2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
42 struct ath_common
*common
= ath9k_hw_common(ah
);
43 struct ath9k_channel
*chan
= ah
->curchan
;
44 unsigned int clockrate
;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
49 else if (!chan
) /* should really check for CCK instead */
50 clockrate
= ATH9K_CLOCK_RATE_CCK
;
51 else if (IS_CHAN_2GHZ(chan
))
52 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
53 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
54 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
56 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
59 if (IS_CHAN_HT40(chan
))
61 if (IS_CHAN_HALF_RATE(chan
))
63 if (IS_CHAN_QUARTER_RATE(chan
))
67 common
->clockrate
= clockrate
;
70 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
72 struct ath_common
*common
= ath9k_hw_common(ah
);
74 return usecs
* common
->clockrate
;
77 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
81 BUG_ON(timeout
< AH_TIME_QUANTUM
);
83 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
84 if ((REG_READ(ah
, reg
) & mask
) == val
)
87 udelay(AH_TIME_QUANTUM
);
90 ath_dbg(ath9k_hw_common(ah
), ANY
,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
96 EXPORT_SYMBOL(ath9k_hw_wait
);
98 void ath9k_hw_synth_delay(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
103 if (IS_CHAN_HALF_RATE(chan
))
105 else if (IS_CHAN_QUARTER_RATE(chan
))
108 udelay(hw_delay
+ BASE_ACTIVATE_DELAY
);
111 void ath9k_hw_write_array(struct ath_hw
*ah
, const struct ar5416IniArray
*array
,
112 int column
, unsigned int *writecnt
)
116 ENABLE_REGWRITE_BUFFER(ah
);
117 for (r
= 0; r
< array
->ia_rows
; r
++) {
118 REG_WRITE(ah
, INI_RA(array
, r
, 0),
119 INI_RA(array
, r
, column
));
122 REGWRITE_BUFFER_FLUSH(ah
);
125 void ath9k_hw_read_array(struct ath_hw
*ah
, u32 array
[][2], int size
)
127 u32
*tmp_reg_list
, *tmp_data
;
130 tmp_reg_list
= kmalloc(size
* sizeof(u32
), GFP_KERNEL
);
132 dev_err(ah
->dev
, "%s: tmp_reg_list: alloc filed\n", __func__
);
136 tmp_data
= kmalloc(size
* sizeof(u32
), GFP_KERNEL
);
138 dev_err(ah
->dev
, "%s tmp_data: alloc filed\n", __func__
);
142 for (i
= 0; i
< size
; i
++)
143 tmp_reg_list
[i
] = array
[i
][0];
145 REG_READ_MULTI(ah
, tmp_reg_list
, tmp_data
, size
);
147 for (i
= 0; i
< size
; i
++)
148 array
[i
][1] = tmp_data
[i
];
155 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
160 for (i
= 0, retval
= 0; i
< n
; i
++) {
161 retval
= (retval
<< 1) | (val
& 1);
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
178 case WLAN_RC_PHY_CCK
:
179 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
182 numBits
= frameLen
<< 3;
183 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
185 case WLAN_RC_PHY_OFDM
:
186 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
187 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
188 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
189 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
190 txTime
= OFDM_SIFS_TIME_QUARTER
191 + OFDM_PREAMBLE_TIME_QUARTER
192 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
193 } else if (ah
->curchan
&&
194 IS_CHAN_HALF_RATE(ah
->curchan
)) {
195 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
196 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
197 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
198 txTime
= OFDM_SIFS_TIME_HALF
+
199 OFDM_PREAMBLE_TIME_HALF
200 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
202 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
203 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
204 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
205 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
206 + (numSymbols
* OFDM_SYMBOL_TIME
);
210 ath_err(ath9k_hw_common(ah
),
211 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
218 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
220 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
221 struct ath9k_channel
*chan
,
222 struct chan_centers
*centers
)
226 if (!IS_CHAN_HT40(chan
)) {
227 centers
->ctl_center
= centers
->ext_center
=
228 centers
->synth_center
= chan
->channel
;
232 if (IS_CHAN_HT40PLUS(chan
)) {
233 centers
->synth_center
=
234 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
237 centers
->synth_center
=
238 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
242 centers
->ctl_center
=
243 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
244 /* 25 MHz spacing is supported by hw but not on upper layers */
245 centers
->ext_center
=
246 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
253 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
257 if (ah
->get_mac_revision
)
258 ah
->hw_version
.macRev
= ah
->get_mac_revision();
260 switch (ah
->hw_version
.devid
) {
261 case AR5416_AR9100_DEVID
:
262 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
264 case AR9300_DEVID_AR9330
:
265 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
266 if (!ah
->get_mac_revision
) {
267 val
= REG_READ(ah
, AR_SREV
);
268 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
271 case AR9300_DEVID_AR9340
:
272 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
274 case AR9300_DEVID_QCA955X
:
275 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9550
;
277 case AR9300_DEVID_AR953X
:
278 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9531
;
280 case AR9300_DEVID_QCA956X
:
281 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9561
;
285 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
288 val
= REG_READ(ah
, AR_SREV
);
289 ah
->hw_version
.macVersion
=
290 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
291 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
293 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
294 ah
->is_pciexpress
= true;
296 ah
->is_pciexpress
= (val
&
297 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
299 if (!AR_SREV_9100(ah
))
300 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
302 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
304 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
305 ah
->is_pciexpress
= true;
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
313 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
315 if (!AR_SREV_5416(ah
))
318 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
319 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
320 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
321 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
322 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
323 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
324 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
325 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
326 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
328 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
334 struct ath_common
*common
= ath9k_hw_common(ah
);
335 u32 regAddr
[2] = { AR_STA_ID0
};
337 static const u32 patternData
[4] = {
338 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
342 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
344 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
348 for (i
= 0; i
< loop_max
; i
++) {
349 u32 addr
= regAddr
[i
];
352 regHold
[i
] = REG_READ(ah
, addr
);
353 for (j
= 0; j
< 0x100; j
++) {
354 wrData
= (j
<< 16) | j
;
355 REG_WRITE(ah
, addr
, wrData
);
356 rdData
= REG_READ(ah
, addr
);
357 if (rdData
!= wrData
) {
359 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 addr
, wrData
, rdData
);
364 for (j
= 0; j
< 4; j
++) {
365 wrData
= patternData
[j
];
366 REG_WRITE(ah
, addr
, wrData
);
367 rdData
= REG_READ(ah
, addr
);
368 if (wrData
!= rdData
) {
370 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 addr
, wrData
, rdData
);
375 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
382 static void ath9k_hw_init_config(struct ath_hw
*ah
)
384 struct ath_common
*common
= ath9k_hw_common(ah
);
386 ah
->config
.dma_beacon_response_time
= 1;
387 ah
->config
.sw_beacon_response_time
= 6;
388 ah
->config
.cwm_ignore_extcca
= false;
389 ah
->config
.analog_shiftreg
= 1;
391 ah
->config
.rx_intr_mitigation
= true;
393 if (AR_SREV_9300_20_OR_LATER(ah
)) {
394 ah
->config
.rimt_last
= 500;
395 ah
->config
.rimt_first
= 2000;
397 ah
->config
.rimt_last
= 250;
398 ah
->config
.rimt_first
= 700;
401 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
402 ah
->config
.pll_pwrsave
= 7;
405 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 * This means we use it for all AR5416 devices, and the few
408 * minor PCI AR9280 devices out there.
410 * Serialization is required because these devices do not handle
411 * well the case of two concurrent reads/writes due to the latency
412 * involved. During one read/write another read/write can be issued
413 * on another CPU while the previous read/write may still be working
414 * on our hardware, if we hit this case the hardware poops in a loop.
415 * We prevent this by serializing reads and writes.
417 * This issue is not present on PCI-Express devices or pre-AR5416
418 * devices (legacy, 802.11abg).
420 if (num_possible_cpus() > 1)
421 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
423 if (NR_CPUS
> 1 && ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
424 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
425 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
) || AR_SREV_9287(ah
)) &&
426 !ah
->is_pciexpress
)) {
427 ah
->config
.serialize_regmode
= SER_REG_MODE_ON
;
429 ah
->config
.serialize_regmode
= SER_REG_MODE_OFF
;
433 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
434 ah
->config
.serialize_regmode
);
436 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
437 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
439 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
442 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
444 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
446 regulatory
->country_code
= CTRY_DEFAULT
;
447 regulatory
->power_limit
= MAX_RATE_POWER
;
449 ah
->hw_version
.magic
= AR5416_MAGIC
;
450 ah
->hw_version
.subvendorid
= 0;
452 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
|
453 AR_STA_ID1_MCAST_KSRCH
;
454 if (AR_SREV_9100(ah
))
455 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
457 ah
->slottime
= ATH9K_SLOT_TIME_9
;
458 ah
->globaltxtimeout
= (u32
) -1;
459 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
460 ah
->htc_reset_init
= true;
462 ah
->tpc_enabled
= false;
464 ah
->ani_function
= ATH9K_ANI_ALL
;
465 if (!AR_SREV_9300_20_OR_LATER(ah
))
466 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
468 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
469 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
471 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
474 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
476 struct ath_common
*common
= ath9k_hw_common(ah
);
480 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
483 for (i
= 0; i
< 3; i
++) {
484 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
486 common
->macaddr
[2 * i
] = eeval
>> 8;
487 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
489 if (!is_valid_ether_addr(common
->macaddr
)) {
491 "eeprom contains invalid mac address: %pM\n",
494 random_ether_addr(common
->macaddr
);
496 "random mac address will be used: %pM\n",
503 static int ath9k_hw_post_init(struct ath_hw
*ah
)
505 struct ath_common
*common
= ath9k_hw_common(ah
);
508 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
509 if (!ath9k_hw_chip_test(ah
))
513 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
514 ecode
= ar9002_hw_rf_claim(ah
);
519 ecode
= ath9k_hw_eeprom_init(ah
);
523 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
524 ah
->eep_ops
->get_eeprom_ver(ah
),
525 ah
->eep_ops
->get_eeprom_rev(ah
));
527 ath9k_hw_ani_init(ah
);
530 * EEPROM needs to be initialized before we do this.
531 * This is required for regulatory compliance.
533 if (AR_SREV_9300_20_OR_LATER(ah
)) {
534 u16 regdmn
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
535 if ((regdmn
& 0xF0) == CTL_FCC
) {
536 ah
->nf_2g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ
;
537 ah
->nf_5g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ
;
544 static int ath9k_hw_attach_ops(struct ath_hw
*ah
)
546 if (!AR_SREV_9300_20_OR_LATER(ah
))
547 return ar9002_hw_attach_ops(ah
);
549 ar9003_hw_attach_ops(ah
);
553 /* Called for all hardware families */
554 static int __ath9k_hw_init(struct ath_hw
*ah
)
556 struct ath_common
*common
= ath9k_hw_common(ah
);
559 ath9k_hw_read_revisions(ah
);
561 switch (ah
->hw_version
.macVersion
) {
562 case AR_SREV_VERSION_5416_PCI
:
563 case AR_SREV_VERSION_5416_PCIE
:
564 case AR_SREV_VERSION_9160
:
565 case AR_SREV_VERSION_9100
:
566 case AR_SREV_VERSION_9280
:
567 case AR_SREV_VERSION_9285
:
568 case AR_SREV_VERSION_9287
:
569 case AR_SREV_VERSION_9271
:
570 case AR_SREV_VERSION_9300
:
571 case AR_SREV_VERSION_9330
:
572 case AR_SREV_VERSION_9485
:
573 case AR_SREV_VERSION_9340
:
574 case AR_SREV_VERSION_9462
:
575 case AR_SREV_VERSION_9550
:
576 case AR_SREV_VERSION_9565
:
577 case AR_SREV_VERSION_9531
:
578 case AR_SREV_VERSION_9561
:
582 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
583 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
588 * Read back AR_WA into a permanent copy and set bits 14 and 17.
589 * We need to do this to avoid RMW of this register. We cannot
590 * read the reg when chip is asleep.
592 if (AR_SREV_9300_20_OR_LATER(ah
)) {
593 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
594 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
595 AR_WA_ASPM_TIMER_BASED_DISABLE
);
598 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
599 ath_err(common
, "Couldn't reset chip\n");
603 if (AR_SREV_9565(ah
)) {
604 ah
->WARegVal
|= AR_WA_BIT22
;
605 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
608 ath9k_hw_init_defaults(ah
);
609 ath9k_hw_init_config(ah
);
611 r
= ath9k_hw_attach_ops(ah
);
615 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
616 ath_err(common
, "Couldn't wakeup chip\n");
620 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
621 AR_SREV_9330(ah
) || AR_SREV_9550(ah
))
622 ah
->is_pciexpress
= false;
624 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
625 ath9k_hw_init_cal_settings(ah
);
627 if (!ah
->is_pciexpress
)
628 ath9k_hw_disablepcie(ah
);
630 r
= ath9k_hw_post_init(ah
);
634 ath9k_hw_init_mode_gain_regs(ah
);
635 r
= ath9k_hw_fill_cap_info(ah
);
639 r
= ath9k_hw_init_macaddr(ah
);
641 ath_err(common
, "Failed to initialize MAC address\n");
645 ath9k_hw_init_hang_checks(ah
);
647 common
->state
= ATH_HW_INITIALIZED
;
652 int ath9k_hw_init(struct ath_hw
*ah
)
655 struct ath_common
*common
= ath9k_hw_common(ah
);
657 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
658 switch (ah
->hw_version
.devid
) {
659 case AR5416_DEVID_PCI
:
660 case AR5416_DEVID_PCIE
:
661 case AR5416_AR9100_DEVID
:
662 case AR9160_DEVID_PCI
:
663 case AR9280_DEVID_PCI
:
664 case AR9280_DEVID_PCIE
:
665 case AR9285_DEVID_PCIE
:
666 case AR9287_DEVID_PCI
:
667 case AR9287_DEVID_PCIE
:
668 case AR2427_DEVID_PCIE
:
669 case AR9300_DEVID_PCIE
:
670 case AR9300_DEVID_AR9485_PCIE
:
671 case AR9300_DEVID_AR9330
:
672 case AR9300_DEVID_AR9340
:
673 case AR9300_DEVID_QCA955X
:
674 case AR9300_DEVID_AR9580
:
675 case AR9300_DEVID_AR9462
:
676 case AR9485_DEVID_AR1111
:
677 case AR9300_DEVID_AR9565
:
678 case AR9300_DEVID_AR953X
:
679 case AR9300_DEVID_QCA956X
:
682 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
684 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
685 ah
->hw_version
.devid
);
689 ret
= __ath9k_hw_init(ah
);
692 "Unable to initialize hardware; initialization status: %d\n",
701 EXPORT_SYMBOL(ath9k_hw_init
);
703 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
705 ENABLE_REGWRITE_BUFFER(ah
);
707 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
708 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
710 REG_WRITE(ah
, AR_QOS_NO_ACK
,
711 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
712 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
713 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
715 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
716 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
717 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
718 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
719 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
721 REGWRITE_BUFFER_FLUSH(ah
);
724 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
726 struct ath_common
*common
= ath9k_hw_common(ah
);
729 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
731 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
733 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0) {
737 if (WARN_ON_ONCE(i
>= 100)) {
738 ath_err(common
, "PLL4 meaurement not done\n");
745 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
747 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
749 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
750 struct ath9k_channel
*chan
)
754 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
756 if (AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
757 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
758 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
759 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
760 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
761 AR_CH0_DPLL2_KD
, 0x40);
762 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
763 AR_CH0_DPLL2_KI
, 0x4);
765 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
766 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
767 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
768 AR_CH0_BB_DPLL1_NINI
, 0x58);
769 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
770 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
772 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
773 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
774 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
775 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
776 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
777 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
779 /* program BB PLL phase_shift to 0x6 */
780 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
781 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
783 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
784 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
786 } else if (AR_SREV_9330(ah
)) {
787 u32 ddr_dpll2
, pll_control2
, kd
;
789 if (ah
->is_clk_25mhz
) {
790 ddr_dpll2
= 0x18e82f01;
791 pll_control2
= 0xe04a3d;
794 ddr_dpll2
= 0x19e82f01;
795 pll_control2
= 0x886666;
799 /* program DDR PLL ki and kd value */
800 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
802 /* program DDR PLL phase_shift */
803 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
804 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
806 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
807 pll
| AR_RTC_9300_PLL_BYPASS
);
810 /* program refdiv, nint, frac to RTC register */
811 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
813 /* program BB PLL kd and ki value */
814 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
815 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
817 /* program BB PLL phase_shift */
818 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
819 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
820 } else if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
822 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
824 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
825 pll
| AR_RTC_9300_SOC_PLL_BYPASS
);
828 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
831 if (ah
->is_clk_25mhz
) {
832 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
834 pll2_divfrac
= 0xa3d2;
838 pll2_divfrac
= 0x1eb85;
842 if (AR_SREV_9340(ah
)) {
848 pll2_divfrac
= (AR_SREV_9531(ah
) ||
855 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
856 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
857 regval
|= (0x1 << 22);
859 regval
|= (0x1 << 16);
860 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
863 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
864 (pll2_divint
<< 18) | pll2_divfrac
);
867 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
868 if (AR_SREV_9340(ah
))
869 regval
= (regval
& 0x80071fff) |
874 else if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
875 regval
= (regval
& 0x01c00fff) |
881 if (AR_SREV_9531(ah
))
882 regval
|= (0x6 << 12);
884 regval
= (regval
& 0x80071fff) |
889 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
891 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
892 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
893 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xffbfffff);
895 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
896 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
901 if (AR_SREV_9565(ah
))
903 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
905 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
) ||
909 /* Switch the core clock for ar9271 to 117Mhz */
910 if (AR_SREV_9271(ah
)) {
912 REG_WRITE(ah
, 0x50040, 0x304);
915 udelay(RTC_PLL_SETTLE_DELAY
);
917 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
920 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
921 enum nl80211_iftype opmode
)
923 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
924 u32 imr_reg
= AR_IMR_TXERR
|
930 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
932 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
934 if (AR_SREV_9300_20_OR_LATER(ah
)) {
935 imr_reg
|= AR_IMR_RXOK_HP
;
936 if (ah
->config
.rx_intr_mitigation
)
937 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
939 imr_reg
|= AR_IMR_RXOK_LP
;
942 if (ah
->config
.rx_intr_mitigation
)
943 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
945 imr_reg
|= AR_IMR_RXOK
;
948 if (ah
->config
.tx_intr_mitigation
)
949 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
951 imr_reg
|= AR_IMR_TXOK
;
953 ENABLE_REGWRITE_BUFFER(ah
);
955 REG_WRITE(ah
, AR_IMR
, imr_reg
);
956 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
957 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
959 if (!AR_SREV_9100(ah
)) {
960 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
961 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
962 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
965 REGWRITE_BUFFER_FLUSH(ah
);
967 if (AR_SREV_9300_20_OR_LATER(ah
)) {
968 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
969 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
970 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
971 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
975 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
977 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
978 val
= min(val
, (u32
) 0xFFFF);
979 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
982 void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
984 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
985 val
= min(val
, (u32
) 0xFFFF);
986 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
989 void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
991 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
992 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
993 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
996 void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
998 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
999 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
1000 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
1003 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1006 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
1008 ah
->globaltxtimeout
= (u32
) -1;
1011 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1012 ah
->globaltxtimeout
= tu
;
1017 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
1019 struct ath_common
*common
= ath9k_hw_common(ah
);
1020 const struct ath9k_channel
*chan
= ah
->curchan
;
1021 int acktimeout
, ctstimeout
, ack_offset
= 0;
1024 int rx_lat
= 0, tx_lat
= 0, eifs
= 0;
1027 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
1033 if (ah
->misc_mode
!= 0)
1034 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
1036 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1042 if (IS_CHAN_5GHZ(chan
))
1047 if (IS_CHAN_HALF_RATE(chan
)) {
1051 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1057 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1059 rx_lat
= (rx_lat
* 4) - 1;
1061 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1068 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1069 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1070 reg
= AR_USEC_ASYNC_FIFO
;
1072 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1074 reg
= REG_READ(ah
, AR_USEC
);
1076 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1077 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1079 slottime
= ah
->slottime
;
1082 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1083 slottime
+= 3 * ah
->coverage_class
;
1084 acktimeout
= slottime
+ sifstime
+ ack_offset
;
1085 ctstimeout
= acktimeout
;
1088 * Workaround for early ACK timeouts, add an offset to match the
1089 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1090 * This was initially only meant to work around an issue with delayed
1091 * BA frames in some implementations, but it has been found to fix ACK
1092 * timeout issues in other cases as well.
1094 if (IS_CHAN_2GHZ(chan
) &&
1095 !IS_CHAN_HALF_RATE(chan
) && !IS_CHAN_QUARTER_RATE(chan
)) {
1096 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1097 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1100 if (ah
->dynack
.enabled
) {
1101 acktimeout
= ah
->dynack
.ackto
;
1102 ctstimeout
= acktimeout
;
1103 slottime
= (acktimeout
- 3) / 2;
1105 ah
->dynack
.ackto
= acktimeout
;
1108 ath9k_hw_set_sifs_time(ah
, sifstime
);
1109 ath9k_hw_setslottime(ah
, slottime
);
1110 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1111 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1112 if (ah
->globaltxtimeout
!= (u32
) -1)
1113 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1115 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1116 REG_RMW(ah
, AR_USEC
,
1117 (common
->clockrate
- 1) |
1118 SM(rx_lat
, AR_USEC_RX_LAT
) |
1119 SM(tx_lat
, AR_USEC_TX_LAT
),
1120 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1123 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1125 void ath9k_hw_deinit(struct ath_hw
*ah
)
1127 struct ath_common
*common
= ath9k_hw_common(ah
);
1129 if (common
->state
< ATH_HW_INITIALIZED
)
1132 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1134 EXPORT_SYMBOL(ath9k_hw_deinit
);
1140 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1142 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1144 if (IS_CHAN_2GHZ(chan
))
1152 /****************************************/
1153 /* Reset and Channel Switching Routines */
1154 /****************************************/
1156 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1158 struct ath_common
*common
= ath9k_hw_common(ah
);
1161 ENABLE_REGWRITE_BUFFER(ah
);
1164 * set AHB_MODE not to do cacheline prefetches
1166 if (!AR_SREV_9300_20_OR_LATER(ah
))
1167 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1170 * let mac dma reads be in 128 byte chunks
1172 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1174 REGWRITE_BUFFER_FLUSH(ah
);
1177 * Restore TX Trigger Level to its pre-reset value.
1178 * The initial value depends on whether aggregation is enabled, and is
1179 * adjusted whenever underruns are detected.
1181 if (!AR_SREV_9300_20_OR_LATER(ah
))
1182 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1184 ENABLE_REGWRITE_BUFFER(ah
);
1187 * let mac dma writes be in 128 byte chunks
1189 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1192 * Setup receive FIFO threshold to hold off TX activities
1194 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1196 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1197 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1198 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1200 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1201 ah
->caps
.rx_status_len
);
1205 * reduce the number of usable entries in PCU TXBUF to avoid
1206 * wrap around issues.
1208 if (AR_SREV_9285(ah
)) {
1209 /* For AR9285 the number of Fifos are reduced to half.
1210 * So set the usable tx buf size also to half to
1211 * avoid data/delimiter underruns
1213 txbuf_size
= AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
;
1214 } else if (AR_SREV_9340_13_OR_LATER(ah
)) {
1215 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1216 txbuf_size
= AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE
;
1218 txbuf_size
= AR_PCU_TXBUF_CTRL_USABLE_SIZE
;
1221 if (!AR_SREV_9271(ah
))
1222 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
, txbuf_size
);
1224 REGWRITE_BUFFER_FLUSH(ah
);
1226 if (AR_SREV_9300_20_OR_LATER(ah
))
1227 ath9k_hw_reset_txstatus_ring(ah
);
1230 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1232 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1233 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1235 ENABLE_REG_RMW_BUFFER(ah
);
1237 case NL80211_IFTYPE_ADHOC
:
1238 if (!AR_SREV_9340_13(ah
)) {
1239 set
|= AR_STA_ID1_ADHOC
;
1240 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1244 case NL80211_IFTYPE_OCB
:
1245 case NL80211_IFTYPE_MESH_POINT
:
1246 case NL80211_IFTYPE_AP
:
1247 set
|= AR_STA_ID1_STA_AP
;
1249 case NL80211_IFTYPE_STATION
:
1250 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1253 if (!ah
->is_monitoring
)
1257 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1258 REG_RMW_BUFFER_FLUSH(ah
);
1261 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1262 u32
*coef_mantissa
, u32
*coef_exponent
)
1264 u32 coef_exp
, coef_man
;
1266 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1267 if ((coef_scaled
>> coef_exp
) & 0x1)
1270 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1272 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1274 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1275 *coef_exponent
= coef_exp
- 16;
1279 * call external reset function to reset WMAC if:
1280 * - doing a cold reset
1281 * - we have pending frames in the TX queues.
1283 static bool ath9k_hw_ar9330_reset_war(struct ath_hw
*ah
, int type
)
1287 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1288 npend
= ath9k_hw_numtxpending(ah
, i
);
1293 if (ah
->external_reset
&&
1294 (npend
|| type
== ATH9K_RESET_COLD
)) {
1297 ath_dbg(ath9k_hw_common(ah
), RESET
,
1298 "reset MAC via external reset\n");
1300 reset_err
= ah
->external_reset();
1302 ath_err(ath9k_hw_common(ah
),
1303 "External reset failed, err=%d\n",
1308 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1314 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1319 if (AR_SREV_9100(ah
)) {
1320 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1321 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1322 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1325 ENABLE_REGWRITE_BUFFER(ah
);
1327 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1328 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1332 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1333 AR_RTC_FORCE_WAKE_ON_INT
);
1335 if (AR_SREV_9100(ah
)) {
1336 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1337 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1339 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1340 if (AR_SREV_9340(ah
))
1341 tmpReg
&= AR9340_INTR_SYNC_LOCAL_TIMEOUT
;
1343 tmpReg
&= AR_INTR_SYNC_LOCAL_TIMEOUT
|
1344 AR_INTR_SYNC_RADM_CPL_TIMEOUT
;
1348 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1351 if (!AR_SREV_9300_20_OR_LATER(ah
))
1353 REG_WRITE(ah
, AR_RC
, val
);
1355 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1356 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1358 rst_flags
= AR_RTC_RC_MAC_WARM
;
1359 if (type
== ATH9K_RESET_COLD
)
1360 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1363 if (AR_SREV_9330(ah
)) {
1364 if (!ath9k_hw_ar9330_reset_war(ah
, type
))
1368 if (ath9k_hw_mci_is_enabled(ah
))
1369 ar9003_mci_check_gpm_offset(ah
);
1371 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1373 REGWRITE_BUFFER_FLUSH(ah
);
1375 if (AR_SREV_9300_20_OR_LATER(ah
))
1377 else if (AR_SREV_9100(ah
))
1382 REG_WRITE(ah
, AR_RTC_RC
, 0);
1383 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1384 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1388 if (!AR_SREV_9100(ah
))
1389 REG_WRITE(ah
, AR_RC
, 0);
1391 if (AR_SREV_9100(ah
))
1397 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1399 ENABLE_REGWRITE_BUFFER(ah
);
1401 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1402 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1406 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1407 AR_RTC_FORCE_WAKE_ON_INT
);
1409 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1410 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1412 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1414 REGWRITE_BUFFER_FLUSH(ah
);
1418 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1419 REG_WRITE(ah
, AR_RC
, 0);
1421 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1423 if (!ath9k_hw_wait(ah
,
1428 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1432 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1435 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1439 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1440 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1444 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1445 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1447 if (!ah
->reset_power_on
)
1448 type
= ATH9K_RESET_POWER_ON
;
1451 case ATH9K_RESET_POWER_ON
:
1452 ret
= ath9k_hw_set_reset_power_on(ah
);
1454 ah
->reset_power_on
= true;
1456 case ATH9K_RESET_WARM
:
1457 case ATH9K_RESET_COLD
:
1458 ret
= ath9k_hw_set_reset(ah
, type
);
1467 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1468 struct ath9k_channel
*chan
)
1470 int reset_type
= ATH9K_RESET_WARM
;
1472 if (AR_SREV_9280(ah
)) {
1473 if (ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
1474 reset_type
= ATH9K_RESET_POWER_ON
;
1476 reset_type
= ATH9K_RESET_COLD
;
1477 } else if (ah
->chip_fullsleep
|| REG_READ(ah
, AR_Q_TXE
) ||
1478 (REG_READ(ah
, AR_CR
) & AR_CR_RXE
))
1479 reset_type
= ATH9K_RESET_COLD
;
1481 if (!ath9k_hw_set_reset_reg(ah
, reset_type
))
1484 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1487 ah
->chip_fullsleep
= false;
1489 if (AR_SREV_9330(ah
))
1490 ar9003_hw_internal_regulator_apply(ah
);
1491 ath9k_hw_init_pll(ah
, chan
);
1496 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1497 struct ath9k_channel
*chan
)
1499 struct ath_common
*common
= ath9k_hw_common(ah
);
1500 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1501 bool band_switch
= false, mode_diff
= false;
1502 u8 ini_reloaded
= 0;
1506 if (pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) {
1507 u32 flags_diff
= chan
->channelFlags
^ ah
->curchan
->channelFlags
;
1508 band_switch
= !!(flags_diff
& CHANNEL_5GHZ
);
1509 mode_diff
= !!(flags_diff
& ~CHANNEL_HT
);
1512 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1513 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1514 ath_dbg(common
, QUEUE
,
1515 "Transmit frames pending on queue %d\n", qnum
);
1520 if (!ath9k_hw_rfbus_req(ah
)) {
1521 ath_err(common
, "Could not kill baseband RX\n");
1525 if (band_switch
|| mode_diff
) {
1526 ath9k_hw_mark_phy_inactive(ah
);
1530 ath9k_hw_init_pll(ah
, chan
);
1532 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1533 ath_err(common
, "Failed to do fast channel change\n");
1538 ath9k_hw_set_channel_regs(ah
, chan
);
1540 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1542 ath_err(common
, "Failed to set channel\n");
1545 ath9k_hw_set_clockrate(ah
);
1546 ath9k_hw_apply_txpower(ah
, chan
, false);
1548 ath9k_hw_set_delta_slope(ah
, chan
);
1549 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1551 if (band_switch
|| ini_reloaded
)
1552 ah
->eep_ops
->set_board_values(ah
, chan
);
1554 ath9k_hw_init_bb(ah
, chan
);
1555 ath9k_hw_rfbus_done(ah
);
1557 if (band_switch
|| ini_reloaded
) {
1558 ah
->ah_flags
|= AH_FASTCC
;
1559 ath9k_hw_init_cal(ah
, chan
);
1560 ah
->ah_flags
&= ~AH_FASTCC
;
1566 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1568 u32 gpio_mask
= ah
->gpio_mask
;
1571 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1572 if (!(gpio_mask
& 1))
1575 ath9k_hw_cfg_output(ah
, i
, AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1576 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1580 void ath9k_hw_check_nav(struct ath_hw
*ah
)
1582 struct ath_common
*common
= ath9k_hw_common(ah
);
1585 val
= REG_READ(ah
, AR_NAV
);
1586 if (val
!= 0xdeadbeef && val
> 0x7fff) {
1587 ath_dbg(common
, BSTUCK
, "Abnormal NAV: 0x%x\n", val
);
1588 REG_WRITE(ah
, AR_NAV
, 0);
1591 EXPORT_SYMBOL(ath9k_hw_check_nav
);
1593 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1598 /* Check if chip failed to wake up */
1599 if (REG_READ(ah
, AR_CFG
) == 0xdeadbeef)
1602 if (AR_SREV_9300(ah
))
1603 return !ath9k_hw_detect_mac_hang(ah
);
1605 if (AR_SREV_9285_12_OR_LATER(ah
))
1608 last_val
= REG_READ(ah
, AR_OBS_BUS_1
);
1610 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1611 if (reg
!= last_val
)
1616 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1619 switch (reg
& 0x7E000B00) {
1627 } while (count
-- > 0);
1631 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1633 static void ath9k_hw_init_mfp(struct ath_hw
*ah
)
1635 /* Setup MFP options for CCMP */
1636 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1637 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1638 * frames when constructing CCMP AAD. */
1639 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1641 if (AR_SREV_9271(ah
) || AR_DEVID_7010(ah
))
1642 ah
->sw_mgmt_crypto_tx
= true;
1644 ah
->sw_mgmt_crypto_tx
= false;
1645 ah
->sw_mgmt_crypto_rx
= false;
1646 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1647 /* Disable hardware crypto for management frames */
1648 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1649 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1650 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1651 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1652 ah
->sw_mgmt_crypto_tx
= true;
1653 ah
->sw_mgmt_crypto_rx
= true;
1655 ah
->sw_mgmt_crypto_tx
= true;
1656 ah
->sw_mgmt_crypto_rx
= true;
1660 static void ath9k_hw_reset_opmode(struct ath_hw
*ah
,
1661 u32 macStaId1
, u32 saveDefAntenna
)
1663 struct ath_common
*common
= ath9k_hw_common(ah
);
1665 ENABLE_REGWRITE_BUFFER(ah
);
1667 REG_RMW(ah
, AR_STA_ID1
, macStaId1
1668 | AR_STA_ID1_RTS_USE_DEF
1669 | ah
->sta_id1_defaults
,
1670 ~AR_STA_ID1_SADH_MASK
);
1671 ath_hw_setbssidmask(common
);
1672 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1673 ath9k_hw_write_associd(ah
);
1674 REG_WRITE(ah
, AR_ISR
, ~0);
1675 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1677 REGWRITE_BUFFER_FLUSH(ah
);
1679 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1682 static void ath9k_hw_init_queues(struct ath_hw
*ah
)
1686 ENABLE_REGWRITE_BUFFER(ah
);
1688 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1689 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1691 REGWRITE_BUFFER_FLUSH(ah
);
1694 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1695 ath9k_hw_resettxqueue(ah
, i
);
1699 * For big endian systems turn on swapping for descriptors
1701 static void ath9k_hw_init_desc(struct ath_hw
*ah
)
1703 struct ath_common
*common
= ath9k_hw_common(ah
);
1705 if (AR_SREV_9100(ah
)) {
1707 mask
= REG_READ(ah
, AR_CFG
);
1708 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1709 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1712 mask
= INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1713 REG_WRITE(ah
, AR_CFG
, mask
);
1714 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1715 REG_READ(ah
, AR_CFG
));
1718 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1719 /* Configure AR9271 target WLAN */
1720 if (AR_SREV_9271(ah
))
1721 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1723 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1726 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
) ||
1727 AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
1729 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1731 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1737 * Fast channel change:
1738 * (Change synthesizer based on channel freq without resetting chip)
1740 static int ath9k_hw_do_fastcc(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1742 struct ath_common
*common
= ath9k_hw_common(ah
);
1743 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1746 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1749 if (ah
->chip_fullsleep
)
1755 if (chan
->channel
== ah
->curchan
->channel
)
1758 if ((ah
->curchan
->channelFlags
| chan
->channelFlags
) &
1759 (CHANNEL_HALF
| CHANNEL_QUARTER
))
1763 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1765 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) &&
1766 ((chan
->channelFlags
^ ah
->curchan
->channelFlags
) & ~CHANNEL_HT
))
1769 if (!ath9k_hw_check_alive(ah
))
1773 * For AR9462, make sure that calibration data for
1774 * re-using are present.
1776 if (AR_SREV_9462(ah
) && (ah
->caldata
&&
1777 (!test_bit(TXIQCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1778 !test_bit(TXCLCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1779 !test_bit(RTT_DONE
, &ah
->caldata
->cal_flags
))))
1782 ath_dbg(common
, RESET
, "FastChannelChange for %d -> %d\n",
1783 ah
->curchan
->channel
, chan
->channel
);
1785 ret
= ath9k_hw_channel_change(ah
, chan
);
1789 if (ath9k_hw_mci_is_enabled(ah
))
1790 ar9003_mci_2g5g_switch(ah
, false);
1792 ath9k_hw_loadnf(ah
, ah
->curchan
);
1793 ath9k_hw_start_nfcal(ah
, true);
1795 if (AR_SREV_9271(ah
))
1796 ar9002_hw_load_ani_reg(ah
, chan
);
1803 u32
ath9k_hw_get_tsf_offset(struct timespec
*last
, struct timespec
*cur
)
1809 getrawmonotonic(&ts
);
1813 usec
= cur
->tv_sec
* 1000000ULL + cur
->tv_nsec
/ 1000;
1814 usec
-= last
->tv_sec
* 1000000ULL + last
->tv_nsec
/ 1000;
1818 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset
);
1820 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1821 struct ath9k_hw_cal_data
*caldata
, bool fastcc
)
1823 struct ath_common
*common
= ath9k_hw_common(ah
);
1830 bool start_mci_reset
= false;
1831 bool save_fullsleep
= ah
->chip_fullsleep
;
1833 if (ath9k_hw_mci_is_enabled(ah
)) {
1834 start_mci_reset
= ar9003_mci_start_reset(ah
, chan
);
1835 if (start_mci_reset
)
1839 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1842 if (ah
->curchan
&& !ah
->chip_fullsleep
)
1843 ath9k_hw_getnf(ah
, ah
->curchan
);
1845 ah
->caldata
= caldata
;
1846 if (caldata
&& (chan
->channel
!= caldata
->channel
||
1847 chan
->channelFlags
!= caldata
->channelFlags
)) {
1848 /* Operating channel changed, reset channel calibration data */
1849 memset(caldata
, 0, sizeof(*caldata
));
1850 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1851 } else if (caldata
) {
1852 clear_bit(PAPRD_PACKET_SENT
, &caldata
->cal_flags
);
1854 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
, chan
->noisefloor
);
1857 r
= ath9k_hw_do_fastcc(ah
, chan
);
1862 if (ath9k_hw_mci_is_enabled(ah
))
1863 ar9003_mci_stop_bt(ah
, save_fullsleep
);
1865 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1866 if (saveDefAntenna
== 0)
1869 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1871 /* Save TSF before chip reset, a cold reset clears it */
1872 tsf
= ath9k_hw_gettsf64(ah
);
1873 usec
= ktime_to_us(ktime_get_raw());
1875 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1876 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1877 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1879 ath9k_hw_mark_phy_inactive(ah
);
1881 ah
->paprd_table_write_done
= false;
1883 /* Only required on the first reset */
1884 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1886 AR9271_RESET_POWER_DOWN_CONTROL
,
1887 AR9271_RADIO_RF_RST
);
1891 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1892 ath_err(common
, "Chip reset failed\n");
1896 /* Only required on the first reset */
1897 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1898 ah
->htc_reset_init
= false;
1900 AR9271_RESET_POWER_DOWN_CONTROL
,
1901 AR9271_GATE_MAC_CTL
);
1906 usec
= ktime_to_us(ktime_get_raw()) - usec
;
1907 ath9k_hw_settsf64(ah
, tsf
+ usec
);
1909 if (AR_SREV_9280_20_OR_LATER(ah
))
1910 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1912 if (!AR_SREV_9300_20_OR_LATER(ah
))
1913 ar9002_hw_enable_async_fifo(ah
);
1915 r
= ath9k_hw_process_ini(ah
, chan
);
1919 ath9k_hw_set_rfmode(ah
, chan
);
1921 if (ath9k_hw_mci_is_enabled(ah
))
1922 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1925 * Some AR91xx SoC devices frequently fail to accept TSF writes
1926 * right after the chip reset. When that happens, write a new
1927 * value after the initvals have been applied, with an offset
1928 * based on measured time difference
1930 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1932 ath9k_hw_settsf64(ah
, tsf
);
1935 ath9k_hw_init_mfp(ah
);
1937 ath9k_hw_set_delta_slope(ah
, chan
);
1938 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1939 ah
->eep_ops
->set_board_values(ah
, chan
);
1941 ath9k_hw_reset_opmode(ah
, macStaId1
, saveDefAntenna
);
1943 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1947 ath9k_hw_set_clockrate(ah
);
1949 ath9k_hw_init_queues(ah
);
1950 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1951 ath9k_hw_ani_cache_ini_regs(ah
);
1952 ath9k_hw_init_qos(ah
);
1954 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1955 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
1957 ath9k_hw_init_global_settings(ah
);
1959 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1960 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
1961 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
1962 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
1963 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
1964 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1965 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
1968 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
1970 ath9k_hw_set_dma(ah
);
1972 if (!ath9k_hw_mci_is_enabled(ah
))
1973 REG_WRITE(ah
, AR_OBS
, 8);
1975 ENABLE_REG_RMW_BUFFER(ah
);
1976 if (ah
->config
.rx_intr_mitigation
) {
1977 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, ah
->config
.rimt_last
);
1978 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, ah
->config
.rimt_first
);
1981 if (ah
->config
.tx_intr_mitigation
) {
1982 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1983 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1985 REG_RMW_BUFFER_FLUSH(ah
);
1987 ath9k_hw_init_bb(ah
, chan
);
1990 clear_bit(TXIQCAL_DONE
, &caldata
->cal_flags
);
1991 clear_bit(TXCLCAL_DONE
, &caldata
->cal_flags
);
1993 if (!ath9k_hw_init_cal(ah
, chan
))
1996 if (ath9k_hw_mci_is_enabled(ah
) && ar9003_mci_end_reset(ah
, chan
, caldata
))
1999 ENABLE_REGWRITE_BUFFER(ah
);
2001 ath9k_hw_restore_chainmask(ah
);
2002 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2004 REGWRITE_BUFFER_FLUSH(ah
);
2006 ath9k_hw_gen_timer_start_tsf2(ah
);
2008 ath9k_hw_init_desc(ah
);
2010 if (ath9k_hw_btcoex_is_enabled(ah
))
2011 ath9k_hw_btcoex_enable(ah
);
2013 if (ath9k_hw_mci_is_enabled(ah
))
2014 ar9003_mci_check_bt(ah
);
2016 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2017 ath9k_hw_loadnf(ah
, chan
);
2018 ath9k_hw_start_nfcal(ah
, true);
2021 if (AR_SREV_9300_20_OR_LATER(ah
))
2022 ar9003_hw_bb_watchdog_config(ah
);
2024 if (ah
->config
.hw_hang_checks
& HW_PHYRESTART_CLC_WAR
)
2025 ar9003_hw_disable_phy_restart(ah
);
2027 ath9k_hw_apply_gpio_override(ah
);
2029 if (AR_SREV_9565(ah
) && common
->bt_ant_diversity
)
2030 REG_SET_BIT(ah
, AR_BTCOEX_WL_LNADIV
, AR_BTCOEX_WL_LNADIV_FORCE_ON
);
2032 if (ah
->hw
->conf
.radar_enabled
) {
2033 /* set HW specific DFS configuration */
2034 ah
->radar_conf
.ext_channel
= IS_CHAN_HT40(chan
);
2035 ath9k_hw_set_radar_params(ah
);
2040 EXPORT_SYMBOL(ath9k_hw_reset
);
2042 /******************************/
2043 /* Power Management (Chipset) */
2044 /******************************/
2047 * Notify Power Mgt is disabled in self-generated frames.
2048 * If requested, force chip to sleep.
2050 static void ath9k_set_power_sleep(struct ath_hw
*ah
)
2052 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2054 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2055 REG_CLR_BIT(ah
, AR_TIMER_MODE
, 0xff);
2056 REG_CLR_BIT(ah
, AR_NDP2_TIMER_MODE
, 0xff);
2057 REG_CLR_BIT(ah
, AR_SLP32_INC
, 0xfffff);
2058 /* xxx Required for WLAN only case ? */
2059 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
2064 * Clear the RTC force wake bit to allow the
2065 * mac to go to sleep.
2067 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2069 if (ath9k_hw_mci_is_enabled(ah
))
2072 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
2073 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2075 /* Shutdown chip. Active low */
2076 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
)) {
2077 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
2081 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2082 if (AR_SREV_9300_20_OR_LATER(ah
))
2083 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2087 * Notify Power Management is enabled in self-generating
2088 * frames. If request, set power mode of chip to
2089 * auto/normal. Duration in units of 128us (1/8 TU).
2091 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
)
2093 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2095 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2097 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2098 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2099 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2100 AR_RTC_FORCE_WAKE_ON_INT
);
2103 /* When chip goes into network sleep, it could be waken
2104 * up by MCI_INT interrupt caused by BT's HW messages
2105 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2106 * rate (~100us). This will cause chip to leave and
2107 * re-enter network sleep mode frequently, which in
2108 * consequence will have WLAN MCI HW to generate lots of
2109 * SYS_WAKING and SYS_SLEEPING messages which will make
2110 * BT CPU to busy to process.
2112 if (ath9k_hw_mci_is_enabled(ah
))
2113 REG_CLR_BIT(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
,
2114 AR_MCI_INTERRUPT_RX_HW_MSG_MASK
);
2116 * Clear the RTC force wake bit to allow the
2117 * mac to go to sleep.
2119 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2121 if (ath9k_hw_mci_is_enabled(ah
))
2125 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2126 if (AR_SREV_9300_20_OR_LATER(ah
))
2127 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2130 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
)
2135 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2136 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2137 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
2141 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2142 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2143 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
2146 if (!AR_SREV_9300_20_OR_LATER(ah
))
2147 ath9k_hw_init_pll(ah
, NULL
);
2149 if (AR_SREV_9100(ah
))
2150 REG_SET_BIT(ah
, AR_RTC_RESET
,
2153 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2154 AR_RTC_FORCE_WAKE_EN
);
2155 if (AR_SREV_9100(ah
))
2160 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2161 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2162 if (val
== AR_RTC_STATUS_ON
)
2165 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2166 AR_RTC_FORCE_WAKE_EN
);
2169 ath_err(ath9k_hw_common(ah
),
2170 "Failed to wakeup in %uus\n",
2171 POWER_UP_TIME
/ 20);
2175 if (ath9k_hw_mci_is_enabled(ah
))
2176 ar9003_mci_set_power_awake(ah
);
2178 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2183 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2185 struct ath_common
*common
= ath9k_hw_common(ah
);
2187 static const char *modes
[] = {
2194 if (ah
->power_mode
== mode
)
2197 ath_dbg(common
, RESET
, "%s -> %s\n",
2198 modes
[ah
->power_mode
], modes
[mode
]);
2201 case ATH9K_PM_AWAKE
:
2202 status
= ath9k_hw_set_power_awake(ah
);
2204 case ATH9K_PM_FULL_SLEEP
:
2205 if (ath9k_hw_mci_is_enabled(ah
))
2206 ar9003_mci_set_full_sleep(ah
);
2208 ath9k_set_power_sleep(ah
);
2209 ah
->chip_fullsleep
= true;
2211 case ATH9K_PM_NETWORK_SLEEP
:
2212 ath9k_set_power_network_sleep(ah
);
2215 ath_err(common
, "Unknown power mode %u\n", mode
);
2218 ah
->power_mode
= mode
;
2221 * XXX: If this warning never comes up after a while then
2222 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2223 * ath9k_hw_setpower() return type void.
2226 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2227 ATH_DBG_WARN_ON_ONCE(!status
);
2231 EXPORT_SYMBOL(ath9k_hw_setpower
);
2233 /*******************/
2234 /* Beacon Handling */
2235 /*******************/
2237 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2241 ENABLE_REGWRITE_BUFFER(ah
);
2243 switch (ah
->opmode
) {
2244 case NL80211_IFTYPE_ADHOC
:
2245 REG_SET_BIT(ah
, AR_TXCFG
,
2246 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2247 case NL80211_IFTYPE_MESH_POINT
:
2248 case NL80211_IFTYPE_AP
:
2249 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2250 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2251 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2252 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2253 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2255 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2258 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2259 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2264 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2265 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2266 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2268 REGWRITE_BUFFER_FLUSH(ah
);
2270 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2272 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2274 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2275 const struct ath9k_beacon_state
*bs
)
2277 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2278 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2279 struct ath_common
*common
= ath9k_hw_common(ah
);
2281 ENABLE_REGWRITE_BUFFER(ah
);
2283 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, bs
->bs_nexttbtt
);
2284 REG_WRITE(ah
, AR_BEACON_PERIOD
, bs
->bs_intval
);
2285 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, bs
->bs_intval
);
2287 REGWRITE_BUFFER_FLUSH(ah
);
2289 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2290 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2292 beaconintval
= bs
->bs_intval
;
2294 if (bs
->bs_sleepduration
> beaconintval
)
2295 beaconintval
= bs
->bs_sleepduration
;
2297 dtimperiod
= bs
->bs_dtimperiod
;
2298 if (bs
->bs_sleepduration
> dtimperiod
)
2299 dtimperiod
= bs
->bs_sleepduration
;
2301 if (beaconintval
== dtimperiod
)
2302 nextTbtt
= bs
->bs_nextdtim
;
2304 nextTbtt
= bs
->bs_nexttbtt
;
2306 ath_dbg(common
, BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
2307 ath_dbg(common
, BEACON
, "next beacon %d\n", nextTbtt
);
2308 ath_dbg(common
, BEACON
, "beacon period %d\n", beaconintval
);
2309 ath_dbg(common
, BEACON
, "DTIM period %d\n", dtimperiod
);
2311 ENABLE_REGWRITE_BUFFER(ah
);
2313 REG_WRITE(ah
, AR_NEXT_DTIM
, bs
->bs_nextdtim
- SLEEP_SLOP
);
2314 REG_WRITE(ah
, AR_NEXT_TIM
, nextTbtt
- SLEEP_SLOP
);
2316 REG_WRITE(ah
, AR_SLEEP1
,
2317 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2318 | AR_SLEEP1_ASSUME_DTIM
);
2320 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2321 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2323 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2325 REG_WRITE(ah
, AR_SLEEP2
,
2326 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2328 REG_WRITE(ah
, AR_TIM_PERIOD
, beaconintval
);
2329 REG_WRITE(ah
, AR_DTIM_PERIOD
, dtimperiod
);
2331 REGWRITE_BUFFER_FLUSH(ah
);
2333 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2334 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2337 /* TSF Out of Range Threshold */
2338 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2340 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2342 /*******************/
2343 /* HW Capabilities */
2344 /*******************/
2346 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2348 eeprom_chainmask
&= chip_chainmask
;
2349 if (eeprom_chainmask
)
2350 return eeprom_chainmask
;
2352 return chip_chainmask
;
2356 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2357 * @ah: the atheros hardware data structure
2359 * We enable DFS support upstream on chipsets which have passed a series
2360 * of tests. The testing requirements are going to be documented. Desired
2361 * test requirements are documented at:
2363 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2365 * Once a new chipset gets properly tested an individual commit can be used
2366 * to document the testing for DFS for that chipset.
2368 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2371 switch (ah
->hw_version
.macVersion
) {
2372 /* for temporary testing DFS with 9280 */
2373 case AR_SREV_VERSION_9280
:
2374 /* AR9580 will likely be our first target to get testing on */
2375 case AR_SREV_VERSION_9580
:
2382 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2384 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2385 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2386 struct ath_common
*common
= ath9k_hw_common(ah
);
2389 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2391 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2392 regulatory
->current_rd
= eeval
;
2394 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2395 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2396 if (regulatory
->current_rd
== 0x64 ||
2397 regulatory
->current_rd
== 0x65)
2398 regulatory
->current_rd
+= 5;
2399 else if (regulatory
->current_rd
== 0x41)
2400 regulatory
->current_rd
= 0x43;
2401 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2402 regulatory
->current_rd
);
2405 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2407 if (eeval
& AR5416_OPFLAGS_11A
) {
2408 if (ah
->disable_5ghz
)
2409 ath_warn(common
, "disabling 5GHz band\n");
2411 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2414 if (eeval
& AR5416_OPFLAGS_11G
) {
2415 if (ah
->disable_2ghz
)
2416 ath_warn(common
, "disabling 2GHz band\n");
2418 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2421 if ((pCap
->hw_caps
& (ATH9K_HW_CAP_2GHZ
| ATH9K_HW_CAP_5GHZ
)) == 0) {
2422 ath_err(common
, "both bands are disabled\n");
2426 if (AR_SREV_9485(ah
) ||
2430 pCap
->chip_chainmask
= 1;
2431 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2432 pCap
->chip_chainmask
= 7;
2433 else if (!AR_SREV_9300_20_OR_LATER(ah
) ||
2437 pCap
->chip_chainmask
= 3;
2439 pCap
->chip_chainmask
= 7;
2441 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2443 * For AR9271 we will temporarilly uses the rx chainmax as read from
2446 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2447 !(eeval
& AR5416_OPFLAGS_11A
) &&
2448 !(AR_SREV_9271(ah
)))
2449 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2450 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2451 else if (AR_SREV_9100(ah
))
2452 pCap
->rx_chainmask
= 0x7;
2454 /* Use rx_chainmask from EEPROM. */
2455 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2457 pCap
->tx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->tx_chainmask
);
2458 pCap
->rx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->rx_chainmask
);
2459 ah
->txchainmask
= pCap
->tx_chainmask
;
2460 ah
->rxchainmask
= pCap
->rx_chainmask
;
2462 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2464 /* enable key search for every frame in an aggregate */
2465 if (AR_SREV_9300_20_OR_LATER(ah
))
2466 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2468 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2470 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2471 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2473 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2475 if (AR_SREV_9271(ah
))
2476 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2477 else if (AR_DEVID_7010(ah
))
2478 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2479 else if (AR_SREV_9300_20_OR_LATER(ah
))
2480 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2481 else if (AR_SREV_9287_11_OR_LATER(ah
))
2482 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2483 else if (AR_SREV_9285_12_OR_LATER(ah
))
2484 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2485 else if (AR_SREV_9280_20_OR_LATER(ah
))
2486 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
2488 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2490 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2491 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2493 pCap
->rts_aggr_limit
= (8 * 1024);
2495 #ifdef CONFIG_ATH9K_RFKILL
2496 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2497 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2499 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2500 ah
->rfkill_polarity
=
2501 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2503 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2506 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2507 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2509 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2511 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2512 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2514 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2516 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2517 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2518 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
) &&
2519 !AR_SREV_9561(ah
) && !AR_SREV_9565(ah
))
2520 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2522 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2523 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2524 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2525 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2526 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2528 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2529 if (AR_SREV_9280_20(ah
))
2530 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2533 if (AR_SREV_9300_20_OR_LATER(ah
))
2534 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2536 if (AR_SREV_9561(ah
))
2537 ah
->ent_mode
= 0x3BDA000;
2538 else if (AR_SREV_9300_20_OR_LATER(ah
))
2539 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2541 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2542 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2544 if (AR_SREV_9285(ah
)) {
2545 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2547 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2548 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1)) {
2549 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2550 ath_info(common
, "Enable LNA combining\n");
2555 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2556 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2557 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2560 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
2561 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2562 if ((ant_div_ctl1
>> 0x6) == 0x3) {
2563 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2564 ath_info(common
, "Enable LNA combining\n");
2568 if (ath9k_hw_dfs_tested(ah
))
2569 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2571 tx_chainmask
= pCap
->tx_chainmask
;
2572 rx_chainmask
= pCap
->rx_chainmask
;
2573 while (tx_chainmask
|| rx_chainmask
) {
2574 if (tx_chainmask
& BIT(0))
2575 pCap
->max_txchains
++;
2576 if (rx_chainmask
& BIT(0))
2577 pCap
->max_rxchains
++;
2583 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2584 if (!(ah
->ent_mode
& AR_ENT_OTP_49GHZ_DISABLE
))
2585 pCap
->hw_caps
|= ATH9K_HW_CAP_MCI
;
2587 if (AR_SREV_9462_20_OR_LATER(ah
))
2588 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
;
2591 if (AR_SREV_9300_20_OR_LATER(ah
) &&
2592 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2593 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2595 #ifdef CONFIG_ATH9K_WOW
2596 if (AR_SREV_9462_20_OR_LATER(ah
) || AR_SREV_9565_11_OR_LATER(ah
))
2597 ah
->wow
.max_patterns
= MAX_NUM_PATTERN
;
2599 ah
->wow
.max_patterns
= MAX_NUM_PATTERN_LEGACY
;
2605 /****************************/
2606 /* GPIO / RFKILL / Antennae */
2607 /****************************/
2609 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2613 u32 gpio_shift
, tmp
;
2616 addr
= AR_GPIO_OUTPUT_MUX3
;
2618 addr
= AR_GPIO_OUTPUT_MUX2
;
2620 addr
= AR_GPIO_OUTPUT_MUX1
;
2622 gpio_shift
= (gpio
% 6) * 5;
2624 if (AR_SREV_9280_20_OR_LATER(ah
)
2625 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2626 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2627 (0x1f << gpio_shift
));
2629 tmp
= REG_READ(ah
, addr
);
2630 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2631 tmp
&= ~(0x1f << gpio_shift
);
2632 tmp
|= (type
<< gpio_shift
);
2633 REG_WRITE(ah
, addr
, tmp
);
2637 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2641 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2643 if (AR_DEVID_7010(ah
)) {
2645 REG_RMW(ah
, AR7010_GPIO_OE
,
2646 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2647 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2651 gpio_shift
= gpio
<< 1;
2654 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2655 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2657 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2659 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2661 #define MS_REG_READ(x, y) \
2662 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2664 if (gpio
>= ah
->caps
.num_gpio_pins
)
2667 if (AR_DEVID_7010(ah
)) {
2669 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2670 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2671 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2672 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2673 AR_GPIO_BIT(gpio
)) != 0;
2674 else if (AR_SREV_9271(ah
))
2675 return MS_REG_READ(AR9271
, gpio
) != 0;
2676 else if (AR_SREV_9287_11_OR_LATER(ah
))
2677 return MS_REG_READ(AR9287
, gpio
) != 0;
2678 else if (AR_SREV_9285_12_OR_LATER(ah
))
2679 return MS_REG_READ(AR9285
, gpio
) != 0;
2680 else if (AR_SREV_9280_20_OR_LATER(ah
))
2681 return MS_REG_READ(AR928X
, gpio
) != 0;
2683 return MS_REG_READ(AR
, gpio
) != 0;
2685 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2687 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2692 if (AR_DEVID_7010(ah
)) {
2694 REG_RMW(ah
, AR7010_GPIO_OE
,
2695 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2696 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2700 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2701 gpio_shift
= 2 * gpio
;
2704 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2705 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2707 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2709 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2711 if (AR_DEVID_7010(ah
)) {
2713 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2718 if (AR_SREV_9271(ah
))
2721 if ((1 << gpio
) & AR_GPIO_OE_OUT_MASK
)
2722 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2725 gpio_set_value(gpio
, val
& 1);
2727 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2729 void ath9k_hw_request_gpio(struct ath_hw
*ah
, u32 gpio
, const char *label
)
2731 if (gpio
>= ah
->caps
.num_gpio_pins
)
2734 gpio_request_one(gpio
, GPIOF_DIR_OUT
| GPIOF_INIT_LOW
, label
);
2736 EXPORT_SYMBOL(ath9k_hw_request_gpio
);
2738 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2740 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2742 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2744 /*********************/
2745 /* General Operation */
2746 /*********************/
2748 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2750 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2751 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2753 if (phybits
& AR_PHY_ERR_RADAR
)
2754 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2755 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2756 bits
|= ATH9K_RX_FILTER_PHYERR
;
2760 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2762 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2766 ENABLE_REGWRITE_BUFFER(ah
);
2768 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
2769 bits
|= ATH9K_RX_FILTER_CONTROL_WRAPPER
;
2771 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2774 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2775 phybits
|= AR_PHY_ERR_RADAR
;
2776 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2777 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2778 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2781 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2783 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2785 REGWRITE_BUFFER_FLUSH(ah
);
2787 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2789 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2791 if (ath9k_hw_mci_is_enabled(ah
))
2792 ar9003_mci_bt_gain_ctrl(ah
);
2794 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2797 ath9k_hw_init_pll(ah
, NULL
);
2798 ah
->htc_reset_init
= true;
2801 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2803 bool ath9k_hw_disable(struct ath_hw
*ah
)
2805 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2808 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2811 ath9k_hw_init_pll(ah
, NULL
);
2814 EXPORT_SYMBOL(ath9k_hw_disable
);
2816 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2818 enum eeprom_param gain_param
;
2820 if (IS_CHAN_2GHZ(chan
))
2821 gain_param
= EEP_ANTENNA_GAIN_2G
;
2823 gain_param
= EEP_ANTENNA_GAIN_5G
;
2825 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2828 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2831 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2832 struct ieee80211_channel
*channel
;
2833 int chan_pwr
, new_pwr
, max_gain
;
2834 int ant_gain
, ant_reduction
= 0;
2839 channel
= chan
->chan
;
2840 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_RATE_POWER
);
2841 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2842 max_gain
= chan_pwr
- new_pwr
+ channel
->max_antenna_gain
* 2;
2844 ant_gain
= get_antenna_gain(ah
, chan
);
2845 if (ant_gain
> max_gain
)
2846 ant_reduction
= ant_gain
- max_gain
;
2848 ah
->eep_ops
->set_txpower(ah
, chan
,
2849 ath9k_regd_get_ctl(reg
, chan
),
2850 ant_reduction
, new_pwr
, test
);
2853 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2855 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2856 struct ath9k_channel
*chan
= ah
->curchan
;
2857 struct ieee80211_channel
*channel
= chan
->chan
;
2859 reg
->power_limit
= min_t(u32
, limit
, MAX_RATE_POWER
);
2861 channel
->max_power
= MAX_RATE_POWER
/ 2;
2863 ath9k_hw_apply_txpower(ah
, chan
, test
);
2866 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2868 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2870 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2872 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2874 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2876 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2878 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2879 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2881 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2883 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2885 struct ath_common
*common
= ath9k_hw_common(ah
);
2887 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2888 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2889 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2891 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2893 #define ATH9K_MAX_TSF_READ 10
2895 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2897 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2900 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2901 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2902 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2903 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2904 if (tsf_upper2
== tsf_upper1
)
2906 tsf_upper1
= tsf_upper2
;
2909 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2911 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2913 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2915 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2917 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2918 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2920 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2922 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2924 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2925 AH_TSF_WRITE_TIMEOUT
))
2926 ath_dbg(ath9k_hw_common(ah
), RESET
,
2927 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2929 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2931 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2933 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, bool set
)
2936 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2938 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2940 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2942 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2946 if (IS_CHAN_HT40(chan
) && !ah
->config
.cwm_ignore_extcca
)
2947 macmode
= AR_2040_JOINED_RX_CLEAR
;
2951 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2954 /* HW Generic timers configuration */
2956 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2958 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2959 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2960 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2961 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2962 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2963 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2964 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2965 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2966 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2967 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2968 AR_NDP2_TIMER_MODE
, 0x0002},
2969 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2970 AR_NDP2_TIMER_MODE
, 0x0004},
2971 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2972 AR_NDP2_TIMER_MODE
, 0x0008},
2973 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2974 AR_NDP2_TIMER_MODE
, 0x0010},
2975 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2976 AR_NDP2_TIMER_MODE
, 0x0020},
2977 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2978 AR_NDP2_TIMER_MODE
, 0x0040},
2979 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2980 AR_NDP2_TIMER_MODE
, 0x0080}
2983 /* HW generic timer primitives */
2985 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2987 return REG_READ(ah
, AR_TSF_L32
);
2989 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
2991 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw
*ah
)
2993 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2995 if (timer_table
->tsf2_enabled
) {
2996 REG_SET_BIT(ah
, AR_DIRECT_CONNECT
, AR_DC_AP_STA_EN
);
2997 REG_SET_BIT(ah
, AR_RESET_TSF
, AR_RESET_TSF2_ONCE
);
3001 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
3002 void (*trigger
)(void *),
3003 void (*overflow
)(void *),
3007 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3008 struct ath_gen_timer
*timer
;
3010 if ((timer_index
< AR_FIRST_NDP_TIMER
) ||
3011 (timer_index
>= ATH_MAX_GEN_TIMER
))
3014 if ((timer_index
> AR_FIRST_NDP_TIMER
) &&
3015 !AR_SREV_9300_20_OR_LATER(ah
))
3018 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
3022 /* allocate a hardware generic timer slot */
3023 timer_table
->timers
[timer_index
] = timer
;
3024 timer
->index
= timer_index
;
3025 timer
->trigger
= trigger
;
3026 timer
->overflow
= overflow
;
3029 if ((timer_index
> AR_FIRST_NDP_TIMER
) && !timer_table
->tsf2_enabled
) {
3030 timer_table
->tsf2_enabled
= true;
3031 ath9k_hw_gen_timer_start_tsf2(ah
);
3036 EXPORT_SYMBOL(ath_gen_timer_alloc
);
3038 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
3039 struct ath_gen_timer
*timer
,
3043 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3046 timer_table
->timer_mask
|= BIT(timer
->index
);
3049 * Program generic timer registers
3051 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
3053 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
3055 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3056 gen_tmr_configuration
[timer
->index
].mode_mask
);
3058 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3060 * Starting from AR9462, each generic timer can select which tsf
3061 * to use. But we still follow the old rule, 0 - 7 use tsf and
3064 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
3065 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3066 (1 << timer
->index
));
3068 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3069 (1 << timer
->index
));
3073 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3074 AR_IMR_S5_GENTIMER_TRIG
);
3075 if (timer
->overflow
)
3076 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3077 AR_IMR_S5_GENTIMER_THRESH
);
3079 REG_SET_BIT(ah
, AR_IMR_S5
, mask
);
3081 if ((ah
->imask
& ATH9K_INT_GENTIMER
) == 0) {
3082 ah
->imask
|= ATH9K_INT_GENTIMER
;
3083 ath9k_hw_set_interrupts(ah
);
3086 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
3088 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3090 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3092 /* Clear generic timer enable bits. */
3093 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3094 gen_tmr_configuration
[timer
->index
].mode_mask
);
3096 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3098 * Need to switch back to TSF if it was using TSF2.
3100 if ((timer
->index
>= AR_GEN_TIMER_BANK_1_LEN
)) {
3101 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3102 (1 << timer
->index
));
3106 /* Disable both trigger and thresh interrupt masks */
3107 REG_CLR_BIT(ah
, AR_IMR_S5
,
3108 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3109 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3111 timer_table
->timer_mask
&= ~BIT(timer
->index
);
3113 if (timer_table
->timer_mask
== 0) {
3114 ah
->imask
&= ~ATH9K_INT_GENTIMER
;
3115 ath9k_hw_set_interrupts(ah
);
3118 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
3120 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3122 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3124 /* free the hardware generic timer slot */
3125 timer_table
->timers
[timer
->index
] = NULL
;
3128 EXPORT_SYMBOL(ath_gen_timer_free
);
3131 * Generic Timer Interrupts handling
3133 void ath_gen_timer_isr(struct ath_hw
*ah
)
3135 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3136 struct ath_gen_timer
*timer
;
3137 unsigned long trigger_mask
, thresh_mask
;
3140 /* get hardware generic timer interrupt status */
3141 trigger_mask
= ah
->intr_gen_timer_trigger
;
3142 thresh_mask
= ah
->intr_gen_timer_thresh
;
3143 trigger_mask
&= timer_table
->timer_mask
;
3144 thresh_mask
&= timer_table
->timer_mask
;
3146 for_each_set_bit(index
, &thresh_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3147 timer
= timer_table
->timers
[index
];
3150 if (!timer
->overflow
)
3153 trigger_mask
&= ~BIT(index
);
3154 timer
->overflow(timer
->arg
);
3157 for_each_set_bit(index
, &trigger_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3158 timer
= timer_table
->timers
[index
];
3161 if (!timer
->trigger
)
3163 timer
->trigger(timer
->arg
);
3166 EXPORT_SYMBOL(ath_gen_timer_isr
);
3175 } ath_mac_bb_names
[] = {
3176 /* Devices with external radios */
3177 { AR_SREV_VERSION_5416_PCI
, "5416" },
3178 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3179 { AR_SREV_VERSION_9100
, "9100" },
3180 { AR_SREV_VERSION_9160
, "9160" },
3181 /* Single-chip solutions */
3182 { AR_SREV_VERSION_9280
, "9280" },
3183 { AR_SREV_VERSION_9285
, "9285" },
3184 { AR_SREV_VERSION_9287
, "9287" },
3185 { AR_SREV_VERSION_9271
, "9271" },
3186 { AR_SREV_VERSION_9300
, "9300" },
3187 { AR_SREV_VERSION_9330
, "9330" },
3188 { AR_SREV_VERSION_9340
, "9340" },
3189 { AR_SREV_VERSION_9485
, "9485" },
3190 { AR_SREV_VERSION_9462
, "9462" },
3191 { AR_SREV_VERSION_9550
, "9550" },
3192 { AR_SREV_VERSION_9565
, "9565" },
3193 { AR_SREV_VERSION_9531
, "9531" },
3194 { AR_SREV_VERSION_9561
, "9561" },
3197 /* For devices with external radios */
3201 } ath_rf_names
[] = {
3203 { AR_RAD5133_SREV_MAJOR
, "5133" },
3204 { AR_RAD5122_SREV_MAJOR
, "5122" },
3205 { AR_RAD2133_SREV_MAJOR
, "2133" },
3206 { AR_RAD2122_SREV_MAJOR
, "2122" }
3210 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3212 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3216 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3217 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3218 return ath_mac_bb_names
[i
].name
;
3226 * Return the RF name. "????" is returned if the RF is unknown.
3227 * Used for devices with external radios.
3229 static const char *ath9k_hw_rf_name(u16 rf_version
)
3233 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3234 if (ath_rf_names
[i
].version
== rf_version
) {
3235 return ath_rf_names
[i
].name
;
3242 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3246 /* chipsets >= AR9280 are single-chip */
3247 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3248 used
= scnprintf(hw_name
, len
,
3249 "Atheros AR%s Rev:%x",
3250 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3251 ah
->hw_version
.macRev
);
3254 used
= scnprintf(hw_name
, len
,
3255 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3256 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3257 ah
->hw_version
.macRev
,
3258 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
3259 & AR_RADIO_SREV_MAJOR
)),
3260 ah
->hw_version
.phyRev
);
3263 hw_name
[used
] = '\0';
3265 EXPORT_SYMBOL(ath9k_hw_name
);