2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
28 * The current flushing context - we pass it instead of 5 arguments:
37 unsigned force_split
: 1;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock
);
50 #define CPA_FLUSHTLB 1
52 #define CPA_PAGES_ARRAY 4
55 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
57 void update_page_count(int level
, unsigned long pages
)
61 /* Protect against CPA */
62 spin_lock_irqsave(&pgd_lock
, flags
);
63 direct_pages_count
[level
] += pages
;
64 spin_unlock_irqrestore(&pgd_lock
, flags
);
67 static void split_page_count(int level
)
69 direct_pages_count
[level
]--;
70 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
73 void arch_report_meminfo(struct seq_file
*m
)
75 seq_printf(m
, "DirectMap4k: %8lu kB\n",
76 direct_pages_count
[PG_LEVEL_4K
] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m
, "DirectMap2M: %8lu kB\n",
79 direct_pages_count
[PG_LEVEL_2M
] << 11);
81 seq_printf(m
, "DirectMap4M: %8lu kB\n",
82 direct_pages_count
[PG_LEVEL_2M
] << 12);
86 seq_printf(m
, "DirectMap1G: %8lu kB\n",
87 direct_pages_count
[PG_LEVEL_1G
] << 20);
91 static inline void split_page_count(int level
) { }
96 static inline unsigned long highmap_start_pfn(void)
98 return __pa(_text
) >> PAGE_SHIFT
;
101 static inline unsigned long highmap_end_pfn(void)
103 return __pa(roundup(_brk_end
, PMD_SIZE
)) >> PAGE_SHIFT
;
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
111 # define debug_pagealloc 0
115 within(unsigned long addr
, unsigned long start
, unsigned long end
)
117 return addr
>= start
&& addr
< end
;
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr: virtual start address
127 * @size: number of bytes to flush
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
132 void clflush_cache_range(void *vaddr
, unsigned int size
)
134 void *vend
= vaddr
+ size
- 1;
138 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
141 * Flush any possible final partial cacheline:
148 static void __cpa_flush_all(void *arg
)
150 unsigned long cache
= (unsigned long)arg
;
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
158 if (cache
&& boot_cpu_data
.x86
>= 4)
162 static void cpa_flush_all(unsigned long cache
)
164 BUG_ON(irqs_disabled());
166 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
169 static void __cpa_flush_range(void *arg
)
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
179 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
181 unsigned int i
, level
;
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start
) != start
);
187 on_each_cpu(__cpa_flush_range
, NULL
, 1);
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
198 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
199 pte_t
*pte
= lookup_address(addr
, &level
);
202 * Only flush present addresses:
204 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
205 clflush_cache_range((void *) addr
, PAGE_SIZE
);
209 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
210 int in_flags
, struct page
**pages
)
212 unsigned int i
, level
;
213 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
215 BUG_ON(irqs_disabled());
217 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
219 if (!cache
|| do_wbinvd
)
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
228 for (i
= 0; i
< numpages
; i
++) {
232 if (in_flags
& CPA_PAGES_ARRAY
)
233 addr
= (unsigned long)page_address(pages
[i
]);
237 pte
= lookup_address(addr
, &level
);
240 * Only flush present addresses:
242 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
243 clflush_cache_range((void *)addr
, PAGE_SIZE
);
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
253 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
256 pgprot_t forbidden
= __pgprot(0);
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262 if (within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
263 pgprot_val(forbidden
) |= _PAGE_NX
;
266 * The kernel text needs to be executable for obvious reasons
267 * Does not cover __inittext since that is gone later on. On
268 * 64bit we do not enforce !NX on the low mapping
270 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
271 pgprot_val(forbidden
) |= _PAGE_NX
;
274 * The .rodata section needs to be read-only. Using the pfn
275 * catches all aliases.
277 if (within(pfn
, __pa((unsigned long)__start_rodata
) >> PAGE_SHIFT
,
278 __pa((unsigned long)__end_rodata
) >> PAGE_SHIFT
))
279 pgprot_val(forbidden
) |= _PAGE_RW
;
281 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
287 * Lookup the page table entry for a virtual address. Return a pointer
288 * to the entry and the level of the mapping.
290 * Note: We return pud and pmd either when the entry is marked large
291 * or when the present bit is not set. Otherwise we would return a
292 * pointer to a nonexisting mapping.
294 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
296 pgd_t
*pgd
= pgd_offset_k(address
);
300 *level
= PG_LEVEL_NONE
;
305 pud
= pud_offset(pgd
, address
);
309 *level
= PG_LEVEL_1G
;
310 if (pud_large(*pud
) || !pud_present(*pud
))
313 pmd
= pmd_offset(pud
, address
);
317 *level
= PG_LEVEL_2M
;
318 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
321 *level
= PG_LEVEL_4K
;
323 return pte_offset_kernel(pmd
, address
);
325 EXPORT_SYMBOL_GPL(lookup_address
);
328 * Set the new pmd in all the pgds we know about:
330 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
333 set_pte_atomic(kpte
, pte
);
335 if (!SHARED_KERNEL_PMD
) {
338 list_for_each_entry(page
, &pgd_list
, lru
) {
343 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
344 pud
= pud_offset(pgd
, address
);
345 pmd
= pmd_offset(pud
, address
);
346 set_pte_atomic((pte_t
*)pmd
, pte
);
353 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
354 struct cpa_data
*cpa
)
356 unsigned long nextpage_addr
, numpages
, pmask
, psize
, flags
, addr
, pfn
;
357 pte_t new_pte
, old_pte
, *tmp
;
358 pgprot_t old_prot
, new_prot
;
362 if (cpa
->force_split
)
365 spin_lock_irqsave(&pgd_lock
, flags
);
367 * Check for races, another CPU might have split this page
370 tmp
= lookup_address(address
, &level
);
376 psize
= PMD_PAGE_SIZE
;
377 pmask
= PMD_PAGE_MASK
;
381 psize
= PUD_PAGE_SIZE
;
382 pmask
= PUD_PAGE_MASK
;
391 * Calculate the number of pages, which fit into this large
392 * page starting at address:
394 nextpage_addr
= (address
+ psize
) & pmask
;
395 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
396 if (numpages
< cpa
->numpages
)
397 cpa
->numpages
= numpages
;
400 * We are safe now. Check whether the new pgprot is the same:
403 old_prot
= new_prot
= pte_pgprot(old_pte
);
405 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
406 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
409 * old_pte points to the large page base address. So we need
410 * to add the offset of the virtual address:
412 pfn
= pte_pfn(old_pte
) + ((address
& (psize
- 1)) >> PAGE_SHIFT
);
415 new_prot
= static_protections(new_prot
, address
, pfn
);
418 * We need to check the full range, whether
419 * static_protection() requires a different pgprot for one of
420 * the pages in the range we try to preserve:
422 addr
= address
+ PAGE_SIZE
;
424 for (i
= 1; i
< cpa
->numpages
; i
++, addr
+= PAGE_SIZE
, pfn
++) {
425 pgprot_t chk_prot
= static_protections(new_prot
, addr
, pfn
);
427 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
432 * If there are no changes, return. maxpages has been updated
435 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
441 * We need to change the attributes. Check, whether we can
442 * change the large page in one go. We request a split, when
443 * the address is not aligned and the number of pages is
444 * smaller than the number of pages in the large page. Note
445 * that we limited the number of possible pages already to
446 * the number of pages in the large page.
448 if (address
== (nextpage_addr
- psize
) && cpa
->numpages
== numpages
) {
450 * The address is aligned and the number of pages
451 * covers the full page.
453 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
454 __set_pmd_pte(kpte
, address
, new_pte
);
455 cpa
->flags
|= CPA_FLUSHTLB
;
460 spin_unlock_irqrestore(&pgd_lock
, flags
);
465 static int split_large_page(pte_t
*kpte
, unsigned long address
)
467 unsigned long flags
, pfn
, pfninc
= 1;
468 unsigned int i
, level
;
473 if (!debug_pagealloc
)
474 spin_unlock(&cpa_lock
);
475 base
= alloc_pages(GFP_KERNEL
| __GFP_NOTRACK
, 0);
476 if (!debug_pagealloc
)
477 spin_lock(&cpa_lock
);
481 spin_lock_irqsave(&pgd_lock
, flags
);
483 * Check for races, another CPU might have split this page
486 tmp
= lookup_address(address
, &level
);
490 pbase
= (pte_t
*)page_address(base
);
491 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
492 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
494 * If we ever want to utilize the PAT bit, we need to
495 * update this function to make sure it's converted from
496 * bit 12 to bit 7 when we cross from the 2MB level to
499 WARN_ON_ONCE(pgprot_val(ref_prot
) & _PAGE_PAT_LARGE
);
502 if (level
== PG_LEVEL_1G
) {
503 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
504 pgprot_val(ref_prot
) |= _PAGE_PSE
;
509 * Get the target pfn from the original entry:
511 pfn
= pte_pfn(*kpte
);
512 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
513 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
515 if (address
>= (unsigned long)__va(0) &&
516 address
< (unsigned long)__va(max_low_pfn_mapped
<< PAGE_SHIFT
))
517 split_page_count(level
);
520 if (address
>= (unsigned long)__va(1UL<<32) &&
521 address
< (unsigned long)__va(max_pfn_mapped
<< PAGE_SHIFT
))
522 split_page_count(level
);
526 * Install the new, split up pagetable.
528 * We use the standard kernel pagetable protections for the new
529 * pagetable protections, the actual ptes set above control the
530 * primary protection behavior:
532 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
535 * Intel Atom errata AAH41 workaround.
537 * The real fix should be in hw or in a microcode update, but
538 * we also probabilistically try to reduce the window of having
539 * a large TLB mixed with 4K TLBs while instruction fetches are
548 * If we dropped out via the lookup_address check under
549 * pgd_lock then stick the page back into the pool:
553 spin_unlock_irqrestore(&pgd_lock
, flags
);
558 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
562 * Ignore all non primary paths.
568 * Ignore the NULL PTE for kernel identity mapping, as it is expected
570 * Also set numpages to '1' indicating that we processed cpa req for
571 * one virtual address page and its pfn. TBD: numpages can be set based
572 * on the initial value and the level returned by lookup_address().
574 if (within(vaddr
, PAGE_OFFSET
,
575 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
577 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
580 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
581 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
588 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
590 unsigned long address
;
593 pte_t
*kpte
, old_pte
;
595 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
596 struct page
*page
= cpa
->pages
[cpa
->curpage
];
597 if (unlikely(PageHighMem(page
)))
599 address
= (unsigned long)page_address(page
);
600 } else if (cpa
->flags
& CPA_ARRAY
)
601 address
= cpa
->vaddr
[cpa
->curpage
];
603 address
= *cpa
->vaddr
;
605 kpte
= lookup_address(address
, &level
);
607 return __cpa_process_fault(cpa
, address
, primary
);
610 if (!pte_val(old_pte
))
611 return __cpa_process_fault(cpa
, address
, primary
);
613 if (level
== PG_LEVEL_4K
) {
615 pgprot_t new_prot
= pte_pgprot(old_pte
);
616 unsigned long pfn
= pte_pfn(old_pte
);
618 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
619 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
621 new_prot
= static_protections(new_prot
, address
, pfn
);
624 * We need to keep the pfn from the existing PTE,
625 * after all we're only going to change it's attributes
626 * not the memory it points to
628 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
631 * Do we really change anything ?
633 if (pte_val(old_pte
) != pte_val(new_pte
)) {
634 set_pte_atomic(kpte
, new_pte
);
635 cpa
->flags
|= CPA_FLUSHTLB
;
642 * Check, whether we can keep the large page intact
643 * and just change the pte:
645 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
647 * When the range fits into the existing large page,
648 * return. cp->numpages and cpa->tlbflush have been updated in
655 * We have to split the large page:
657 err
= split_large_page(kpte
, address
);
660 * Do a global flush tlb after splitting the large page
661 * and before we do the actual change page attribute in the PTE.
663 * With out this, we violate the TLB application note, that says
664 * "The TLBs may contain both ordinary and large-page
665 * translations for a 4-KByte range of linear addresses. This
666 * may occur if software modifies the paging structures so that
667 * the page size used for the address range changes. If the two
668 * translations differ with respect to page frame or attributes
669 * (e.g., permissions), processor behavior is undefined and may
670 * be implementation-specific."
672 * We do this global tlb flush inside the cpa_lock, so that we
673 * don't allow any other cpu, with stale tlb entries change the
674 * page attribute in parallel, that also falls into the
675 * just split large page entry.
684 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
686 static int cpa_process_alias(struct cpa_data
*cpa
)
688 struct cpa_data alias_cpa
;
689 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
693 if (cpa
->pfn
>= max_pfn_mapped
)
697 if (cpa
->pfn
>= max_low_pfn_mapped
&& cpa
->pfn
< (1UL<<(32-PAGE_SHIFT
)))
701 * No need to redo, when the primary call touched the direct
704 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
705 struct page
*page
= cpa
->pages
[cpa
->curpage
];
706 if (unlikely(PageHighMem(page
)))
708 vaddr
= (unsigned long)page_address(page
);
709 } else if (cpa
->flags
& CPA_ARRAY
)
710 vaddr
= cpa
->vaddr
[cpa
->curpage
];
714 if (!(within(vaddr
, PAGE_OFFSET
,
715 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
718 alias_cpa
.vaddr
= &laddr
;
719 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
721 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
728 * If the primary call didn't touch the high mapping already
729 * and the physical address is inside the kernel map, we need
730 * to touch the high mapped kernel as well:
732 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
733 within(cpa
->pfn
, highmap_start_pfn(), highmap_end_pfn())) {
734 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
735 __START_KERNEL_map
- phys_base
;
737 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
738 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
741 * The high mapping range is imprecise, so ignore the
744 __change_page_attr_set_clr(&alias_cpa
, 0);
751 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
753 int ret
, numpages
= cpa
->numpages
;
757 * Store the remaining nr of pages for the large page
758 * preservation check.
760 cpa
->numpages
= numpages
;
761 /* for array changes, we can't use large page */
762 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
765 if (!debug_pagealloc
)
766 spin_lock(&cpa_lock
);
767 ret
= __change_page_attr(cpa
, checkalias
);
768 if (!debug_pagealloc
)
769 spin_unlock(&cpa_lock
);
774 ret
= cpa_process_alias(cpa
);
780 * Adjust the number of pages with the result of the
781 * CPA operation. Either a large page has been
782 * preserved or a single page update happened.
784 BUG_ON(cpa
->numpages
> numpages
);
785 numpages
-= cpa
->numpages
;
786 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
789 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
795 static inline int cache_attr(pgprot_t attr
)
797 return pgprot_val(attr
) &
798 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
801 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
802 pgprot_t mask_set
, pgprot_t mask_clr
,
803 int force_split
, int in_flag
,
807 int ret
, cache
, checkalias
;
808 unsigned long baddr
= 0;
811 * Check, if we are requested to change a not supported
814 mask_set
= canon_pgprot(mask_set
);
815 mask_clr
= canon_pgprot(mask_clr
);
816 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
819 /* Ensure we are PAGE_SIZE aligned */
820 if (in_flag
& CPA_ARRAY
) {
822 for (i
= 0; i
< numpages
; i
++) {
823 if (addr
[i
] & ~PAGE_MASK
) {
824 addr
[i
] &= PAGE_MASK
;
828 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
830 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
831 * No need to cehck in that case
833 if (*addr
& ~PAGE_MASK
) {
836 * People should not be passing in unaligned addresses:
841 * Save address for cache flush. *addr is modified in the call
842 * to __change_page_attr_set_clr() below.
847 /* Must avoid aliasing mappings in the highmem code */
854 cpa
.numpages
= numpages
;
855 cpa
.mask_set
= mask_set
;
856 cpa
.mask_clr
= mask_clr
;
859 cpa
.force_split
= force_split
;
861 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
862 cpa
.flags
|= in_flag
;
864 /* No alias checking for _NX bit modifications */
865 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
867 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
870 * Check whether we really changed something:
872 if (!(cpa
.flags
& CPA_FLUSHTLB
))
876 * No need to flush, when we did not set any of the caching
879 cache
= cache_attr(mask_set
);
882 * On success we use clflush, when the CPU supports it to
883 * avoid the wbindv. If the CPU does not support it and in the
884 * error case we fall back to cpa_flush_all (which uses
887 if (!ret
&& cpu_has_clflush
) {
888 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
889 cpa_flush_array(addr
, numpages
, cache
,
892 cpa_flush_range(baddr
, numpages
, cache
);
894 cpa_flush_all(cache
);
900 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
901 pgprot_t mask
, int array
)
903 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
904 (array
? CPA_ARRAY
: 0), NULL
);
907 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
908 pgprot_t mask
, int array
)
910 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
911 (array
? CPA_ARRAY
: 0), NULL
);
914 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
917 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
918 CPA_PAGES_ARRAY
, pages
);
921 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
924 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
925 CPA_PAGES_ARRAY
, pages
);
928 int _set_memory_uc(unsigned long addr
, int numpages
)
931 * for now UC MINUS. see comments in ioremap_nocache()
933 return change_page_attr_set(&addr
, numpages
,
934 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
937 int set_memory_uc(unsigned long addr
, int numpages
)
942 * for now UC MINUS. see comments in ioremap_nocache()
944 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
945 _PAGE_CACHE_UC_MINUS
, NULL
);
949 ret
= _set_memory_uc(addr
, numpages
);
956 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
960 EXPORT_SYMBOL(set_memory_uc
);
962 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
968 * for now UC MINUS. see comments in ioremap_nocache()
970 for (i
= 0; i
< addrinarray
; i
++) {
971 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
972 _PAGE_CACHE_UC_MINUS
, NULL
);
977 ret
= change_page_attr_set(addr
, addrinarray
,
978 __pgprot(_PAGE_CACHE_UC_MINUS
), 1);
985 for (j
= 0; j
< i
; j
++)
986 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
990 EXPORT_SYMBOL(set_memory_array_uc
);
992 int _set_memory_wc(unsigned long addr
, int numpages
)
995 unsigned long addr_copy
= addr
;
997 ret
= change_page_attr_set(&addr
, numpages
,
998 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
1000 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1001 __pgprot(_PAGE_CACHE_WC
),
1002 __pgprot(_PAGE_CACHE_MASK
),
1008 int set_memory_wc(unsigned long addr
, int numpages
)
1013 return set_memory_uc(addr
, numpages
);
1015 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1016 _PAGE_CACHE_WC
, NULL
);
1020 ret
= _set_memory_wc(addr
, numpages
);
1027 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1031 EXPORT_SYMBOL(set_memory_wc
);
1033 int _set_memory_wb(unsigned long addr
, int numpages
)
1035 return change_page_attr_clear(&addr
, numpages
,
1036 __pgprot(_PAGE_CACHE_MASK
), 0);
1039 int set_memory_wb(unsigned long addr
, int numpages
)
1043 ret
= _set_memory_wb(addr
, numpages
);
1047 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1050 EXPORT_SYMBOL(set_memory_wb
);
1052 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1057 ret
= change_page_attr_clear(addr
, addrinarray
,
1058 __pgprot(_PAGE_CACHE_MASK
), 1);
1062 for (i
= 0; i
< addrinarray
; i
++)
1063 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1067 EXPORT_SYMBOL(set_memory_array_wb
);
1069 int set_memory_x(unsigned long addr
, int numpages
)
1071 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1073 EXPORT_SYMBOL(set_memory_x
);
1075 int set_memory_nx(unsigned long addr
, int numpages
)
1077 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1079 EXPORT_SYMBOL(set_memory_nx
);
1081 int set_memory_ro(unsigned long addr
, int numpages
)
1083 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1085 EXPORT_SYMBOL_GPL(set_memory_ro
);
1087 int set_memory_rw(unsigned long addr
, int numpages
)
1089 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1091 EXPORT_SYMBOL_GPL(set_memory_rw
);
1093 int set_memory_np(unsigned long addr
, int numpages
)
1095 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1098 int set_memory_4k(unsigned long addr
, int numpages
)
1100 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1101 __pgprot(0), 1, 0, NULL
);
1104 int set_pages_uc(struct page
*page
, int numpages
)
1106 unsigned long addr
= (unsigned long)page_address(page
);
1108 return set_memory_uc(addr
, numpages
);
1110 EXPORT_SYMBOL(set_pages_uc
);
1112 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1114 unsigned long start
;
1119 for (i
= 0; i
< addrinarray
; i
++) {
1120 if (PageHighMem(pages
[i
]))
1122 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1123 end
= start
+ PAGE_SIZE
;
1124 if (reserve_memtype(start
, end
, _PAGE_CACHE_UC_MINUS
, NULL
))
1128 if (cpa_set_pages_array(pages
, addrinarray
,
1129 __pgprot(_PAGE_CACHE_UC_MINUS
)) == 0) {
1130 return 0; /* Success */
1134 for (i
= 0; i
< free_idx
; i
++) {
1135 if (PageHighMem(pages
[i
]))
1137 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1138 end
= start
+ PAGE_SIZE
;
1139 free_memtype(start
, end
);
1143 EXPORT_SYMBOL(set_pages_array_uc
);
1145 int set_pages_wb(struct page
*page
, int numpages
)
1147 unsigned long addr
= (unsigned long)page_address(page
);
1149 return set_memory_wb(addr
, numpages
);
1151 EXPORT_SYMBOL(set_pages_wb
);
1153 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1156 unsigned long start
;
1160 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1161 __pgprot(_PAGE_CACHE_MASK
));
1165 for (i
= 0; i
< addrinarray
; i
++) {
1166 if (PageHighMem(pages
[i
]))
1168 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1169 end
= start
+ PAGE_SIZE
;
1170 free_memtype(start
, end
);
1175 EXPORT_SYMBOL(set_pages_array_wb
);
1177 int set_pages_x(struct page
*page
, int numpages
)
1179 unsigned long addr
= (unsigned long)page_address(page
);
1181 return set_memory_x(addr
, numpages
);
1183 EXPORT_SYMBOL(set_pages_x
);
1185 int set_pages_nx(struct page
*page
, int numpages
)
1187 unsigned long addr
= (unsigned long)page_address(page
);
1189 return set_memory_nx(addr
, numpages
);
1191 EXPORT_SYMBOL(set_pages_nx
);
1193 int set_pages_ro(struct page
*page
, int numpages
)
1195 unsigned long addr
= (unsigned long)page_address(page
);
1197 return set_memory_ro(addr
, numpages
);
1200 int set_pages_rw(struct page
*page
, int numpages
)
1202 unsigned long addr
= (unsigned long)page_address(page
);
1204 return set_memory_rw(addr
, numpages
);
1207 #ifdef CONFIG_DEBUG_PAGEALLOC
1209 static int __set_pages_p(struct page
*page
, int numpages
)
1211 unsigned long tempaddr
= (unsigned long) page_address(page
);
1212 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1213 .numpages
= numpages
,
1214 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1215 .mask_clr
= __pgprot(0),
1219 * No alias checking needed for setting present flag. otherwise,
1220 * we may need to break large pages for 64-bit kernel text
1221 * mappings (this adds to complexity if we want to do this from
1222 * atomic context especially). Let's keep it simple!
1224 return __change_page_attr_set_clr(&cpa
, 0);
1227 static int __set_pages_np(struct page
*page
, int numpages
)
1229 unsigned long tempaddr
= (unsigned long) page_address(page
);
1230 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1231 .numpages
= numpages
,
1232 .mask_set
= __pgprot(0),
1233 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1237 * No alias checking needed for setting not present flag. otherwise,
1238 * we may need to break large pages for 64-bit kernel text
1239 * mappings (this adds to complexity if we want to do this from
1240 * atomic context especially). Let's keep it simple!
1242 return __change_page_attr_set_clr(&cpa
, 0);
1245 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1247 if (PageHighMem(page
))
1250 debug_check_no_locks_freed(page_address(page
),
1251 numpages
* PAGE_SIZE
);
1255 * If page allocator is not up yet then do not call c_p_a():
1257 if (!debug_pagealloc_enabled
)
1261 * The return value is ignored as the calls cannot fail.
1262 * Large pages for identity mappings are not used at boot time
1263 * and hence no memory allocations during large page split.
1266 __set_pages_p(page
, numpages
);
1268 __set_pages_np(page
, numpages
);
1271 * We should perform an IPI and flush all tlbs,
1272 * but that can deadlock->flush only current cpu:
1277 #ifdef CONFIG_HIBERNATION
1279 bool kernel_page_present(struct page
*page
)
1284 if (PageHighMem(page
))
1287 pte
= lookup_address((unsigned long)page_address(page
), &level
);
1288 return (pte_val(*pte
) & _PAGE_PRESENT
);
1291 #endif /* CONFIG_HIBERNATION */
1293 #endif /* CONFIG_DEBUG_PAGEALLOC */
1296 * The testcases use internal knowledge of the implementation that shouldn't
1297 * be exposed to the rest of the kernel. Include these directly here.
1299 #ifdef CONFIG_CPA_DEBUG
1300 #include "pageattr-test.c"