Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blob775a020990a577f08baa108b75ffbafeb6c3d806
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_counter.h> /* perf_swcounter_event */
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 * Page fault error code bits:
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
28 enum x86_pf_error_code {
30 PF_PROT = 1 << 0,
31 PF_WRITE = 1 << 1,
32 PF_USER = 1 << 2,
33 PF_RSVD = 1 << 3,
34 PF_INSTR = 1 << 4,
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
45 return -1;
46 return 0;
49 static inline int notify_page_fault(struct pt_regs *regs)
51 int ret = 0;
53 /* kprobe_running() needs smp_processor_id() */
54 if (kprobes_built_in() && !user_mode_vm(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 14))
57 ret = 1;
58 preempt_enable();
61 return ret;
65 * Prefetch quirks:
67 * 32-bit mode:
69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70 * Check that here and ignore it.
72 * 64-bit mode:
74 * Sometimes the CPU reports invalid exceptions on prefetch.
75 * Check that here and ignore it.
77 * Opcode checker based on code by Richard Brunner.
79 static inline int
80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
81 unsigned char opcode, int *prefetch)
83 unsigned char instr_hi = opcode & 0xf0;
84 unsigned char instr_lo = opcode & 0x0f;
86 switch (instr_hi) {
87 case 0x20:
88 case 0x30:
90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 * In X86_64 long mode, the CPU will signal invalid
92 * opcode if some of these prefixes are present so
93 * X86_64 will never get here anyway
95 return ((instr_lo & 7) == 0x6);
96 #ifdef CONFIG_X86_64
97 case 0x40:
99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 * Need to figure out under what instruction mode the
101 * instruction was issued. Could check the LDT for lm,
102 * but for now it's good enough to assume that long
103 * mode only uses well known segments or kernel.
105 return (!user_mode(regs)) || (regs->cs == __USER_CS);
106 #endif
107 case 0x60:
108 /* 0x64 thru 0x67 are valid prefixes in all modes. */
109 return (instr_lo & 0xC) == 0x4;
110 case 0xF0:
111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 return !instr_lo || (instr_lo>>1) == 1;
113 case 0x00:
114 /* Prefetch instruction is 0x0F0D or 0x0F18 */
115 if (probe_kernel_address(instr, opcode))
116 return 0;
118 *prefetch = (instr_lo == 0xF) &&
119 (opcode == 0x0D || opcode == 0x18);
120 return 0;
121 default:
122 return 0;
126 static int
127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
129 unsigned char *max_instr;
130 unsigned char *instr;
131 int prefetch = 0;
134 * If it was a exec (instruction fetch) fault on NX page, then
135 * do not ignore the fault:
137 if (error_code & PF_INSTR)
138 return 0;
140 instr = (void *)convert_ip_to_linear(current, regs);
141 max_instr = instr + 15;
143 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
144 return 0;
146 while (instr < max_instr) {
147 unsigned char opcode;
149 if (probe_kernel_address(instr, opcode))
150 break;
152 instr++;
154 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
155 break;
157 return prefetch;
160 static void
161 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
162 struct task_struct *tsk)
164 siginfo_t info;
166 info.si_signo = si_signo;
167 info.si_errno = 0;
168 info.si_code = si_code;
169 info.si_addr = (void __user *)address;
171 force_sig_info(si_signo, &info, tsk);
174 DEFINE_SPINLOCK(pgd_lock);
175 LIST_HEAD(pgd_list);
177 #ifdef CONFIG_X86_32
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
180 unsigned index = pgd_index(address);
181 pgd_t *pgd_k;
182 pud_t *pud, *pud_k;
183 pmd_t *pmd, *pmd_k;
185 pgd += index;
186 pgd_k = init_mm.pgd + index;
188 if (!pgd_present(*pgd_k))
189 return NULL;
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
194 * set_pud.
196 pud = pud_offset(pgd, address);
197 pud_k = pud_offset(pgd_k, address);
198 if (!pud_present(*pud_k))
199 return NULL;
201 pmd = pmd_offset(pud, address);
202 pmd_k = pmd_offset(pud_k, address);
203 if (!pmd_present(*pmd_k))
204 return NULL;
206 if (!pmd_present(*pmd))
207 set_pmd(pmd, *pmd_k);
208 else
209 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
211 return pmd_k;
214 void vmalloc_sync_all(void)
216 unsigned long address;
218 if (SHARED_KERNEL_PMD)
219 return;
221 for (address = VMALLOC_START & PMD_MASK;
222 address >= TASK_SIZE && address < FIXADDR_TOP;
223 address += PMD_SIZE) {
225 unsigned long flags;
226 struct page *page;
228 spin_lock_irqsave(&pgd_lock, flags);
229 list_for_each_entry(page, &pgd_list, lru) {
230 if (!vmalloc_sync_one(page_address(page), address))
231 break;
233 spin_unlock_irqrestore(&pgd_lock, flags);
238 * 32-bit:
240 * Handle a fault on the vmalloc or module mapping area
242 static noinline int vmalloc_fault(unsigned long address)
244 unsigned long pgd_paddr;
245 pmd_t *pmd_k;
246 pte_t *pte_k;
248 /* Make sure we are in vmalloc area: */
249 if (!(address >= VMALLOC_START && address < VMALLOC_END))
250 return -1;
253 * Synchronize this task's top level page-table
254 * with the 'reference' page table.
256 * Do _not_ use "current" here. We might be inside
257 * an interrupt in the middle of a task switch..
259 pgd_paddr = read_cr3();
260 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
261 if (!pmd_k)
262 return -1;
264 pte_k = pte_offset_kernel(pmd_k, address);
265 if (!pte_present(*pte_k))
266 return -1;
268 return 0;
272 * Did it hit the DOS screen memory VA from vm86 mode?
274 static inline void
275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 struct task_struct *tsk)
278 unsigned long bit;
280 if (!v8086_mode(regs))
281 return;
283 bit = (address - 0xA0000) >> PAGE_SHIFT;
284 if (bit < 32)
285 tsk->thread.screen_bitmap |= 1 << bit;
288 static bool low_pfn(unsigned long pfn)
290 return pfn < max_low_pfn;
293 static void dump_pagetable(unsigned long address)
295 pgd_t *base = __va(read_cr3());
296 pgd_t *pgd = &base[pgd_index(address)];
297 pmd_t *pmd;
298 pte_t *pte;
300 #ifdef CONFIG_X86_PAE
301 printk("*pdpt = %016Lx ", pgd_val(*pgd));
302 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
303 goto out;
304 #endif
305 pmd = pmd_offset(pud_offset(pgd, address), address);
306 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
309 * We must not directly access the pte in the highpte
310 * case if the page table is located in highmem.
311 * And let's rather not kmap-atomic the pte, just in case
312 * it's allocated already:
314 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
315 goto out;
317 pte = pte_offset_kernel(pmd, address);
318 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
319 out:
320 printk("\n");
323 #else /* CONFIG_X86_64: */
325 void vmalloc_sync_all(void)
327 unsigned long address;
329 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
330 address += PGDIR_SIZE) {
332 const pgd_t *pgd_ref = pgd_offset_k(address);
333 unsigned long flags;
334 struct page *page;
336 if (pgd_none(*pgd_ref))
337 continue;
339 spin_lock_irqsave(&pgd_lock, flags);
340 list_for_each_entry(page, &pgd_list, lru) {
341 pgd_t *pgd;
342 pgd = (pgd_t *)page_address(page) + pgd_index(address);
343 if (pgd_none(*pgd))
344 set_pgd(pgd, *pgd_ref);
345 else
346 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
348 spin_unlock_irqrestore(&pgd_lock, flags);
353 * 64-bit:
355 * Handle a fault on the vmalloc area
357 * This assumes no large pages in there.
359 static noinline int vmalloc_fault(unsigned long address)
361 pgd_t *pgd, *pgd_ref;
362 pud_t *pud, *pud_ref;
363 pmd_t *pmd, *pmd_ref;
364 pte_t *pte, *pte_ref;
366 /* Make sure we are in vmalloc area: */
367 if (!(address >= VMALLOC_START && address < VMALLOC_END))
368 return -1;
371 * Copy kernel mappings over when needed. This can also
372 * happen within a race in page table update. In the later
373 * case just flush:
375 pgd = pgd_offset(current->active_mm, address);
376 pgd_ref = pgd_offset_k(address);
377 if (pgd_none(*pgd_ref))
378 return -1;
380 if (pgd_none(*pgd))
381 set_pgd(pgd, *pgd_ref);
382 else
383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
386 * Below here mismatches are bugs because these lower tables
387 * are shared:
390 pud = pud_offset(pgd, address);
391 pud_ref = pud_offset(pgd_ref, address);
392 if (pud_none(*pud_ref))
393 return -1;
395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 BUG();
398 pmd = pmd_offset(pud, address);
399 pmd_ref = pmd_offset(pud_ref, address);
400 if (pmd_none(*pmd_ref))
401 return -1;
403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 BUG();
406 pte_ref = pte_offset_kernel(pmd_ref, address);
407 if (!pte_present(*pte_ref))
408 return -1;
410 pte = pte_offset_kernel(pmd, address);
413 * Don't use pte_page here, because the mappings can point
414 * outside mem_map, and the NUMA hash lookup cannot handle
415 * that:
417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 BUG();
420 return 0;
423 static const char errata93_warning[] =
424 KERN_ERR
425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426 "******* Working around it, but it may cause SEGVs or burn power.\n"
427 "******* Please consider a BIOS update.\n"
428 "******* Disabling USB legacy in the BIOS may also help.\n";
431 * No vm86 mode in 64-bit mode:
433 static inline void
434 check_v8086_mode(struct pt_regs *regs, unsigned long address,
435 struct task_struct *tsk)
439 static int bad_address(void *p)
441 unsigned long dummy;
443 return probe_kernel_address((unsigned long *)p, dummy);
446 static void dump_pagetable(unsigned long address)
448 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
449 pgd_t *pgd = base + pgd_index(address);
450 pud_t *pud;
451 pmd_t *pmd;
452 pte_t *pte;
454 if (bad_address(pgd))
455 goto bad;
457 printk("PGD %lx ", pgd_val(*pgd));
459 if (!pgd_present(*pgd))
460 goto out;
462 pud = pud_offset(pgd, address);
463 if (bad_address(pud))
464 goto bad;
466 printk("PUD %lx ", pud_val(*pud));
467 if (!pud_present(*pud) || pud_large(*pud))
468 goto out;
470 pmd = pmd_offset(pud, address);
471 if (bad_address(pmd))
472 goto bad;
474 printk("PMD %lx ", pmd_val(*pmd));
475 if (!pmd_present(*pmd) || pmd_large(*pmd))
476 goto out;
478 pte = pte_offset_kernel(pmd, address);
479 if (bad_address(pte))
480 goto bad;
482 printk("PTE %lx", pte_val(*pte));
483 out:
484 printk("\n");
485 return;
486 bad:
487 printk("BAD\n");
490 #endif /* CONFIG_X86_64 */
493 * Workaround for K8 erratum #93 & buggy BIOS.
495 * BIOS SMM functions are required to use a specific workaround
496 * to avoid corruption of the 64bit RIP register on C stepping K8.
498 * A lot of BIOS that didn't get tested properly miss this.
500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501 * Try to work around it here.
503 * Note we only handle faults in kernel here.
504 * Does nothing on 32-bit.
506 static int is_errata93(struct pt_regs *regs, unsigned long address)
508 #ifdef CONFIG_X86_64
509 if (address != regs->ip)
510 return 0;
512 if ((address >> 32) != 0)
513 return 0;
515 address |= 0xffffffffUL << 32;
516 if ((address >= (u64)_stext && address <= (u64)_etext) ||
517 (address >= MODULES_VADDR && address <= MODULES_END)) {
518 printk_once(errata93_warning);
519 regs->ip = address;
520 return 1;
522 #endif
523 return 0;
527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528 * to illegal addresses >4GB.
530 * We catch this in the page fault handler because these addresses
531 * are not reachable. Just detect this case and return. Any code
532 * segment in LDT is compatibility mode.
534 static int is_errata100(struct pt_regs *regs, unsigned long address)
536 #ifdef CONFIG_X86_64
537 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
538 return 1;
539 #endif
540 return 0;
543 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
545 #ifdef CONFIG_X86_F00F_BUG
546 unsigned long nr;
549 * Pentium F0 0F C7 C8 bug workaround:
551 if (boot_cpu_data.f00f_bug) {
552 nr = (address - idt_descr.address) >> 3;
554 if (nr == 6) {
555 do_invalid_op(regs, 0);
556 return 1;
559 #endif
560 return 0;
563 static const char nx_warning[] = KERN_CRIT
564 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
566 static void
567 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
568 unsigned long address)
570 if (!oops_may_print())
571 return;
573 if (error_code & PF_INSTR) {
574 unsigned int level;
576 pte_t *pte = lookup_address(address, &level);
578 if (pte && pte_present(*pte) && !pte_exec(*pte))
579 printk(nx_warning, current_uid());
582 printk(KERN_ALERT "BUG: unable to handle kernel ");
583 if (address < PAGE_SIZE)
584 printk(KERN_CONT "NULL pointer dereference");
585 else
586 printk(KERN_CONT "paging request");
588 printk(KERN_CONT " at %p\n", (void *) address);
589 printk(KERN_ALERT "IP:");
590 printk_address(regs->ip, 1);
592 dump_pagetable(address);
595 static noinline void
596 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
597 unsigned long address)
599 struct task_struct *tsk;
600 unsigned long flags;
601 int sig;
603 flags = oops_begin();
604 tsk = current;
605 sig = SIGKILL;
607 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
608 tsk->comm, address);
609 dump_pagetable(address);
611 tsk->thread.cr2 = address;
612 tsk->thread.trap_no = 14;
613 tsk->thread.error_code = error_code;
615 if (__die("Bad pagetable", regs, error_code))
616 sig = 0;
618 oops_end(flags, regs, sig);
621 static noinline void
622 no_context(struct pt_regs *regs, unsigned long error_code,
623 unsigned long address)
625 struct task_struct *tsk = current;
626 unsigned long *stackend;
627 unsigned long flags;
628 int sig;
630 /* Are we prepared to handle this kernel fault? */
631 if (fixup_exception(regs))
632 return;
635 * 32-bit:
637 * Valid to do another page fault here, because if this fault
638 * had been triggered by is_prefetch fixup_exception would have
639 * handled it.
641 * 64-bit:
643 * Hall of shame of CPU/BIOS bugs.
645 if (is_prefetch(regs, error_code, address))
646 return;
648 if (is_errata93(regs, address))
649 return;
652 * Oops. The kernel tried to access some bad page. We'll have to
653 * terminate things with extreme prejudice:
655 flags = oops_begin();
657 show_fault_oops(regs, error_code, address);
659 stackend = end_of_stack(tsk);
660 if (*stackend != STACK_END_MAGIC)
661 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
663 tsk->thread.cr2 = address;
664 tsk->thread.trap_no = 14;
665 tsk->thread.error_code = error_code;
667 sig = SIGKILL;
668 if (__die("Oops", regs, error_code))
669 sig = 0;
671 /* Executive summary in case the body of the oops scrolled away */
672 printk(KERN_EMERG "CR2: %016lx\n", address);
674 oops_end(flags, regs, sig);
678 * Print out info about fatal segfaults, if the show_unhandled_signals
679 * sysctl is set:
681 static inline void
682 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address, struct task_struct *tsk)
685 if (!unhandled_signal(tsk, SIGSEGV))
686 return;
688 if (!printk_ratelimit())
689 return;
691 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
692 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
693 tsk->comm, task_pid_nr(tsk), address,
694 (void *)regs->ip, (void *)regs->sp, error_code);
696 print_vma_addr(KERN_CONT " in ", regs->ip);
698 printk(KERN_CONT "\n");
701 static void
702 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
703 unsigned long address, int si_code)
705 struct task_struct *tsk = current;
707 /* User mode accesses just cause a SIGSEGV */
708 if (error_code & PF_USER) {
710 * It's possible to have interrupts off here:
712 local_irq_enable();
715 * Valid to do another page fault here because this one came
716 * from user space:
718 if (is_prefetch(regs, error_code, address))
719 return;
721 if (is_errata100(regs, address))
722 return;
724 if (unlikely(show_unhandled_signals))
725 show_signal_msg(regs, error_code, address, tsk);
727 /* Kernel addresses are always protection faults: */
728 tsk->thread.cr2 = address;
729 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
730 tsk->thread.trap_no = 14;
732 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
734 return;
737 if (is_f00f_bug(regs, address))
738 return;
740 no_context(regs, error_code, address);
743 static noinline void
744 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
745 unsigned long address)
747 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
750 static void
751 __bad_area(struct pt_regs *regs, unsigned long error_code,
752 unsigned long address, int si_code)
754 struct mm_struct *mm = current->mm;
757 * Something tried to access memory that isn't in our memory map..
758 * Fix it, but check if it's kernel or user first..
760 up_read(&mm->mmap_sem);
762 __bad_area_nosemaphore(regs, error_code, address, si_code);
765 static noinline void
766 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
768 __bad_area(regs, error_code, address, SEGV_MAPERR);
771 static noinline void
772 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
773 unsigned long address)
775 __bad_area(regs, error_code, address, SEGV_ACCERR);
778 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
779 static void
780 out_of_memory(struct pt_regs *regs, unsigned long error_code,
781 unsigned long address)
784 * We ran out of memory, call the OOM killer, and return the userspace
785 * (which will retry the fault, or kill us if we got oom-killed):
787 up_read(&current->mm->mmap_sem);
789 pagefault_out_of_memory();
792 static void
793 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
795 struct task_struct *tsk = current;
796 struct mm_struct *mm = tsk->mm;
798 up_read(&mm->mmap_sem);
800 /* Kernel mode? Handle exceptions or die: */
801 if (!(error_code & PF_USER))
802 no_context(regs, error_code, address);
804 /* User-space => ok to do another page fault: */
805 if (is_prefetch(regs, error_code, address))
806 return;
808 tsk->thread.cr2 = address;
809 tsk->thread.error_code = error_code;
810 tsk->thread.trap_no = 14;
812 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
815 static noinline void
816 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
817 unsigned long address, unsigned int fault)
819 if (fault & VM_FAULT_OOM) {
820 out_of_memory(regs, error_code, address);
821 } else {
822 if (fault & VM_FAULT_SIGBUS)
823 do_sigbus(regs, error_code, address);
824 else
825 BUG();
829 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
831 if ((error_code & PF_WRITE) && !pte_write(*pte))
832 return 0;
834 if ((error_code & PF_INSTR) && !pte_exec(*pte))
835 return 0;
837 return 1;
841 * Handle a spurious fault caused by a stale TLB entry.
843 * This allows us to lazily refresh the TLB when increasing the
844 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
845 * eagerly is very expensive since that implies doing a full
846 * cross-processor TLB flush, even if no stale TLB entries exist
847 * on other processors.
849 * There are no security implications to leaving a stale TLB when
850 * increasing the permissions on a page.
852 static noinline int
853 spurious_fault(unsigned long error_code, unsigned long address)
855 pgd_t *pgd;
856 pud_t *pud;
857 pmd_t *pmd;
858 pte_t *pte;
859 int ret;
861 /* Reserved-bit violation or user access to kernel space? */
862 if (error_code & (PF_USER | PF_RSVD))
863 return 0;
865 pgd = init_mm.pgd + pgd_index(address);
866 if (!pgd_present(*pgd))
867 return 0;
869 pud = pud_offset(pgd, address);
870 if (!pud_present(*pud))
871 return 0;
873 if (pud_large(*pud))
874 return spurious_fault_check(error_code, (pte_t *) pud);
876 pmd = pmd_offset(pud, address);
877 if (!pmd_present(*pmd))
878 return 0;
880 if (pmd_large(*pmd))
881 return spurious_fault_check(error_code, (pte_t *) pmd);
883 pte = pte_offset_kernel(pmd, address);
884 if (!pte_present(*pte))
885 return 0;
887 ret = spurious_fault_check(error_code, pte);
888 if (!ret)
889 return 0;
892 * Make sure we have permissions in PMD.
893 * If not, then there's a bug in the page tables:
895 ret = spurious_fault_check(error_code, (pte_t *) pmd);
896 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
898 return ret;
901 int show_unhandled_signals = 1;
903 static inline int
904 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
906 if (write) {
907 /* write, present and write, not present: */
908 if (unlikely(!(vma->vm_flags & VM_WRITE)))
909 return 1;
910 return 0;
913 /* read, present: */
914 if (unlikely(error_code & PF_PROT))
915 return 1;
917 /* read, not present: */
918 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
919 return 1;
921 return 0;
924 static int fault_in_kernel_space(unsigned long address)
926 return address >= TASK_SIZE_MAX;
930 * This routine handles page faults. It determines the address,
931 * and the problem, and then passes it off to one of the appropriate
932 * routines.
934 dotraplinkage void __kprobes
935 do_page_fault(struct pt_regs *regs, unsigned long error_code)
937 struct vm_area_struct *vma;
938 struct task_struct *tsk;
939 unsigned long address;
940 struct mm_struct *mm;
941 int write;
942 int fault;
944 tsk = current;
945 mm = tsk->mm;
947 /* Get the faulting address: */
948 address = read_cr2();
951 * Detect and handle instructions that would cause a page fault for
952 * both a tracked kernel page and a userspace page.
954 if (kmemcheck_active(regs))
955 kmemcheck_hide(regs);
956 prefetchw(&mm->mmap_sem);
958 if (unlikely(kmmio_fault(regs, address)))
959 return;
962 * We fault-in kernel-space virtual memory on-demand. The
963 * 'reference' page table is init_mm.pgd.
965 * NOTE! We MUST NOT take any locks for this case. We may
966 * be in an interrupt or a critical region, and should
967 * only copy the information from the master page table,
968 * nothing more.
970 * This verifies that the fault happens in kernel space
971 * (error_code & 4) == 0, and that the fault was not a
972 * protection error (error_code & 9) == 0.
974 if (unlikely(fault_in_kernel_space(address))) {
975 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
976 if (vmalloc_fault(address) >= 0)
977 return;
979 if (kmemcheck_fault(regs, address, error_code))
980 return;
983 /* Can handle a stale RO->RW TLB: */
984 if (spurious_fault(error_code, address))
985 return;
987 /* kprobes don't want to hook the spurious faults: */
988 if (notify_page_fault(regs))
989 return;
991 * Don't take the mm semaphore here. If we fixup a prefetch
992 * fault we could otherwise deadlock:
994 bad_area_nosemaphore(regs, error_code, address);
996 return;
999 /* kprobes don't want to hook the spurious faults: */
1000 if (unlikely(notify_page_fault(regs)))
1001 return;
1003 * It's safe to allow irq's after cr2 has been saved and the
1004 * vmalloc fault has been handled.
1006 * User-mode registers count as a user access even for any
1007 * potential system fault or CPU buglet:
1009 if (user_mode_vm(regs)) {
1010 local_irq_enable();
1011 error_code |= PF_USER;
1012 } else {
1013 if (regs->flags & X86_EFLAGS_IF)
1014 local_irq_enable();
1017 if (unlikely(error_code & PF_RSVD))
1018 pgtable_bad(regs, error_code, address);
1020 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1023 * If we're in an interrupt, have no user context or are running
1024 * in an atomic region then we must not take the fault:
1026 if (unlikely(in_atomic() || !mm)) {
1027 bad_area_nosemaphore(regs, error_code, address);
1028 return;
1032 * When running in the kernel we expect faults to occur only to
1033 * addresses in user space. All other faults represent errors in
1034 * the kernel and should generate an OOPS. Unfortunately, in the
1035 * case of an erroneous fault occurring in a code path which already
1036 * holds mmap_sem we will deadlock attempting to validate the fault
1037 * against the address space. Luckily the kernel only validly
1038 * references user space from well defined areas of code, which are
1039 * listed in the exceptions table.
1041 * As the vast majority of faults will be valid we will only perform
1042 * the source reference check when there is a possibility of a
1043 * deadlock. Attempt to lock the address space, if we cannot we then
1044 * validate the source. If this is invalid we can skip the address
1045 * space check, thus avoiding the deadlock:
1047 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1048 if ((error_code & PF_USER) == 0 &&
1049 !search_exception_tables(regs->ip)) {
1050 bad_area_nosemaphore(regs, error_code, address);
1051 return;
1053 down_read(&mm->mmap_sem);
1054 } else {
1056 * The above down_read_trylock() might have succeeded in
1057 * which case we'll have missed the might_sleep() from
1058 * down_read():
1060 might_sleep();
1063 vma = find_vma(mm, address);
1064 if (unlikely(!vma)) {
1065 bad_area(regs, error_code, address);
1066 return;
1068 if (likely(vma->vm_start <= address))
1069 goto good_area;
1070 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1071 bad_area(regs, error_code, address);
1072 return;
1074 if (error_code & PF_USER) {
1076 * Accessing the stack below %sp is always a bug.
1077 * The large cushion allows instructions like enter
1078 * and pusha to work. ("enter $65535, $31" pushes
1079 * 32 pointers and then decrements %sp by 65535.)
1081 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1082 bad_area(regs, error_code, address);
1083 return;
1086 if (unlikely(expand_stack(vma, address))) {
1087 bad_area(regs, error_code, address);
1088 return;
1092 * Ok, we have a good vm_area for this memory access, so
1093 * we can handle it..
1095 good_area:
1096 write = error_code & PF_WRITE;
1098 if (unlikely(access_error(error_code, write, vma))) {
1099 bad_area_access_error(regs, error_code, address);
1100 return;
1104 * If for any reason at all we couldn't handle the fault,
1105 * make sure we exit gracefully rather than endlessly redo
1106 * the fault:
1108 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1110 if (unlikely(fault & VM_FAULT_ERROR)) {
1111 mm_fault_error(regs, error_code, address, fault);
1112 return;
1115 if (fault & VM_FAULT_MAJOR) {
1116 tsk->maj_flt++;
1117 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1118 regs, address);
1119 } else {
1120 tsk->min_flt++;
1121 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1122 regs, address);
1125 check_v8086_mode(regs, address, tsk);
1127 up_read(&mm->mmap_sem);