1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
38 static s32
igb_get_invariants_82575(struct e1000_hw
*);
39 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
40 static void igb_release_phy_82575(struct e1000_hw
*);
41 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
42 static void igb_release_nvm_82575(struct e1000_hw
*);
43 static s32
igb_check_for_link_82575(struct e1000_hw
*);
44 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
45 static s32
igb_init_hw_82575(struct e1000_hw
*);
46 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
47 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
48 static s32
igb_read_phy_reg_82580(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_write_phy_reg_82580(struct e1000_hw
*, u32
, u16
);
50 static s32
igb_reset_hw_82575(struct e1000_hw
*);
51 static s32
igb_reset_hw_82580(struct e1000_hw
*);
52 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
53 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
54 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
55 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
57 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
58 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
60 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
61 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
62 static bool igb_sgmii_active_82575(struct e1000_hw
*);
63 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
64 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
65 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
66 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
67 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
68 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
69 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
,
71 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
73 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
74 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
75 static const u16 e1000_82580_rxpbs_table
[] =
76 { 36, 72, 144, 1, 2, 4, 8, 16,
78 #define E1000_82580_RXPBS_TABLE_SIZE \
79 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 * @hw: pointer to the HW structure
85 * Called to determine if the I2C pins are being used for I2C or as an
86 * external MDIO interface since the two options are mutually exclusive.
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
91 bool ext_mdio
= false;
93 switch (hw
->mac
.type
) {
96 reg
= rd32(E1000_MDIC
);
97 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
101 reg
= rd32(E1000_MDICNFG
);
102 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
110 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
112 struct e1000_phy_info
*phy
= &hw
->phy
;
113 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
114 struct e1000_mac_info
*mac
= &hw
->mac
;
115 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
121 switch (hw
->device_id
) {
122 case E1000_DEV_ID_82575EB_COPPER
:
123 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
124 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
125 mac
->type
= e1000_82575
;
127 case E1000_DEV_ID_82576
:
128 case E1000_DEV_ID_82576_NS
:
129 case E1000_DEV_ID_82576_NS_SERDES
:
130 case E1000_DEV_ID_82576_FIBER
:
131 case E1000_DEV_ID_82576_SERDES
:
132 case E1000_DEV_ID_82576_QUAD_COPPER
:
133 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
134 case E1000_DEV_ID_82576_SERDES_QUAD
:
135 mac
->type
= e1000_82576
;
137 case E1000_DEV_ID_82580_COPPER
:
138 case E1000_DEV_ID_82580_FIBER
:
139 case E1000_DEV_ID_82580_QUAD_FIBER
:
140 case E1000_DEV_ID_82580_SERDES
:
141 case E1000_DEV_ID_82580_SGMII
:
142 case E1000_DEV_ID_82580_COPPER_DUAL
:
143 case E1000_DEV_ID_DH89XXCC_SGMII
:
144 case E1000_DEV_ID_DH89XXCC_SERDES
:
145 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
146 case E1000_DEV_ID_DH89XXCC_SFP
:
147 mac
->type
= e1000_82580
;
149 case E1000_DEV_ID_I350_COPPER
:
150 case E1000_DEV_ID_I350_FIBER
:
151 case E1000_DEV_ID_I350_SERDES
:
152 case E1000_DEV_ID_I350_SGMII
:
153 mac
->type
= e1000_i350
;
156 return -E1000_ERR_MAC_INIT
;
162 * The 82575 uses bits 22:23 for link mode. The mode can be changed
163 * based on the EEPROM. We cannot rely upon device ID. There
164 * is no distinguishable difference between fiber and internal
165 * SerDes mode on the 82575. There can be an external PHY attached
166 * on the SGMII interface. For this, we'll set sgmii_active to true.
168 phy
->media_type
= e1000_media_type_copper
;
169 dev_spec
->sgmii_active
= false;
171 ctrl_ext
= rd32(E1000_CTRL_EXT
);
172 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
173 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
174 dev_spec
->sgmii_active
= true;
176 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
177 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
178 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
184 /* Set mta register count */
185 mac
->mta_reg_count
= 128;
186 /* Set rar entry count */
187 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
188 if (mac
->type
== e1000_82576
)
189 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
190 if (mac
->type
== e1000_82580
)
191 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
192 if (mac
->type
== e1000_i350
)
193 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
195 if (mac
->type
>= e1000_82580
)
196 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
198 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
199 /* Set if part includes ASF firmware */
200 mac
->asf_firmware_present
= true;
201 /* Set if manageability features are enabled. */
202 mac
->arc_subsystem_valid
=
203 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
205 /* enable EEE on i350 parts */
206 if (mac
->type
== e1000_i350
)
207 dev_spec
->eee_disable
= false;
209 dev_spec
->eee_disable
= true;
210 /* physical interface link setup */
211 mac
->ops
.setup_physical_interface
=
212 (hw
->phy
.media_type
== e1000_media_type_copper
)
213 ? igb_setup_copper_link_82575
214 : igb_setup_serdes_link_82575
;
216 /* NVM initialization */
217 eecd
= rd32(E1000_EECD
);
219 nvm
->opcode_bits
= 8;
221 switch (nvm
->override
) {
222 case e1000_nvm_override_spi_large
:
224 nvm
->address_bits
= 16;
226 case e1000_nvm_override_spi_small
:
228 nvm
->address_bits
= 8;
231 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
232 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
236 nvm
->type
= e1000_nvm_eeprom_spi
;
238 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
239 E1000_EECD_SIZE_EX_SHIFT
);
242 * Added to a constant, "size" becomes the left-shift value
243 * for setting word_size.
245 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
247 nvm
->word_size
= 1 << size
;
248 if (nvm
->word_size
== (1 << 15))
249 nvm
->page_size
= 128;
251 /* NVM Function Pointers */
252 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
253 if (nvm
->word_size
< (1 << 15))
254 nvm
->ops
.read
= igb_read_nvm_eerd
;
256 nvm
->ops
.read
= igb_read_nvm_spi
;
258 nvm
->ops
.release
= igb_release_nvm_82575
;
259 switch (hw
->mac
.type
) {
261 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
262 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
265 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
266 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
269 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
270 nvm
->ops
.update
= igb_update_nvm_checksum
;
272 nvm
->ops
.write
= igb_write_nvm_spi
;
274 /* if part supports SR-IOV then initialize mailbox parameters */
278 igb_init_mbx_params_pf(hw
);
284 /* setup PHY parameters */
285 if (phy
->media_type
!= e1000_media_type_copper
) {
286 phy
->type
= e1000_phy_none
;
290 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
291 phy
->reset_delay_us
= 100;
293 ctrl_ext
= rd32(E1000_CTRL_EXT
);
295 /* PHY function pointers */
296 if (igb_sgmii_active_82575(hw
)) {
297 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
298 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
300 phy
->ops
.reset
= igb_phy_hw_reset
;
301 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
304 wr32(E1000_CTRL_EXT
, ctrl_ext
);
305 igb_reset_mdicnfg_82580(hw
);
307 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
308 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
309 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
310 } else if (hw
->mac
.type
>= e1000_82580
) {
311 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
312 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
314 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
315 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
319 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
320 E1000_STATUS_FUNC_SHIFT
;
322 /* Set phy->phy_addr and phy->id. */
323 ret_val
= igb_get_phy_id_82575(hw
);
327 /* Verify phy id and set remaining function pointers */
329 case I347AT4_E_PHY_ID
:
330 case M88E1112_E_PHY_ID
:
331 case M88E1111_I_PHY_ID
:
332 phy
->type
= e1000_phy_m88
;
333 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
335 if (phy
->id
== I347AT4_E_PHY_ID
||
336 phy
->id
== M88E1112_E_PHY_ID
)
337 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
339 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
341 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
343 case IGP03E1000_E_PHY_ID
:
344 phy
->type
= e1000_phy_igp_3
;
345 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
346 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
347 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
348 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
349 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
351 case I82580_I_PHY_ID
:
353 phy
->type
= e1000_phy_82580
;
354 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_82580
;
355 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
356 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
359 return -E1000_ERR_PHY
;
366 * igb_acquire_phy_82575 - Acquire rights to access PHY
367 * @hw: pointer to the HW structure
369 * Acquire access rights to the correct PHY. This is a
370 * function pointer entry point called by the api module.
372 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
374 u16 mask
= E1000_SWFW_PHY0_SM
;
376 if (hw
->bus
.func
== E1000_FUNC_1
)
377 mask
= E1000_SWFW_PHY1_SM
;
378 else if (hw
->bus
.func
== E1000_FUNC_2
)
379 mask
= E1000_SWFW_PHY2_SM
;
380 else if (hw
->bus
.func
== E1000_FUNC_3
)
381 mask
= E1000_SWFW_PHY3_SM
;
383 return igb_acquire_swfw_sync_82575(hw
, mask
);
387 * igb_release_phy_82575 - Release rights to access PHY
388 * @hw: pointer to the HW structure
390 * A wrapper to release access rights to the correct PHY. This is a
391 * function pointer entry point called by the api module.
393 static void igb_release_phy_82575(struct e1000_hw
*hw
)
395 u16 mask
= E1000_SWFW_PHY0_SM
;
397 if (hw
->bus
.func
== E1000_FUNC_1
)
398 mask
= E1000_SWFW_PHY1_SM
;
399 else if (hw
->bus
.func
== E1000_FUNC_2
)
400 mask
= E1000_SWFW_PHY2_SM
;
401 else if (hw
->bus
.func
== E1000_FUNC_3
)
402 mask
= E1000_SWFW_PHY3_SM
;
404 igb_release_swfw_sync_82575(hw
, mask
);
408 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
409 * @hw: pointer to the HW structure
410 * @offset: register offset to be read
411 * @data: pointer to the read data
413 * Reads the PHY register at offset using the serial gigabit media independent
414 * interface and stores the retrieved information in data.
416 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
419 s32 ret_val
= -E1000_ERR_PARAM
;
421 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
422 hw_dbg("PHY Address %u is out of range\n", offset
);
426 ret_val
= hw
->phy
.ops
.acquire(hw
);
430 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
432 hw
->phy
.ops
.release(hw
);
439 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
440 * @hw: pointer to the HW structure
441 * @offset: register offset to write to
442 * @data: data to write at register offset
444 * Writes the data to PHY register at the offset using the serial gigabit
445 * media independent interface.
447 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
450 s32 ret_val
= -E1000_ERR_PARAM
;
453 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
454 hw_dbg("PHY Address %d is out of range\n", offset
);
458 ret_val
= hw
->phy
.ops
.acquire(hw
);
462 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
464 hw
->phy
.ops
.release(hw
);
471 * igb_get_phy_id_82575 - Retrieve PHY addr and id
472 * @hw: pointer to the HW structure
474 * Retrieves the PHY address and ID for both PHY's which do and do not use
477 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
479 struct e1000_phy_info
*phy
= &hw
->phy
;
486 * For SGMII PHYs, we try the list of possible addresses until
487 * we find one that works. For non-SGMII PHYs
488 * (e.g. integrated copper PHYs), an address of 1 should
489 * work. The result of this function should mean phy->phy_addr
490 * and phy->id are set correctly.
492 if (!(igb_sgmii_active_82575(hw
))) {
494 ret_val
= igb_get_phy_id(hw
);
498 if (igb_sgmii_uses_mdio_82575(hw
)) {
499 switch (hw
->mac
.type
) {
502 mdic
= rd32(E1000_MDIC
);
503 mdic
&= E1000_MDIC_PHY_MASK
;
504 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
508 mdic
= rd32(E1000_MDICNFG
);
509 mdic
&= E1000_MDICNFG_PHY_MASK
;
510 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
513 ret_val
= -E1000_ERR_PHY
;
517 ret_val
= igb_get_phy_id(hw
);
521 /* Power on sgmii phy if it is disabled */
522 ctrl_ext
= rd32(E1000_CTRL_EXT
);
523 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
528 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
529 * Therefore, we need to test 1-7
531 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
532 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
534 hw_dbg("Vendor ID 0x%08X read at address %u\n",
537 * At the time of this writing, The M88 part is
538 * the only supported SGMII PHY product.
540 if (phy_id
== M88_VENDOR
)
543 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
547 /* A valid PHY type couldn't be found. */
548 if (phy
->addr
== 8) {
550 ret_val
= -E1000_ERR_PHY
;
553 ret_val
= igb_get_phy_id(hw
);
556 /* restore previous sfp cage power state */
557 wr32(E1000_CTRL_EXT
, ctrl_ext
);
564 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
565 * @hw: pointer to the HW structure
567 * Resets the PHY using the serial gigabit media independent interface.
569 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
574 * This isn't a true "hard" reset, but is the only reset
575 * available to us at this time.
578 hw_dbg("Soft resetting SGMII attached PHY...\n");
581 * SFP documentation requires the following to configure the SPF module
582 * to work on SGMII. No further documentation is given.
584 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
588 ret_val
= igb_phy_sw_reset(hw
);
595 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
596 * @hw: pointer to the HW structure
597 * @active: true to enable LPLU, false to disable
599 * Sets the LPLU D0 state according to the active flag. When
600 * activating LPLU this function also disables smart speed
601 * and vice versa. LPLU will not be activated unless the
602 * device autonegotiation advertisement meets standards of
603 * either 10 or 10/100 or 10/100/1000 at all duplexes.
604 * This is a function pointer entry point only called by
605 * PHY setup routines.
607 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
609 struct e1000_phy_info
*phy
= &hw
->phy
;
613 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
618 data
|= IGP02E1000_PM_D0_LPLU
;
619 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
624 /* When LPLU is enabled, we should disable SmartSpeed */
625 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
627 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
628 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
633 data
&= ~IGP02E1000_PM_D0_LPLU
;
634 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
637 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
638 * during Dx states where the power conservation is most
639 * important. During driver activity we should enable
640 * SmartSpeed, so performance is maintained.
642 if (phy
->smart_speed
== e1000_smart_speed_on
) {
643 ret_val
= phy
->ops
.read_reg(hw
,
644 IGP01E1000_PHY_PORT_CONFIG
, &data
);
648 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
649 ret_val
= phy
->ops
.write_reg(hw
,
650 IGP01E1000_PHY_PORT_CONFIG
, data
);
653 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
654 ret_val
= phy
->ops
.read_reg(hw
,
655 IGP01E1000_PHY_PORT_CONFIG
, &data
);
659 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
660 ret_val
= phy
->ops
.write_reg(hw
,
661 IGP01E1000_PHY_PORT_CONFIG
, data
);
672 * igb_acquire_nvm_82575 - Request for access to EEPROM
673 * @hw: pointer to the HW structure
675 * Acquire the necessary semaphores for exclusive access to the EEPROM.
676 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
677 * Return successful if access grant bit set, else clear the request for
678 * EEPROM access and return -E1000_ERR_NVM (-1).
680 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
684 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
688 ret_val
= igb_acquire_nvm(hw
);
691 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
698 * igb_release_nvm_82575 - Release exclusive access to EEPROM
699 * @hw: pointer to the HW structure
701 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
702 * then release the semaphores acquired.
704 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
707 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
711 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
712 * @hw: pointer to the HW structure
713 * @mask: specifies which semaphore to acquire
715 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
716 * will also specify which port we're acquiring the lock for.
718 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
722 u32 fwmask
= mask
<< 16;
724 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
726 while (i
< timeout
) {
727 if (igb_get_hw_semaphore(hw
)) {
728 ret_val
= -E1000_ERR_SWFW_SYNC
;
732 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
733 if (!(swfw_sync
& (fwmask
| swmask
)))
737 * Firmware currently using resource (fwmask)
738 * or other software thread using resource (swmask)
740 igb_put_hw_semaphore(hw
);
746 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
747 ret_val
= -E1000_ERR_SWFW_SYNC
;
752 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
754 igb_put_hw_semaphore(hw
);
761 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
762 * @hw: pointer to the HW structure
763 * @mask: specifies which semaphore to acquire
765 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
766 * will also specify which port we're releasing the lock for.
768 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
772 while (igb_get_hw_semaphore(hw
) != 0);
775 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
777 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
779 igb_put_hw_semaphore(hw
);
783 * igb_get_cfg_done_82575 - Read config done bit
784 * @hw: pointer to the HW structure
786 * Read the management control register for the config done bit for
787 * completion status. NOTE: silicon which is EEPROM-less will fail trying
788 * to read the config done bit, so an error is *ONLY* logged and returns
789 * 0. If we were to return with error, EEPROM-less silicon
790 * would not be able to be reset or change link.
792 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
794 s32 timeout
= PHY_CFG_TIMEOUT
;
796 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
798 if (hw
->bus
.func
== 1)
799 mask
= E1000_NVM_CFG_DONE_PORT_1
;
800 else if (hw
->bus
.func
== E1000_FUNC_2
)
801 mask
= E1000_NVM_CFG_DONE_PORT_2
;
802 else if (hw
->bus
.func
== E1000_FUNC_3
)
803 mask
= E1000_NVM_CFG_DONE_PORT_3
;
806 if (rd32(E1000_EEMNGCTL
) & mask
)
812 hw_dbg("MNG configuration cycle has not completed.\n");
814 /* If EEPROM is not marked present, init the PHY manually */
815 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
816 (hw
->phy
.type
== e1000_phy_igp_3
))
817 igb_phy_init_script_igp3(hw
);
823 * igb_check_for_link_82575 - Check for link
824 * @hw: pointer to the HW structure
826 * If sgmii is enabled, then use the pcs register to determine link, otherwise
827 * use the generic interface for determining link.
829 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
834 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
835 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
838 * Use this flag to determine if link needs to be checked or
839 * not. If we have link clear the flag so that we do not
840 * continue to check for link.
842 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
844 ret_val
= igb_check_for_copper_link(hw
);
851 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
852 * @hw: pointer to the HW structure
854 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
859 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
860 !igb_sgmii_active_82575(hw
))
863 /* Enable PCS to turn on link */
864 reg
= rd32(E1000_PCS_CFG0
);
865 reg
|= E1000_PCS_CFG_PCS_EN
;
866 wr32(E1000_PCS_CFG0
, reg
);
868 /* Power up the laser */
869 reg
= rd32(E1000_CTRL_EXT
);
870 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
871 wr32(E1000_CTRL_EXT
, reg
);
873 /* flush the write to verify completion */
879 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
880 * @hw: pointer to the HW structure
881 * @speed: stores the current speed
882 * @duplex: stores the current duplex
884 * Using the physical coding sub-layer (PCS), retrieve the current speed and
885 * duplex, then store the values in the pointers provided.
887 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
890 struct e1000_mac_info
*mac
= &hw
->mac
;
893 /* Set up defaults for the return values of this function */
894 mac
->serdes_has_link
= false;
899 * Read the PCS Status register for link state. For non-copper mode,
900 * the status register is not accurate. The PCS status register is
903 pcs
= rd32(E1000_PCS_LSTAT
);
906 * The link up bit determines when link is up on autoneg. The sync ok
907 * gets set once both sides sync up and agree upon link. Stable link
908 * can be determined by checking for both link up and link sync ok
910 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
911 mac
->serdes_has_link
= true;
913 /* Detect and store PCS speed */
914 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
916 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
922 /* Detect and store PCS duplex */
923 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
924 *duplex
= FULL_DUPLEX
;
926 *duplex
= HALF_DUPLEX
;
934 * igb_shutdown_serdes_link_82575 - Remove link during power down
935 * @hw: pointer to the HW structure
937 * In the case of fiber serdes, shut down optics and PCS on driver unload
938 * when management pass thru is not enabled.
940 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
944 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
945 igb_sgmii_active_82575(hw
))
948 if (!igb_enable_mng_pass_thru(hw
)) {
949 /* Disable PCS to turn off link */
950 reg
= rd32(E1000_PCS_CFG0
);
951 reg
&= ~E1000_PCS_CFG_PCS_EN
;
952 wr32(E1000_PCS_CFG0
, reg
);
954 /* shutdown the laser */
955 reg
= rd32(E1000_CTRL_EXT
);
956 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
957 wr32(E1000_CTRL_EXT
, reg
);
959 /* flush the write to verify completion */
966 * igb_reset_hw_82575 - Reset hardware
967 * @hw: pointer to the HW structure
969 * This resets the hardware into a known state. This is a
970 * function pointer entry point called by the api module.
972 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
978 * Prevent the PCI-E bus from sticking if there is no TLP connection
979 * on the last TLP read/write transaction when MAC is reset.
981 ret_val
= igb_disable_pcie_master(hw
);
983 hw_dbg("PCI-E Master disable polling has failed.\n");
985 /* set the completion timeout for interface */
986 ret_val
= igb_set_pcie_completion_timeout(hw
);
988 hw_dbg("PCI-E Set completion timeout has failed.\n");
991 hw_dbg("Masking off all interrupts\n");
992 wr32(E1000_IMC
, 0xffffffff);
995 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1000 ctrl
= rd32(E1000_CTRL
);
1002 hw_dbg("Issuing a global reset to MAC\n");
1003 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1005 ret_val
= igb_get_auto_rd_done(hw
);
1008 * When auto config read does not complete, do not
1009 * return with an error. This can happen in situations
1010 * where there is no eeprom and prevents getting link.
1012 hw_dbg("Auto Read Done did not complete\n");
1015 /* If EEPROM is not present, run manual init scripts */
1016 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1017 igb_reset_init_script_82575(hw
);
1019 /* Clear any pending interrupt events. */
1020 wr32(E1000_IMC
, 0xffffffff);
1021 icr
= rd32(E1000_ICR
);
1023 /* Install any alternate MAC address into RAR0 */
1024 ret_val
= igb_check_alt_mac_addr(hw
);
1030 * igb_init_hw_82575 - Initialize hardware
1031 * @hw: pointer to the HW structure
1033 * This inits the hardware readying it for operation.
1035 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1037 struct e1000_mac_info
*mac
= &hw
->mac
;
1039 u16 i
, rar_count
= mac
->rar_entry_count
;
1041 /* Initialize identification LED */
1042 ret_val
= igb_id_led_init(hw
);
1044 hw_dbg("Error initializing identification LED\n");
1045 /* This is not fatal and we should not stop init due to this */
1048 /* Disabling VLAN filtering */
1049 hw_dbg("Initializing the IEEE VLAN\n");
1052 /* Setup the receive address */
1053 igb_init_rx_addrs(hw
, rar_count
);
1055 /* Zero out the Multicast HASH table */
1056 hw_dbg("Zeroing the MTA\n");
1057 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1058 array_wr32(E1000_MTA
, i
, 0);
1060 /* Zero out the Unicast HASH table */
1061 hw_dbg("Zeroing the UTA\n");
1062 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1063 array_wr32(E1000_UTA
, i
, 0);
1065 /* Setup link and flow control */
1066 ret_val
= igb_setup_link(hw
);
1069 * Clear all of the statistics registers (clear on read). It is
1070 * important that we do this after we have tried to establish link
1071 * because the symbol error count will increment wildly if there
1074 igb_clear_hw_cntrs_82575(hw
);
1080 * igb_setup_copper_link_82575 - Configure copper link settings
1081 * @hw: pointer to the HW structure
1083 * Configures the link for auto-neg or forced speed and duplex. Then we check
1084 * for link, once link is established calls to configure collision distance
1085 * and flow control are called.
1087 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1092 ctrl
= rd32(E1000_CTRL
);
1093 ctrl
|= E1000_CTRL_SLU
;
1094 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1095 wr32(E1000_CTRL
, ctrl
);
1097 ret_val
= igb_setup_serdes_link_82575(hw
);
1101 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1102 /* allow time for SFP cage time to power up phy */
1105 ret_val
= hw
->phy
.ops
.reset(hw
);
1107 hw_dbg("Error resetting the PHY.\n");
1111 switch (hw
->phy
.type
) {
1113 if (hw
->phy
.id
== I347AT4_E_PHY_ID
||
1114 hw
->phy
.id
== M88E1112_E_PHY_ID
)
1115 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1117 ret_val
= igb_copper_link_setup_m88(hw
);
1119 case e1000_phy_igp_3
:
1120 ret_val
= igb_copper_link_setup_igp(hw
);
1122 case e1000_phy_82580
:
1123 ret_val
= igb_copper_link_setup_82580(hw
);
1126 ret_val
= -E1000_ERR_PHY
;
1133 ret_val
= igb_setup_copper_link(hw
);
1139 * igb_setup_serdes_link_82575 - Setup link for serdes
1140 * @hw: pointer to the HW structure
1142 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1143 * used on copper connections where the serialized gigabit media independent
1144 * interface (sgmii), or serdes fiber is being used. Configures the link
1145 * for auto-negotiation or forces speed/duplex.
1147 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1149 u32 ctrl_ext
, ctrl_reg
, reg
;
1152 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1153 !igb_sgmii_active_82575(hw
))
1157 * On the 82575, SerDes loopback mode persists until it is
1158 * explicitly turned off or a power cycle is performed. A read to
1159 * the register does not indicate its status. Therefore, we ensure
1160 * loopback mode is disabled during initialization.
1162 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1164 /* power on the sfp cage if present */
1165 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1166 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1167 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1169 ctrl_reg
= rd32(E1000_CTRL
);
1170 ctrl_reg
|= E1000_CTRL_SLU
;
1172 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1173 /* set both sw defined pins */
1174 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1176 /* Set switch control to serdes energy detect */
1177 reg
= rd32(E1000_CONNSW
);
1178 reg
|= E1000_CONNSW_ENRGSRC
;
1179 wr32(E1000_CONNSW
, reg
);
1182 reg
= rd32(E1000_PCS_LCTL
);
1184 /* default pcs_autoneg to the same setting as mac autoneg */
1185 pcs_autoneg
= hw
->mac
.autoneg
;
1187 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1188 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1189 /* sgmii mode lets the phy handle forcing speed/duplex */
1191 /* autoneg time out should be disabled for SGMII mode */
1192 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1194 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1195 /* disable PCS autoneg and support parallel detect only */
1196 pcs_autoneg
= false;
1199 * non-SGMII modes only supports a speed of 1000/Full for the
1200 * link so it is best to just force the MAC and let the pcs
1201 * link either autoneg or be forced to 1000/Full
1203 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1204 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1206 /* set speed of 1000/Full if speed/duplex is forced */
1207 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1211 wr32(E1000_CTRL
, ctrl_reg
);
1214 * New SerDes mode allows for forcing speed or autonegotiating speed
1215 * at 1gb. Autoneg should be default set by most drivers. This is the
1216 * mode that will be compatible with older link partners and switches.
1217 * However, both are supported by the hardware and some drivers/tools.
1219 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1220 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1223 * We force flow control to prevent the CTRL register values from being
1224 * overwritten by the autonegotiated flow control values
1226 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1229 /* Set PCS register for autoneg */
1230 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1231 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1232 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1234 /* Set PCS register for forced link */
1235 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1237 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1240 wr32(E1000_PCS_LCTL
, reg
);
1242 if (!igb_sgmii_active_82575(hw
))
1243 igb_force_mac_fc(hw
);
1249 * igb_sgmii_active_82575 - Return sgmii state
1250 * @hw: pointer to the HW structure
1252 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1253 * which can be enabled for use in the embedded applications. Simply
1254 * return the current state of the sgmii interface.
1256 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1258 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1259 return dev_spec
->sgmii_active
;
1263 * igb_reset_init_script_82575 - Inits HW defaults after reset
1264 * @hw: pointer to the HW structure
1266 * Inits recommended HW defaults after a reset when there is no EEPROM
1267 * detected. This is only for the 82575.
1269 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1271 if (hw
->mac
.type
== e1000_82575
) {
1272 hw_dbg("Running reset init script for 82575\n");
1273 /* SerDes configuration via SERDESCTRL */
1274 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1275 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1276 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1277 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1279 /* CCM configuration via CCMCTL register */
1280 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1281 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1283 /* PCIe lanes configuration */
1284 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1285 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1286 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1287 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1289 /* PCIe PLL Configuration */
1290 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1291 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1292 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1299 * igb_read_mac_addr_82575 - Read device MAC address
1300 * @hw: pointer to the HW structure
1302 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1307 * If there's an alternate MAC address place it in RAR0
1308 * so that it will override the Si installed default perm
1311 ret_val
= igb_check_alt_mac_addr(hw
);
1315 ret_val
= igb_read_mac_addr(hw
);
1322 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1323 * @hw: pointer to the HW structure
1325 * In the case of a PHY power down to save power, or to turn off link during a
1326 * driver unload, or wake on lan is not enabled, remove the link.
1328 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1330 /* If the management interface is not enabled, then power down */
1331 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1332 igb_power_down_phy_copper(hw
);
1336 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1337 * @hw: pointer to the HW structure
1339 * Clears the hardware counters by reading the counter registers.
1341 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1343 igb_clear_hw_cntrs_base(hw
);
1349 rd32(E1000_PRC1023
);
1350 rd32(E1000_PRC1522
);
1355 rd32(E1000_PTC1023
);
1356 rd32(E1000_PTC1522
);
1358 rd32(E1000_ALGNERRC
);
1361 rd32(E1000_CEXTERR
);
1372 rd32(E1000_ICRXPTC
);
1373 rd32(E1000_ICRXATC
);
1374 rd32(E1000_ICTXPTC
);
1375 rd32(E1000_ICTXATC
);
1376 rd32(E1000_ICTXQEC
);
1377 rd32(E1000_ICTXQMTC
);
1378 rd32(E1000_ICRXDMTC
);
1385 rd32(E1000_HTCBDPC
);
1390 rd32(E1000_LENERRS
);
1392 /* This register should not be read in copper configurations */
1393 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1394 igb_sgmii_active_82575(hw
))
1399 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1400 * @hw: pointer to the HW structure
1402 * After rx enable if managability is enabled then there is likely some
1403 * bad data at the start of the fifo and possibly in the DMA fifo. This
1404 * function clears the fifos and flushes any packets that came in as rx was
1407 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1409 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1412 if (hw
->mac
.type
!= e1000_82575
||
1413 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1416 /* Disable all RX queues */
1417 for (i
= 0; i
< 4; i
++) {
1418 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1419 wr32(E1000_RXDCTL(i
),
1420 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1422 /* Poll all queues to verify they have shut down */
1423 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1426 for (i
= 0; i
< 4; i
++)
1427 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1428 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1433 hw_dbg("Queue disable timed out after 10ms\n");
1435 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1436 * incoming packets are rejected. Set enable and wait 2ms so that
1437 * any packet that was coming in as RCTL.EN was set is flushed
1439 rfctl
= rd32(E1000_RFCTL
);
1440 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1442 rlpml
= rd32(E1000_RLPML
);
1443 wr32(E1000_RLPML
, 0);
1445 rctl
= rd32(E1000_RCTL
);
1446 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1447 temp_rctl
|= E1000_RCTL_LPE
;
1449 wr32(E1000_RCTL
, temp_rctl
);
1450 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1454 /* Enable RX queues that were previously enabled and restore our
1457 for (i
= 0; i
< 4; i
++)
1458 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1459 wr32(E1000_RCTL
, rctl
);
1462 wr32(E1000_RLPML
, rlpml
);
1463 wr32(E1000_RFCTL
, rfctl
);
1465 /* Flush receive errors generated by workaround */
1472 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1473 * @hw: pointer to the HW structure
1475 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1476 * however the hardware default for these parts is 500us to 1ms which is less
1477 * than the 10ms recommended by the pci-e spec. To address this we need to
1478 * increase the value to either 10ms to 200ms for capability version 1 config,
1479 * or 16ms to 55ms for version 2.
1481 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1483 u32 gcr
= rd32(E1000_GCR
);
1487 /* only take action if timeout value is defaulted to 0 */
1488 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1492 * if capababilities version is type 1 we can write the
1493 * timeout of 10ms to 200ms through the GCR register
1495 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1496 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1501 * for version 2 capabilities we need to write the config space
1502 * directly in order to set the completion timeout value for
1505 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1510 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1512 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1515 /* disable completion timeout resend */
1516 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1518 wr32(E1000_GCR
, gcr
);
1523 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1524 * @hw: pointer to the hardware struct
1525 * @enable: state to enter, either enabled or disabled
1526 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1528 * enables/disables L2 switch anti-spoofing functionality.
1530 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
1534 switch (hw
->mac
.type
) {
1537 dtxswc
= rd32(E1000_DTXSWC
);
1539 dtxswc
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
1540 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1541 /* The PF can spoof - it has to in order to
1542 * support emulation mode NICs */
1543 dtxswc
^= (1 << pf
| 1 << (pf
+ MAX_NUM_VFS
));
1545 dtxswc
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
1546 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1548 wr32(E1000_DTXSWC
, dtxswc
);
1556 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1557 * @hw: pointer to the hardware struct
1558 * @enable: state to enter, either enabled or disabled
1560 * enables/disables L2 switch loopback functionality.
1562 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1564 u32 dtxswc
= rd32(E1000_DTXSWC
);
1567 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1569 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1571 wr32(E1000_DTXSWC
, dtxswc
);
1575 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1576 * @hw: pointer to the hardware struct
1577 * @enable: state to enter, either enabled or disabled
1579 * enables/disables replication of packets across multiple pools.
1581 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1583 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1586 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1588 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1590 wr32(E1000_VT_CTL
, vt_ctl
);
1594 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1595 * @hw: pointer to the HW structure
1596 * @offset: register offset to be read
1597 * @data: pointer to the read data
1599 * Reads the MDI control register in the PHY at offset and stores the
1600 * information read to data.
1602 static s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
1607 ret_val
= hw
->phy
.ops
.acquire(hw
);
1611 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
1613 hw
->phy
.ops
.release(hw
);
1620 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1621 * @hw: pointer to the HW structure
1622 * @offset: register offset to write to
1623 * @data: data to write to register at offset
1625 * Writes data to MDI control register in the PHY at offset.
1627 static s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
1632 ret_val
= hw
->phy
.ops
.acquire(hw
);
1636 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
1638 hw
->phy
.ops
.release(hw
);
1645 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1646 * @hw: pointer to the HW structure
1648 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1649 * the values found in the EEPROM. This addresses an issue in which these
1650 * bits are not restored from EEPROM after reset.
1652 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
1658 if (hw
->mac
.type
!= e1000_82580
)
1660 if (!igb_sgmii_active_82575(hw
))
1663 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
1664 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
1667 hw_dbg("NVM Read Error\n");
1671 mdicnfg
= rd32(E1000_MDICNFG
);
1672 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
1673 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
1674 if (nvm_data
& NVM_WORD24_COM_MDIO
)
1675 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
1676 wr32(E1000_MDICNFG
, mdicnfg
);
1682 * igb_reset_hw_82580 - Reset hardware
1683 * @hw: pointer to the HW structure
1685 * This resets function or entire device (all ports, etc.)
1688 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
1691 /* BH SW mailbox bit in SW_FW_SYNC */
1692 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
1694 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
1697 hw
->dev_spec
._82575
.global_device_reset
= false;
1699 /* Get current control state. */
1700 ctrl
= rd32(E1000_CTRL
);
1703 * Prevent the PCI-E bus from sticking if there is no TLP connection
1704 * on the last TLP read/write transaction when MAC is reset.
1706 ret_val
= igb_disable_pcie_master(hw
);
1708 hw_dbg("PCI-E Master disable polling has failed.\n");
1710 hw_dbg("Masking off all interrupts\n");
1711 wr32(E1000_IMC
, 0xffffffff);
1712 wr32(E1000_RCTL
, 0);
1713 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1718 /* Determine whether or not a global dev reset is requested */
1719 if (global_device_reset
&&
1720 igb_acquire_swfw_sync_82575(hw
, swmbsw_mask
))
1721 global_device_reset
= false;
1723 if (global_device_reset
&&
1724 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
1725 ctrl
|= E1000_CTRL_DEV_RST
;
1727 ctrl
|= E1000_CTRL_RST
;
1729 wr32(E1000_CTRL
, ctrl
);
1731 /* Add delay to insure DEV_RST has time to complete */
1732 if (global_device_reset
)
1735 ret_val
= igb_get_auto_rd_done(hw
);
1738 * When auto config read does not complete, do not
1739 * return with an error. This can happen in situations
1740 * where there is no eeprom and prevents getting link.
1742 hw_dbg("Auto Read Done did not complete\n");
1745 /* If EEPROM is not present, run manual init scripts */
1746 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1747 igb_reset_init_script_82575(hw
);
1749 /* clear global device reset status bit */
1750 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
1752 /* Clear any pending interrupt events. */
1753 wr32(E1000_IMC
, 0xffffffff);
1754 icr
= rd32(E1000_ICR
);
1756 ret_val
= igb_reset_mdicnfg_82580(hw
);
1758 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1760 /* Install any alternate MAC address into RAR0 */
1761 ret_val
= igb_check_alt_mac_addr(hw
);
1763 /* Release semaphore */
1764 if (global_device_reset
)
1765 igb_release_swfw_sync_82575(hw
, swmbsw_mask
);
1771 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1772 * @data: data received by reading RXPBS register
1774 * The 82580 uses a table based approach for packet buffer allocation sizes.
1775 * This function converts the retrieved value into the correct table value
1776 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1777 * 0x0 36 72 144 1 2 4 8 16
1778 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1780 u16
igb_rxpbs_adjust_82580(u32 data
)
1784 if (data
< E1000_82580_RXPBS_TABLE_SIZE
)
1785 ret_val
= e1000_82580_rxpbs_table
[data
];
1791 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1793 * @hw: pointer to the HW structure
1794 * @offset: offset in words of the checksum protected region
1796 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1797 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1799 s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
1805 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
1806 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1808 hw_dbg("NVM Read Error\n");
1811 checksum
+= nvm_data
;
1814 if (checksum
!= (u16
) NVM_SUM
) {
1815 hw_dbg("NVM Checksum Invalid\n");
1816 ret_val
= -E1000_ERR_NVM
;
1825 * igb_update_nvm_checksum_with_offset - Update EEPROM
1827 * @hw: pointer to the HW structure
1828 * @offset: offset in words of the checksum protected region
1830 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1831 * up to the checksum. Then calculates the EEPROM checksum and writes the
1832 * value to the EEPROM.
1834 s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
1840 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
1841 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1843 hw_dbg("NVM Read Error while updating checksum.\n");
1846 checksum
+= nvm_data
;
1848 checksum
= (u16
) NVM_SUM
- checksum
;
1849 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
1852 hw_dbg("NVM Write Error while updating checksum.\n");
1859 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1860 * @hw: pointer to the HW structure
1862 * Calculates the EEPROM section checksum by reading/adding each word of
1863 * the EEPROM and then verifies that the sum of the EEPROM is
1866 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
1869 u16 eeprom_regions_count
= 1;
1873 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1875 hw_dbg("NVM Read Error\n");
1879 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
1880 /* if chekcsums compatibility bit is set validate checksums
1881 * for all 4 ports. */
1882 eeprom_regions_count
= 4;
1885 for (j
= 0; j
< eeprom_regions_count
; j
++) {
1886 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1887 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
1898 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1899 * @hw: pointer to the HW structure
1901 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1902 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1903 * checksum and writes the value to the EEPROM.
1905 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
1911 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1913 hw_dbg("NVM Read Error while updating checksum"
1914 " compatibility bit.\n");
1918 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
1919 /* set compatibility bit to validate checksums appropriately */
1920 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
1921 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
1924 hw_dbg("NVM Write Error while updating checksum"
1925 " compatibility bit.\n");
1930 for (j
= 0; j
< 4; j
++) {
1931 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1932 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
1942 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1943 * @hw: pointer to the HW structure
1945 * Calculates the EEPROM section checksum by reading/adding each word of
1946 * the EEPROM and then verifies that the sum of the EEPROM is
1949 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
1955 for (j
= 0; j
< 4; j
++) {
1956 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1957 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
1968 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
1969 * @hw: pointer to the HW structure
1971 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1972 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1973 * checksum and writes the value to the EEPROM.
1975 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
1981 for (j
= 0; j
< 4; j
++) {
1982 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1983 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
1992 * igb_set_eee_i350 - Enable/disable EEE support
1993 * @hw: pointer to the HW structure
1995 * Enable/disable EEE based on setting in dev_spec structure.
1998 s32
igb_set_eee_i350(struct e1000_hw
*hw
)
2001 u32 ipcnfg
, eeer
, ctrl_ext
;
2003 ctrl_ext
= rd32(E1000_CTRL_EXT
);
2004 if ((hw
->mac
.type
!= e1000_i350
) ||
2005 (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
))
2007 ipcnfg
= rd32(E1000_IPCNFG
);
2008 eeer
= rd32(E1000_EEER
);
2010 /* enable or disable per user setting */
2011 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2012 ipcnfg
|= (E1000_IPCNFG_EEE_1G_AN
|
2013 E1000_IPCNFG_EEE_100M_AN
);
2014 eeer
|= (E1000_EEER_TX_LPI_EN
|
2015 E1000_EEER_RX_LPI_EN
|
2019 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2020 E1000_IPCNFG_EEE_100M_AN
);
2021 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2022 E1000_EEER_RX_LPI_EN
|
2025 wr32(E1000_IPCNFG
, ipcnfg
);
2026 wr32(E1000_EEER
, eeer
);
2032 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2033 .init_hw
= igb_init_hw_82575
,
2034 .check_for_link
= igb_check_for_link_82575
,
2035 .rar_set
= igb_rar_set
,
2036 .read_mac_addr
= igb_read_mac_addr_82575
,
2037 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
2040 static struct e1000_phy_operations e1000_phy_ops_82575
= {
2041 .acquire
= igb_acquire_phy_82575
,
2042 .get_cfg_done
= igb_get_cfg_done_82575
,
2043 .release
= igb_release_phy_82575
,
2046 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2047 .acquire
= igb_acquire_nvm_82575
,
2048 .read
= igb_read_nvm_eerd
,
2049 .release
= igb_release_nvm_82575
,
2050 .write
= igb_write_nvm_spi
,
2053 const struct e1000_info e1000_82575_info
= {
2054 .get_invariants
= igb_get_invariants_82575
,
2055 .mac_ops
= &e1000_mac_ops_82575
,
2056 .phy_ops
= &e1000_phy_ops_82575
,
2057 .nvm_ops
= &e1000_nvm_ops_82575
,