with page tables. */
2165 spin_lock(&kvm
->mmu_lock
);
2166 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
2167 spin_unlock(&kvm
->mmu_lock
);
2168 memslot
= &kvm
->memslots
[log
->slot
];
2169 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
2170 memset(memslot
->dirty_bitmap
, 0, n
);
2174 up_write(&kvm
->slots_lock
);
2178 long kvm_arch_vm_ioctl(struct file
*filp
,
2179 unsigned int ioctl
, unsigned long arg
)
2181 struct kvm
*kvm
= filp
->private_data
;
2182 void __user
*argp
= (void __user
*)arg
;
2185 * This union makes it completely explicit to gcc-3.x
2186 * that these two variables' stack usage should be
2187 * combined, not added together.
2190 struct kvm_pit_state ps
;
2191 struct kvm_pit_state2 ps2
;
2192 struct kvm_memory_alias alias
;
2193 struct kvm_pit_config pit_config
;
2197 case KVM_SET_TSS_ADDR
:
2198 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
2202 case KVM_SET_IDENTITY_MAP_ADDR
: {
2206 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
2208 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
2213 case KVM_SET_MEMORY_REGION
: {
2214 struct kvm_memory_region kvm_mem
;
2215 struct kvm_userspace_memory_region kvm_userspace_mem
;
2218 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2220 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
2221 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
2222 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
2223 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
2224 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2229 case KVM_SET_NR_MMU_PAGES
:
2230 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
2234 case KVM_GET_NR_MMU_PAGES
:
2235 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
2237 case KVM_SET_MEMORY_ALIAS
:
2239 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
2241 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
2245 case KVM_CREATE_IRQCHIP
:
2247 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
2248 if (kvm
->arch
.vpic
) {
2249 r
= kvm_ioapic_init(kvm
);
2251 kfree(kvm
->arch
.vpic
);
2252 kvm
->arch
.vpic
= NULL
;
2257 r
= kvm_setup_default_irq_routing(kvm
);
2259 kfree(kvm
->arch
.vpic
);
2260 kfree(kvm
->arch
.vioapic
);
2264 case KVM_CREATE_PIT
:
2265 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
2267 case KVM_CREATE_PIT2
:
2269 if (copy_from_user(&u
.pit_config
, argp
,
2270 sizeof(struct kvm_pit_config
)))
2273 down_write(&kvm
->slots_lock
);
2276 goto create_pit_unlock
;
2278 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
2282 up_write(&kvm
->slots_lock
);
2284 case KVM_IRQ_LINE_STATUS
:
2285 case KVM_IRQ_LINE
: {
2286 struct kvm_irq_level irq_event
;
2289 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2291 if (irqchip_in_kernel(kvm
)) {
2293 mutex_lock(&kvm
->irq_lock
);
2294 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
2295 irq_event
.irq
, irq_event
.level
);
2296 mutex_unlock(&kvm
->irq_lock
);
2297 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2298 irq_event
.status
= status
;
2299 if (copy_to_user(argp
, &irq_event
,
2307 case KVM_GET_IRQCHIP
: {
2308 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2309 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2315 if (copy_from_user(chip
, argp
, sizeof *chip
))
2316 goto get_irqchip_out
;
2318 if (!irqchip_in_kernel(kvm
))
2319 goto get_irqchip_out
;
2320 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
2322 goto get_irqchip_out
;
2324 if (copy_to_user(argp
, chip
, sizeof *chip
))
2325 goto get_irqchip_out
;
2333 case KVM_SET_IRQCHIP
: {
2334 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2335 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2341 if (copy_from_user(chip
, argp
, sizeof *chip
))
2342 goto set_irqchip_out
;
2344 if (!irqchip_in_kernel(kvm
))
2345 goto set_irqchip_out
;
2346 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
2348 goto set_irqchip_out
;
2358 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
2361 if (!kvm
->arch
.vpit
)
2363 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
2367 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
2374 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2377 if (!kvm
->arch
.vpit
)
2379 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2385 case KVM_GET_PIT2
: {
2387 if (!kvm
->arch
.vpit
)
2389 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
2393 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
2398 case KVM_SET_PIT2
: {
2400 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
2403 if (!kvm
->arch
.vpit
)
2405 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
2411 case KVM_REINJECT_CONTROL
: {
2412 struct kvm_reinject_control control
;
2414 if (copy_from_user(&control
, argp
, sizeof(control
)))
2416 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2429 static void kvm_init_msr_list(void)
2434 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2435 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2438 msrs_to_save
[j
] = msrs_to_save
[i
];
2441 num_msrs_to_save
= j
;
2444 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
2447 if (vcpu
->arch
.apic
&&
2448 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2451 return kvm_io_bus_write(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2454 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
2456 if (vcpu
->arch
.apic
&&
2457 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2460 return kvm_io_bus_read(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2463 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2464 struct kvm_vcpu
*vcpu
)
2467 int r
= X86EMUL_CONTINUE
;
2470 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2471 unsigned offset
= addr
& (PAGE_SIZE
-1);
2472 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2475 if (gpa
== UNMAPPED_GVA
) {
2476 r
= X86EMUL_PROPAGATE_FAULT
;
2479 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2481 r
= X86EMUL_UNHANDLEABLE
;
2493 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2494 struct kvm_vcpu
*vcpu
)
2497 int r
= X86EMUL_CONTINUE
;
2500 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2501 unsigned offset
= addr
& (PAGE_SIZE
-1);
2502 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2505 if (gpa
== UNMAPPED_GVA
) {
2506 r
= X86EMUL_PROPAGATE_FAULT
;
2509 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2511 r
= X86EMUL_UNHANDLEABLE
;
2524 static int emulator_read_emulated(unsigned long addr
,
2527 struct kvm_vcpu
*vcpu
)
2531 if (vcpu
->mmio_read_completed
) {
2532 memcpy(val
, vcpu
->mmio_data
, bytes
);
2533 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
2534 vcpu
->mmio_phys_addr
, *(u64
*)val
);
2535 vcpu
->mmio_read_completed
= 0;
2536 return X86EMUL_CONTINUE
;
2539 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2541 /* For APIC access vmexit */
2542 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2545 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2546 == X86EMUL_CONTINUE
)
2547 return X86EMUL_CONTINUE
;
2548 if (gpa
== UNMAPPED_GVA
)
2549 return X86EMUL_PROPAGATE_FAULT
;
2553 * Is this MMIO handled locally?
2555 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
2556 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
2557 return X86EMUL_CONTINUE
;
2560 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
2562 vcpu
->mmio_needed
= 1;
2563 vcpu
->mmio_phys_addr
= gpa
;
2564 vcpu
->mmio_size
= bytes
;
2565 vcpu
->mmio_is_write
= 0;
2567 return X86EMUL_UNHANDLEABLE
;
2570 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2571 const void *val
, int bytes
)
2575 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2578 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2582 static int emulator_write_emulated_onepage(unsigned long addr
,
2585 struct kvm_vcpu
*vcpu
)
2589 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2591 if (gpa
== UNMAPPED_GVA
) {
2592 kvm_inject_page_fault(vcpu
, addr
, 2);
2593 return X86EMUL_PROPAGATE_FAULT
;
2596 /* For APIC access vmexit */
2597 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2600 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2601 return X86EMUL_CONTINUE
;
2604 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
2606 * Is this MMIO handled locally?
2608 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
2609 return X86EMUL_CONTINUE
;
2611 vcpu
->mmio_needed
= 1;
2612 vcpu
->mmio_phys_addr
= gpa
;
2613 vcpu
->mmio_size
= bytes
;
2614 vcpu
->mmio_is_write
= 1;
2615 memcpy(vcpu
->mmio_data
, val
, bytes
);
2617 return X86EMUL_CONTINUE
;
2620 int emulator_write_emulated(unsigned long addr
,
2623 struct kvm_vcpu
*vcpu
)
2625 /* Crossing a page boundary? */
2626 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2629 now
= -addr
& ~PAGE_MASK
;
2630 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2631 if (rc
!= X86EMUL_CONTINUE
)
2637 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2639 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2641 static int emulator_cmpxchg_emulated(unsigned long addr
,
2645 struct kvm_vcpu
*vcpu
)
2647 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
2648 #ifndef CONFIG_X86_64
2649 /* guests cmpxchg8b have to be emulated atomically */
2656 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2658 if (gpa
== UNMAPPED_GVA
||
2659 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2662 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2667 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2669 kaddr
= kmap_atomic(page
, KM_USER0
);
2670 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2671 kunmap_atomic(kaddr
, KM_USER0
);
2672 kvm_release_page_dirty(page
);
2677 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2680 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2682 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2685 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2687 kvm_mmu_invlpg(vcpu
, address
);
2688 return X86EMUL_CONTINUE
;
2691 int emulate_clts(struct kvm_vcpu
*vcpu
)
2693 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2694 return X86EMUL_CONTINUE
;
2697 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2699 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2703 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2704 return X86EMUL_CONTINUE
;
2706 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2707 return X86EMUL_UNHANDLEABLE
;
2711 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2713 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2716 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2718 /* FIXME: better handling */
2719 return X86EMUL_UNHANDLEABLE
;
2721 return X86EMUL_CONTINUE
;
2724 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2727 unsigned long rip
= kvm_rip_read(vcpu
);
2728 unsigned long rip_linear
;
2730 if (!printk_ratelimit())
2733 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2735 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2737 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2738 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2740 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2742 static struct x86_emulate_ops emulate_ops
= {
2743 .read_std
= kvm_read_guest_virt
,
2744 .read_emulated
= emulator_read_emulated
,
2745 .write_emulated
= emulator_write_emulated
,
2746 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2749 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2751 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2752 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2753 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2754 vcpu
->arch
.regs_dirty
= ~0;
2757 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2758 struct kvm_run
*run
,
2764 struct decode_cache
*c
;
2766 kvm_clear_exception_queue(vcpu
);
2767 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2769 * TODO: fix emulate.c to use guest_read/write_register
2770 * instead of direct ->regs accesses, can save hundred cycles
2771 * on Intel for instructions that don't read/change RSP, for
2774 cache_all_regs(vcpu
);
2776 vcpu
->mmio_is_write
= 0;
2777 vcpu
->arch
.pio
.string
= 0;
2779 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2781 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2783 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2784 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2785 vcpu
->arch
.emulate_ctxt
.mode
=
2786 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2787 ? X86EMUL_MODE_REAL
: cs_l
2788 ? X86EMUL_MODE_PROT64
: cs_db
2789 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2791 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2793 /* Only allow emulation of specific instructions on #UD
2794 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2795 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2796 if (emulation_type
& EMULTYPE_TRAP_UD
) {
2798 return EMULATE_FAIL
;
2800 case 0x01: /* VMMCALL */
2801 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
2802 return EMULATE_FAIL
;
2804 case 0x34: /* sysenter */
2805 case 0x35: /* sysexit */
2806 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2807 return EMULATE_FAIL
;
2809 case 0x05: /* syscall */
2810 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2811 return EMULATE_FAIL
;
2814 return EMULATE_FAIL
;
2817 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
2818 return EMULATE_FAIL
;
2821 ++vcpu
->stat
.insn_emulation
;
2823 ++vcpu
->stat
.insn_emulation_fail
;
2824 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2825 return EMULATE_DONE
;
2826 return EMULATE_FAIL
;
2830 if (emulation_type
& EMULTYPE_SKIP
) {
2831 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
2832 return EMULATE_DONE
;
2835 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2836 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2839 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2841 if (vcpu
->arch
.pio
.string
)
2842 return EMULATE_DO_MMIO
;
2844 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2845 run
->exit_reason
= KVM_EXIT_MMIO
;
2846 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2847 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2848 run
->mmio
.len
= vcpu
->mmio_size
;
2849 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2853 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2854 return EMULATE_DONE
;
2855 if (!vcpu
->mmio_needed
) {
2856 kvm_report_emulation_failure(vcpu
, "mmio");
2857 return EMULATE_FAIL
;
2859 return EMULATE_DO_MMIO
;
2862 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2864 if (vcpu
->mmio_is_write
) {
2865 vcpu
->mmio_needed
= 0;
2866 return EMULATE_DO_MMIO
;
2869 return EMULATE_DONE
;
2871 EXPORT_SYMBOL_GPL(emulate_instruction
);
2873 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2875 void *p
= vcpu
->arch
.pio_data
;
2876 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2880 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2881 if (vcpu
->arch
.pio
.in
)
2882 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2884 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2888 int complete_pio(struct kvm_vcpu
*vcpu
)
2890 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2897 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2898 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2899 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2903 r
= pio_copy_data(vcpu
);
2910 delta
*= io
->cur_count
;
2912 * The size of the register should really depend on
2913 * current address size.
2915 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2917 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2923 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2925 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2927 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2929 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2933 io
->count
-= io
->cur_count
;
2939 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
2941 /* TODO: String I/O for in kernel device */
2944 if (vcpu
->arch
.pio
.in
)
2945 r
= kvm_io_bus_read(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
2946 vcpu
->arch
.pio
.size
, pd
);
2948 r
= kvm_io_bus_write(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
2949 vcpu
->arch
.pio
.size
, pd
);
2953 static int pio_string_write(struct kvm_vcpu
*vcpu
)
2955 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2956 void *pd
= vcpu
->arch
.pio_data
;
2959 for (i
= 0; i
< io
->cur_count
; i
++) {
2960 if (kvm_io_bus_write(&vcpu
->kvm
->pio_bus
,
2961 io
->port
, io
->size
, pd
)) {
2970 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2971 int size
, unsigned port
)
2975 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2976 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2977 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2978 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2979 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2980 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2981 vcpu
->arch
.pio
.in
= in
;
2982 vcpu
->arch
.pio
.string
= 0;
2983 vcpu
->arch
.pio
.down
= 0;
2984 vcpu
->arch
.pio
.rep
= 0;
2986 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
2989 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2990 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2992 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
2998 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
3000 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
3001 int size
, unsigned long count
, int down
,
3002 gva_t address
, int rep
, unsigned port
)
3004 unsigned now
, in_page
;
3007 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3008 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
3009 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
3010 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3011 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
3012 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
3013 vcpu
->arch
.pio
.in
= in
;
3014 vcpu
->arch
.pio
.string
= 1;
3015 vcpu
->arch
.pio
.down
= down
;
3016 vcpu
->arch
.pio
.rep
= rep
;
3018 trace_kvm_pio(vcpu
->run
->io
.direction
== KVM_EXIT_IO_OUT
, port
,
3022 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3027 in_page
= PAGE_SIZE
- offset_in_page(address
);
3029 in_page
= offset_in_page(address
) + size
;
3030 now
= min(count
, (unsigned long)in_page
/ size
);
3035 * String I/O in reverse. Yuck. Kill the guest, fix later.
3037 pr_unimpl(vcpu
, "guest string pio down\n");
3038 kvm_inject_gp(vcpu
, 0);
3041 vcpu
->run
->io
.count
= now
;
3042 vcpu
->arch
.pio
.cur_count
= now
;
3044 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
3045 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3047 vcpu
->arch
.pio
.guest_gva
= address
;
3049 if (!vcpu
->arch
.pio
.in
) {
3050 /* string PIO write */
3051 ret
= pio_copy_data(vcpu
);
3052 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
3053 kvm_inject_gp(vcpu
, 0);
3056 if (ret
== 0 && !pio_string_write(vcpu
)) {
3058 if (vcpu
->arch
.pio
.count
== 0)
3062 /* no string PIO read support yet */
3066 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
3068 static void bounce_off(void *info
)
3073 static unsigned int ref_freq
;
3074 static unsigned long tsc_khz_ref
;
3076 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
3079 struct cpufreq_freqs
*freq
= data
;
3081 struct kvm_vcpu
*vcpu
;
3082 int i
, send_ipi
= 0;
3085 ref_freq
= freq
->old
;
3087 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
3089 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
3091 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
3093 spin_lock(&kvm_lock
);
3094 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3095 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
3096 if (vcpu
->cpu
!= freq
->cpu
)
3098 if (!kvm_request_guest_time_update(vcpu
))
3100 if (vcpu
->cpu
!= smp_processor_id())
3104 spin_unlock(&kvm_lock
);
3106 if (freq
->old
< freq
->new && send_ipi
) {
3108 * We upscale the frequency. Must make the guest
3109 * doesn't see old kvmclock values while running with
3110 * the new frequency, otherwise we risk the guest sees
3111 * time go backwards.
3113 * In case we update the frequency for another cpu
3114 * (which might be in guest context) send an interrupt
3115 * to kick the cpu out of guest context. Next time
3116 * guest context is entered kvmclock will be updated,
3117 * so the guest will not see stale values.
3119 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
3124 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
3125 .notifier_call
= kvmclock_cpufreq_notifier
3128 int kvm_arch_init(void *opaque
)
3131 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
3134 printk(KERN_ERR
"kvm: already loaded the other module\n");
3139 if (!ops
->cpu_has_kvm_support()) {
3140 printk(KERN_ERR
"kvm: no hardware support\n");
3144 if (ops
->disabled_by_bios()) {
3145 printk(KERN_ERR
"kvm: disabled by bios\n");
3150 r
= kvm_mmu_module_init();
3154 kvm_init_msr_list();
3157 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3158 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
3159 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
3160 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
3162 for_each_possible_cpu(cpu
)
3163 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
3164 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
3165 tsc_khz_ref
= tsc_khz
;
3166 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
3167 CPUFREQ_TRANSITION_NOTIFIER
);
3176 void kvm_arch_exit(void)
3178 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
3179 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
3180 CPUFREQ_TRANSITION_NOTIFIER
);
3182 kvm_mmu_module_exit();
3185 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
3187 ++vcpu
->stat
.halt_exits
;
3188 if (irqchip_in_kernel(vcpu
->kvm
)) {
3189 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
3192 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
3196 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
3198 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
3201 if (is_long_mode(vcpu
))
3204 return a0
| ((gpa_t
)a1
<< 32);
3207 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
3209 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
3212 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3213 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3214 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3215 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3216 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3218 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
3220 if (!is_long_mode(vcpu
)) {
3228 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
3234 case KVM_HC_VAPIC_POLL_IRQ
:
3238 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
3245 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
3246 ++vcpu
->stat
.hypercalls
;
3249 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
3251 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
3253 char instruction
[3];
3255 unsigned long rip
= kvm_rip_read(vcpu
);
3259 * Blow out the MMU to ensure that no other VCPU has an active mapping
3260 * to ensure that the updated hypercall appears atomically across all
3263 kvm_mmu_zap_all(vcpu
->kvm
);
3265 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
3266 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
3267 != X86EMUL_CONTINUE
)
3273 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3275 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3278 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3280 struct descriptor_table dt
= { limit
, base
};
3282 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3285 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3287 struct descriptor_table dt
= { limit
, base
};
3289 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3292 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
3293 unsigned long *rflags
)
3295 kvm_lmsw(vcpu
, msw
);
3296 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3299 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
3301 unsigned long value
;
3303 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3306 value
= vcpu
->arch
.cr0
;
3309 value
= vcpu
->arch
.cr2
;
3312 value
= vcpu
->arch
.cr3
;
3315 value
= vcpu
->arch
.cr4
;
3318 value
= kvm_get_cr8(vcpu
);
3321 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3328 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
3329 unsigned long *rflags
)
3333 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
3334 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3337 vcpu
->arch
.cr2
= val
;
3340 kvm_set_cr3(vcpu
, val
);
3343 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
3346 kvm_set_cr8(vcpu
, val
& 0xfUL
);
3349 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3353 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
3355 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
3356 int j
, nent
= vcpu
->arch
.cpuid_nent
;
3358 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
3359 /* when no next entry is found, the current entry[i] is reselected */
3360 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
3361 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
3362 if (ej
->function
== e
->function
) {
3363 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3367 return 0; /* silence gcc, even though control never reaches here */
3370 /* find an entry with matching function, matching index (if needed), and that
3371 * should be read next (if it's stateful) */
3372 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3373 u32 function
, u32 index
)
3375 if (e
->function
!= function
)
3377 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3379 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3380 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3385 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3386 u32 function
, u32 index
)
3389 struct kvm_cpuid_entry2
*best
= NULL
;
3391 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3392 struct kvm_cpuid_entry2
*e
;
3394 e
= &vcpu
->arch
.cpuid_entries
[i
];
3395 if (is_matching_cpuid_entry(e
, function
, index
)) {
3396 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3397 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3402 * Both basic or both extended?
3404 if (((e
->function
^ function
) & 0x80000000) == 0)
3405 if (!best
|| e
->function
> best
->function
)
3411 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3413 struct kvm_cpuid_entry2
*best
;
3415 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3417 return best
->eax
& 0xff;
3421 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3423 u32 function
, index
;
3424 struct kvm_cpuid_entry2
*best
;
3426 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3427 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3428 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3429 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3430 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3431 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3432 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3434 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3435 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3436 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3437 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3439 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3440 trace_kvm_cpuid(function
,
3441 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3442 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3443 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3444 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
3446 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3449 * Check if userspace requested an interrupt window, and that the
3450 * interrupt window is open.
3452 * No need to exit to userspace if we already have an interrupt queued.
3454 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3455 struct kvm_run
*kvm_run
)
3457 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3458 kvm_run
->request_interrupt_window
&&
3459 kvm_arch_interrupt_allowed(vcpu
));
3462 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3463 struct kvm_run
*kvm_run
)
3465 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3466 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3467 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3468 if (irqchip_in_kernel(vcpu
->kvm
))
3469 kvm_run
->ready_for_interrupt_injection
= 1;
3471 kvm_run
->ready_for_interrupt_injection
=
3472 kvm_arch_interrupt_allowed(vcpu
) &&
3473 !kvm_cpu_has_interrupt(vcpu
) &&
3474 !kvm_event_needs_reinjection(vcpu
);
3477 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3479 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3482 if (!apic
|| !apic
->vapic_addr
)
3485 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3487 vcpu
->arch
.apic
->vapic_page
= page
;
3490 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3492 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3494 if (!apic
|| !apic
->vapic_addr
)
3497 down_read(&vcpu
->kvm
->slots_lock
);
3498 kvm_release_page_dirty(apic
->vapic_page
);
3499 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3500 up_read(&vcpu
->kvm
->slots_lock
);
3503 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3507 if (!kvm_x86_ops
->update_cr8_intercept
)
3510 if (!vcpu
->arch
.apic
)
3513 if (!vcpu
->arch
.apic
->vapic_addr
)
3514 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3521 tpr
= kvm_lapic_get_cr8(vcpu
);
3523 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3526 static void inject_pending_event(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3528 /* try to reinject previous events if any */
3529 if (vcpu
->arch
.exception
.pending
) {
3530 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
3531 vcpu
->arch
.exception
.has_error_code
,
3532 vcpu
->arch
.exception
.error_code
);
3536 if (vcpu
->arch
.nmi_injected
) {
3537 kvm_x86_ops
->set_nmi(vcpu
);
3541 if (vcpu
->arch
.interrupt
.pending
) {
3542 kvm_x86_ops
->set_irq(vcpu
);
3546 /* try to inject new event if pending */
3547 if (vcpu
->arch
.nmi_pending
) {
3548 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3549 vcpu
->arch
.nmi_pending
= false;
3550 vcpu
->arch
.nmi_injected
= true;
3551 kvm_x86_ops
->set_nmi(vcpu
);
3553 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3554 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3555 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3557 kvm_x86_ops
->set_irq(vcpu
);
3562 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3565 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3566 kvm_run
->request_interrupt_window
;
3569 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3570 kvm_mmu_unload(vcpu
);
3572 r
= kvm_mmu_reload(vcpu
);
3576 if (vcpu
->requests
) {
3577 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3578 __kvm_migrate_timers(vcpu
);
3579 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3580 kvm_write_guest_time(vcpu
);
3581 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3582 kvm_mmu_sync_roots(vcpu
);
3583 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3584 kvm_x86_ops
->tlb_flush(vcpu
);
3585 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3587 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3591 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3592 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3600 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3601 kvm_load_guest_fpu(vcpu
);
3603 local_irq_disable();
3605 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3606 smp_mb__after_clear_bit();
3608 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3609 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3616 inject_pending_event(vcpu
, kvm_run
);
3618 /* enable NMI/IRQ window open exits if needed */
3619 if (vcpu
->arch
.nmi_pending
)
3620 kvm_x86_ops
->enable_nmi_window(vcpu
);
3621 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3622 kvm_x86_ops
->enable_irq_window(vcpu
);
3624 if (kvm_lapic_enabled(vcpu
)) {
3625 update_cr8_intercept(vcpu
);
3626 kvm_lapic_sync_to_vapic(vcpu
);
3629 up_read(&vcpu
->kvm
->slots_lock
);
3633 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3635 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3636 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3637 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3638 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3641 trace_kvm_entry(vcpu
->vcpu_id
);
3642 kvm_x86_ops
->run(vcpu
, kvm_run
);
3644 if (unlikely(vcpu
->arch
.switch_db_regs
|| test_thread_flag(TIF_DEBUG
))) {
3645 set_debugreg(current
->thread
.debugreg0
, 0);
3646 set_debugreg(current
->thread
.debugreg1
, 1);
3647 set_debugreg(current
->thread
.debugreg2
, 2);
3648 set_debugreg(current
->thread
.debugreg3
, 3);
3649 set_debugreg(current
->thread
.debugreg6
, 6);
3650 set_debugreg(current
->thread
.debugreg7
, 7);
3653 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3659 * We must have an instruction between local_irq_enable() and
3660 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3661 * the interrupt shadow. The stat.exits increment will do nicely.
3662 * But we need to prevent reordering, hence this barrier():
3670 down_read(&vcpu
->kvm
->slots_lock
);
3673 * Profile KVM exit RIPs:
3675 if (unlikely(prof_on
== KVM_PROFILING
)) {
3676 unsigned long rip
= kvm_rip_read(vcpu
);
3677 profile_hit(KVM_PROFILING
, (void *)rip
);
3681 kvm_lapic_sync_from_vapic(vcpu
);
3683 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3689 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3693 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3694 pr_debug("vcpu %d received sipi with vector # %x\n",
3695 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3696 kvm_lapic_reset(vcpu
);
3697 r
= kvm_arch_vcpu_reset(vcpu
);
3700 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3703 down_read(&vcpu
->kvm
->slots_lock
);
3708 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3709 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3711 up_read(&vcpu
->kvm
->slots_lock
);
3712 kvm_vcpu_block(vcpu
);
3713 down_read(&vcpu
->kvm
->slots_lock
);
3714 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3716 switch(vcpu
->arch
.mp_state
) {
3717 case KVM_MP_STATE_HALTED
:
3718 vcpu
->arch
.mp_state
=
3719 KVM_MP_STATE_RUNNABLE
;
3720 case KVM_MP_STATE_RUNNABLE
:
3722 case KVM_MP_STATE_SIPI_RECEIVED
:
3733 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3734 if (kvm_cpu_has_pending_timer(vcpu
))
3735 kvm_inject_pending_timer_irqs(vcpu
);
3737 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3739 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3740 ++vcpu
->stat
.request_irq_exits
;
3742 if (signal_pending(current
)) {
3744 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3745 ++vcpu
->stat
.signal_exits
;
3747 if (need_resched()) {
3748 up_read(&vcpu
->kvm
->slots_lock
);
3750 down_read(&vcpu
->kvm
->slots_lock
);
3754 up_read(&vcpu
->kvm
->slots_lock
);
3755 post_kvm_run_save(vcpu
, kvm_run
);
3762 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3769 if (vcpu
->sigset_active
)
3770 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3772 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3773 kvm_vcpu_block(vcpu
);
3774 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3779 /* re-sync apic's tpr */
3780 if (!irqchip_in_kernel(vcpu
->kvm
))
3781 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3783 if (vcpu
->arch
.pio
.cur_count
) {
3784 r
= complete_pio(vcpu
);
3788 #if CONFIG_HAS_IOMEM
3789 if (vcpu
->mmio_needed
) {
3790 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3791 vcpu
->mmio_read_completed
= 1;
3792 vcpu
->mmio_needed
= 0;
3794 down_read(&vcpu
->kvm
->slots_lock
);
3795 r
= emulate_instruction(vcpu
, kvm_run
,
3796 vcpu
->arch
.mmio_fault_cr2
, 0,
3797 EMULTYPE_NO_DECODE
);
3798 up_read(&vcpu
->kvm
->slots_lock
);
3799 if (r
== EMULATE_DO_MMIO
) {
3801 * Read-modify-write. Back to userspace.
3808 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3809 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3810 kvm_run
->hypercall
.ret
);
3812 r
= __vcpu_run(vcpu
, kvm_run
);
3815 if (vcpu
->sigset_active
)
3816 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3822 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3826 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3827 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3828 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3829 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3830 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3831 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3832 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3833 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3834 #ifdef CONFIG_X86_64
3835 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3836 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3837 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3838 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3839 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3840 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3841 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3842 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3845 regs
->rip
= kvm_rip_read(vcpu
);
3846 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3849 * Don't leak debug flags in case they were set for guest debugging
3851 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3852 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3859 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3863 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3864 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3865 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3866 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3867 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3868 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3869 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3870 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3871 #ifdef CONFIG_X86_64
3872 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3873 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3874 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3875 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3876 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3877 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3878 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3879 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3883 kvm_rip_write(vcpu
, regs
->rip
);
3884 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3887 vcpu
->arch
.exception
.pending
= false;
3894 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3895 struct kvm_segment
*var
, int seg
)
3897 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3900 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3902 struct kvm_segment cs
;
3904 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3908 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3910 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3911 struct kvm_sregs
*sregs
)
3913 struct descriptor_table dt
;
3917 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3918 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3919 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3920 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3921 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3922 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3924 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3925 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3927 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3928 sregs
->idt
.limit
= dt
.limit
;
3929 sregs
->idt
.base
= dt
.base
;
3930 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3931 sregs
->gdt
.limit
= dt
.limit
;
3932 sregs
->gdt
.base
= dt
.base
;
3934 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3935 sregs
->cr0
= vcpu
->arch
.cr0
;
3936 sregs
->cr2
= vcpu
->arch
.cr2
;
3937 sregs
->cr3
= vcpu
->arch
.cr3
;
3938 sregs
->cr4
= vcpu
->arch
.cr4
;
3939 sregs
->cr8
= kvm_get_cr8(vcpu
);
3940 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3941 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3943 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
3945 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
3946 set_bit(vcpu
->arch
.interrupt
.nr
,
3947 (unsigned long *)sregs
->interrupt_bitmap
);
3954 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3955 struct kvm_mp_state
*mp_state
)
3958 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3963 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3964 struct kvm_mp_state
*mp_state
)
3967 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3972 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3973 struct kvm_segment
*var
, int seg
)
3975 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3978 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3979 struct kvm_segment
*kvm_desct
)
3981 kvm_desct
->base
= get_desc_base(seg_desc
);
3982 kvm_desct
->limit
= get_desc_limit(seg_desc
);
3984 kvm_desct
->limit
<<= 12;
3985 kvm_desct
->limit
|= 0xfff;
3987 kvm_desct
->selector
= selector
;
3988 kvm_desct
->type
= seg_desc
->type
;
3989 kvm_desct
->present
= seg_desc
->p
;
3990 kvm_desct
->dpl
= seg_desc
->dpl
;
3991 kvm_desct
->db
= seg_desc
->d
;
3992 kvm_desct
->s
= seg_desc
->s
;
3993 kvm_desct
->l
= seg_desc
->l
;
3994 kvm_desct
->g
= seg_desc
->g
;
3995 kvm_desct
->avl
= seg_desc
->avl
;
3997 kvm_desct
->unusable
= 1;
3999 kvm_desct
->unusable
= 0;
4000 kvm_desct
->padding
= 0;
4003 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
4005 struct descriptor_table
*dtable
)
4007 if (selector
& 1 << 2) {
4008 struct kvm_segment kvm_seg
;
4010 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
4012 if (kvm_seg
.unusable
)
4015 dtable
->limit
= kvm_seg
.limit
;
4016 dtable
->base
= kvm_seg
.base
;
4019 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
4022 /* allowed just for 8 bytes segments */
4023 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4024 struct desc_struct
*seg_desc
)
4026 struct descriptor_table dtable
;
4027 u16 index
= selector
>> 3;
4029 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4031 if (dtable
.limit
< index
* 8 + 7) {
4032 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
4035 return kvm_read_guest_virt(dtable
.base
+ index
*8, seg_desc
, sizeof(*seg_desc
), vcpu
);
4038 /* allowed just for 8 bytes segments */
4039 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4040 struct desc_struct
*seg_desc
)
4042 struct descriptor_table dtable
;
4043 u16 index
= selector
>> 3;
4045 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4047 if (dtable
.limit
< index
* 8 + 7)
4049 return kvm_write_guest_virt(dtable
.base
+ index
*8, seg_desc
, sizeof(*seg_desc
), vcpu
);
4052 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
4053 struct desc_struct
*seg_desc
)
4055 u32 base_addr
= get_desc_base(seg_desc
);
4057 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
4060 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
4062 struct kvm_segment kvm_seg
;
4064 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4065 return kvm_seg
.selector
;
4068 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
4070 struct kvm_segment
*kvm_seg
)
4072 struct desc_struct seg_desc
;
4074 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
4076 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
4080 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
4082 struct kvm_segment segvar
= {
4083 .base
= selector
<< 4,
4085 .selector
= selector
,
4096 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
4100 static int is_vm86_segment(struct kvm_vcpu
*vcpu
, int seg
)
4102 return (seg
!= VCPU_SREG_LDTR
) &&
4103 (seg
!= VCPU_SREG_TR
) &&
4104 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_VM
);
4107 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4108 int type_bits
, int seg
)
4110 struct kvm_segment kvm_seg
;
4112 if (is_vm86_segment(vcpu
, seg
) || !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4113 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
4114 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
4116 kvm_seg
.type
|= type_bits
;
4118 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
4119 seg
!= VCPU_SREG_LDTR
)
4121 kvm_seg
.unusable
= 1;
4123 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4127 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
4128 struct tss_segment_32
*tss
)
4130 tss
->cr3
= vcpu
->arch
.cr3
;
4131 tss
->eip
= kvm_rip_read(vcpu
);
4132 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4133 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4134 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4135 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4136 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4137 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4138 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4139 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4140 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4141 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4142 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4143 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4144 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4145 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
4146 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
4147 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4150 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
4151 struct tss_segment_32
*tss
)
4153 kvm_set_cr3(vcpu
, tss
->cr3
);
4155 kvm_rip_write(vcpu
, tss
->eip
);
4156 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
4158 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
4159 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
4160 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
4161 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
4162 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
4163 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
4164 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
4165 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
4167 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
4170 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4173 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4176 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4179 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4182 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
4185 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
4190 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
4191 struct tss_segment_16
*tss
)
4193 tss
->ip
= kvm_rip_read(vcpu
);
4194 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
4195 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4196 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4197 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4198 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4199 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4200 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4201 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4202 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4204 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4205 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4206 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4207 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4208 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4209 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4212 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
4213 struct tss_segment_16
*tss
)
4215 kvm_rip_write(vcpu
, tss
->ip
);
4216 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
4217 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
4218 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
4219 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
4220 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
4221 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
4222 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
4223 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
4224 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
4226 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
4229 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
4232 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
4235 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
4238 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
4243 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4244 u16 old_tss_sel
, u32 old_tss_base
,
4245 struct desc_struct
*nseg_desc
)
4247 struct tss_segment_16 tss_segment_16
;
4250 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4251 sizeof tss_segment_16
))
4254 save_state_to_tss16(vcpu
, &tss_segment_16
);
4256 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4257 sizeof tss_segment_16
))
4260 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4261 &tss_segment_16
, sizeof tss_segment_16
))
4264 if (old_tss_sel
!= 0xffff) {
4265 tss_segment_16
.prev_task_link
= old_tss_sel
;
4267 if (kvm_write_guest(vcpu
->kvm
,
4268 get_tss_base_addr(vcpu
, nseg_desc
),
4269 &tss_segment_16
.prev_task_link
,
4270 sizeof tss_segment_16
.prev_task_link
))
4274 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
4282 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4283 u16 old_tss_sel
, u32 old_tss_base
,
4284 struct desc_struct
*nseg_desc
)
4286 struct tss_segment_32 tss_segment_32
;
4289 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4290 sizeof tss_segment_32
))
4293 save_state_to_tss32(vcpu
, &tss_segment_32
);
4295 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4296 sizeof tss_segment_32
))
4299 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
4300 &tss_segment_32
, sizeof tss_segment_32
))
4303 if (old_tss_sel
!= 0xffff) {
4304 tss_segment_32
.prev_task_link
= old_tss_sel
;
4306 if (kvm_write_guest(vcpu
->kvm
,
4307 get_tss_base_addr(vcpu
, nseg_desc
),
4308 &tss_segment_32
.prev_task_link
,
4309 sizeof tss_segment_32
.prev_task_link
))
4313 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
4321 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
4323 struct kvm_segment tr_seg
;
4324 struct desc_struct cseg_desc
;
4325 struct desc_struct nseg_desc
;
4327 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
4328 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4330 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
4332 /* FIXME: Handle errors. Failure to read either TSS or their
4333 * descriptors should generate a pagefault.
4335 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
4338 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
4341 if (reason
!= TASK_SWITCH_IRET
) {
4344 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
4345 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
4346 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
4351 if (!nseg_desc
.p
|| get_desc_limit(&nseg_desc
) < 0x67) {
4352 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4356 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4357 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4358 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4361 if (reason
== TASK_SWITCH_IRET
) {
4362 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4363 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4366 /* set back link to prev task only if NT bit is set in eflags
4367 note that old_tss_sel is not used afetr this point */
4368 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4369 old_tss_sel
= 0xffff;
4371 /* set back link to prev task only if NT bit is set in eflags
4372 note that old_tss_sel is not used afetr this point */
4373 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4374 old_tss_sel
= 0xffff;
4376 if (nseg_desc
.type
& 8)
4377 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4378 old_tss_base
, &nseg_desc
);
4380 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4381 old_tss_base
, &nseg_desc
);
4383 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4384 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4385 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4388 if (reason
!= TASK_SWITCH_IRET
) {
4389 nseg_desc
.type
|= (1 << 1);
4390 save_guest_segment_descriptor(vcpu
, tss_selector
,
4394 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4395 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4397 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4401 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4403 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4404 struct kvm_sregs
*sregs
)
4406 int mmu_reset_needed
= 0;
4407 int pending_vec
, max_bits
;
4408 struct descriptor_table dt
;
4412 dt
.limit
= sregs
->idt
.limit
;
4413 dt
.base
= sregs
->idt
.base
;
4414 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4415 dt
.limit
= sregs
->gdt
.limit
;
4416 dt
.base
= sregs
->gdt
.base
;
4417 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4419 vcpu
->arch
.cr2
= sregs
->cr2
;
4420 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4421 vcpu
->arch
.cr3
= sregs
->cr3
;
4423 kvm_set_cr8(vcpu
, sregs
->cr8
);
4425 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4426 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4427 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4429 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4431 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4432 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4433 vcpu
->arch
.cr0
= sregs
->cr0
;
4435 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4436 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4437 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4438 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4440 if (mmu_reset_needed
)
4441 kvm_mmu_reset_context(vcpu
);
4443 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4444 pending_vec
= find_first_bit(
4445 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4446 if (pending_vec
< max_bits
) {
4447 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4448 pr_debug("Set back pending irq %d\n", pending_vec
);
4449 if (irqchip_in_kernel(vcpu
->kvm
))
4450 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4453 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4454 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4455 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4456 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4457 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4458 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4460 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4461 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4463 update_cr8_intercept(vcpu
);
4465 /* Older userspace won't unhalt the vcpu on reset. */
4466 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
4467 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4468 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4469 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4476 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4477 struct kvm_guest_debug
*dbg
)
4483 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4484 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4485 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4486 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4487 vcpu
->arch
.switch_db_regs
=
4488 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4490 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4491 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4492 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4495 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4497 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4498 kvm_queue_exception(vcpu
, DB_VECTOR
);
4499 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4500 kvm_queue_exception(vcpu
, BP_VECTOR
);
4508 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4509 * we have asm/x86/processor.h
4520 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4521 #ifdef CONFIG_X86_64
4522 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4524 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4529 * Translate a guest virtual address to a guest physical address.
4531 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4532 struct kvm_translation
*tr
)
4534 unsigned long vaddr
= tr
->linear_address
;
4538 down_read(&vcpu
->kvm
->slots_lock
);
4539 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4540 up_read(&vcpu
->kvm
->slots_lock
);
4541 tr
->physical_address
= gpa
;
4542 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4550 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4552 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4556 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4557 fpu
->fcw
= fxsave
->cwd
;
4558 fpu
->fsw
= fxsave
->swd
;
4559 fpu
->ftwx
= fxsave
->twd
;
4560 fpu
->last_opcode
= fxsave
->fop
;
4561 fpu
->last_ip
= fxsave
->rip
;
4562 fpu
->last_dp
= fxsave
->rdp
;
4563 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4570 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4572 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4576 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4577 fxsave
->cwd
= fpu
->fcw
;
4578 fxsave
->swd
= fpu
->fsw
;
4579 fxsave
->twd
= fpu
->ftwx
;
4580 fxsave
->fop
= fpu
->last_opcode
;
4581 fxsave
->rip
= fpu
->last_ip
;
4582 fxsave
->rdp
= fpu
->last_dp
;
4583 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4590 void fx_init(struct kvm_vcpu
*vcpu
)
4592 unsigned after_mxcsr_mask
;
4595 * Touch the fpu the first time in non atomic context as if
4596 * this is the first fpu instruction the exception handler
4597 * will fire before the instruction returns and it'll have to
4598 * allocate ram with GFP_KERNEL.
4601 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4603 /* Initialize guest FPU by resetting ours and saving into guest's */
4605 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4607 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4608 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4611 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4612 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4613 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4614 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4615 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4617 EXPORT_SYMBOL_GPL(fx_init
);
4619 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4621 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4624 vcpu
->guest_fpu_loaded
= 1;
4625 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4626 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4628 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4630 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4632 if (!vcpu
->guest_fpu_loaded
)
4635 vcpu
->guest_fpu_loaded
= 0;
4636 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4637 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4638 ++vcpu
->stat
.fpu_reload
;
4640 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4642 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4644 if (vcpu
->arch
.time_page
) {
4645 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4646 vcpu
->arch
.time_page
= NULL
;
4649 kvm_x86_ops
->vcpu_free(vcpu
);
4652 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4655 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4658 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4662 /* We do fxsave: this must be aligned. */
4663 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4665 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4667 r
= kvm_arch_vcpu_reset(vcpu
);
4669 r
= kvm_mmu_setup(vcpu
);
4676 kvm_x86_ops
->vcpu_free(vcpu
);
4680 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4683 kvm_mmu_unload(vcpu
);
4686 kvm_x86_ops
->vcpu_free(vcpu
);
4689 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4691 vcpu
->arch
.nmi_pending
= false;
4692 vcpu
->arch
.nmi_injected
= false;
4694 vcpu
->arch
.switch_db_regs
= 0;
4695 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4696 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4697 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4699 return kvm_x86_ops
->vcpu_reset(vcpu
);
4702 void kvm_arch_hardware_enable(void *garbage
)
4704 kvm_x86_ops
->hardware_enable(garbage
);
4707 void kvm_arch_hardware_disable(void *garbage
)
4709 kvm_x86_ops
->hardware_disable(garbage
);
4712 int kvm_arch_hardware_setup(void)
4714 return kvm_x86_ops
->hardware_setup();
4717 void kvm_arch_hardware_unsetup(void)
4719 kvm_x86_ops
->hardware_unsetup();
4722 void kvm_arch_check_processor_compat(void *rtn
)
4724 kvm_x86_ops
->check_processor_compatibility(rtn
);
4727 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4733 BUG_ON(vcpu
->kvm
== NULL
);
4736 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4737 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
4738 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4740 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4742 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4747 vcpu
->arch
.pio_data
= page_address(page
);
4749 r
= kvm_mmu_create(vcpu
);
4751 goto fail_free_pio_data
;
4753 if (irqchip_in_kernel(kvm
)) {
4754 r
= kvm_create_lapic(vcpu
);
4756 goto fail_mmu_destroy
;
4759 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
4761 if (!vcpu
->arch
.mce_banks
) {
4763 goto fail_mmu_destroy
;
4765 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
4770 kvm_mmu_destroy(vcpu
);
4772 free_page((unsigned long)vcpu
->arch
.pio_data
);
4777 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4779 kvm_free_lapic(vcpu
);
4780 down_read(&vcpu
->kvm
->slots_lock
);
4781 kvm_mmu_destroy(vcpu
);
4782 up_read(&vcpu
->kvm
->slots_lock
);
4783 free_page((unsigned long)vcpu
->arch
.pio_data
);
4786 struct kvm
*kvm_arch_create_vm(void)
4788 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4791 return ERR_PTR(-ENOMEM
);
4793 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4794 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4796 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4797 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4799 rdtscll(kvm
->arch
.vm_init_tsc
);
4804 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4807 kvm_mmu_unload(vcpu
);
4811 static void kvm_free_vcpus(struct kvm
*kvm
)
4814 struct kvm_vcpu
*vcpu
;
4817 * Unpin any mmu pages first.
4819 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4820 kvm_unload_vcpu_mmu(vcpu
);
4821 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4822 kvm_arch_vcpu_free(vcpu
);
4824 mutex_lock(&kvm
->lock
);
4825 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
4826 kvm
->vcpus
[i
] = NULL
;
4828 atomic_set(&kvm
->online_vcpus
, 0);
4829 mutex_unlock(&kvm
->lock
);
4832 void kvm_arch_sync_events(struct kvm
*kvm
)
4834 kvm_free_all_assigned_devices(kvm
);
4837 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4839 kvm_iommu_unmap_guest(kvm
);
4841 kfree(kvm
->arch
.vpic
);
4842 kfree(kvm
->arch
.vioapic
);
4843 kvm_free_vcpus(kvm
);
4844 kvm_free_physmem(kvm
);
4845 if (kvm
->arch
.apic_access_page
)
4846 put_page(kvm
->arch
.apic_access_page
);
4847 if (kvm
->arch
.ept_identity_pagetable
)
4848 put_page(kvm
->arch
.ept_identity_pagetable
);
4852 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4853 struct kvm_userspace_memory_region
*mem
,
4854 struct kvm_memory_slot old
,
4857 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4858 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4860 /*To keep backward compatibility with older userspace,
4861 *x86 needs to hanlde !user_alloc case.
4864 if (npages
&& !old
.rmap
) {
4865 unsigned long userspace_addr
;
4867 down_write(¤t
->mm
->mmap_sem
);
4868 userspace_addr
= do_mmap(NULL
, 0,
4870 PROT_READ
| PROT_WRITE
,
4871 MAP_PRIVATE
| MAP_ANONYMOUS
,
4873 up_write(¤t
->mm
->mmap_sem
);
4875 if (IS_ERR((void *)userspace_addr
))
4876 return PTR_ERR((void *)userspace_addr
);
4878 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4879 spin_lock(&kvm
->mmu_lock
);
4880 memslot
->userspace_addr
= userspace_addr
;
4881 spin_unlock(&kvm
->mmu_lock
);
4883 if (!old
.user_alloc
&& old
.rmap
) {
4886 down_write(¤t
->mm
->mmap_sem
);
4887 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4888 old
.npages
* PAGE_SIZE
);
4889 up_write(¤t
->mm
->mmap_sem
);
4892 "kvm_vm_ioctl_set_memory_region: "
4893 "failed to munmap memory\n");
4898 spin_lock(&kvm
->mmu_lock
);
4899 if (!kvm
->arch
.n_requested_mmu_pages
) {
4900 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4901 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4904 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4905 spin_unlock(&kvm
->mmu_lock
);
4910 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4912 kvm_mmu_zap_all(kvm
);
4913 kvm_reload_remote_mmus(kvm
);
4916 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4918 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4919 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4920 || vcpu
->arch
.nmi_pending
||
4921 (kvm_arch_interrupt_allowed(vcpu
) &&
4922 kvm_cpu_has_interrupt(vcpu
));
4925 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4928 int cpu
= vcpu
->cpu
;
4930 if (waitqueue_active(&vcpu
->wq
)) {
4931 wake_up_interruptible(&vcpu
->wq
);
4932 ++vcpu
->stat
.halt_wakeup
;
4936 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
4937 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
4938 smp_send_reschedule(cpu
);
4942 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4944 return kvm_x86_ops
->interrupt_allowed(vcpu
);
4947 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
4948 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
4949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
4950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
4951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);