ALSA: hda - Fix error path in the sanity check in azx_pcm_open()
[linux/fpc-iii.git] / drivers / hwmon / adm1031.c
blob789441830cd8fb8a5bc3c19ffbcd639ef2935a47
1 /*
2 adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Based on lm75.c and lm85.c
5 Supports adm1030 / adm1031
6 Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 Reworked by Jean Delvare <khali@linux-fr.org>
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
37 #define ADM1031_REG_PWM (0x22)
38 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
40 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
41 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
42 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
44 #define ADM1031_REG_TEMP(nr) (0x0a + (nr))
45 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
47 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
49 #define ADM1031_REG_CONF1 0x00
50 #define ADM1031_REG_CONF2 0x01
51 #define ADM1031_REG_EXT_TEMP 0x06
53 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
54 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
55 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
57 #define ADM1031_CONF2_PWM1_ENABLE 0x01
58 #define ADM1031_CONF2_PWM2_ENABLE 0x02
59 #define ADM1031_CONF2_TACH1_ENABLE 0x04
60 #define ADM1031_CONF2_TACH2_ENABLE 0x08
61 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
63 /* Addresses to scan */
64 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
66 /* Insmod parameters */
67 I2C_CLIENT_INSMOD_2(adm1030, adm1031);
69 typedef u8 auto_chan_table_t[8][2];
71 /* Each client has this additional data */
72 struct adm1031_data {
73 struct device *hwmon_dev;
74 struct mutex update_lock;
75 int chip_type;
76 char valid; /* !=0 if following fields are valid */
77 unsigned long last_updated; /* In jiffies */
78 /* The chan_select_table contains the possible configurations for
79 * auto fan control.
81 const auto_chan_table_t *chan_select_table;
82 u16 alarm;
83 u8 conf1;
84 u8 conf2;
85 u8 fan[2];
86 u8 fan_div[2];
87 u8 fan_min[2];
88 u8 pwm[2];
89 u8 old_pwm[2];
90 s8 temp[3];
91 u8 ext_temp[3];
92 u8 auto_temp[3];
93 u8 auto_temp_min[3];
94 u8 auto_temp_off[3];
95 u8 auto_temp_max[3];
96 s8 temp_min[3];
97 s8 temp_max[3];
98 s8 temp_crit[3];
101 static int adm1031_probe(struct i2c_client *client,
102 const struct i2c_device_id *id);
103 static int adm1031_detect(struct i2c_client *client, int kind,
104 struct i2c_board_info *info);
105 static void adm1031_init_client(struct i2c_client *client);
106 static int adm1031_remove(struct i2c_client *client);
107 static struct adm1031_data *adm1031_update_device(struct device *dev);
109 static const struct i2c_device_id adm1031_id[] = {
110 { "adm1030", adm1030 },
111 { "adm1031", adm1031 },
114 MODULE_DEVICE_TABLE(i2c, adm1031_id);
116 /* This is the driver that will be inserted */
117 static struct i2c_driver adm1031_driver = {
118 .class = I2C_CLASS_HWMON,
119 .driver = {
120 .name = "adm1031",
122 .probe = adm1031_probe,
123 .remove = adm1031_remove,
124 .id_table = adm1031_id,
125 .detect = adm1031_detect,
126 .address_data = &addr_data,
129 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
131 return i2c_smbus_read_byte_data(client, reg);
134 static inline int
135 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
137 return i2c_smbus_write_byte_data(client, reg, value);
141 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
142 ((val + 500) / 1000)))
144 #define TEMP_FROM_REG(val) ((val) * 1000)
146 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
148 #define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
150 static int FAN_TO_REG(int reg, int div)
152 int tmp;
153 tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
154 return tmp > 255 ? 255 : tmp;
157 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
159 #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
160 #define PWM_FROM_REG(val) ((val) << 4)
162 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
163 #define FAN_CHAN_TO_REG(val, reg) \
164 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
166 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
167 ((((val)/500) & 0xf8)|((reg) & 0x7))
168 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7)))
169 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
171 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
173 #define AUTO_TEMP_OFF_FROM_REG(reg) \
174 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
176 #define AUTO_TEMP_MAX_FROM_REG(reg) \
177 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
178 AUTO_TEMP_MIN_FROM_REG(reg))
180 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
182 int ret;
183 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
185 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
186 ret = ((reg & 0xf8) |
187 (range < 10000 ? 0 :
188 range < 20000 ? 1 :
189 range < 40000 ? 2 : range < 80000 ? 3 : 4));
190 return ret;
193 /* FAN auto control */
194 #define GET_FAN_AUTO_BITFIELD(data, idx) \
195 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
197 /* The tables below contains the possible values for the auto fan
198 * control bitfields. the index in the table is the register value.
199 * MSb is the auto fan control enable bit, so the four first entries
200 * in the table disables auto fan control when both bitfields are zero.
202 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
203 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
204 { 2 /* 0b010 */ , 4 /* 0b100 */ },
205 { 2 /* 0b010 */ , 2 /* 0b010 */ },
206 { 4 /* 0b100 */ , 4 /* 0b100 */ },
207 { 7 /* 0b111 */ , 7 /* 0b111 */ },
210 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
211 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
212 { 2 /* 0b10 */ , 0 },
213 { 0xff /* invalid */ , 0 },
214 { 0xff /* invalid */ , 0 },
215 { 3 /* 0b11 */ , 0 },
218 /* That function checks if a bitfield is valid and returns the other bitfield
219 * nearest match if no exact match where found.
221 static int
222 get_fan_auto_nearest(struct adm1031_data *data,
223 int chan, u8 val, u8 reg, u8 * new_reg)
225 int i;
226 int first_match = -1, exact_match = -1;
227 u8 other_reg_val =
228 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
230 if (val == 0) {
231 *new_reg = 0;
232 return 0;
235 for (i = 0; i < 8; i++) {
236 if ((val == (*data->chan_select_table)[i][chan]) &&
237 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
238 other_reg_val)) {
239 /* We found an exact match */
240 exact_match = i;
241 break;
242 } else if (val == (*data->chan_select_table)[i][chan] &&
243 first_match == -1) {
244 /* Save the first match in case of an exact match has
245 * not been found
247 first_match = i;
251 if (exact_match >= 0) {
252 *new_reg = exact_match;
253 } else if (first_match >= 0) {
254 *new_reg = first_match;
255 } else {
256 return -EINVAL;
258 return 0;
261 static ssize_t show_fan_auto_channel(struct device *dev,
262 struct device_attribute *attr, char *buf)
264 int nr = to_sensor_dev_attr(attr)->index;
265 struct adm1031_data *data = adm1031_update_device(dev);
266 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
269 static ssize_t
270 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t count)
273 struct i2c_client *client = to_i2c_client(dev);
274 struct adm1031_data *data = i2c_get_clientdata(client);
275 int nr = to_sensor_dev_attr(attr)->index;
276 int val = simple_strtol(buf, NULL, 10);
277 u8 reg;
278 int ret;
279 u8 old_fan_mode;
281 old_fan_mode = data->conf1;
283 mutex_lock(&data->update_lock);
285 if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
286 mutex_unlock(&data->update_lock);
287 return ret;
289 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
290 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
291 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
292 if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
293 /* Switch to Auto Fan Mode
294 * Save PWM registers
295 * Set PWM registers to 33% Both */
296 data->old_pwm[0] = data->pwm[0];
297 data->old_pwm[1] = data->pwm[1];
298 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
299 } else {
300 /* Switch to Manual Mode */
301 data->pwm[0] = data->old_pwm[0];
302 data->pwm[1] = data->old_pwm[1];
303 /* Restore PWM registers */
304 adm1031_write_value(client, ADM1031_REG_PWM,
305 data->pwm[0] | (data->pwm[1] << 4));
308 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
309 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
310 mutex_unlock(&data->update_lock);
311 return count;
314 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
315 show_fan_auto_channel, set_fan_auto_channel, 0);
316 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
317 show_fan_auto_channel, set_fan_auto_channel, 1);
319 /* Auto Temps */
320 static ssize_t show_auto_temp_off(struct device *dev,
321 struct device_attribute *attr, char *buf)
323 int nr = to_sensor_dev_attr(attr)->index;
324 struct adm1031_data *data = adm1031_update_device(dev);
325 return sprintf(buf, "%d\n",
326 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
328 static ssize_t show_auto_temp_min(struct device *dev,
329 struct device_attribute *attr, char *buf)
331 int nr = to_sensor_dev_attr(attr)->index;
332 struct adm1031_data *data = adm1031_update_device(dev);
333 return sprintf(buf, "%d\n",
334 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
336 static ssize_t
337 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
338 const char *buf, size_t count)
340 struct i2c_client *client = to_i2c_client(dev);
341 struct adm1031_data *data = i2c_get_clientdata(client);
342 int nr = to_sensor_dev_attr(attr)->index;
343 int val = simple_strtol(buf, NULL, 10);
345 mutex_lock(&data->update_lock);
346 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
347 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
348 data->auto_temp[nr]);
349 mutex_unlock(&data->update_lock);
350 return count;
352 static ssize_t show_auto_temp_max(struct device *dev,
353 struct device_attribute *attr, char *buf)
355 int nr = to_sensor_dev_attr(attr)->index;
356 struct adm1031_data *data = adm1031_update_device(dev);
357 return sprintf(buf, "%d\n",
358 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
360 static ssize_t
361 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
362 const char *buf, size_t count)
364 struct i2c_client *client = to_i2c_client(dev);
365 struct adm1031_data *data = i2c_get_clientdata(client);
366 int nr = to_sensor_dev_attr(attr)->index;
367 int val = simple_strtol(buf, NULL, 10);
369 mutex_lock(&data->update_lock);
370 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
371 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
372 data->temp_max[nr]);
373 mutex_unlock(&data->update_lock);
374 return count;
377 #define auto_temp_reg(offset) \
378 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
379 show_auto_temp_off, NULL, offset - 1); \
380 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
381 show_auto_temp_min, set_auto_temp_min, offset - 1); \
382 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
383 show_auto_temp_max, set_auto_temp_max, offset - 1)
385 auto_temp_reg(1);
386 auto_temp_reg(2);
387 auto_temp_reg(3);
389 /* pwm */
390 static ssize_t show_pwm(struct device *dev,
391 struct device_attribute *attr, char *buf)
393 int nr = to_sensor_dev_attr(attr)->index;
394 struct adm1031_data *data = adm1031_update_device(dev);
395 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
397 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
398 const char *buf, size_t count)
400 struct i2c_client *client = to_i2c_client(dev);
401 struct adm1031_data *data = i2c_get_clientdata(client);
402 int nr = to_sensor_dev_attr(attr)->index;
403 int val = simple_strtol(buf, NULL, 10);
404 int reg;
406 mutex_lock(&data->update_lock);
407 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
408 (((val>>4) & 0xf) != 5)) {
409 /* In automatic mode, the only PWM accepted is 33% */
410 mutex_unlock(&data->update_lock);
411 return -EINVAL;
413 data->pwm[nr] = PWM_TO_REG(val);
414 reg = adm1031_read_value(client, ADM1031_REG_PWM);
415 adm1031_write_value(client, ADM1031_REG_PWM,
416 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
417 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
418 mutex_unlock(&data->update_lock);
419 return count;
422 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
423 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
424 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
425 show_pwm, set_pwm, 0);
426 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
427 show_pwm, set_pwm, 1);
429 /* Fans */
432 * That function checks the cases where the fan reading is not
433 * relevant. It is used to provide 0 as fan reading when the fan is
434 * not supposed to run
436 static int trust_fan_readings(struct adm1031_data *data, int chan)
438 int res = 0;
440 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
441 switch (data->conf1 & 0x60) {
442 case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */
443 res = data->temp[chan+1] >=
444 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
445 break;
446 case 0x20: /* remote temp1 controls both fans */
447 res =
448 data->temp[1] >=
449 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
450 break;
451 case 0x40: /* remote temp2 controls both fans */
452 res =
453 data->temp[2] >=
454 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
455 break;
456 case 0x60: /* max controls both fans */
457 res =
458 data->temp[0] >=
459 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
460 || data->temp[1] >=
461 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
462 || (data->chip_type == adm1031
463 && data->temp[2] >=
464 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
465 break;
467 } else {
468 res = data->pwm[chan] > 0;
470 return res;
474 static ssize_t show_fan(struct device *dev,
475 struct device_attribute *attr, char *buf)
477 int nr = to_sensor_dev_attr(attr)->index;
478 struct adm1031_data *data = adm1031_update_device(dev);
479 int value;
481 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
482 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
483 return sprintf(buf, "%d\n", value);
486 static ssize_t show_fan_div(struct device *dev,
487 struct device_attribute *attr, char *buf)
489 int nr = to_sensor_dev_attr(attr)->index;
490 struct adm1031_data *data = adm1031_update_device(dev);
491 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
493 static ssize_t show_fan_min(struct device *dev,
494 struct device_attribute *attr, char *buf)
496 int nr = to_sensor_dev_attr(attr)->index;
497 struct adm1031_data *data = adm1031_update_device(dev);
498 return sprintf(buf, "%d\n",
499 FAN_FROM_REG(data->fan_min[nr],
500 FAN_DIV_FROM_REG(data->fan_div[nr])));
502 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
503 const char *buf, size_t count)
505 struct i2c_client *client = to_i2c_client(dev);
506 struct adm1031_data *data = i2c_get_clientdata(client);
507 int nr = to_sensor_dev_attr(attr)->index;
508 int val = simple_strtol(buf, NULL, 10);
510 mutex_lock(&data->update_lock);
511 if (val) {
512 data->fan_min[nr] =
513 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
514 } else {
515 data->fan_min[nr] = 0xff;
517 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
518 mutex_unlock(&data->update_lock);
519 return count;
521 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
522 const char *buf, size_t count)
524 struct i2c_client *client = to_i2c_client(dev);
525 struct adm1031_data *data = i2c_get_clientdata(client);
526 int nr = to_sensor_dev_attr(attr)->index;
527 int val = simple_strtol(buf, NULL, 10);
528 u8 tmp;
529 int old_div;
530 int new_min;
532 tmp = val == 8 ? 0xc0 :
533 val == 4 ? 0x80 :
534 val == 2 ? 0x40 :
535 val == 1 ? 0x00 :
536 0xff;
537 if (tmp == 0xff)
538 return -EINVAL;
540 mutex_lock(&data->update_lock);
541 /* Get fresh readings */
542 data->fan_div[nr] = adm1031_read_value(client,
543 ADM1031_REG_FAN_DIV(nr));
544 data->fan_min[nr] = adm1031_read_value(client,
545 ADM1031_REG_FAN_MIN(nr));
547 /* Write the new clock divider and fan min */
548 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
549 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
550 new_min = data->fan_min[nr] * old_div / val;
551 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
553 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
554 data->fan_div[nr]);
555 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
556 data->fan_min[nr]);
558 /* Invalidate the cache: fan speed is no longer valid */
559 data->valid = 0;
560 mutex_unlock(&data->update_lock);
561 return count;
564 #define fan_offset(offset) \
565 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
566 show_fan, NULL, offset - 1); \
567 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
568 show_fan_min, set_fan_min, offset - 1); \
569 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
570 show_fan_div, set_fan_div, offset - 1)
572 fan_offset(1);
573 fan_offset(2);
576 /* Temps */
577 static ssize_t show_temp(struct device *dev,
578 struct device_attribute *attr, char *buf)
580 int nr = to_sensor_dev_attr(attr)->index;
581 struct adm1031_data *data = adm1031_update_device(dev);
582 int ext;
583 ext = nr == 0 ?
584 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
585 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
586 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
588 static ssize_t show_temp_min(struct device *dev,
589 struct device_attribute *attr, char *buf)
591 int nr = to_sensor_dev_attr(attr)->index;
592 struct adm1031_data *data = adm1031_update_device(dev);
593 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
595 static ssize_t show_temp_max(struct device *dev,
596 struct device_attribute *attr, char *buf)
598 int nr = to_sensor_dev_attr(attr)->index;
599 struct adm1031_data *data = adm1031_update_device(dev);
600 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
602 static ssize_t show_temp_crit(struct device *dev,
603 struct device_attribute *attr, char *buf)
605 int nr = to_sensor_dev_attr(attr)->index;
606 struct adm1031_data *data = adm1031_update_device(dev);
607 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
609 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
610 const char *buf, size_t count)
612 struct i2c_client *client = to_i2c_client(dev);
613 struct adm1031_data *data = i2c_get_clientdata(client);
614 int nr = to_sensor_dev_attr(attr)->index;
615 int val;
617 val = simple_strtol(buf, NULL, 10);
618 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
619 mutex_lock(&data->update_lock);
620 data->temp_min[nr] = TEMP_TO_REG(val);
621 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
622 data->temp_min[nr]);
623 mutex_unlock(&data->update_lock);
624 return count;
626 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
627 const char *buf, size_t count)
629 struct i2c_client *client = to_i2c_client(dev);
630 struct adm1031_data *data = i2c_get_clientdata(client);
631 int nr = to_sensor_dev_attr(attr)->index;
632 int val;
634 val = simple_strtol(buf, NULL, 10);
635 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
636 mutex_lock(&data->update_lock);
637 data->temp_max[nr] = TEMP_TO_REG(val);
638 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
639 data->temp_max[nr]);
640 mutex_unlock(&data->update_lock);
641 return count;
643 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
644 const char *buf, size_t count)
646 struct i2c_client *client = to_i2c_client(dev);
647 struct adm1031_data *data = i2c_get_clientdata(client);
648 int nr = to_sensor_dev_attr(attr)->index;
649 int val;
651 val = simple_strtol(buf, NULL, 10);
652 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
653 mutex_lock(&data->update_lock);
654 data->temp_crit[nr] = TEMP_TO_REG(val);
655 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
656 data->temp_crit[nr]);
657 mutex_unlock(&data->update_lock);
658 return count;
661 #define temp_reg(offset) \
662 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
663 show_temp, NULL, offset - 1); \
664 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
665 show_temp_min, set_temp_min, offset - 1); \
666 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
667 show_temp_max, set_temp_max, offset - 1); \
668 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
669 show_temp_crit, set_temp_crit, offset - 1)
671 temp_reg(1);
672 temp_reg(2);
673 temp_reg(3);
675 /* Alarms */
676 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
678 struct adm1031_data *data = adm1031_update_device(dev);
679 return sprintf(buf, "%d\n", data->alarm);
682 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
684 static ssize_t show_alarm(struct device *dev,
685 struct device_attribute *attr, char *buf)
687 int bitnr = to_sensor_dev_attr(attr)->index;
688 struct adm1031_data *data = adm1031_update_device(dev);
689 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
692 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
693 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
694 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
695 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
696 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
697 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
698 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
699 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
700 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
701 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
702 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
703 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
704 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
705 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
706 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
708 static struct attribute *adm1031_attributes[] = {
709 &sensor_dev_attr_fan1_input.dev_attr.attr,
710 &sensor_dev_attr_fan1_div.dev_attr.attr,
711 &sensor_dev_attr_fan1_min.dev_attr.attr,
712 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
713 &sensor_dev_attr_fan1_fault.dev_attr.attr,
714 &sensor_dev_attr_pwm1.dev_attr.attr,
715 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
716 &sensor_dev_attr_temp1_input.dev_attr.attr,
717 &sensor_dev_attr_temp1_min.dev_attr.attr,
718 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
719 &sensor_dev_attr_temp1_max.dev_attr.attr,
720 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
721 &sensor_dev_attr_temp1_crit.dev_attr.attr,
722 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
723 &sensor_dev_attr_temp2_input.dev_attr.attr,
724 &sensor_dev_attr_temp2_min.dev_attr.attr,
725 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
726 &sensor_dev_attr_temp2_max.dev_attr.attr,
727 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
728 &sensor_dev_attr_temp2_crit.dev_attr.attr,
729 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
730 &sensor_dev_attr_temp2_fault.dev_attr.attr,
732 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
733 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
734 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
736 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
737 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
738 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
740 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
742 &dev_attr_alarms.attr,
744 NULL
747 static const struct attribute_group adm1031_group = {
748 .attrs = adm1031_attributes,
751 static struct attribute *adm1031_attributes_opt[] = {
752 &sensor_dev_attr_fan2_input.dev_attr.attr,
753 &sensor_dev_attr_fan2_div.dev_attr.attr,
754 &sensor_dev_attr_fan2_min.dev_attr.attr,
755 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
756 &sensor_dev_attr_fan2_fault.dev_attr.attr,
757 &sensor_dev_attr_pwm2.dev_attr.attr,
758 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
759 &sensor_dev_attr_temp3_input.dev_attr.attr,
760 &sensor_dev_attr_temp3_min.dev_attr.attr,
761 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
762 &sensor_dev_attr_temp3_max.dev_attr.attr,
763 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
764 &sensor_dev_attr_temp3_crit.dev_attr.attr,
765 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
766 &sensor_dev_attr_temp3_fault.dev_attr.attr,
767 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
768 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
769 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
770 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
771 NULL
774 static const struct attribute_group adm1031_group_opt = {
775 .attrs = adm1031_attributes_opt,
778 /* Return 0 if detection is successful, -ENODEV otherwise */
779 static int adm1031_detect(struct i2c_client *client, int kind,
780 struct i2c_board_info *info)
782 struct i2c_adapter *adapter = client->adapter;
783 const char *name = "";
785 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
786 return -ENODEV;
788 if (kind < 0) {
789 int id, co;
790 id = i2c_smbus_read_byte_data(client, 0x3d);
791 co = i2c_smbus_read_byte_data(client, 0x3e);
793 if (!((id == 0x31 || id == 0x30) && co == 0x41))
794 return -ENODEV;
795 kind = (id == 0x30) ? adm1030 : adm1031;
798 if (kind <= 0)
799 kind = adm1031;
801 /* Given the detected chip type, set the chip name and the
802 * auto fan control helper table. */
803 if (kind == adm1030) {
804 name = "adm1030";
805 } else if (kind == adm1031) {
806 name = "adm1031";
808 strlcpy(info->type, name, I2C_NAME_SIZE);
810 return 0;
813 static int adm1031_probe(struct i2c_client *client,
814 const struct i2c_device_id *id)
816 struct adm1031_data *data;
817 int err;
819 data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
820 if (!data) {
821 err = -ENOMEM;
822 goto exit;
825 i2c_set_clientdata(client, data);
826 data->chip_type = id->driver_data;
827 mutex_init(&data->update_lock);
829 if (data->chip_type == adm1030)
830 data->chan_select_table = &auto_channel_select_table_adm1030;
831 else
832 data->chan_select_table = &auto_channel_select_table_adm1031;
834 /* Initialize the ADM1031 chip */
835 adm1031_init_client(client);
837 /* Register sysfs hooks */
838 if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
839 goto exit_free;
841 if (data->chip_type == adm1031) {
842 if ((err = sysfs_create_group(&client->dev.kobj,
843 &adm1031_group_opt)))
844 goto exit_remove;
847 data->hwmon_dev = hwmon_device_register(&client->dev);
848 if (IS_ERR(data->hwmon_dev)) {
849 err = PTR_ERR(data->hwmon_dev);
850 goto exit_remove;
853 return 0;
855 exit_remove:
856 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
857 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
858 exit_free:
859 kfree(data);
860 exit:
861 return err;
864 static int adm1031_remove(struct i2c_client *client)
866 struct adm1031_data *data = i2c_get_clientdata(client);
868 hwmon_device_unregister(data->hwmon_dev);
869 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
870 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
871 kfree(data);
872 return 0;
875 static void adm1031_init_client(struct i2c_client *client)
877 unsigned int read_val;
878 unsigned int mask;
879 struct adm1031_data *data = i2c_get_clientdata(client);
881 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
882 if (data->chip_type == adm1031) {
883 mask |= (ADM1031_CONF2_PWM2_ENABLE |
884 ADM1031_CONF2_TACH2_ENABLE);
886 /* Initialize the ADM1031 chip (enables fan speed reading ) */
887 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
888 if ((read_val | mask) != read_val) {
889 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
892 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
893 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
894 adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
895 ADM1031_CONF1_MONITOR_ENABLE);
900 static struct adm1031_data *adm1031_update_device(struct device *dev)
902 struct i2c_client *client = to_i2c_client(dev);
903 struct adm1031_data *data = i2c_get_clientdata(client);
904 int chan;
906 mutex_lock(&data->update_lock);
908 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
909 || !data->valid) {
911 dev_dbg(&client->dev, "Starting adm1031 update\n");
912 for (chan = 0;
913 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
914 u8 oldh, newh;
916 oldh =
917 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
918 data->ext_temp[chan] =
919 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
920 newh =
921 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
922 if (newh != oldh) {
923 data->ext_temp[chan] =
924 adm1031_read_value(client,
925 ADM1031_REG_EXT_TEMP);
926 #ifdef DEBUG
927 oldh =
928 adm1031_read_value(client,
929 ADM1031_REG_TEMP(chan));
931 /* oldh is actually newer */
932 if (newh != oldh)
933 dev_warn(&client->dev,
934 "Remote temperature may be "
935 "wrong.\n");
936 #endif
938 data->temp[chan] = newh;
940 data->temp_min[chan] =
941 adm1031_read_value(client,
942 ADM1031_REG_TEMP_MIN(chan));
943 data->temp_max[chan] =
944 adm1031_read_value(client,
945 ADM1031_REG_TEMP_MAX(chan));
946 data->temp_crit[chan] =
947 adm1031_read_value(client,
948 ADM1031_REG_TEMP_CRIT(chan));
949 data->auto_temp[chan] =
950 adm1031_read_value(client,
951 ADM1031_REG_AUTO_TEMP(chan));
955 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
956 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
958 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
959 | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
960 << 8);
961 if (data->chip_type == adm1030) {
962 data->alarm &= 0xc0ff;
965 for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
966 data->fan_div[chan] =
967 adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
968 data->fan_min[chan] =
969 adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
970 data->fan[chan] =
971 adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
972 data->pwm[chan] =
973 0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
974 (4*chan));
976 data->last_updated = jiffies;
977 data->valid = 1;
980 mutex_unlock(&data->update_lock);
982 return data;
985 static int __init sensors_adm1031_init(void)
987 return i2c_add_driver(&adm1031_driver);
990 static void __exit sensors_adm1031_exit(void)
992 i2c_del_driver(&adm1031_driver);
995 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
996 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
997 MODULE_LICENSE("GPL");
999 module_init(sensors_adm1031_init);
1000 module_exit(sensors_adm1031_exit);