Linux 4.4.145
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blob056f516bf017629e4be0ced579140acca5355868
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
31 ath9k_hw_get_channel_centers(ah, chan, &centers);
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
53 *pcdacIdx = i;
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
61 u32 i;
62 u32 offset;
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
94 u16 *eep_data = (u16 *)&ah->eeprom.def;
95 int addr, ar5416_eep_start_loc = 0x100;
97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
99 eep_data))
100 return false;
101 eep_data++;
103 return true;
106 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
108 u16 *eep_data = (u16 *)&ah->eeprom.def;
110 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
111 0x100, SIZE_EEPROM_DEF);
112 return true;
115 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
117 struct ath_common *common = ath9k_hw_common(ah);
119 if (!ath9k_hw_use_flash(ah)) {
120 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
123 if (common->bus_ops->ath_bus_type == ATH_USB)
124 return __ath9k_hw_usb_def_fill_eeprom(ah);
125 else
126 return __ath9k_hw_def_fill_eeprom(ah);
129 #undef SIZE_EEPROM_DEF
131 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
132 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
133 struct modal_eep_header *modal_hdr)
135 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
136 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
137 PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
138 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
139 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
140 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
141 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
142 PR_EEP("Switch Settle", modal_hdr->switchSettling);
143 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
144 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
145 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
146 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
147 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
148 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
149 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
150 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
151 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
152 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
153 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
154 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
155 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
156 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
157 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
158 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
159 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
160 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
161 PR_EEP("xpdGain", modal_hdr->xpdGain);
162 PR_EEP("External PD", modal_hdr->xpd);
163 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
164 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
165 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
166 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
167 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
168 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
169 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
170 PR_EEP("Chain0 OutputBias", modal_hdr->ob);
171 PR_EEP("Chain0 DriverBias", modal_hdr->db);
172 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
173 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
174 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
175 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
176 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
177 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
178 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
179 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
180 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
181 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
182 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
183 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
184 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
185 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
186 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
187 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
188 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
189 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
190 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
191 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
192 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
193 PR_EEP("LNA Control", modal_hdr->lna_ctl);
194 PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
195 PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
196 PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
198 return len;
201 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
202 u8 *buf, u32 len, u32 size)
204 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
205 struct base_eep_header *pBase = &eep->baseEepHeader;
207 if (!dump_base_hdr) {
208 len += scnprintf(buf + len, size - len,
209 "%20s :\n", "2GHz modal Header");
210 len = ath9k_def_dump_modal_eeprom(buf, len, size,
211 &eep->modalHeader[0]);
212 len += scnprintf(buf + len, size - len,
213 "%20s :\n", "5GHz modal Header");
214 len = ath9k_def_dump_modal_eeprom(buf, len, size,
215 &eep->modalHeader[1]);
216 goto out;
219 PR_EEP("Major Version", pBase->version >> 12);
220 PR_EEP("Minor Version", pBase->version & 0xFFF);
221 PR_EEP("Checksum", pBase->checksum);
222 PR_EEP("Length", pBase->length);
223 PR_EEP("RegDomain1", pBase->regDmn[0]);
224 PR_EEP("RegDomain2", pBase->regDmn[1]);
225 PR_EEP("TX Mask", pBase->txMask);
226 PR_EEP("RX Mask", pBase->rxMask);
227 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
228 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
229 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
230 AR5416_OPFLAGS_N_2G_HT20));
231 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
232 AR5416_OPFLAGS_N_2G_HT40));
233 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
234 AR5416_OPFLAGS_N_5G_HT20));
235 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
236 AR5416_OPFLAGS_N_5G_HT40));
237 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
238 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
239 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
240 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
241 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
243 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
244 pBase->macAddr);
246 out:
247 if (len > size)
248 len = size;
250 return len;
252 #else
253 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
254 u8 *buf, u32 len, u32 size)
256 return 0;
258 #endif
261 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
263 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
264 struct ath_common *common = ath9k_hw_common(ah);
265 u16 *eepdata, temp, magic;
266 u32 sum = 0, el;
267 bool need_swap = false;
268 int i, addr, size;
270 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
271 ath_err(common, "Reading Magic # failed\n");
272 return false;
275 if (swab16(magic) == AR5416_EEPROM_MAGIC &&
276 !(ah->ah_flags & AH_NO_EEP_SWAP)) {
277 size = sizeof(struct ar5416_eeprom_def);
278 need_swap = true;
279 eepdata = (u16 *) (&ah->eeprom);
281 for (addr = 0; addr < size / sizeof(u16); addr++) {
282 temp = swab16(*eepdata);
283 *eepdata = temp;
284 eepdata++;
288 ath_dbg(common, EEPROM, "need_swap = %s\n",
289 need_swap ? "True" : "False");
291 if (need_swap)
292 el = swab16(ah->eeprom.def.baseEepHeader.length);
293 else
294 el = ah->eeprom.def.baseEepHeader.length;
296 if (el > sizeof(struct ar5416_eeprom_def))
297 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
298 else
299 el = el / sizeof(u16);
301 eepdata = (u16 *)(&ah->eeprom);
303 for (i = 0; i < el; i++)
304 sum ^= *eepdata++;
306 if (need_swap) {
307 u32 integer, j;
308 u16 word;
310 ath_dbg(common, EEPROM,
311 "EEPROM Endianness is not native.. Changing.\n");
313 word = swab16(eep->baseEepHeader.length);
314 eep->baseEepHeader.length = word;
316 word = swab16(eep->baseEepHeader.checksum);
317 eep->baseEepHeader.checksum = word;
319 word = swab16(eep->baseEepHeader.version);
320 eep->baseEepHeader.version = word;
322 word = swab16(eep->baseEepHeader.regDmn[0]);
323 eep->baseEepHeader.regDmn[0] = word;
325 word = swab16(eep->baseEepHeader.regDmn[1]);
326 eep->baseEepHeader.regDmn[1] = word;
328 word = swab16(eep->baseEepHeader.rfSilent);
329 eep->baseEepHeader.rfSilent = word;
331 word = swab16(eep->baseEepHeader.blueToothOptions);
332 eep->baseEepHeader.blueToothOptions = word;
334 word = swab16(eep->baseEepHeader.deviceCap);
335 eep->baseEepHeader.deviceCap = word;
337 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
338 struct modal_eep_header *pModal =
339 &eep->modalHeader[j];
340 integer = swab32(pModal->antCtrlCommon);
341 pModal->antCtrlCommon = integer;
343 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
344 integer = swab32(pModal->antCtrlChain[i]);
345 pModal->antCtrlChain[i] = integer;
347 for (i = 0; i < 3; i++) {
348 word = swab16(pModal->xpaBiasLvlFreq[i]);
349 pModal->xpaBiasLvlFreq[i] = word;
352 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
353 word = swab16(pModal->spurChans[i].spurChan);
354 pModal->spurChans[i].spurChan = word;
359 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
360 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
361 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
362 sum, ah->eep_ops->get_eeprom_ver(ah));
363 return -EINVAL;
366 /* Enable fixup for AR_AN_TOP2 if necessary */
367 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
368 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
369 (eep->baseEepHeader.pwdclkind == 0))
370 ah->need_an_top2_fixup = true;
372 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
373 (AR_SREV_9280(ah)))
374 eep->modalHeader[0].xpaBiasLvl = 0;
376 return 0;
379 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
380 enum eeprom_param param)
382 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
383 struct modal_eep_header *pModal = eep->modalHeader;
384 struct base_eep_header *pBase = &eep->baseEepHeader;
385 int band = 0;
387 switch (param) {
388 case EEP_NFTHRESH_5:
389 return pModal[0].noiseFloorThreshCh[0];
390 case EEP_NFTHRESH_2:
391 return pModal[1].noiseFloorThreshCh[0];
392 case EEP_MAC_LSW:
393 return get_unaligned_be16(pBase->macAddr);
394 case EEP_MAC_MID:
395 return get_unaligned_be16(pBase->macAddr + 2);
396 case EEP_MAC_MSW:
397 return get_unaligned_be16(pBase->macAddr + 4);
398 case EEP_REG_0:
399 return pBase->regDmn[0];
400 case EEP_OP_CAP:
401 return pBase->deviceCap;
402 case EEP_OP_MODE:
403 return pBase->opCapFlags;
404 case EEP_RF_SILENT:
405 return pBase->rfSilent;
406 case EEP_OB_5:
407 return pModal[0].ob;
408 case EEP_DB_5:
409 return pModal[0].db;
410 case EEP_OB_2:
411 return pModal[1].ob;
412 case EEP_DB_2:
413 return pModal[1].db;
414 case EEP_MINOR_REV:
415 return AR5416_VER_MASK;
416 case EEP_TX_MASK:
417 return pBase->txMask;
418 case EEP_RX_MASK:
419 return pBase->rxMask;
420 case EEP_FSTCLK_5G:
421 return pBase->fastClk5g;
422 case EEP_RXGAIN_TYPE:
423 return pBase->rxGainType;
424 case EEP_TXGAIN_TYPE:
425 return pBase->txGainType;
426 case EEP_OL_PWRCTRL:
427 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
428 return pBase->openLoopPwrCntl ? true : false;
429 else
430 return false;
431 case EEP_RC_CHAIN_MASK:
432 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
433 return pBase->rcChainMask;
434 else
435 return 0;
436 case EEP_DAC_HPWR_5G:
437 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
438 return pBase->dacHiPwrMode_5G;
439 else
440 return 0;
441 case EEP_FRAC_N_5G:
442 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
443 return pBase->frac_n_5g;
444 else
445 return 0;
446 case EEP_PWR_TABLE_OFFSET:
447 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
448 return pBase->pwr_table_offset;
449 else
450 return AR5416_PWR_TABLE_OFFSET_DB;
451 case EEP_ANTENNA_GAIN_2G:
452 band = 1;
453 /* fall through */
454 case EEP_ANTENNA_GAIN_5G:
455 return max_t(u8, max_t(u8,
456 pModal[band].antennaGainCh[0],
457 pModal[band].antennaGainCh[1]),
458 pModal[band].antennaGainCh[2]);
459 default:
460 return 0;
464 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
465 struct modal_eep_header *pModal,
466 struct ar5416_eeprom_def *eep,
467 u8 txRxAttenLocal, int regChainOffset, int i)
469 ENABLE_REG_RMW_BUFFER(ah);
470 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
471 txRxAttenLocal = pModal->txRxAttenCh[i];
473 if (AR_SREV_9280_20_OR_LATER(ah)) {
474 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
475 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
476 pModal->bswMargin[i]);
477 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
478 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
479 pModal->bswAtten[i]);
480 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
481 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
482 pModal->xatten2Margin[i]);
483 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
484 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
485 pModal->xatten2Db[i]);
486 } else {
487 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
488 SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN),
489 AR_PHY_GAIN_2GHZ_BSW_MARGIN);
490 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
491 SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN),
492 AR_PHY_GAIN_2GHZ_BSW_ATTEN);
496 if (AR_SREV_9280_20_OR_LATER(ah)) {
497 REG_RMW_FIELD(ah,
498 AR_PHY_RXGAIN + regChainOffset,
499 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
500 REG_RMW_FIELD(ah,
501 AR_PHY_RXGAIN + regChainOffset,
502 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
503 } else {
504 REG_RMW(ah, AR_PHY_RXGAIN + regChainOffset,
505 SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN),
506 AR_PHY_RXGAIN_TXRX_ATTEN);
507 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN),
509 AR_PHY_GAIN_2GHZ_RXTX_MARGIN);
511 REG_RMW_BUFFER_FLUSH(ah);
514 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
515 struct ath9k_channel *chan)
517 struct modal_eep_header *pModal;
518 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
519 int i, regChainOffset;
520 u8 txRxAttenLocal;
522 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
523 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
525 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
527 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
528 if (AR_SREV_9280(ah)) {
529 if (i >= 2)
530 break;
533 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
534 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
535 else
536 regChainOffset = i * 0x1000;
538 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
539 pModal->antCtrlChain[i]);
541 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
542 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
543 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
544 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
545 SM(pModal->iqCalICh[i],
546 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
547 SM(pModal->iqCalQCh[i],
548 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
550 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
551 regChainOffset, i);
554 if (AR_SREV_9280_20_OR_LATER(ah)) {
555 if (IS_CHAN_2GHZ(chan)) {
556 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
557 AR_AN_RF2G1_CH0_OB,
558 AR_AN_RF2G1_CH0_OB_S,
559 pModal->ob);
560 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
561 AR_AN_RF2G1_CH0_DB,
562 AR_AN_RF2G1_CH0_DB_S,
563 pModal->db);
564 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
565 AR_AN_RF2G1_CH1_OB,
566 AR_AN_RF2G1_CH1_OB_S,
567 pModal->ob_ch1);
568 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
569 AR_AN_RF2G1_CH1_DB,
570 AR_AN_RF2G1_CH1_DB_S,
571 pModal->db_ch1);
572 } else {
573 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
574 AR_AN_RF5G1_CH0_OB5,
575 AR_AN_RF5G1_CH0_OB5_S,
576 pModal->ob);
577 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
578 AR_AN_RF5G1_CH0_DB5,
579 AR_AN_RF5G1_CH0_DB5_S,
580 pModal->db);
581 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
582 AR_AN_RF5G1_CH1_OB5,
583 AR_AN_RF5G1_CH1_OB5_S,
584 pModal->ob_ch1);
585 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
586 AR_AN_RF5G1_CH1_DB5,
587 AR_AN_RF5G1_CH1_DB5_S,
588 pModal->db_ch1);
590 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
591 AR_AN_TOP2_XPABIAS_LVL,
592 AR_AN_TOP2_XPABIAS_LVL_S,
593 pModal->xpaBiasLvl);
594 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
595 AR_AN_TOP2_LOCALBIAS,
596 AR_AN_TOP2_LOCALBIAS_S,
597 !!(pModal->lna_ctl &
598 LNA_CTL_LOCAL_BIAS));
599 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
600 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
603 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
604 pModal->switchSettling);
605 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
606 pModal->adcDesiredSize);
608 if (!AR_SREV_9280_20_OR_LATER(ah))
609 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
610 AR_PHY_DESIRED_SZ_PGA,
611 pModal->pgaDesiredSize);
613 REG_WRITE(ah, AR_PHY_RF_CTL4,
614 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
615 | SM(pModal->txEndToXpaOff,
616 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
617 | SM(pModal->txFrameToXpaOn,
618 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
619 | SM(pModal->txFrameToXpaOn,
620 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
622 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
623 pModal->txEndToRxOn);
625 if (AR_SREV_9280_20_OR_LATER(ah)) {
626 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
627 pModal->thresh62);
628 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
629 AR_PHY_EXT_CCA0_THRESH62,
630 pModal->thresh62);
631 } else {
632 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
633 pModal->thresh62);
634 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
635 AR_PHY_EXT_CCA_THRESH62,
636 pModal->thresh62);
639 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
640 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
641 AR_PHY_TX_END_DATA_START,
642 pModal->txFrameToDataStart);
643 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
644 pModal->txFrameToPaOn);
647 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
648 if (IS_CHAN_HT40(chan))
649 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
650 AR_PHY_SETTLING_SWITCH,
651 pModal->swSettleHt40);
654 if (AR_SREV_9280_20_OR_LATER(ah) &&
655 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
656 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
657 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
658 pModal->miscBits);
661 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
662 if (IS_CHAN_2GHZ(chan))
663 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
664 eep->baseEepHeader.dacLpMode);
665 else if (eep->baseEepHeader.dacHiPwrMode_5G)
666 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
667 else
668 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
669 eep->baseEepHeader.dacLpMode);
671 udelay(100);
673 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
674 pModal->miscBits >> 2);
676 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
677 AR_PHY_TX_DESIRED_SCALE_CCK,
678 eep->baseEepHeader.desiredScaleCCK);
682 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
683 struct ath9k_channel *chan)
685 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
686 struct modal_eep_header *pModal;
687 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
688 u8 biaslevel;
690 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
691 return;
693 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
694 return;
696 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
698 if (pModal->xpaBiasLvl != 0xff) {
699 biaslevel = pModal->xpaBiasLvl;
700 } else {
701 u16 resetFreqBin, freqBin, freqCount = 0;
702 struct chan_centers centers;
704 ath9k_hw_get_channel_centers(ah, chan, &centers);
706 resetFreqBin = FREQ2FBIN(centers.synth_center,
707 IS_CHAN_2GHZ(chan));
708 freqBin = XPA_LVL_FREQ(0) & 0xff;
709 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
711 freqCount++;
713 while (freqCount < 3) {
714 if (XPA_LVL_FREQ(freqCount) == 0x0)
715 break;
717 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
718 if (resetFreqBin >= freqBin)
719 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
720 else
721 break;
722 freqCount++;
726 if (IS_CHAN_2GHZ(chan)) {
727 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
728 7, 1) & (~0x18)) | biaslevel << 3;
729 } else {
730 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
731 6, 1) & (~0xc0)) | biaslevel << 6;
733 #undef XPA_LVL_FREQ
736 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
737 u16 *gb,
738 u16 numXpdGain,
739 u16 pdGainOverlap_t2,
740 int8_t pwr_table_offset,
741 int16_t *diff)
744 u16 k;
746 /* Prior to writing the boundaries or the pdadc vs. power table
747 * into the chip registers the default starting point on the pdadc
748 * vs. power table needs to be checked and the curve boundaries
749 * adjusted accordingly
751 if (AR_SREV_9280_20_OR_LATER(ah)) {
752 u16 gb_limit;
754 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
755 /* get the difference in dB */
756 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
757 /* get the number of half dB steps */
758 *diff *= 2;
759 /* change the original gain boundary settings
760 * by the number of half dB steps
762 for (k = 0; k < numXpdGain; k++)
763 gb[k] = (u16)(gb[k] - *diff);
765 /* Because of a hardware limitation, ensure the gain boundary
766 * is not larger than (63 - overlap)
768 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
770 for (k = 0; k < numXpdGain; k++)
771 gb[k] = (u16)min(gb_limit, gb[k]);
774 return *diff;
777 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
778 int8_t pwr_table_offset,
779 int16_t diff,
780 u8 *pdadcValues)
782 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
783 u16 k;
785 /* If this is a board that has a pwrTableOffset that differs from
786 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
787 * pdadc vs pwr table needs to be adjusted prior to writing to the
788 * chip.
790 if (AR_SREV_9280_20_OR_LATER(ah)) {
791 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
792 /* shift the table to start at the new offset */
793 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
794 pdadcValues[k] = pdadcValues[k + diff];
797 /* fill the back of the table */
798 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
799 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
803 #undef NUM_PDADC
806 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
807 struct ath9k_channel *chan)
809 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
810 #define SM_PDGAIN_B(x, y) \
811 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
812 struct ath_common *common = ath9k_hw_common(ah);
813 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
814 struct cal_data_per_freq *pRawDataset;
815 u8 *pCalBChans = NULL;
816 u16 pdGainOverlap_t2;
817 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
818 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
819 u16 numPiers, i, j;
820 int16_t diff = 0;
821 u16 numXpdGain, xpdMask;
822 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
823 u32 reg32, regOffset, regChainOffset;
824 int16_t modalIdx;
825 int8_t pwr_table_offset;
827 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
828 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
830 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
832 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
833 AR5416_EEP_MINOR_VER_2) {
834 pdGainOverlap_t2 =
835 pEepData->modalHeader[modalIdx].pdGainOverlap;
836 } else {
837 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
838 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
841 if (IS_CHAN_2GHZ(chan)) {
842 pCalBChans = pEepData->calFreqPier2G;
843 numPiers = AR5416_NUM_2G_CAL_PIERS;
844 } else {
845 pCalBChans = pEepData->calFreqPier5G;
846 numPiers = AR5416_NUM_5G_CAL_PIERS;
849 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
850 pRawDataset = pEepData->calPierData2G[0];
851 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
852 pRawDataset)->vpdPdg[0][0];
855 numXpdGain = 0;
857 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
858 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
859 if (numXpdGain >= AR5416_NUM_PD_GAINS)
860 break;
861 xpdGainValues[numXpdGain] =
862 (u16)(AR5416_PD_GAINS_IN_MASK - i);
863 numXpdGain++;
867 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
868 (numXpdGain - 1) & 0x3);
869 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
870 xpdGainValues[0]);
871 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
872 xpdGainValues[1]);
873 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
874 xpdGainValues[2]);
876 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
877 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
878 (i != 0)) {
879 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
880 } else
881 regChainOffset = i * 0x1000;
883 if (pEepData->baseEepHeader.txMask & (1 << i)) {
884 if (IS_CHAN_2GHZ(chan))
885 pRawDataset = pEepData->calPierData2G[i];
886 else
887 pRawDataset = pEepData->calPierData5G[i];
890 if (OLC_FOR_AR9280_20_LATER) {
891 u8 pcdacIdx;
892 u8 txPower;
894 ath9k_get_txgain_index(ah, chan,
895 (struct calDataPerFreqOpLoop *)pRawDataset,
896 pCalBChans, numPiers, &txPower, &pcdacIdx);
897 ath9k_olc_get_pdadcs(ah, pcdacIdx,
898 txPower/2, pdadcValues);
899 } else {
900 ath9k_hw_get_gain_boundaries_pdadcs(ah,
901 chan, pRawDataset,
902 pCalBChans, numPiers,
903 pdGainOverlap_t2,
904 gainBoundaries,
905 pdadcValues,
906 numXpdGain);
909 diff = ath9k_change_gain_boundary_setting(ah,
910 gainBoundaries,
911 numXpdGain,
912 pdGainOverlap_t2,
913 pwr_table_offset,
914 &diff);
916 ENABLE_REGWRITE_BUFFER(ah);
918 if (OLC_FOR_AR9280_20_LATER) {
919 REG_WRITE(ah,
920 AR_PHY_TPCRG5 + regChainOffset,
921 SM(0x6,
922 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
923 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
924 SM_PD_GAIN(3) | SM_PD_GAIN(4));
925 } else {
926 REG_WRITE(ah,
927 AR_PHY_TPCRG5 + regChainOffset,
928 SM(pdGainOverlap_t2,
929 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
930 SM_PDGAIN_B(0, 1) |
931 SM_PDGAIN_B(1, 2) |
932 SM_PDGAIN_B(2, 3) |
933 SM_PDGAIN_B(3, 4));
936 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
937 diff, pdadcValues);
939 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
940 for (j = 0; j < 32; j++) {
941 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
942 REG_WRITE(ah, regOffset, reg32);
944 ath_dbg(common, EEPROM,
945 "PDADC (%d,%4x): %4.4x %8.8x\n",
946 i, regChainOffset, regOffset,
947 reg32);
948 ath_dbg(common, EEPROM,
949 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
950 i, 4 * j, pdadcValues[4 * j],
951 4 * j + 1, pdadcValues[4 * j + 1],
952 4 * j + 2, pdadcValues[4 * j + 2],
953 4 * j + 3, pdadcValues[4 * j + 3]);
955 regOffset += 4;
957 REGWRITE_BUFFER_FLUSH(ah);
961 #undef SM_PD_GAIN
962 #undef SM_PDGAIN_B
965 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
966 struct ath9k_channel *chan,
967 int16_t *ratesArray,
968 u16 cfgCtl,
969 u16 antenna_reduction,
970 u16 powerLimit)
972 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
973 u16 twiceMaxEdgePower;
974 int i;
975 struct cal_ctl_data *rep;
976 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
977 0, { 0, 0, 0, 0}
979 struct cal_target_power_leg targetPowerOfdmExt = {
980 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
981 0, { 0, 0, 0, 0 }
983 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
984 0, {0, 0, 0, 0}
986 u16 scaledPower = 0, minCtlPower;
987 static const u16 ctlModesFor11a[] = {
988 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
990 static const u16 ctlModesFor11g[] = {
991 CTL_11B, CTL_11G, CTL_2GHT20,
992 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
994 u16 numCtlModes;
995 const u16 *pCtlMode;
996 u16 ctlMode, freq;
997 struct chan_centers centers;
998 int tx_chainmask;
999 u16 twiceMinEdgePower;
1001 tx_chainmask = ah->txchainmask;
1003 ath9k_hw_get_channel_centers(ah, chan, &centers);
1005 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1006 antenna_reduction);
1008 if (IS_CHAN_2GHZ(chan)) {
1009 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1010 SUB_NUM_CTL_MODES_AT_2G_40;
1011 pCtlMode = ctlModesFor11g;
1013 ath9k_hw_get_legacy_target_powers(ah, chan,
1014 pEepData->calTargetPowerCck,
1015 AR5416_NUM_2G_CCK_TARGET_POWERS,
1016 &targetPowerCck, 4, false);
1017 ath9k_hw_get_legacy_target_powers(ah, chan,
1018 pEepData->calTargetPower2G,
1019 AR5416_NUM_2G_20_TARGET_POWERS,
1020 &targetPowerOfdm, 4, false);
1021 ath9k_hw_get_target_powers(ah, chan,
1022 pEepData->calTargetPower2GHT20,
1023 AR5416_NUM_2G_20_TARGET_POWERS,
1024 &targetPowerHt20, 8, false);
1026 if (IS_CHAN_HT40(chan)) {
1027 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1028 ath9k_hw_get_target_powers(ah, chan,
1029 pEepData->calTargetPower2GHT40,
1030 AR5416_NUM_2G_40_TARGET_POWERS,
1031 &targetPowerHt40, 8, true);
1032 ath9k_hw_get_legacy_target_powers(ah, chan,
1033 pEepData->calTargetPowerCck,
1034 AR5416_NUM_2G_CCK_TARGET_POWERS,
1035 &targetPowerCckExt, 4, true);
1036 ath9k_hw_get_legacy_target_powers(ah, chan,
1037 pEepData->calTargetPower2G,
1038 AR5416_NUM_2G_20_TARGET_POWERS,
1039 &targetPowerOfdmExt, 4, true);
1041 } else {
1042 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1043 SUB_NUM_CTL_MODES_AT_5G_40;
1044 pCtlMode = ctlModesFor11a;
1046 ath9k_hw_get_legacy_target_powers(ah, chan,
1047 pEepData->calTargetPower5G,
1048 AR5416_NUM_5G_20_TARGET_POWERS,
1049 &targetPowerOfdm, 4, false);
1050 ath9k_hw_get_target_powers(ah, chan,
1051 pEepData->calTargetPower5GHT20,
1052 AR5416_NUM_5G_20_TARGET_POWERS,
1053 &targetPowerHt20, 8, false);
1055 if (IS_CHAN_HT40(chan)) {
1056 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1057 ath9k_hw_get_target_powers(ah, chan,
1058 pEepData->calTargetPower5GHT40,
1059 AR5416_NUM_5G_40_TARGET_POWERS,
1060 &targetPowerHt40, 8, true);
1061 ath9k_hw_get_legacy_target_powers(ah, chan,
1062 pEepData->calTargetPower5G,
1063 AR5416_NUM_5G_20_TARGET_POWERS,
1064 &targetPowerOfdmExt, 4, true);
1068 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1069 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1070 (pCtlMode[ctlMode] == CTL_2GHT40);
1071 if (isHt40CtlMode)
1072 freq = centers.synth_center;
1073 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1074 freq = centers.ext_center;
1075 else
1076 freq = centers.ctl_center;
1078 twiceMaxEdgePower = MAX_RATE_POWER;
1080 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1081 if ((((cfgCtl & ~CTL_MODE_M) |
1082 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1083 pEepData->ctlIndex[i]) ||
1084 (((cfgCtl & ~CTL_MODE_M) |
1085 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1086 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1087 rep = &(pEepData->ctlData[i]);
1089 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1090 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1091 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1093 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1094 twiceMaxEdgePower = min(twiceMaxEdgePower,
1095 twiceMinEdgePower);
1096 } else {
1097 twiceMaxEdgePower = twiceMinEdgePower;
1098 break;
1103 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1105 switch (pCtlMode[ctlMode]) {
1106 case CTL_11B:
1107 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1108 targetPowerCck.tPow2x[i] =
1109 min((u16)targetPowerCck.tPow2x[i],
1110 minCtlPower);
1112 break;
1113 case CTL_11A:
1114 case CTL_11G:
1115 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1116 targetPowerOfdm.tPow2x[i] =
1117 min((u16)targetPowerOfdm.tPow2x[i],
1118 minCtlPower);
1120 break;
1121 case CTL_5GHT20:
1122 case CTL_2GHT20:
1123 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1124 targetPowerHt20.tPow2x[i] =
1125 min((u16)targetPowerHt20.tPow2x[i],
1126 minCtlPower);
1128 break;
1129 case CTL_11B_EXT:
1130 targetPowerCckExt.tPow2x[0] = min((u16)
1131 targetPowerCckExt.tPow2x[0],
1132 minCtlPower);
1133 break;
1134 case CTL_11A_EXT:
1135 case CTL_11G_EXT:
1136 targetPowerOfdmExt.tPow2x[0] = min((u16)
1137 targetPowerOfdmExt.tPow2x[0],
1138 minCtlPower);
1139 break;
1140 case CTL_5GHT40:
1141 case CTL_2GHT40:
1142 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1143 targetPowerHt40.tPow2x[i] =
1144 min((u16)targetPowerHt40.tPow2x[i],
1145 minCtlPower);
1147 break;
1148 default:
1149 break;
1153 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1154 ratesArray[rate18mb] = ratesArray[rate24mb] =
1155 targetPowerOfdm.tPow2x[0];
1156 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1157 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1158 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1159 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1161 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1162 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1164 if (IS_CHAN_2GHZ(chan)) {
1165 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1166 ratesArray[rate2s] = ratesArray[rate2l] =
1167 targetPowerCck.tPow2x[1];
1168 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1169 targetPowerCck.tPow2x[2];
1170 ratesArray[rate11s] = ratesArray[rate11l] =
1171 targetPowerCck.tPow2x[3];
1173 if (IS_CHAN_HT40(chan)) {
1174 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1175 ratesArray[rateHt40_0 + i] =
1176 targetPowerHt40.tPow2x[i];
1178 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1179 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1180 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1181 if (IS_CHAN_2GHZ(chan)) {
1182 ratesArray[rateExtCck] =
1183 targetPowerCckExt.tPow2x[0];
1188 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1189 struct ath9k_channel *chan,
1190 u16 cfgCtl,
1191 u8 twiceAntennaReduction,
1192 u8 powerLimit, bool test)
1194 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1195 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1196 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1197 struct modal_eep_header *pModal =
1198 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1199 int16_t ratesArray[Ar5416RateSize];
1200 u8 ht40PowerIncForPdadc = 2;
1201 int i, cck_ofdm_delta = 0;
1203 memset(ratesArray, 0, sizeof(ratesArray));
1205 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1206 AR5416_EEP_MINOR_VER_2) {
1207 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1210 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1211 &ratesArray[0], cfgCtl,
1212 twiceAntennaReduction,
1213 powerLimit);
1215 ath9k_hw_set_def_power_cal_table(ah, chan);
1217 regulatory->max_power_level = 0;
1218 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1219 if (ratesArray[i] > MAX_RATE_POWER)
1220 ratesArray[i] = MAX_RATE_POWER;
1221 if (ratesArray[i] > regulatory->max_power_level)
1222 regulatory->max_power_level = ratesArray[i];
1225 ath9k_hw_update_regulatory_maxpower(ah);
1227 if (test)
1228 return;
1230 if (AR_SREV_9280_20_OR_LATER(ah)) {
1231 for (i = 0; i < Ar5416RateSize; i++) {
1232 int8_t pwr_table_offset;
1234 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1235 EEP_PWR_TABLE_OFFSET);
1236 ratesArray[i] -= pwr_table_offset * 2;
1240 ENABLE_REGWRITE_BUFFER(ah);
1242 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1243 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1244 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1245 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1246 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1247 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1248 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1249 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1250 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1251 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1253 if (IS_CHAN_2GHZ(chan)) {
1254 if (OLC_FOR_AR9280_20_LATER) {
1255 cck_ofdm_delta = 2;
1256 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1257 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1258 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1259 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1260 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1261 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1262 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1263 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1264 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1265 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1266 } else {
1267 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1268 ATH9K_POW_SM(ratesArray[rate2s], 24)
1269 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1270 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1271 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1272 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1273 ATH9K_POW_SM(ratesArray[rate11s], 24)
1274 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1275 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1276 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1280 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1281 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1282 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1283 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1284 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1285 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1286 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1287 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1288 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1289 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1291 if (IS_CHAN_HT40(chan)) {
1292 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1293 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1294 ht40PowerIncForPdadc, 24)
1295 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1296 ht40PowerIncForPdadc, 16)
1297 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1298 ht40PowerIncForPdadc, 8)
1299 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1300 ht40PowerIncForPdadc, 0));
1301 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1302 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1303 ht40PowerIncForPdadc, 24)
1304 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1305 ht40PowerIncForPdadc, 16)
1306 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1307 ht40PowerIncForPdadc, 8)
1308 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1309 ht40PowerIncForPdadc, 0));
1310 if (OLC_FOR_AR9280_20_LATER) {
1311 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1312 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1313 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1314 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1315 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1316 } else {
1317 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1318 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1319 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1320 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1321 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1325 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1326 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1327 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1329 /* TPC initializations */
1330 if (ah->tpc_enabled) {
1331 int ht40_delta;
1333 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
1334 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
1335 /* Enable TPC */
1336 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
1337 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
1338 } else {
1339 /* Disable TPC */
1340 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
1343 REGWRITE_BUFFER_FLUSH(ah);
1346 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1348 return ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
1351 const struct eeprom_ops eep_def_ops = {
1352 .check_eeprom = ath9k_hw_def_check_eeprom,
1353 .get_eeprom = ath9k_hw_def_get_eeprom,
1354 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1355 .dump_eeprom = ath9k_hw_def_dump_eeprom,
1356 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1357 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1358 .set_board_values = ath9k_hw_def_set_board_values,
1359 .set_addac = ath9k_hw_def_set_addac,
1360 .set_txpower = ath9k_hw_def_set_txpower,
1361 .get_spur_channel = ath9k_hw_def_get_spur_channel