Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[linux/fpc-iii.git] / arch / x86 / mm / pageattr.c
blob24952fdc7e407a7cd2f9fe1237012c1c265da11a
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
28 * The current flushing context - we pass it instead of 5 arguments:
30 struct cpa_data {
31 unsigned long *vaddr;
32 pgprot_t mask_set;
33 pgprot_t mask_clr;
34 int numpages;
35 int flags;
36 unsigned long pfn;
37 unsigned force_split : 1;
38 int curpage;
39 struct page **pages;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock);
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 void update_page_count(int level, unsigned long pages)
59 unsigned long flags;
61 /* Protect against CPA */
62 spin_lock_irqsave(&pgd_lock, flags);
63 direct_pages_count[level] += pages;
64 spin_unlock_irqrestore(&pgd_lock, flags);
67 static void split_page_count(int level)
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
73 void arch_report_meminfo(struct seq_file *m)
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
94 #ifdef CONFIG_X86_64
96 static inline unsigned long highmap_start_pfn(void)
98 return __pa(_text) >> PAGE_SHIFT;
101 static inline unsigned long highmap_end_pfn(void)
103 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
106 #endif
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
117 return addr >= start && addr < end;
121 * Flushing functions
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr: virtual start address
127 * @size: number of bytes to flush
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
132 void clflush_cache_range(void *vaddr, unsigned int size)
134 void *vend = vaddr + size - 1;
136 mb();
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflush(vaddr);
141 * Flush any possible final partial cacheline:
143 clflush(vend);
145 mb();
148 static void __cpa_flush_all(void *arg)
150 unsigned long cache = (unsigned long)arg;
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
156 __flush_tlb_all();
158 if (cache && boot_cpu_data.x86 >= 4)
159 wbinvd();
162 static void cpa_flush_all(unsigned long cache)
164 BUG_ON(irqs_disabled());
166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
169 static void __cpa_flush_range(void *arg)
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
176 __flush_tlb_all();
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 unsigned int i, level;
182 unsigned long addr;
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start) != start);
187 on_each_cpu(__cpa_flush_range, NULL, 1);
189 if (!cache)
190 return;
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
202 * Only flush present addresses:
204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 clflush_cache_range((void *) addr, PAGE_SIZE);
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
212 unsigned int i, level;
213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215 BUG_ON(irqs_disabled());
217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219 if (!cache || do_wbinvd)
220 return;
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
237 pte = lookup_address(addr, &level);
240 * Only flush present addresses:
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 clflush_cache_range((void *)addr, PAGE_SIZE);
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
256 pgprot_t forbidden = __pgprot(0);
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
263 pgprot_val(forbidden) |= _PAGE_NX;
266 * The kernel text needs to be executable for obvious reasons
267 * Does not cover __inittext since that is gone later on. On
268 * 64bit we do not enforce !NX on the low mapping
270 if (within(address, (unsigned long)_text, (unsigned long)_etext))
271 pgprot_val(forbidden) |= _PAGE_NX;
274 * The .rodata section needs to be read-only. Using the pfn
275 * catches all aliases.
277 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
278 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
279 pgprot_val(forbidden) |= _PAGE_RW;
281 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
283 return prot;
287 * Lookup the page table entry for a virtual address. Return a pointer
288 * to the entry and the level of the mapping.
290 * Note: We return pud and pmd either when the entry is marked large
291 * or when the present bit is not set. Otherwise we would return a
292 * pointer to a nonexisting mapping.
294 pte_t *lookup_address(unsigned long address, unsigned int *level)
296 pgd_t *pgd = pgd_offset_k(address);
297 pud_t *pud;
298 pmd_t *pmd;
300 *level = PG_LEVEL_NONE;
302 if (pgd_none(*pgd))
303 return NULL;
305 pud = pud_offset(pgd, address);
306 if (pud_none(*pud))
307 return NULL;
309 *level = PG_LEVEL_1G;
310 if (pud_large(*pud) || !pud_present(*pud))
311 return (pte_t *)pud;
313 pmd = pmd_offset(pud, address);
314 if (pmd_none(*pmd))
315 return NULL;
317 *level = PG_LEVEL_2M;
318 if (pmd_large(*pmd) || !pmd_present(*pmd))
319 return (pte_t *)pmd;
321 *level = PG_LEVEL_4K;
323 return pte_offset_kernel(pmd, address);
325 EXPORT_SYMBOL_GPL(lookup_address);
328 * Set the new pmd in all the pgds we know about:
330 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
332 /* change init_mm */
333 set_pte_atomic(kpte, pte);
334 #ifdef CONFIG_X86_32
335 if (!SHARED_KERNEL_PMD) {
336 struct page *page;
338 list_for_each_entry(page, &pgd_list, lru) {
339 pgd_t *pgd;
340 pud_t *pud;
341 pmd_t *pmd;
343 pgd = (pgd_t *)page_address(page) + pgd_index(address);
344 pud = pud_offset(pgd, address);
345 pmd = pmd_offset(pud, address);
346 set_pte_atomic((pte_t *)pmd, pte);
349 #endif
352 static int
353 try_preserve_large_page(pte_t *kpte, unsigned long address,
354 struct cpa_data *cpa)
356 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
357 pte_t new_pte, old_pte, *tmp;
358 pgprot_t old_prot, new_prot;
359 int i, do_split = 1;
360 unsigned int level;
362 if (cpa->force_split)
363 return 1;
365 spin_lock_irqsave(&pgd_lock, flags);
367 * Check for races, another CPU might have split this page
368 * up already:
370 tmp = lookup_address(address, &level);
371 if (tmp != kpte)
372 goto out_unlock;
374 switch (level) {
375 case PG_LEVEL_2M:
376 psize = PMD_PAGE_SIZE;
377 pmask = PMD_PAGE_MASK;
378 break;
379 #ifdef CONFIG_X86_64
380 case PG_LEVEL_1G:
381 psize = PUD_PAGE_SIZE;
382 pmask = PUD_PAGE_MASK;
383 break;
384 #endif
385 default:
386 do_split = -EINVAL;
387 goto out_unlock;
391 * Calculate the number of pages, which fit into this large
392 * page starting at address:
394 nextpage_addr = (address + psize) & pmask;
395 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
396 if (numpages < cpa->numpages)
397 cpa->numpages = numpages;
400 * We are safe now. Check whether the new pgprot is the same:
402 old_pte = *kpte;
403 old_prot = new_prot = pte_pgprot(old_pte);
405 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
406 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
409 * old_pte points to the large page base address. So we need
410 * to add the offset of the virtual address:
412 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
413 cpa->pfn = pfn;
415 new_prot = static_protections(new_prot, address, pfn);
418 * We need to check the full range, whether
419 * static_protection() requires a different pgprot for one of
420 * the pages in the range we try to preserve:
422 addr = address + PAGE_SIZE;
423 pfn++;
424 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
425 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
427 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
428 goto out_unlock;
432 * If there are no changes, return. maxpages has been updated
433 * above:
435 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
436 do_split = 0;
437 goto out_unlock;
441 * We need to change the attributes. Check, whether we can
442 * change the large page in one go. We request a split, when
443 * the address is not aligned and the number of pages is
444 * smaller than the number of pages in the large page. Note
445 * that we limited the number of possible pages already to
446 * the number of pages in the large page.
448 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
450 * The address is aligned and the number of pages
451 * covers the full page.
453 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
454 __set_pmd_pte(kpte, address, new_pte);
455 cpa->flags |= CPA_FLUSHTLB;
456 do_split = 0;
459 out_unlock:
460 spin_unlock_irqrestore(&pgd_lock, flags);
462 return do_split;
465 static int split_large_page(pte_t *kpte, unsigned long address)
467 unsigned long flags, pfn, pfninc = 1;
468 unsigned int i, level;
469 pte_t *pbase, *tmp;
470 pgprot_t ref_prot;
471 struct page *base;
473 if (!debug_pagealloc)
474 spin_unlock(&cpa_lock);
475 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
476 if (!debug_pagealloc)
477 spin_lock(&cpa_lock);
478 if (!base)
479 return -ENOMEM;
481 spin_lock_irqsave(&pgd_lock, flags);
483 * Check for races, another CPU might have split this page
484 * up for us already:
486 tmp = lookup_address(address, &level);
487 if (tmp != kpte)
488 goto out_unlock;
490 pbase = (pte_t *)page_address(base);
491 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
492 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
494 * If we ever want to utilize the PAT bit, we need to
495 * update this function to make sure it's converted from
496 * bit 12 to bit 7 when we cross from the 2MB level to
497 * the 4K level:
499 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
501 #ifdef CONFIG_X86_64
502 if (level == PG_LEVEL_1G) {
503 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
504 pgprot_val(ref_prot) |= _PAGE_PSE;
506 #endif
509 * Get the target pfn from the original entry:
511 pfn = pte_pfn(*kpte);
512 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
513 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
515 if (address >= (unsigned long)__va(0) &&
516 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
517 split_page_count(level);
519 #ifdef CONFIG_X86_64
520 if (address >= (unsigned long)__va(1UL<<32) &&
521 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
522 split_page_count(level);
523 #endif
526 * Install the new, split up pagetable.
528 * We use the standard kernel pagetable protections for the new
529 * pagetable protections, the actual ptes set above control the
530 * primary protection behavior:
532 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
535 * Intel Atom errata AAH41 workaround.
537 * The real fix should be in hw or in a microcode update, but
538 * we also probabilistically try to reduce the window of having
539 * a large TLB mixed with 4K TLBs while instruction fetches are
540 * going on.
542 __flush_tlb_all();
544 base = NULL;
546 out_unlock:
548 * If we dropped out via the lookup_address check under
549 * pgd_lock then stick the page back into the pool:
551 if (base)
552 __free_page(base);
553 spin_unlock_irqrestore(&pgd_lock, flags);
555 return 0;
558 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
559 int primary)
562 * Ignore all non primary paths.
564 if (!primary)
565 return 0;
568 * Ignore the NULL PTE for kernel identity mapping, as it is expected
569 * to have holes.
570 * Also set numpages to '1' indicating that we processed cpa req for
571 * one virtual address page and its pfn. TBD: numpages can be set based
572 * on the initial value and the level returned by lookup_address().
574 if (within(vaddr, PAGE_OFFSET,
575 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
576 cpa->numpages = 1;
577 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
578 return 0;
579 } else {
580 WARN(1, KERN_WARNING "CPA: called for zero pte. "
581 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
582 *cpa->vaddr);
584 return -EFAULT;
588 static int __change_page_attr(struct cpa_data *cpa, int primary)
590 unsigned long address;
591 int do_split, err;
592 unsigned int level;
593 pte_t *kpte, old_pte;
595 if (cpa->flags & CPA_PAGES_ARRAY) {
596 struct page *page = cpa->pages[cpa->curpage];
597 if (unlikely(PageHighMem(page)))
598 return 0;
599 address = (unsigned long)page_address(page);
600 } else if (cpa->flags & CPA_ARRAY)
601 address = cpa->vaddr[cpa->curpage];
602 else
603 address = *cpa->vaddr;
604 repeat:
605 kpte = lookup_address(address, &level);
606 if (!kpte)
607 return __cpa_process_fault(cpa, address, primary);
609 old_pte = *kpte;
610 if (!pte_val(old_pte))
611 return __cpa_process_fault(cpa, address, primary);
613 if (level == PG_LEVEL_4K) {
614 pte_t new_pte;
615 pgprot_t new_prot = pte_pgprot(old_pte);
616 unsigned long pfn = pte_pfn(old_pte);
618 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
619 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
621 new_prot = static_protections(new_prot, address, pfn);
624 * We need to keep the pfn from the existing PTE,
625 * after all we're only going to change it's attributes
626 * not the memory it points to
628 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
629 cpa->pfn = pfn;
631 * Do we really change anything ?
633 if (pte_val(old_pte) != pte_val(new_pte)) {
634 set_pte_atomic(kpte, new_pte);
635 cpa->flags |= CPA_FLUSHTLB;
637 cpa->numpages = 1;
638 return 0;
642 * Check, whether we can keep the large page intact
643 * and just change the pte:
645 do_split = try_preserve_large_page(kpte, address, cpa);
647 * When the range fits into the existing large page,
648 * return. cp->numpages and cpa->tlbflush have been updated in
649 * try_large_page:
651 if (do_split <= 0)
652 return do_split;
655 * We have to split the large page:
657 err = split_large_page(kpte, address);
658 if (!err) {
660 * Do a global flush tlb after splitting the large page
661 * and before we do the actual change page attribute in the PTE.
663 * With out this, we violate the TLB application note, that says
664 * "The TLBs may contain both ordinary and large-page
665 * translations for a 4-KByte range of linear addresses. This
666 * may occur if software modifies the paging structures so that
667 * the page size used for the address range changes. If the two
668 * translations differ with respect to page frame or attributes
669 * (e.g., permissions), processor behavior is undefined and may
670 * be implementation-specific."
672 * We do this global tlb flush inside the cpa_lock, so that we
673 * don't allow any other cpu, with stale tlb entries change the
674 * page attribute in parallel, that also falls into the
675 * just split large page entry.
677 flush_tlb_all();
678 goto repeat;
681 return err;
684 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
686 static int cpa_process_alias(struct cpa_data *cpa)
688 struct cpa_data alias_cpa;
689 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
690 unsigned long vaddr;
691 int ret;
693 if (cpa->pfn >= max_pfn_mapped)
694 return 0;
696 #ifdef CONFIG_X86_64
697 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
698 return 0;
699 #endif
701 * No need to redo, when the primary call touched the direct
702 * mapping already:
704 if (cpa->flags & CPA_PAGES_ARRAY) {
705 struct page *page = cpa->pages[cpa->curpage];
706 if (unlikely(PageHighMem(page)))
707 return 0;
708 vaddr = (unsigned long)page_address(page);
709 } else if (cpa->flags & CPA_ARRAY)
710 vaddr = cpa->vaddr[cpa->curpage];
711 else
712 vaddr = *cpa->vaddr;
714 if (!(within(vaddr, PAGE_OFFSET,
715 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
717 alias_cpa = *cpa;
718 alias_cpa.vaddr = &laddr;
719 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
721 ret = __change_page_attr_set_clr(&alias_cpa, 0);
722 if (ret)
723 return ret;
726 #ifdef CONFIG_X86_64
728 * If the primary call didn't touch the high mapping already
729 * and the physical address is inside the kernel map, we need
730 * to touch the high mapped kernel as well:
732 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
733 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
734 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
735 __START_KERNEL_map - phys_base;
736 alias_cpa = *cpa;
737 alias_cpa.vaddr = &temp_cpa_vaddr;
738 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
741 * The high mapping range is imprecise, so ignore the
742 * return value.
744 __change_page_attr_set_clr(&alias_cpa, 0);
746 #endif
748 return 0;
751 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
753 int ret, numpages = cpa->numpages;
755 while (numpages) {
757 * Store the remaining nr of pages for the large page
758 * preservation check.
760 cpa->numpages = numpages;
761 /* for array changes, we can't use large page */
762 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
763 cpa->numpages = 1;
765 if (!debug_pagealloc)
766 spin_lock(&cpa_lock);
767 ret = __change_page_attr(cpa, checkalias);
768 if (!debug_pagealloc)
769 spin_unlock(&cpa_lock);
770 if (ret)
771 return ret;
773 if (checkalias) {
774 ret = cpa_process_alias(cpa);
775 if (ret)
776 return ret;
780 * Adjust the number of pages with the result of the
781 * CPA operation. Either a large page has been
782 * preserved or a single page update happened.
784 BUG_ON(cpa->numpages > numpages);
785 numpages -= cpa->numpages;
786 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
787 cpa->curpage++;
788 else
789 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
792 return 0;
795 static inline int cache_attr(pgprot_t attr)
797 return pgprot_val(attr) &
798 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
801 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
802 pgprot_t mask_set, pgprot_t mask_clr,
803 int force_split, int in_flag,
804 struct page **pages)
806 struct cpa_data cpa;
807 int ret, cache, checkalias;
808 unsigned long baddr = 0;
811 * Check, if we are requested to change a not supported
812 * feature:
814 mask_set = canon_pgprot(mask_set);
815 mask_clr = canon_pgprot(mask_clr);
816 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
817 return 0;
819 /* Ensure we are PAGE_SIZE aligned */
820 if (in_flag & CPA_ARRAY) {
821 int i;
822 for (i = 0; i < numpages; i++) {
823 if (addr[i] & ~PAGE_MASK) {
824 addr[i] &= PAGE_MASK;
825 WARN_ON_ONCE(1);
828 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
830 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
831 * No need to cehck in that case
833 if (*addr & ~PAGE_MASK) {
834 *addr &= PAGE_MASK;
836 * People should not be passing in unaligned addresses:
838 WARN_ON_ONCE(1);
841 * Save address for cache flush. *addr is modified in the call
842 * to __change_page_attr_set_clr() below.
844 baddr = *addr;
847 /* Must avoid aliasing mappings in the highmem code */
848 kmap_flush_unused();
850 vm_unmap_aliases();
852 cpa.vaddr = addr;
853 cpa.pages = pages;
854 cpa.numpages = numpages;
855 cpa.mask_set = mask_set;
856 cpa.mask_clr = mask_clr;
857 cpa.flags = 0;
858 cpa.curpage = 0;
859 cpa.force_split = force_split;
861 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
862 cpa.flags |= in_flag;
864 /* No alias checking for _NX bit modifications */
865 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
867 ret = __change_page_attr_set_clr(&cpa, checkalias);
870 * Check whether we really changed something:
872 if (!(cpa.flags & CPA_FLUSHTLB))
873 goto out;
876 * No need to flush, when we did not set any of the caching
877 * attributes:
879 cache = cache_attr(mask_set);
882 * On success we use clflush, when the CPU supports it to
883 * avoid the wbindv. If the CPU does not support it and in the
884 * error case we fall back to cpa_flush_all (which uses
885 * wbindv):
887 if (!ret && cpu_has_clflush) {
888 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
889 cpa_flush_array(addr, numpages, cache,
890 cpa.flags, pages);
891 } else
892 cpa_flush_range(baddr, numpages, cache);
893 } else
894 cpa_flush_all(cache);
896 out:
897 return ret;
900 static inline int change_page_attr_set(unsigned long *addr, int numpages,
901 pgprot_t mask, int array)
903 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
904 (array ? CPA_ARRAY : 0), NULL);
907 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
908 pgprot_t mask, int array)
910 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
911 (array ? CPA_ARRAY : 0), NULL);
914 static inline int cpa_set_pages_array(struct page **pages, int numpages,
915 pgprot_t mask)
917 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
918 CPA_PAGES_ARRAY, pages);
921 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
922 pgprot_t mask)
924 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
925 CPA_PAGES_ARRAY, pages);
928 int _set_memory_uc(unsigned long addr, int numpages)
931 * for now UC MINUS. see comments in ioremap_nocache()
933 return change_page_attr_set(&addr, numpages,
934 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
937 int set_memory_uc(unsigned long addr, int numpages)
939 int ret;
942 * for now UC MINUS. see comments in ioremap_nocache()
944 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
945 _PAGE_CACHE_UC_MINUS, NULL);
946 if (ret)
947 goto out_err;
949 ret = _set_memory_uc(addr, numpages);
950 if (ret)
951 goto out_free;
953 return 0;
955 out_free:
956 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
957 out_err:
958 return ret;
960 EXPORT_SYMBOL(set_memory_uc);
962 int set_memory_array_uc(unsigned long *addr, int addrinarray)
964 int i, j;
965 int ret;
968 * for now UC MINUS. see comments in ioremap_nocache()
970 for (i = 0; i < addrinarray; i++) {
971 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
972 _PAGE_CACHE_UC_MINUS, NULL);
973 if (ret)
974 goto out_free;
977 ret = change_page_attr_set(addr, addrinarray,
978 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
979 if (ret)
980 goto out_free;
982 return 0;
984 out_free:
985 for (j = 0; j < i; j++)
986 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
988 return ret;
990 EXPORT_SYMBOL(set_memory_array_uc);
992 int _set_memory_wc(unsigned long addr, int numpages)
994 int ret;
995 unsigned long addr_copy = addr;
997 ret = change_page_attr_set(&addr, numpages,
998 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
999 if (!ret) {
1000 ret = change_page_attr_set_clr(&addr_copy, numpages,
1001 __pgprot(_PAGE_CACHE_WC),
1002 __pgprot(_PAGE_CACHE_MASK),
1003 0, 0, NULL);
1005 return ret;
1008 int set_memory_wc(unsigned long addr, int numpages)
1010 int ret;
1012 if (!pat_enabled)
1013 return set_memory_uc(addr, numpages);
1015 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1016 _PAGE_CACHE_WC, NULL);
1017 if (ret)
1018 goto out_err;
1020 ret = _set_memory_wc(addr, numpages);
1021 if (ret)
1022 goto out_free;
1024 return 0;
1026 out_free:
1027 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1028 out_err:
1029 return ret;
1031 EXPORT_SYMBOL(set_memory_wc);
1033 int _set_memory_wb(unsigned long addr, int numpages)
1035 return change_page_attr_clear(&addr, numpages,
1036 __pgprot(_PAGE_CACHE_MASK), 0);
1039 int set_memory_wb(unsigned long addr, int numpages)
1041 int ret;
1043 ret = _set_memory_wb(addr, numpages);
1044 if (ret)
1045 return ret;
1047 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1048 return 0;
1050 EXPORT_SYMBOL(set_memory_wb);
1052 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1054 int i;
1055 int ret;
1057 ret = change_page_attr_clear(addr, addrinarray,
1058 __pgprot(_PAGE_CACHE_MASK), 1);
1059 if (ret)
1060 return ret;
1062 for (i = 0; i < addrinarray; i++)
1063 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1065 return 0;
1067 EXPORT_SYMBOL(set_memory_array_wb);
1069 int set_memory_x(unsigned long addr, int numpages)
1071 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1073 EXPORT_SYMBOL(set_memory_x);
1075 int set_memory_nx(unsigned long addr, int numpages)
1077 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1079 EXPORT_SYMBOL(set_memory_nx);
1081 int set_memory_ro(unsigned long addr, int numpages)
1083 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1085 EXPORT_SYMBOL_GPL(set_memory_ro);
1087 int set_memory_rw(unsigned long addr, int numpages)
1089 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1091 EXPORT_SYMBOL_GPL(set_memory_rw);
1093 int set_memory_np(unsigned long addr, int numpages)
1095 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1098 int set_memory_4k(unsigned long addr, int numpages)
1100 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1101 __pgprot(0), 1, 0, NULL);
1104 int set_pages_uc(struct page *page, int numpages)
1106 unsigned long addr = (unsigned long)page_address(page);
1108 return set_memory_uc(addr, numpages);
1110 EXPORT_SYMBOL(set_pages_uc);
1112 int set_pages_array_uc(struct page **pages, int addrinarray)
1114 unsigned long start;
1115 unsigned long end;
1116 int i;
1117 int free_idx;
1119 for (i = 0; i < addrinarray; i++) {
1120 if (PageHighMem(pages[i]))
1121 continue;
1122 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1123 end = start + PAGE_SIZE;
1124 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1125 goto err_out;
1128 if (cpa_set_pages_array(pages, addrinarray,
1129 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1130 return 0; /* Success */
1132 err_out:
1133 free_idx = i;
1134 for (i = 0; i < free_idx; i++) {
1135 if (PageHighMem(pages[i]))
1136 continue;
1137 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1138 end = start + PAGE_SIZE;
1139 free_memtype(start, end);
1141 return -EINVAL;
1143 EXPORT_SYMBOL(set_pages_array_uc);
1145 int set_pages_wb(struct page *page, int numpages)
1147 unsigned long addr = (unsigned long)page_address(page);
1149 return set_memory_wb(addr, numpages);
1151 EXPORT_SYMBOL(set_pages_wb);
1153 int set_pages_array_wb(struct page **pages, int addrinarray)
1155 int retval;
1156 unsigned long start;
1157 unsigned long end;
1158 int i;
1160 retval = cpa_clear_pages_array(pages, addrinarray,
1161 __pgprot(_PAGE_CACHE_MASK));
1162 if (retval)
1163 return retval;
1165 for (i = 0; i < addrinarray; i++) {
1166 if (PageHighMem(pages[i]))
1167 continue;
1168 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1169 end = start + PAGE_SIZE;
1170 free_memtype(start, end);
1173 return 0;
1175 EXPORT_SYMBOL(set_pages_array_wb);
1177 int set_pages_x(struct page *page, int numpages)
1179 unsigned long addr = (unsigned long)page_address(page);
1181 return set_memory_x(addr, numpages);
1183 EXPORT_SYMBOL(set_pages_x);
1185 int set_pages_nx(struct page *page, int numpages)
1187 unsigned long addr = (unsigned long)page_address(page);
1189 return set_memory_nx(addr, numpages);
1191 EXPORT_SYMBOL(set_pages_nx);
1193 int set_pages_ro(struct page *page, int numpages)
1195 unsigned long addr = (unsigned long)page_address(page);
1197 return set_memory_ro(addr, numpages);
1200 int set_pages_rw(struct page *page, int numpages)
1202 unsigned long addr = (unsigned long)page_address(page);
1204 return set_memory_rw(addr, numpages);
1207 #ifdef CONFIG_DEBUG_PAGEALLOC
1209 static int __set_pages_p(struct page *page, int numpages)
1211 unsigned long tempaddr = (unsigned long) page_address(page);
1212 struct cpa_data cpa = { .vaddr = &tempaddr,
1213 .numpages = numpages,
1214 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1215 .mask_clr = __pgprot(0),
1216 .flags = 0};
1219 * No alias checking needed for setting present flag. otherwise,
1220 * we may need to break large pages for 64-bit kernel text
1221 * mappings (this adds to complexity if we want to do this from
1222 * atomic context especially). Let's keep it simple!
1224 return __change_page_attr_set_clr(&cpa, 0);
1227 static int __set_pages_np(struct page *page, int numpages)
1229 unsigned long tempaddr = (unsigned long) page_address(page);
1230 struct cpa_data cpa = { .vaddr = &tempaddr,
1231 .numpages = numpages,
1232 .mask_set = __pgprot(0),
1233 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1234 .flags = 0};
1237 * No alias checking needed for setting not present flag. otherwise,
1238 * we may need to break large pages for 64-bit kernel text
1239 * mappings (this adds to complexity if we want to do this from
1240 * atomic context especially). Let's keep it simple!
1242 return __change_page_attr_set_clr(&cpa, 0);
1245 void kernel_map_pages(struct page *page, int numpages, int enable)
1247 if (PageHighMem(page))
1248 return;
1249 if (!enable) {
1250 debug_check_no_locks_freed(page_address(page),
1251 numpages * PAGE_SIZE);
1255 * If page allocator is not up yet then do not call c_p_a():
1257 if (!debug_pagealloc_enabled)
1258 return;
1261 * The return value is ignored as the calls cannot fail.
1262 * Large pages for identity mappings are not used at boot time
1263 * and hence no memory allocations during large page split.
1265 if (enable)
1266 __set_pages_p(page, numpages);
1267 else
1268 __set_pages_np(page, numpages);
1271 * We should perform an IPI and flush all tlbs,
1272 * but that can deadlock->flush only current cpu:
1274 __flush_tlb_all();
1277 #ifdef CONFIG_HIBERNATION
1279 bool kernel_page_present(struct page *page)
1281 unsigned int level;
1282 pte_t *pte;
1284 if (PageHighMem(page))
1285 return false;
1287 pte = lookup_address((unsigned long)page_address(page), &level);
1288 return (pte_val(*pte) & _PAGE_PRESENT);
1291 #endif /* CONFIG_HIBERNATION */
1293 #endif /* CONFIG_DEBUG_PAGEALLOC */
1296 * The testcases use internal knowledge of the implementation that shouldn't
1297 * be exposed to the rest of the kernel. Include these directly here.
1299 #ifdef CONFIG_CPA_DEBUG
1300 #include "pageattr-test.c"
1301 #endif