Merge tag 'm68knommu-for-v5.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / opp / core.c
blob9668ea04cc808c51419c5ac14180b563c7ff16f9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
22 #include "opp.h"
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
36 struct opp_device *opp_dev;
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
42 return NULL;
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
47 struct opp_table *opp_table;
48 bool found;
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
55 if (found) {
56 _get_opp_table_kref(opp_table);
58 return opp_table;
62 return ERR_PTR(-ENODEV);
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
69 * Search OPP table for one containing matching device.
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
76 struct opp_table *_find_opp_table(struct device *dev)
78 struct opp_table *opp_table;
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
89 return opp_table;
92 /**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
99 * This is useful only for devices with single power supply.
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
108 return opp->supplies[0].u_volt;
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
126 return opp->rate;
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
144 return opp->level;
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
156 * Return: true if opp is turbo opp, else false.
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
165 return opp->turbo;
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
173 * Return: This function returns the max clock latency in nanoseconds.
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
184 clock_latency_ns = opp_table->clock_latency_ns_max;
186 dev_pm_opp_put_opp_table(opp_table);
188 return clock_latency_ns;
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
196 * Return: This function returns the max voltage latency in nanoseconds.
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
218 count = opp_table->regulator_count;
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
224 mutex_lock(&opp_table->lock);
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
241 mutex_unlock(&opp_table->lock);
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
254 kfree(uV);
255 put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
258 return latency_ns;
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
296 dev_pm_opp_put_opp_table(opp_table);
298 return freq;
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
302 int _get_opp_count(struct opp_table *opp_table)
304 struct dev_pm_opp *opp;
305 int count = 0;
307 mutex_lock(&opp_table->lock);
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
314 mutex_unlock(&opp_table->lock);
316 return count;
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
326 int dev_pm_opp_get_opp_count(struct device *dev)
328 struct opp_table *opp_table;
329 int count;
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
342 return count;
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
384 mutex_lock(&opp_table->lock);
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
400 return opp;
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
433 mutex_lock(&opp_table->lock);
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
448 return opp;
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
457 mutex_lock(&opp_table->lock);
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
470 mutex_unlock(&opp_table->lock);
472 return opp;
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
508 opp = _find_freq_ceil(opp_table, freq);
510 dev_pm_opp_put_opp_table(opp_table);
512 return opp;
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
549 mutex_lock(&opp_table->lock);
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
570 return opp;
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
585 * Error return values can be:
586 * EINVAL: bad parameters
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
607 mutex_lock(&opp_table->lock);
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
624 return opp;
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
631 int ret;
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
650 return ret;
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
656 int ret;
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
664 return ret;
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
706 if (unlikely(!opp_table->regulator_enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 else
711 opp_table->regulator_enabled = true;
714 return 0;
716 restore_freq:
717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 __func__, old_freq);
720 restore_voltage:
721 /* This shouldn't harm even if the voltages weren't updated earlier */
722 if (old_supply)
723 _set_opp_voltage(dev, reg, old_supply);
725 return ret;
728 static int _set_opp_bw(const struct opp_table *opp_table,
729 struct dev_pm_opp *opp, struct device *dev, bool remove)
731 u32 avg, peak;
732 int i, ret;
734 if (!opp_table->paths)
735 return 0;
737 for (i = 0; i < opp_table->path_count; i++) {
738 if (remove) {
739 avg = 0;
740 peak = 0;
741 } else {
742 avg = opp->bandwidth[i].avg;
743 peak = opp->bandwidth[i].peak;
745 ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 if (ret) {
747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 remove ? "remove" : "set", i, ret);
749 return ret;
753 return 0;
756 static int _set_opp_custom(const struct opp_table *opp_table,
757 struct device *dev, unsigned long old_freq,
758 unsigned long freq,
759 struct dev_pm_opp_supply *old_supply,
760 struct dev_pm_opp_supply *new_supply)
762 struct dev_pm_set_opp_data *data;
763 int size;
765 data = opp_table->set_opp_data;
766 data->regulators = opp_table->regulators;
767 data->regulator_count = opp_table->regulator_count;
768 data->clk = opp_table->clk;
769 data->dev = dev;
771 data->old_opp.rate = old_freq;
772 size = sizeof(*old_supply) * opp_table->regulator_count;
773 if (!old_supply)
774 memset(data->old_opp.supplies, 0, size);
775 else
776 memcpy(data->old_opp.supplies, old_supply, size);
778 data->new_opp.rate = freq;
779 memcpy(data->new_opp.supplies, new_supply, size);
781 return opp_table->set_opp(data);
784 /* This is only called for PM domain for now */
785 static int _set_required_opps(struct device *dev,
786 struct opp_table *opp_table,
787 struct dev_pm_opp *opp)
789 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 unsigned int pstate;
792 int i, ret = 0;
794 if (!required_opp_tables)
795 return 0;
797 /* Single genpd case */
798 if (!genpd_virt_devs) {
799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 if (ret) {
802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 dev_name(dev), pstate, ret);
805 return ret;
808 /* Multiple genpd case */
811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 * after it is freed from another thread.
814 mutex_lock(&opp_table->genpd_virt_dev_lock);
816 for (i = 0; i < opp_table->required_opp_count; i++) {
817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
819 if (!genpd_virt_devs[i])
820 continue;
822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 if (ret) {
824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 dev_name(genpd_virt_devs[i]), pstate, ret);
826 break;
829 mutex_unlock(&opp_table->genpd_virt_dev_lock);
831 return ret;
835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836 * @dev: device for which we do this operation
837 * @opp: opp based on which the bandwidth levels are to be configured
839 * This configures the bandwidth to the levels specified by the OPP. However
840 * if the OPP specified is NULL the bandwidth levels are cleared out.
842 * Return: 0 on success or a negative error value.
844 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
846 struct opp_table *opp_table;
847 int ret;
849 opp_table = _find_opp_table(dev);
850 if (IS_ERR(opp_table)) {
851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 return PTR_ERR(opp_table);
855 if (opp)
856 ret = _set_opp_bw(opp_table, opp, dev, false);
857 else
858 ret = _set_opp_bw(opp_table, NULL, dev, true);
860 dev_pm_opp_put_opp_table(opp_table);
861 return ret;
863 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867 * @dev: device for which we do this operation
868 * @target_freq: frequency to achieve
870 * This configures the power-supplies to the levels specified by the OPP
871 * corresponding to the target_freq, and programs the clock to a value <=
872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873 * provided by the opp, should have already rounded to the target OPP's
874 * frequency.
876 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
878 struct opp_table *opp_table;
879 unsigned long freq, old_freq, temp_freq;
880 struct dev_pm_opp *old_opp, *opp;
881 struct clk *clk;
882 int ret;
884 opp_table = _find_opp_table(dev);
885 if (IS_ERR(opp_table)) {
886 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 return PTR_ERR(opp_table);
890 if (unlikely(!target_freq)) {
892 * Some drivers need to support cases where some platforms may
893 * have OPP table for the device, while others don't and
894 * opp_set_rate() just needs to behave like clk_set_rate().
896 if (!_get_opp_count(opp_table)) {
897 ret = 0;
898 goto put_opp_table;
901 if (!opp_table->required_opp_tables && !opp_table->regulators &&
902 !opp_table->paths) {
903 dev_err(dev, "target frequency can't be 0\n");
904 ret = -EINVAL;
905 goto put_opp_table;
908 ret = _set_opp_bw(opp_table, NULL, dev, true);
909 if (ret)
910 goto put_opp_table;
912 if (opp_table->regulator_enabled) {
913 regulator_disable(opp_table->regulators[0]);
914 opp_table->regulator_enabled = false;
917 ret = _set_required_opps(dev, opp_table, NULL);
918 goto put_opp_table;
921 clk = opp_table->clk;
922 if (IS_ERR(clk)) {
923 dev_err(dev, "%s: No clock available for the device\n",
924 __func__);
925 ret = PTR_ERR(clk);
926 goto put_opp_table;
929 freq = clk_round_rate(clk, target_freq);
930 if ((long)freq <= 0)
931 freq = target_freq;
933 old_freq = clk_get_rate(clk);
935 /* Return early if nothing to do */
936 if (old_freq == freq) {
937 if (!opp_table->required_opp_tables && !opp_table->regulators &&
938 !opp_table->paths) {
939 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
940 __func__, freq);
941 ret = 0;
942 goto put_opp_table;
947 * For IO devices which require an OPP on some platforms/SoCs
948 * while just needing to scale the clock on some others
949 * we look for empty OPP tables with just a clock handle and
950 * scale only the clk. This makes dev_pm_opp_set_rate()
951 * equivalent to a clk_set_rate()
953 if (!_get_opp_count(opp_table)) {
954 ret = _generic_set_opp_clk_only(dev, clk, freq);
955 goto put_opp_table;
958 temp_freq = old_freq;
959 old_opp = _find_freq_ceil(opp_table, &temp_freq);
960 if (IS_ERR(old_opp)) {
961 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
962 __func__, old_freq, PTR_ERR(old_opp));
965 temp_freq = freq;
966 opp = _find_freq_ceil(opp_table, &temp_freq);
967 if (IS_ERR(opp)) {
968 ret = PTR_ERR(opp);
969 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
970 __func__, freq, ret);
971 goto put_old_opp;
974 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
975 old_freq, freq);
977 /* Scaling up? Configure required OPPs before frequency */
978 if (freq >= old_freq) {
979 ret = _set_required_opps(dev, opp_table, opp);
980 if (ret)
981 goto put_opp;
984 if (opp_table->set_opp) {
985 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
986 IS_ERR(old_opp) ? NULL : old_opp->supplies,
987 opp->supplies);
988 } else if (opp_table->regulators) {
989 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
990 IS_ERR(old_opp) ? NULL : old_opp->supplies,
991 opp->supplies);
992 } else {
993 /* Only frequency scaling */
994 ret = _generic_set_opp_clk_only(dev, clk, freq);
997 /* Scaling down? Configure required OPPs after frequency */
998 if (!ret && freq < old_freq) {
999 ret = _set_required_opps(dev, opp_table, opp);
1000 if (ret)
1001 dev_err(dev, "Failed to set required opps: %d\n", ret);
1004 if (!ret)
1005 ret = _set_opp_bw(opp_table, opp, dev, false);
1007 put_opp:
1008 dev_pm_opp_put(opp);
1009 put_old_opp:
1010 if (!IS_ERR(old_opp))
1011 dev_pm_opp_put(old_opp);
1012 put_opp_table:
1013 dev_pm_opp_put_opp_table(opp_table);
1014 return ret;
1016 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1018 /* OPP-dev Helpers */
1019 static void _remove_opp_dev(struct opp_device *opp_dev,
1020 struct opp_table *opp_table)
1022 opp_debug_unregister(opp_dev, opp_table);
1023 list_del(&opp_dev->node);
1024 kfree(opp_dev);
1027 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028 struct opp_table *opp_table)
1030 struct opp_device *opp_dev;
1032 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033 if (!opp_dev)
1034 return NULL;
1036 /* Initialize opp-dev */
1037 opp_dev->dev = dev;
1039 list_add(&opp_dev->node, &opp_table->dev_list);
1041 /* Create debugfs entries for the opp_table */
1042 opp_debug_register(opp_dev, opp_table);
1044 return opp_dev;
1047 struct opp_device *_add_opp_dev(const struct device *dev,
1048 struct opp_table *opp_table)
1050 struct opp_device *opp_dev;
1052 mutex_lock(&opp_table->lock);
1053 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054 mutex_unlock(&opp_table->lock);
1056 return opp_dev;
1059 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1061 struct opp_table *opp_table;
1062 struct opp_device *opp_dev;
1063 int ret;
1066 * Allocate a new OPP table. In the infrequent case where a new
1067 * device is needed to be added, we pay this penalty.
1069 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070 if (!opp_table)
1071 return NULL;
1073 mutex_init(&opp_table->lock);
1074 mutex_init(&opp_table->genpd_virt_dev_lock);
1075 INIT_LIST_HEAD(&opp_table->dev_list);
1077 /* Mark regulator count uninitialized */
1078 opp_table->regulator_count = -1;
1080 opp_dev = _add_opp_dev(dev, opp_table);
1081 if (!opp_dev) {
1082 kfree(opp_table);
1083 return NULL;
1086 _of_init_opp_table(opp_table, dev, index);
1088 /* Find clk for the device */
1089 opp_table->clk = clk_get(dev, NULL);
1090 if (IS_ERR(opp_table->clk)) {
1091 ret = PTR_ERR(opp_table->clk);
1092 if (ret != -EPROBE_DEFER)
1093 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094 ret);
1097 /* Find interconnect path(s) for the device */
1098 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099 if (ret)
1100 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101 __func__, ret);
1103 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104 INIT_LIST_HEAD(&opp_table->opp_list);
1105 kref_init(&opp_table->kref);
1107 /* Secure the device table modification */
1108 list_add(&opp_table->node, &opp_tables);
1109 return opp_table;
1112 void _get_opp_table_kref(struct opp_table *opp_table)
1114 kref_get(&opp_table->kref);
1117 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1119 struct opp_table *opp_table;
1121 /* Hold our table modification lock here */
1122 mutex_lock(&opp_table_lock);
1124 opp_table = _find_opp_table_unlocked(dev);
1125 if (!IS_ERR(opp_table))
1126 goto unlock;
1128 opp_table = _managed_opp(dev, index);
1129 if (opp_table) {
1130 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131 dev_pm_opp_put_opp_table(opp_table);
1132 opp_table = NULL;
1134 goto unlock;
1137 opp_table = _allocate_opp_table(dev, index);
1139 unlock:
1140 mutex_unlock(&opp_table_lock);
1142 return opp_table;
1145 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1147 return _opp_get_opp_table(dev, 0);
1149 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1151 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152 int index)
1154 return _opp_get_opp_table(dev, index);
1157 static void _opp_table_kref_release(struct kref *kref)
1159 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160 struct opp_device *opp_dev, *temp;
1161 int i;
1163 _of_clear_opp_table(opp_table);
1165 /* Release clk */
1166 if (!IS_ERR(opp_table->clk))
1167 clk_put(opp_table->clk);
1169 if (opp_table->paths) {
1170 for (i = 0; i < opp_table->path_count; i++)
1171 icc_put(opp_table->paths[i]);
1172 kfree(opp_table->paths);
1175 WARN_ON(!list_empty(&opp_table->opp_list));
1177 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1179 * The OPP table is getting removed, drop the performance state
1180 * constraints.
1182 if (opp_table->genpd_performance_state)
1183 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1185 _remove_opp_dev(opp_dev, opp_table);
1188 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189 mutex_destroy(&opp_table->lock);
1190 list_del(&opp_table->node);
1191 kfree(opp_table);
1193 mutex_unlock(&opp_table_lock);
1196 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1198 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199 &opp_table_lock);
1201 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1203 void _opp_free(struct dev_pm_opp *opp)
1205 kfree(opp);
1208 static void _opp_kref_release(struct dev_pm_opp *opp,
1209 struct opp_table *opp_table)
1212 * Notify the changes in the availability of the operable
1213 * frequency/voltage list.
1215 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216 _of_opp_free_required_opps(opp_table, opp);
1217 opp_debug_remove_one(opp);
1218 list_del(&opp->node);
1219 kfree(opp);
1222 static void _opp_kref_release_unlocked(struct kref *kref)
1224 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225 struct opp_table *opp_table = opp->opp_table;
1227 _opp_kref_release(opp, opp_table);
1230 static void _opp_kref_release_locked(struct kref *kref)
1232 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233 struct opp_table *opp_table = opp->opp_table;
1235 _opp_kref_release(opp, opp_table);
1236 mutex_unlock(&opp_table->lock);
1239 void dev_pm_opp_get(struct dev_pm_opp *opp)
1241 kref_get(&opp->kref);
1244 void dev_pm_opp_put(struct dev_pm_opp *opp)
1246 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247 &opp->opp_table->lock);
1249 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1251 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1253 kref_put(&opp->kref, _opp_kref_release_unlocked);
1257 * dev_pm_opp_remove() - Remove an OPP from OPP table
1258 * @dev: device for which we do this operation
1259 * @freq: OPP to remove with matching 'freq'
1261 * This function removes an opp from the opp table.
1263 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1265 struct dev_pm_opp *opp;
1266 struct opp_table *opp_table;
1267 bool found = false;
1269 opp_table = _find_opp_table(dev);
1270 if (IS_ERR(opp_table))
1271 return;
1273 mutex_lock(&opp_table->lock);
1275 list_for_each_entry(opp, &opp_table->opp_list, node) {
1276 if (opp->rate == freq) {
1277 found = true;
1278 break;
1282 mutex_unlock(&opp_table->lock);
1284 if (found) {
1285 dev_pm_opp_put(opp);
1287 /* Drop the reference taken by dev_pm_opp_add() */
1288 dev_pm_opp_put_opp_table(opp_table);
1289 } else {
1290 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291 __func__, freq);
1294 /* Drop the reference taken by _find_opp_table() */
1295 dev_pm_opp_put_opp_table(opp_table);
1297 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1299 void _opp_remove_all_static(struct opp_table *opp_table)
1301 struct dev_pm_opp *opp, *tmp;
1303 mutex_lock(&opp_table->lock);
1305 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1306 goto unlock;
1308 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1309 if (!opp->dynamic)
1310 dev_pm_opp_put_unlocked(opp);
1313 unlock:
1314 mutex_unlock(&opp_table->lock);
1318 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1319 * @dev: device for which we do this operation
1321 * This function removes all dynamically created OPPs from the opp table.
1323 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1325 struct opp_table *opp_table;
1326 struct dev_pm_opp *opp, *temp;
1327 int count = 0;
1329 opp_table = _find_opp_table(dev);
1330 if (IS_ERR(opp_table))
1331 return;
1333 mutex_lock(&opp_table->lock);
1334 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1335 if (opp->dynamic) {
1336 dev_pm_opp_put_unlocked(opp);
1337 count++;
1340 mutex_unlock(&opp_table->lock);
1342 /* Drop the references taken by dev_pm_opp_add() */
1343 while (count--)
1344 dev_pm_opp_put_opp_table(opp_table);
1346 /* Drop the reference taken by _find_opp_table() */
1347 dev_pm_opp_put_opp_table(opp_table);
1349 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1351 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1353 struct dev_pm_opp *opp;
1354 int supply_count, supply_size, icc_size;
1356 /* Allocate space for at least one supply */
1357 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1358 supply_size = sizeof(*opp->supplies) * supply_count;
1359 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1361 /* allocate new OPP node and supplies structures */
1362 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1364 if (!opp)
1365 return NULL;
1367 /* Put the supplies at the end of the OPP structure as an empty array */
1368 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1369 if (icc_size)
1370 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1371 INIT_LIST_HEAD(&opp->node);
1373 return opp;
1376 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1377 struct opp_table *opp_table)
1379 struct regulator *reg;
1380 int i;
1382 if (!opp_table->regulators)
1383 return true;
1385 for (i = 0; i < opp_table->regulator_count; i++) {
1386 reg = opp_table->regulators[i];
1388 if (!regulator_is_supported_voltage(reg,
1389 opp->supplies[i].u_volt_min,
1390 opp->supplies[i].u_volt_max)) {
1391 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1392 __func__, opp->supplies[i].u_volt_min,
1393 opp->supplies[i].u_volt_max);
1394 return false;
1398 return true;
1401 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1403 if (opp1->rate != opp2->rate)
1404 return opp1->rate < opp2->rate ? -1 : 1;
1405 if (opp1->bandwidth && opp2->bandwidth &&
1406 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1407 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1408 if (opp1->level != opp2->level)
1409 return opp1->level < opp2->level ? -1 : 1;
1410 return 0;
1413 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1414 struct opp_table *opp_table,
1415 struct list_head **head)
1417 struct dev_pm_opp *opp;
1418 int opp_cmp;
1421 * Insert new OPP in order of increasing frequency and discard if
1422 * already present.
1424 * Need to use &opp_table->opp_list in the condition part of the 'for'
1425 * loop, don't replace it with head otherwise it will become an infinite
1426 * loop.
1428 list_for_each_entry(opp, &opp_table->opp_list, node) {
1429 opp_cmp = _opp_compare_key(new_opp, opp);
1430 if (opp_cmp > 0) {
1431 *head = &opp->node;
1432 continue;
1435 if (opp_cmp < 0)
1436 return 0;
1438 /* Duplicate OPPs */
1439 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1440 __func__, opp->rate, opp->supplies[0].u_volt,
1441 opp->available, new_opp->rate,
1442 new_opp->supplies[0].u_volt, new_opp->available);
1444 /* Should we compare voltages for all regulators here ? */
1445 return opp->available &&
1446 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1449 return 0;
1453 * Returns:
1454 * 0: On success. And appropriate error message for duplicate OPPs.
1455 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1456 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1457 * sure we don't print error messages unnecessarily if different parts of
1458 * kernel try to initialize the OPP table.
1459 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1460 * should be considered an error by the callers of _opp_add().
1462 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1463 struct opp_table *opp_table, bool rate_not_available)
1465 struct list_head *head;
1466 int ret;
1468 mutex_lock(&opp_table->lock);
1469 head = &opp_table->opp_list;
1471 if (likely(!rate_not_available)) {
1472 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1473 if (ret) {
1474 mutex_unlock(&opp_table->lock);
1475 return ret;
1479 list_add(&new_opp->node, head);
1480 mutex_unlock(&opp_table->lock);
1482 new_opp->opp_table = opp_table;
1483 kref_init(&new_opp->kref);
1485 opp_debug_create_one(new_opp, opp_table);
1487 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1488 new_opp->available = false;
1489 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1490 __func__, new_opp->rate);
1493 return 0;
1497 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1498 * @opp_table: OPP table
1499 * @dev: device for which we do this operation
1500 * @freq: Frequency in Hz for this OPP
1501 * @u_volt: Voltage in uVolts for this OPP
1502 * @dynamic: Dynamically added OPPs.
1504 * This function adds an opp definition to the opp table and returns status.
1505 * The opp is made available by default and it can be controlled using
1506 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1508 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1509 * and freed by dev_pm_opp_of_remove_table.
1511 * Return:
1512 * 0 On success OR
1513 * Duplicate OPPs (both freq and volt are same) and opp->available
1514 * -EEXIST Freq are same and volt are different OR
1515 * Duplicate OPPs (both freq and volt are same) and !opp->available
1516 * -ENOMEM Memory allocation failure
1518 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1519 unsigned long freq, long u_volt, bool dynamic)
1521 struct dev_pm_opp *new_opp;
1522 unsigned long tol;
1523 int ret;
1525 new_opp = _opp_allocate(opp_table);
1526 if (!new_opp)
1527 return -ENOMEM;
1529 /* populate the opp table */
1530 new_opp->rate = freq;
1531 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1532 new_opp->supplies[0].u_volt = u_volt;
1533 new_opp->supplies[0].u_volt_min = u_volt - tol;
1534 new_opp->supplies[0].u_volt_max = u_volt + tol;
1535 new_opp->available = true;
1536 new_opp->dynamic = dynamic;
1538 ret = _opp_add(dev, new_opp, opp_table, false);
1539 if (ret) {
1540 /* Don't return error for duplicate OPPs */
1541 if (ret == -EBUSY)
1542 ret = 0;
1543 goto free_opp;
1547 * Notify the changes in the availability of the operable
1548 * frequency/voltage list.
1550 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1551 return 0;
1553 free_opp:
1554 _opp_free(new_opp);
1556 return ret;
1560 * dev_pm_opp_set_supported_hw() - Set supported platforms
1561 * @dev: Device for which supported-hw has to be set.
1562 * @versions: Array of hierarchy of versions to match.
1563 * @count: Number of elements in the array.
1565 * This is required only for the V2 bindings, and it enables a platform to
1566 * specify the hierarchy of versions it supports. OPP layer will then enable
1567 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1568 * property.
1570 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1571 const u32 *versions, unsigned int count)
1573 struct opp_table *opp_table;
1575 opp_table = dev_pm_opp_get_opp_table(dev);
1576 if (!opp_table)
1577 return ERR_PTR(-ENOMEM);
1579 /* Make sure there are no concurrent readers while updating opp_table */
1580 WARN_ON(!list_empty(&opp_table->opp_list));
1582 /* Another CPU that shares the OPP table has set the property ? */
1583 if (opp_table->supported_hw)
1584 return opp_table;
1586 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1587 GFP_KERNEL);
1588 if (!opp_table->supported_hw) {
1589 dev_pm_opp_put_opp_table(opp_table);
1590 return ERR_PTR(-ENOMEM);
1593 opp_table->supported_hw_count = count;
1595 return opp_table;
1597 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1600 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1601 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1603 * This is required only for the V2 bindings, and is called for a matching
1604 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1605 * will not be freed.
1607 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1609 /* Make sure there are no concurrent readers while updating opp_table */
1610 WARN_ON(!list_empty(&opp_table->opp_list));
1612 kfree(opp_table->supported_hw);
1613 opp_table->supported_hw = NULL;
1614 opp_table->supported_hw_count = 0;
1616 dev_pm_opp_put_opp_table(opp_table);
1618 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1621 * dev_pm_opp_set_prop_name() - Set prop-extn name
1622 * @dev: Device for which the prop-name has to be set.
1623 * @name: name to postfix to properties.
1625 * This is required only for the V2 bindings, and it enables a platform to
1626 * specify the extn to be used for certain property names. The properties to
1627 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1628 * should postfix the property name with -<name> while looking for them.
1630 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1632 struct opp_table *opp_table;
1634 opp_table = dev_pm_opp_get_opp_table(dev);
1635 if (!opp_table)
1636 return ERR_PTR(-ENOMEM);
1638 /* Make sure there are no concurrent readers while updating opp_table */
1639 WARN_ON(!list_empty(&opp_table->opp_list));
1641 /* Another CPU that shares the OPP table has set the property ? */
1642 if (opp_table->prop_name)
1643 return opp_table;
1645 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1646 if (!opp_table->prop_name) {
1647 dev_pm_opp_put_opp_table(opp_table);
1648 return ERR_PTR(-ENOMEM);
1651 return opp_table;
1653 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1656 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1657 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1659 * This is required only for the V2 bindings, and is called for a matching
1660 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1661 * will not be freed.
1663 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1665 /* Make sure there are no concurrent readers while updating opp_table */
1666 WARN_ON(!list_empty(&opp_table->opp_list));
1668 kfree(opp_table->prop_name);
1669 opp_table->prop_name = NULL;
1671 dev_pm_opp_put_opp_table(opp_table);
1673 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1675 static int _allocate_set_opp_data(struct opp_table *opp_table)
1677 struct dev_pm_set_opp_data *data;
1678 int len, count = opp_table->regulator_count;
1680 if (WARN_ON(!opp_table->regulators))
1681 return -EINVAL;
1683 /* space for set_opp_data */
1684 len = sizeof(*data);
1686 /* space for old_opp.supplies and new_opp.supplies */
1687 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1689 data = kzalloc(len, GFP_KERNEL);
1690 if (!data)
1691 return -ENOMEM;
1693 data->old_opp.supplies = (void *)(data + 1);
1694 data->new_opp.supplies = data->old_opp.supplies + count;
1696 opp_table->set_opp_data = data;
1698 return 0;
1701 static void _free_set_opp_data(struct opp_table *opp_table)
1703 kfree(opp_table->set_opp_data);
1704 opp_table->set_opp_data = NULL;
1708 * dev_pm_opp_set_regulators() - Set regulator names for the device
1709 * @dev: Device for which regulator name is being set.
1710 * @names: Array of pointers to the names of the regulator.
1711 * @count: Number of regulators.
1713 * In order to support OPP switching, OPP layer needs to know the name of the
1714 * device's regulators, as the core would be required to switch voltages as
1715 * well.
1717 * This must be called before any OPPs are initialized for the device.
1719 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1720 const char * const names[],
1721 unsigned int count)
1723 struct opp_table *opp_table;
1724 struct regulator *reg;
1725 int ret, i;
1727 opp_table = dev_pm_opp_get_opp_table(dev);
1728 if (!opp_table)
1729 return ERR_PTR(-ENOMEM);
1731 /* This should be called before OPPs are initialized */
1732 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1733 ret = -EBUSY;
1734 goto err;
1737 /* Another CPU that shares the OPP table has set the regulators ? */
1738 if (opp_table->regulators)
1739 return opp_table;
1741 opp_table->regulators = kmalloc_array(count,
1742 sizeof(*opp_table->regulators),
1743 GFP_KERNEL);
1744 if (!opp_table->regulators) {
1745 ret = -ENOMEM;
1746 goto err;
1749 for (i = 0; i < count; i++) {
1750 reg = regulator_get_optional(dev, names[i]);
1751 if (IS_ERR(reg)) {
1752 ret = PTR_ERR(reg);
1753 if (ret != -EPROBE_DEFER)
1754 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1755 __func__, names[i], ret);
1756 goto free_regulators;
1759 opp_table->regulators[i] = reg;
1762 opp_table->regulator_count = count;
1764 /* Allocate block only once to pass to set_opp() routines */
1765 ret = _allocate_set_opp_data(opp_table);
1766 if (ret)
1767 goto free_regulators;
1769 return opp_table;
1771 free_regulators:
1772 while (i != 0)
1773 regulator_put(opp_table->regulators[--i]);
1775 kfree(opp_table->regulators);
1776 opp_table->regulators = NULL;
1777 opp_table->regulator_count = -1;
1778 err:
1779 dev_pm_opp_put_opp_table(opp_table);
1781 return ERR_PTR(ret);
1783 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1786 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1787 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1789 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1791 int i;
1793 if (!opp_table->regulators)
1794 goto put_opp_table;
1796 /* Make sure there are no concurrent readers while updating opp_table */
1797 WARN_ON(!list_empty(&opp_table->opp_list));
1799 if (opp_table->regulator_enabled) {
1800 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1801 regulator_disable(opp_table->regulators[i]);
1803 opp_table->regulator_enabled = false;
1806 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1807 regulator_put(opp_table->regulators[i]);
1809 _free_set_opp_data(opp_table);
1811 kfree(opp_table->regulators);
1812 opp_table->regulators = NULL;
1813 opp_table->regulator_count = -1;
1815 put_opp_table:
1816 dev_pm_opp_put_opp_table(opp_table);
1818 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1821 * dev_pm_opp_set_clkname() - Set clk name for the device
1822 * @dev: Device for which clk name is being set.
1823 * @name: Clk name.
1825 * In order to support OPP switching, OPP layer needs to get pointer to the
1826 * clock for the device. Simple cases work fine without using this routine (i.e.
1827 * by passing connection-id as NULL), but for a device with multiple clocks
1828 * available, the OPP core needs to know the exact name of the clk to use.
1830 * This must be called before any OPPs are initialized for the device.
1832 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1834 struct opp_table *opp_table;
1835 int ret;
1837 opp_table = dev_pm_opp_get_opp_table(dev);
1838 if (!opp_table)
1839 return ERR_PTR(-ENOMEM);
1841 /* This should be called before OPPs are initialized */
1842 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1843 ret = -EBUSY;
1844 goto err;
1847 /* Already have default clk set, free it */
1848 if (!IS_ERR(opp_table->clk))
1849 clk_put(opp_table->clk);
1851 /* Find clk for the device */
1852 opp_table->clk = clk_get(dev, name);
1853 if (IS_ERR(opp_table->clk)) {
1854 ret = PTR_ERR(opp_table->clk);
1855 if (ret != -EPROBE_DEFER) {
1856 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1857 ret);
1859 goto err;
1862 return opp_table;
1864 err:
1865 dev_pm_opp_put_opp_table(opp_table);
1867 return ERR_PTR(ret);
1869 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1872 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1873 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1875 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1877 /* Make sure there are no concurrent readers while updating opp_table */
1878 WARN_ON(!list_empty(&opp_table->opp_list));
1880 clk_put(opp_table->clk);
1881 opp_table->clk = ERR_PTR(-EINVAL);
1883 dev_pm_opp_put_opp_table(opp_table);
1885 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1888 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1889 * @dev: Device for which the helper is getting registered.
1890 * @set_opp: Custom set OPP helper.
1892 * This is useful to support complex platforms (like platforms with multiple
1893 * regulators per device), instead of the generic OPP set rate helper.
1895 * This must be called before any OPPs are initialized for the device.
1897 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1898 int (*set_opp)(struct dev_pm_set_opp_data *data))
1900 struct opp_table *opp_table;
1902 if (!set_opp)
1903 return ERR_PTR(-EINVAL);
1905 opp_table = dev_pm_opp_get_opp_table(dev);
1906 if (!opp_table)
1907 return ERR_PTR(-ENOMEM);
1909 /* This should be called before OPPs are initialized */
1910 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1911 dev_pm_opp_put_opp_table(opp_table);
1912 return ERR_PTR(-EBUSY);
1915 /* Another CPU that shares the OPP table has set the helper ? */
1916 if (!opp_table->set_opp)
1917 opp_table->set_opp = set_opp;
1919 return opp_table;
1921 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1924 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1925 * set_opp helper
1926 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1928 * Release resources blocked for platform specific set_opp helper.
1930 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1932 /* Make sure there are no concurrent readers while updating opp_table */
1933 WARN_ON(!list_empty(&opp_table->opp_list));
1935 opp_table->set_opp = NULL;
1936 dev_pm_opp_put_opp_table(opp_table);
1938 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1940 static void _opp_detach_genpd(struct opp_table *opp_table)
1942 int index;
1944 for (index = 0; index < opp_table->required_opp_count; index++) {
1945 if (!opp_table->genpd_virt_devs[index])
1946 continue;
1948 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1949 opp_table->genpd_virt_devs[index] = NULL;
1952 kfree(opp_table->genpd_virt_devs);
1953 opp_table->genpd_virt_devs = NULL;
1957 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1958 * @dev: Consumer device for which the genpd is getting attached.
1959 * @names: Null terminated array of pointers containing names of genpd to attach.
1960 * @virt_devs: Pointer to return the array of virtual devices.
1962 * Multiple generic power domains for a device are supported with the help of
1963 * virtual genpd devices, which are created for each consumer device - genpd
1964 * pair. These are the device structures which are attached to the power domain
1965 * and are required by the OPP core to set the performance state of the genpd.
1966 * The same API also works for the case where single genpd is available and so
1967 * we don't need to support that separately.
1969 * This helper will normally be called by the consumer driver of the device
1970 * "dev", as only that has details of the genpd names.
1972 * This helper needs to be called once with a list of all genpd to attach.
1973 * Otherwise the original device structure will be used instead by the OPP core.
1975 * The order of entries in the names array must match the order in which
1976 * "required-opps" are added in DT.
1978 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1979 const char **names, struct device ***virt_devs)
1981 struct opp_table *opp_table;
1982 struct device *virt_dev;
1983 int index = 0, ret = -EINVAL;
1984 const char **name = names;
1986 opp_table = dev_pm_opp_get_opp_table(dev);
1987 if (!opp_table)
1988 return ERR_PTR(-ENOMEM);
1991 * If the genpd's OPP table isn't already initialized, parsing of the
1992 * required-opps fail for dev. We should retry this after genpd's OPP
1993 * table is added.
1995 if (!opp_table->required_opp_count) {
1996 ret = -EPROBE_DEFER;
1997 goto put_table;
2000 mutex_lock(&opp_table->genpd_virt_dev_lock);
2002 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2003 sizeof(*opp_table->genpd_virt_devs),
2004 GFP_KERNEL);
2005 if (!opp_table->genpd_virt_devs)
2006 goto unlock;
2008 while (*name) {
2009 if (index >= opp_table->required_opp_count) {
2010 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2011 *name, opp_table->required_opp_count, index);
2012 goto err;
2015 if (opp_table->genpd_virt_devs[index]) {
2016 dev_err(dev, "Genpd virtual device already set %s\n",
2017 *name);
2018 goto err;
2021 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2022 if (IS_ERR(virt_dev)) {
2023 ret = PTR_ERR(virt_dev);
2024 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2025 goto err;
2028 opp_table->genpd_virt_devs[index] = virt_dev;
2029 index++;
2030 name++;
2033 if (virt_devs)
2034 *virt_devs = opp_table->genpd_virt_devs;
2035 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2037 return opp_table;
2039 err:
2040 _opp_detach_genpd(opp_table);
2041 unlock:
2042 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2044 put_table:
2045 dev_pm_opp_put_opp_table(opp_table);
2047 return ERR_PTR(ret);
2049 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2052 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2053 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2055 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2056 * OPP table.
2058 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2061 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2062 * used in parallel.
2064 mutex_lock(&opp_table->genpd_virt_dev_lock);
2065 _opp_detach_genpd(opp_table);
2066 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2068 dev_pm_opp_put_opp_table(opp_table);
2070 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2073 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2074 * @src_table: OPP table which has dst_table as one of its required OPP table.
2075 * @dst_table: Required OPP table of the src_table.
2076 * @pstate: Current performance state of the src_table.
2078 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2079 * "required-opps" property of the OPP (present in @src_table) which has
2080 * performance state set to @pstate.
2082 * Return: Zero or positive performance state on success, otherwise negative
2083 * value on errors.
2085 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2086 struct opp_table *dst_table,
2087 unsigned int pstate)
2089 struct dev_pm_opp *opp;
2090 int dest_pstate = -EINVAL;
2091 int i;
2093 if (!pstate)
2094 return 0;
2097 * Normally the src_table will have the "required_opps" property set to
2098 * point to one of the OPPs in the dst_table, but in some cases the
2099 * genpd and its master have one to one mapping of performance states
2100 * and so none of them have the "required-opps" property set. Return the
2101 * pstate of the src_table as it is in such cases.
2103 if (!src_table->required_opp_count)
2104 return pstate;
2106 for (i = 0; i < src_table->required_opp_count; i++) {
2107 if (src_table->required_opp_tables[i]->np == dst_table->np)
2108 break;
2111 if (unlikely(i == src_table->required_opp_count)) {
2112 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2113 __func__, src_table, dst_table);
2114 return -EINVAL;
2117 mutex_lock(&src_table->lock);
2119 list_for_each_entry(opp, &src_table->opp_list, node) {
2120 if (opp->pstate == pstate) {
2121 dest_pstate = opp->required_opps[i]->pstate;
2122 goto unlock;
2126 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2127 dst_table);
2129 unlock:
2130 mutex_unlock(&src_table->lock);
2132 return dest_pstate;
2136 * dev_pm_opp_add() - Add an OPP table from a table definitions
2137 * @dev: device for which we do this operation
2138 * @freq: Frequency in Hz for this OPP
2139 * @u_volt: Voltage in uVolts for this OPP
2141 * This function adds an opp definition to the opp table and returns status.
2142 * The opp is made available by default and it can be controlled using
2143 * dev_pm_opp_enable/disable functions.
2145 * Return:
2146 * 0 On success OR
2147 * Duplicate OPPs (both freq and volt are same) and opp->available
2148 * -EEXIST Freq are same and volt are different OR
2149 * Duplicate OPPs (both freq and volt are same) and !opp->available
2150 * -ENOMEM Memory allocation failure
2152 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2154 struct opp_table *opp_table;
2155 int ret;
2157 opp_table = dev_pm_opp_get_opp_table(dev);
2158 if (!opp_table)
2159 return -ENOMEM;
2161 /* Fix regulator count for dynamic OPPs */
2162 opp_table->regulator_count = 1;
2164 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2165 if (ret)
2166 dev_pm_opp_put_opp_table(opp_table);
2168 return ret;
2170 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2173 * _opp_set_availability() - helper to set the availability of an opp
2174 * @dev: device for which we do this operation
2175 * @freq: OPP frequency to modify availability
2176 * @availability_req: availability status requested for this opp
2178 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2179 * which is isolated here.
2181 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2182 * copy operation, returns 0 if no modification was done OR modification was
2183 * successful.
2185 static int _opp_set_availability(struct device *dev, unsigned long freq,
2186 bool availability_req)
2188 struct opp_table *opp_table;
2189 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2190 int r = 0;
2192 /* Find the opp_table */
2193 opp_table = _find_opp_table(dev);
2194 if (IS_ERR(opp_table)) {
2195 r = PTR_ERR(opp_table);
2196 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2197 return r;
2200 mutex_lock(&opp_table->lock);
2202 /* Do we have the frequency? */
2203 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2204 if (tmp_opp->rate == freq) {
2205 opp = tmp_opp;
2206 break;
2210 if (IS_ERR(opp)) {
2211 r = PTR_ERR(opp);
2212 goto unlock;
2215 /* Is update really needed? */
2216 if (opp->available == availability_req)
2217 goto unlock;
2219 opp->available = availability_req;
2221 dev_pm_opp_get(opp);
2222 mutex_unlock(&opp_table->lock);
2224 /* Notify the change of the OPP availability */
2225 if (availability_req)
2226 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2227 opp);
2228 else
2229 blocking_notifier_call_chain(&opp_table->head,
2230 OPP_EVENT_DISABLE, opp);
2232 dev_pm_opp_put(opp);
2233 goto put_table;
2235 unlock:
2236 mutex_unlock(&opp_table->lock);
2237 put_table:
2238 dev_pm_opp_put_opp_table(opp_table);
2239 return r;
2243 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2244 * @dev: device for which we do this operation
2245 * @freq: OPP frequency to adjust voltage of
2246 * @u_volt: new OPP target voltage
2247 * @u_volt_min: new OPP min voltage
2248 * @u_volt_max: new OPP max voltage
2250 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2251 * copy operation, returns 0 if no modifcation was done OR modification was
2252 * successful.
2254 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2255 unsigned long u_volt, unsigned long u_volt_min,
2256 unsigned long u_volt_max)
2259 struct opp_table *opp_table;
2260 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2261 int r = 0;
2263 /* Find the opp_table */
2264 opp_table = _find_opp_table(dev);
2265 if (IS_ERR(opp_table)) {
2266 r = PTR_ERR(opp_table);
2267 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2268 return r;
2271 mutex_lock(&opp_table->lock);
2273 /* Do we have the frequency? */
2274 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2275 if (tmp_opp->rate == freq) {
2276 opp = tmp_opp;
2277 break;
2281 if (IS_ERR(opp)) {
2282 r = PTR_ERR(opp);
2283 goto adjust_unlock;
2286 /* Is update really needed? */
2287 if (opp->supplies->u_volt == u_volt)
2288 goto adjust_unlock;
2290 opp->supplies->u_volt = u_volt;
2291 opp->supplies->u_volt_min = u_volt_min;
2292 opp->supplies->u_volt_max = u_volt_max;
2294 dev_pm_opp_get(opp);
2295 mutex_unlock(&opp_table->lock);
2297 /* Notify the voltage change of the OPP */
2298 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2299 opp);
2301 dev_pm_opp_put(opp);
2302 goto adjust_put_table;
2304 adjust_unlock:
2305 mutex_unlock(&opp_table->lock);
2306 adjust_put_table:
2307 dev_pm_opp_put_opp_table(opp_table);
2308 return r;
2310 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2313 * dev_pm_opp_enable() - Enable a specific OPP
2314 * @dev: device for which we do this operation
2315 * @freq: OPP frequency to enable
2317 * Enables a provided opp. If the operation is valid, this returns 0, else the
2318 * corresponding error value. It is meant to be used for users an OPP available
2319 * after being temporarily made unavailable with dev_pm_opp_disable.
2321 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2322 * copy operation, returns 0 if no modification was done OR modification was
2323 * successful.
2325 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2327 return _opp_set_availability(dev, freq, true);
2329 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2332 * dev_pm_opp_disable() - Disable a specific OPP
2333 * @dev: device for which we do this operation
2334 * @freq: OPP frequency to disable
2336 * Disables a provided opp. If the operation is valid, this returns
2337 * 0, else the corresponding error value. It is meant to be a temporary
2338 * control by users to make this OPP not available until the circumstances are
2339 * right to make it available again (with a call to dev_pm_opp_enable).
2341 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2342 * copy operation, returns 0 if no modification was done OR modification was
2343 * successful.
2345 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2347 return _opp_set_availability(dev, freq, false);
2349 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2352 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2353 * @dev: Device for which notifier needs to be registered
2354 * @nb: Notifier block to be registered
2356 * Return: 0 on success or a negative error value.
2358 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2360 struct opp_table *opp_table;
2361 int ret;
2363 opp_table = _find_opp_table(dev);
2364 if (IS_ERR(opp_table))
2365 return PTR_ERR(opp_table);
2367 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2369 dev_pm_opp_put_opp_table(opp_table);
2371 return ret;
2373 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2376 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2377 * @dev: Device for which notifier needs to be unregistered
2378 * @nb: Notifier block to be unregistered
2380 * Return: 0 on success or a negative error value.
2382 int dev_pm_opp_unregister_notifier(struct device *dev,
2383 struct notifier_block *nb)
2385 struct opp_table *opp_table;
2386 int ret;
2388 opp_table = _find_opp_table(dev);
2389 if (IS_ERR(opp_table))
2390 return PTR_ERR(opp_table);
2392 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2394 dev_pm_opp_put_opp_table(opp_table);
2396 return ret;
2398 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2400 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2402 struct opp_table *opp_table;
2404 /* Check for existing table for 'dev' */
2405 opp_table = _find_opp_table(dev);
2406 if (IS_ERR(opp_table)) {
2407 int error = PTR_ERR(opp_table);
2409 if (error != -ENODEV)
2410 WARN(1, "%s: opp_table: %d\n",
2411 IS_ERR_OR_NULL(dev) ?
2412 "Invalid device" : dev_name(dev),
2413 error);
2414 return;
2417 _opp_remove_all_static(opp_table);
2419 /* Drop reference taken by _find_opp_table() */
2420 dev_pm_opp_put_opp_table(opp_table);
2422 /* Drop reference taken while the OPP table was added */
2423 dev_pm_opp_put_opp_table(opp_table);
2427 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2428 * @dev: device pointer used to lookup OPP table.
2430 * Free both OPPs created using static entries present in DT and the
2431 * dynamically added entries.
2433 void dev_pm_opp_remove_table(struct device *dev)
2435 _dev_pm_opp_find_and_remove_table(dev);
2437 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);