Merge tag 'm68knommu-for-v5.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / clocksource / timer-cadence-ttc.c
blob80e9606020307e02621406483bb6f308e418cc70
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file contains driver for the Cadence Triple Timer Counter Rev 06
5 * Copyright (C) 2011-2013 Xilinx
7 * based on arch/mips/kernel/time.c timer driver
8 */
10 #include <linux/clk.h>
11 #include <linux/interrupt.h>
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/slab.h>
17 #include <linux/sched_clock.h>
18 #include <linux/module.h>
19 #include <linux/of_platform.h>
22 * This driver configures the 2 16/32-bit count-up timers as follows:
24 * T1: Timer 1, clocksource for generic timekeeping
25 * T2: Timer 2, clockevent source for hrtimers
26 * T3: Timer 3, <unused>
28 * The input frequency to the timer module for emulation is 2.5MHz which is
29 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
30 * the timers are clocked at 78.125KHz (12.8 us resolution).
32 * The input frequency to the timer module in silicon is configurable and
33 * obtained from device tree. The pre-scaler of 32 is used.
37 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
38 * and use same offsets for Timer 2
40 #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
41 #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
42 #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
43 #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
44 #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
45 #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
47 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
49 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
50 #define TTC_CLK_CNTRL_PSV_MASK 0x1e
51 #define TTC_CLK_CNTRL_PSV_SHIFT 1
54 * Setup the timers to use pre-scaling, using a fixed value for now that will
55 * work across most input frequency, but it may need to be more dynamic
57 #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
58 #define PRESCALE 2048 /* The exponent must match this */
59 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
60 #define CLK_CNTRL_PRESCALE_EN 1
61 #define CNT_CNTRL_RESET (1 << 4)
63 #define MAX_F_ERR 50
65 /**
66 * struct ttc_timer - This definition defines local timer structure
68 * @base_addr: Base address of timer
69 * @freq: Timer input clock frequency
70 * @clk: Associated clock source
71 * @clk_rate_change_nb Notifier block for clock rate changes
73 struct ttc_timer {
74 void __iomem *base_addr;
75 unsigned long freq;
76 struct clk *clk;
77 struct notifier_block clk_rate_change_nb;
80 #define to_ttc_timer(x) \
81 container_of(x, struct ttc_timer, clk_rate_change_nb)
83 struct ttc_timer_clocksource {
84 u32 scale_clk_ctrl_reg_old;
85 u32 scale_clk_ctrl_reg_new;
86 struct ttc_timer ttc;
87 struct clocksource cs;
90 #define to_ttc_timer_clksrc(x) \
91 container_of(x, struct ttc_timer_clocksource, cs)
93 struct ttc_timer_clockevent {
94 struct ttc_timer ttc;
95 struct clock_event_device ce;
98 #define to_ttc_timer_clkevent(x) \
99 container_of(x, struct ttc_timer_clockevent, ce)
101 static void __iomem *ttc_sched_clock_val_reg;
104 * ttc_set_interval - Set the timer interval value
106 * @timer: Pointer to the timer instance
107 * @cycles: Timer interval ticks
109 static void ttc_set_interval(struct ttc_timer *timer,
110 unsigned long cycles)
112 u32 ctrl_reg;
114 /* Disable the counter, set the counter value and re-enable counter */
115 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
116 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
117 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
119 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
122 * Reset the counter (0x10) so that it starts from 0, one-shot
123 * mode makes this needed for timing to be right.
125 ctrl_reg |= CNT_CNTRL_RESET;
126 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
127 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
131 * ttc_clock_event_interrupt - Clock event timer interrupt handler
133 * @irq: IRQ number of the Timer
134 * @dev_id: void pointer to the ttc_timer instance
136 * returns: Always IRQ_HANDLED - success
138 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
140 struct ttc_timer_clockevent *ttce = dev_id;
141 struct ttc_timer *timer = &ttce->ttc;
143 /* Acknowledge the interrupt and call event handler */
144 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
146 ttce->ce.event_handler(&ttce->ce);
148 return IRQ_HANDLED;
152 * __ttc_clocksource_read - Reads the timer counter register
154 * returns: Current timer counter register value
156 static u64 __ttc_clocksource_read(struct clocksource *cs)
158 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
160 return (u64)readl_relaxed(timer->base_addr +
161 TTC_COUNT_VAL_OFFSET);
164 static u64 notrace ttc_sched_clock_read(void)
166 return readl_relaxed(ttc_sched_clock_val_reg);
170 * ttc_set_next_event - Sets the time interval for next event
172 * @cycles: Timer interval ticks
173 * @evt: Address of clock event instance
175 * returns: Always 0 - success
177 static int ttc_set_next_event(unsigned long cycles,
178 struct clock_event_device *evt)
180 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
181 struct ttc_timer *timer = &ttce->ttc;
183 ttc_set_interval(timer, cycles);
184 return 0;
188 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
190 * @evt: Address of clock event instance
192 static int ttc_shutdown(struct clock_event_device *evt)
194 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
195 struct ttc_timer *timer = &ttce->ttc;
196 u32 ctrl_reg;
198 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
199 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
200 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
201 return 0;
204 static int ttc_set_periodic(struct clock_event_device *evt)
206 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
207 struct ttc_timer *timer = &ttce->ttc;
209 ttc_set_interval(timer,
210 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
211 return 0;
214 static int ttc_resume(struct clock_event_device *evt)
216 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
217 struct ttc_timer *timer = &ttce->ttc;
218 u32 ctrl_reg;
220 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
221 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
222 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
223 return 0;
226 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
227 unsigned long event, void *data)
229 struct clk_notifier_data *ndata = data;
230 struct ttc_timer *ttc = to_ttc_timer(nb);
231 struct ttc_timer_clocksource *ttccs = container_of(ttc,
232 struct ttc_timer_clocksource, ttc);
234 switch (event) {
235 case PRE_RATE_CHANGE:
237 u32 psv;
238 unsigned long factor, rate_low, rate_high;
240 if (ndata->new_rate > ndata->old_rate) {
241 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
242 ndata->old_rate);
243 rate_low = ndata->old_rate;
244 rate_high = ndata->new_rate;
245 } else {
246 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
247 ndata->new_rate);
248 rate_low = ndata->new_rate;
249 rate_high = ndata->old_rate;
252 if (!is_power_of_2(factor))
253 return NOTIFY_BAD;
255 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
256 return NOTIFY_BAD;
258 factor = __ilog2_u32(factor);
261 * store timer clock ctrl register so we can restore it in case
262 * of an abort.
264 ttccs->scale_clk_ctrl_reg_old =
265 readl_relaxed(ttccs->ttc.base_addr +
266 TTC_CLK_CNTRL_OFFSET);
268 psv = (ttccs->scale_clk_ctrl_reg_old &
269 TTC_CLK_CNTRL_PSV_MASK) >>
270 TTC_CLK_CNTRL_PSV_SHIFT;
271 if (ndata->new_rate < ndata->old_rate)
272 psv -= factor;
273 else
274 psv += factor;
276 /* prescaler within legal range? */
277 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
278 return NOTIFY_BAD;
280 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
281 ~TTC_CLK_CNTRL_PSV_MASK;
282 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
285 /* scale down: adjust divider in post-change notification */
286 if (ndata->new_rate < ndata->old_rate)
287 return NOTIFY_DONE;
289 /* scale up: adjust divider now - before frequency change */
290 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
291 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
292 break;
294 case POST_RATE_CHANGE:
295 /* scale up: pre-change notification did the adjustment */
296 if (ndata->new_rate > ndata->old_rate)
297 return NOTIFY_OK;
299 /* scale down: adjust divider now - after frequency change */
300 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
301 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
302 break;
304 case ABORT_RATE_CHANGE:
305 /* we have to undo the adjustment in case we scale up */
306 if (ndata->new_rate < ndata->old_rate)
307 return NOTIFY_OK;
309 /* restore original register value */
310 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
311 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
312 fallthrough;
313 default:
314 return NOTIFY_DONE;
317 return NOTIFY_DONE;
320 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
321 u32 timer_width)
323 struct ttc_timer_clocksource *ttccs;
324 int err;
326 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
327 if (!ttccs)
328 return -ENOMEM;
330 ttccs->ttc.clk = clk;
332 err = clk_prepare_enable(ttccs->ttc.clk);
333 if (err) {
334 kfree(ttccs);
335 return err;
338 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
340 ttccs->ttc.clk_rate_change_nb.notifier_call =
341 ttc_rate_change_clocksource_cb;
342 ttccs->ttc.clk_rate_change_nb.next = NULL;
344 err = clk_notifier_register(ttccs->ttc.clk,
345 &ttccs->ttc.clk_rate_change_nb);
346 if (err)
347 pr_warn("Unable to register clock notifier.\n");
349 ttccs->ttc.base_addr = base;
350 ttccs->cs.name = "ttc_clocksource";
351 ttccs->cs.rating = 200;
352 ttccs->cs.read = __ttc_clocksource_read;
353 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
354 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
357 * Setup the clock source counter to be an incrementing counter
358 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
359 * it by 32 also. Let it start running now.
361 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
362 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
363 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
364 writel_relaxed(CNT_CNTRL_RESET,
365 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
367 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
368 if (err) {
369 kfree(ttccs);
370 return err;
373 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
374 sched_clock_register(ttc_sched_clock_read, timer_width,
375 ttccs->ttc.freq / PRESCALE);
377 return 0;
380 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
381 unsigned long event, void *data)
383 struct clk_notifier_data *ndata = data;
384 struct ttc_timer *ttc = to_ttc_timer(nb);
385 struct ttc_timer_clockevent *ttcce = container_of(ttc,
386 struct ttc_timer_clockevent, ttc);
388 switch (event) {
389 case POST_RATE_CHANGE:
390 /* update cached frequency */
391 ttc->freq = ndata->new_rate;
393 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
395 fallthrough;
396 case PRE_RATE_CHANGE:
397 case ABORT_RATE_CHANGE:
398 default:
399 return NOTIFY_DONE;
403 static int __init ttc_setup_clockevent(struct clk *clk,
404 void __iomem *base, u32 irq)
406 struct ttc_timer_clockevent *ttcce;
407 int err;
409 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
410 if (!ttcce)
411 return -ENOMEM;
413 ttcce->ttc.clk = clk;
415 err = clk_prepare_enable(ttcce->ttc.clk);
416 if (err) {
417 kfree(ttcce);
418 return err;
421 ttcce->ttc.clk_rate_change_nb.notifier_call =
422 ttc_rate_change_clockevent_cb;
423 ttcce->ttc.clk_rate_change_nb.next = NULL;
425 err = clk_notifier_register(ttcce->ttc.clk,
426 &ttcce->ttc.clk_rate_change_nb);
427 if (err) {
428 pr_warn("Unable to register clock notifier.\n");
429 return err;
432 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
434 ttcce->ttc.base_addr = base;
435 ttcce->ce.name = "ttc_clockevent";
436 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
437 ttcce->ce.set_next_event = ttc_set_next_event;
438 ttcce->ce.set_state_shutdown = ttc_shutdown;
439 ttcce->ce.set_state_periodic = ttc_set_periodic;
440 ttcce->ce.set_state_oneshot = ttc_shutdown;
441 ttcce->ce.tick_resume = ttc_resume;
442 ttcce->ce.rating = 200;
443 ttcce->ce.irq = irq;
444 ttcce->ce.cpumask = cpu_possible_mask;
447 * Setup the clock event timer to be an interval timer which
448 * is prescaled by 32 using the interval interrupt. Leave it
449 * disabled for now.
451 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
452 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
453 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
454 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
456 err = request_irq(irq, ttc_clock_event_interrupt,
457 IRQF_TIMER, ttcce->ce.name, ttcce);
458 if (err) {
459 kfree(ttcce);
460 return err;
463 clockevents_config_and_register(&ttcce->ce,
464 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
466 return 0;
469 static int __init ttc_timer_probe(struct platform_device *pdev)
471 unsigned int irq;
472 void __iomem *timer_baseaddr;
473 struct clk *clk_cs, *clk_ce;
474 static int initialized;
475 int clksel, ret;
476 u32 timer_width = 16;
477 struct device_node *timer = pdev->dev.of_node;
479 if (initialized)
480 return 0;
482 initialized = 1;
485 * Get the 1st Triple Timer Counter (TTC) block from the device tree
486 * and use it. Note that the event timer uses the interrupt and it's the
487 * 2nd TTC hence the irq_of_parse_and_map(,1)
489 timer_baseaddr = of_iomap(timer, 0);
490 if (!timer_baseaddr) {
491 pr_err("ERROR: invalid timer base address\n");
492 return -ENXIO;
495 irq = irq_of_parse_and_map(timer, 1);
496 if (irq <= 0) {
497 pr_err("ERROR: invalid interrupt number\n");
498 return -EINVAL;
501 of_property_read_u32(timer, "timer-width", &timer_width);
503 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
504 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
505 clk_cs = of_clk_get(timer, clksel);
506 if (IS_ERR(clk_cs)) {
507 pr_err("ERROR: timer input clock not found\n");
508 return PTR_ERR(clk_cs);
511 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
512 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
513 clk_ce = of_clk_get(timer, clksel);
514 if (IS_ERR(clk_ce)) {
515 pr_err("ERROR: timer input clock not found\n");
516 return PTR_ERR(clk_ce);
519 ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
520 if (ret)
521 return ret;
523 ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
524 if (ret)
525 return ret;
527 pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
529 return 0;
532 static const struct of_device_id ttc_timer_of_match[] = {
533 {.compatible = "cdns,ttc"},
537 MODULE_DEVICE_TABLE(of, ttc_timer_of_match);
539 static struct platform_driver ttc_timer_driver = {
540 .driver = {
541 .name = "cdns_ttc_timer",
542 .of_match_table = ttc_timer_of_match,
545 builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);