Linux 4.4.145
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / xmit.c
blob3e3dac3d70604fcb83b71f80fa3e19412a0cdbc3
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
83 spin_lock_bh(&txq->axq_lock);
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
89 spin_unlock_bh(&txq->axq_lock);
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
95 struct sk_buff_head q;
96 struct sk_buff *skb;
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 struct ath_atx_tid *tid)
109 struct list_head *list;
110 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
111 struct ath_chanctx *ctx = avp->chanctx;
113 if (!ctx)
114 return;
116 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
117 if (list_empty(&tid->list))
118 list_add_tail(&tid->list, list);
121 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
123 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
124 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
125 sizeof(tx_info->rate_driver_data));
126 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
129 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
131 if (!tid->an->sta)
132 return;
134 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
135 seqno << IEEE80211_SEQ_SEQ_SHIFT);
138 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
139 struct ath_buf *bf)
141 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
142 ARRAY_SIZE(bf->rates));
145 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
146 struct sk_buff *skb)
148 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
149 struct ath_frame_info *fi = get_frame_info(skb);
150 int q = fi->txq;
152 if (q < 0)
153 return;
155 txq = sc->tx.txq_map[q];
156 if (WARN_ON(--txq->pending_frames < 0))
157 txq->pending_frames = 0;
159 if (txq->stopped &&
160 txq->pending_frames < sc->tx.txq_max_pending[q]) {
161 if (ath9k_is_chanctx_enabled())
162 ieee80211_wake_queue(sc->hw, info->hw_queue);
163 else
164 ieee80211_wake_queue(sc->hw, q);
165 txq->stopped = false;
169 static struct ath_atx_tid *
170 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
172 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
173 return ATH_AN_2_TID(an, tidno);
176 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
178 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
181 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
183 struct sk_buff *skb;
185 skb = __skb_dequeue(&tid->retry_q);
186 if (!skb)
187 skb = __skb_dequeue(&tid->buf_q);
189 return skb;
193 * ath_tx_tid_change_state:
194 * - clears a-mpdu flag of previous session
195 * - force sequence number allocation to fix next BlockAck Window
197 static void
198 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
200 struct ath_txq *txq = tid->txq;
201 struct ieee80211_tx_info *tx_info;
202 struct sk_buff *skb, *tskb;
203 struct ath_buf *bf;
204 struct ath_frame_info *fi;
206 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
207 fi = get_frame_info(skb);
208 bf = fi->bf;
210 tx_info = IEEE80211_SKB_CB(skb);
211 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
213 if (bf)
214 continue;
216 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
217 if (!bf) {
218 __skb_unlink(skb, &tid->buf_q);
219 ath_txq_skb_done(sc, txq, skb);
220 ieee80211_free_txskb(sc->hw, skb);
221 continue;
227 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
229 struct ath_txq *txq = tid->txq;
230 struct sk_buff *skb;
231 struct ath_buf *bf;
232 struct list_head bf_head;
233 struct ath_tx_status ts;
234 struct ath_frame_info *fi;
235 bool sendbar = false;
237 INIT_LIST_HEAD(&bf_head);
239 memset(&ts, 0, sizeof(ts));
241 while ((skb = __skb_dequeue(&tid->retry_q))) {
242 fi = get_frame_info(skb);
243 bf = fi->bf;
244 if (!bf) {
245 ath_txq_skb_done(sc, txq, skb);
246 ieee80211_free_txskb(sc->hw, skb);
247 continue;
250 if (fi->baw_tracked) {
251 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
252 sendbar = true;
255 list_add_tail(&bf->list, &bf_head);
256 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
259 if (sendbar) {
260 ath_txq_unlock(sc, txq);
261 ath_send_bar(tid, tid->seq_start);
262 ath_txq_lock(sc, txq);
266 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
267 int seqno)
269 int index, cindex;
271 index = ATH_BA_INDEX(tid->seq_start, seqno);
272 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
274 __clear_bit(cindex, tid->tx_buf);
276 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
277 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
278 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
279 if (tid->bar_index >= 0)
280 tid->bar_index--;
284 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
285 struct ath_buf *bf)
287 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
288 u16 seqno = bf->bf_state.seqno;
289 int index, cindex;
291 index = ATH_BA_INDEX(tid->seq_start, seqno);
292 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
293 __set_bit(cindex, tid->tx_buf);
294 fi->baw_tracked = 1;
296 if (index >= ((tid->baw_tail - tid->baw_head) &
297 (ATH_TID_MAX_BUFS - 1))) {
298 tid->baw_tail = cindex;
299 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
303 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
304 struct ath_atx_tid *tid)
307 struct sk_buff *skb;
308 struct ath_buf *bf;
309 struct list_head bf_head;
310 struct ath_tx_status ts;
311 struct ath_frame_info *fi;
313 memset(&ts, 0, sizeof(ts));
314 INIT_LIST_HEAD(&bf_head);
316 while ((skb = ath_tid_dequeue(tid))) {
317 fi = get_frame_info(skb);
318 bf = fi->bf;
320 if (!bf) {
321 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
322 continue;
325 list_add_tail(&bf->list, &bf_head);
326 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
330 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
331 struct sk_buff *skb, int count)
333 struct ath_frame_info *fi = get_frame_info(skb);
334 struct ath_buf *bf = fi->bf;
335 struct ieee80211_hdr *hdr;
336 int prev = fi->retries;
338 TX_STAT_INC(txq->axq_qnum, a_retries);
339 fi->retries += count;
341 if (prev > 0)
342 return;
344 hdr = (struct ieee80211_hdr *)skb->data;
345 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
346 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
347 sizeof(*hdr), DMA_TO_DEVICE);
350 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
352 struct ath_buf *bf = NULL;
354 spin_lock_bh(&sc->tx.txbuflock);
356 if (unlikely(list_empty(&sc->tx.txbuf))) {
357 spin_unlock_bh(&sc->tx.txbuflock);
358 return NULL;
361 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
362 list_del(&bf->list);
364 spin_unlock_bh(&sc->tx.txbuflock);
366 return bf;
369 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
371 spin_lock_bh(&sc->tx.txbuflock);
372 list_add_tail(&bf->list, &sc->tx.txbuf);
373 spin_unlock_bh(&sc->tx.txbuflock);
376 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
378 struct ath_buf *tbf;
380 tbf = ath_tx_get_buffer(sc);
381 if (WARN_ON(!tbf))
382 return NULL;
384 ATH_TXBUF_RESET(tbf);
386 tbf->bf_mpdu = bf->bf_mpdu;
387 tbf->bf_buf_addr = bf->bf_buf_addr;
388 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
389 tbf->bf_state = bf->bf_state;
390 tbf->bf_state.stale = false;
392 return tbf;
395 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
396 struct ath_tx_status *ts, int txok,
397 int *nframes, int *nbad)
399 struct ath_frame_info *fi;
400 u16 seq_st = 0;
401 u32 ba[WME_BA_BMP_SIZE >> 5];
402 int ba_index;
403 int isaggr = 0;
405 *nbad = 0;
406 *nframes = 0;
408 isaggr = bf_isaggr(bf);
409 if (isaggr) {
410 seq_st = ts->ts_seqnum;
411 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
414 while (bf) {
415 fi = get_frame_info(bf->bf_mpdu);
416 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
418 (*nframes)++;
419 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
420 (*nbad)++;
422 bf = bf->bf_next;
427 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
428 struct ath_buf *bf, struct list_head *bf_q,
429 struct ath_tx_status *ts, int txok)
431 struct ath_node *an = NULL;
432 struct sk_buff *skb;
433 struct ieee80211_sta *sta;
434 struct ieee80211_hw *hw = sc->hw;
435 struct ieee80211_hdr *hdr;
436 struct ieee80211_tx_info *tx_info;
437 struct ath_atx_tid *tid = NULL;
438 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
439 struct list_head bf_head;
440 struct sk_buff_head bf_pending;
441 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
442 u32 ba[WME_BA_BMP_SIZE >> 5];
443 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
444 bool rc_update = true, isba;
445 struct ieee80211_tx_rate rates[4];
446 struct ath_frame_info *fi;
447 int nframes;
448 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
449 int i, retries;
450 int bar_index = -1;
452 skb = bf->bf_mpdu;
453 hdr = (struct ieee80211_hdr *)skb->data;
455 tx_info = IEEE80211_SKB_CB(skb);
457 memcpy(rates, bf->rates, sizeof(rates));
459 retries = ts->ts_longretry + 1;
460 for (i = 0; i < ts->ts_rateindex; i++)
461 retries += rates[i].count;
463 rcu_read_lock();
465 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
466 if (!sta) {
467 rcu_read_unlock();
469 INIT_LIST_HEAD(&bf_head);
470 while (bf) {
471 bf_next = bf->bf_next;
473 if (!bf->bf_state.stale || bf_next != NULL)
474 list_move_tail(&bf->list, &bf_head);
476 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
478 bf = bf_next;
480 return;
483 an = (struct ath_node *)sta->drv_priv;
484 tid = ath_get_skb_tid(sc, an, skb);
485 seq_first = tid->seq_start;
486 isba = ts->ts_flags & ATH9K_TX_BA;
489 * The hardware occasionally sends a tx status for the wrong TID.
490 * In this case, the BA status cannot be considered valid and all
491 * subframes need to be retransmitted
493 * Only BlockAcks have a TID and therefore normal Acks cannot be
494 * checked
496 if (isba && tid->tidno != ts->tid)
497 txok = false;
499 isaggr = bf_isaggr(bf);
500 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
502 if (isaggr && txok) {
503 if (ts->ts_flags & ATH9K_TX_BA) {
504 seq_st = ts->ts_seqnum;
505 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
506 } else {
508 * AR5416 can become deaf/mute when BA
509 * issue happens. Chip needs to be reset.
510 * But AP code may have sychronization issues
511 * when perform internal reset in this routine.
512 * Only enable reset in STA mode for now.
514 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
515 needreset = 1;
519 __skb_queue_head_init(&bf_pending);
521 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
522 while (bf) {
523 u16 seqno = bf->bf_state.seqno;
525 txfail = txpending = sendbar = 0;
526 bf_next = bf->bf_next;
528 skb = bf->bf_mpdu;
529 tx_info = IEEE80211_SKB_CB(skb);
530 fi = get_frame_info(skb);
532 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
533 !tid->active) {
535 * Outside of the current BlockAck window,
536 * maybe part of a previous session
538 txfail = 1;
539 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
540 /* transmit completion, subframe is
541 * acked by block ack */
542 acked_cnt++;
543 } else if (!isaggr && txok) {
544 /* transmit completion */
545 acked_cnt++;
546 } else if (flush) {
547 txpending = 1;
548 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
549 if (txok || !an->sleeping)
550 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
551 retries);
553 txpending = 1;
554 } else {
555 txfail = 1;
556 txfail_cnt++;
557 bar_index = max_t(int, bar_index,
558 ATH_BA_INDEX(seq_first, seqno));
562 * Make sure the last desc is reclaimed if it
563 * not a holding desc.
565 INIT_LIST_HEAD(&bf_head);
566 if (bf_next != NULL || !bf_last->bf_state.stale)
567 list_move_tail(&bf->list, &bf_head);
569 if (!txpending) {
571 * complete the acked-ones/xretried ones; update
572 * block-ack window
574 ath_tx_update_baw(sc, tid, seqno);
576 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
577 memcpy(tx_info->control.rates, rates, sizeof(rates));
578 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
579 rc_update = false;
580 if (bf == bf->bf_lastbf)
581 ath_dynack_sample_tx_ts(sc->sc_ah,
582 bf->bf_mpdu,
583 ts);
586 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
587 !txfail);
588 } else {
589 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
590 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
591 ieee80211_sta_eosp(sta);
593 /* retry the un-acked ones */
594 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
595 struct ath_buf *tbf;
597 tbf = ath_clone_txbuf(sc, bf_last);
599 * Update tx baw and complete the
600 * frame with failed status if we
601 * run out of tx buf.
603 if (!tbf) {
604 ath_tx_update_baw(sc, tid, seqno);
606 ath_tx_complete_buf(sc, bf, txq,
607 &bf_head, ts, 0);
608 bar_index = max_t(int, bar_index,
609 ATH_BA_INDEX(seq_first, seqno));
610 break;
613 fi->bf = tbf;
617 * Put this buffer to the temporary pending
618 * queue to retain ordering
620 __skb_queue_tail(&bf_pending, skb);
623 bf = bf_next;
626 /* prepend un-acked frames to the beginning of the pending frame queue */
627 if (!skb_queue_empty(&bf_pending)) {
628 if (an->sleeping)
629 ieee80211_sta_set_buffered(sta, tid->tidno, true);
631 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
632 if (!an->sleeping) {
633 ath_tx_queue_tid(sc, txq, tid);
635 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
636 tid->clear_ps_filter = true;
640 if (bar_index >= 0) {
641 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
643 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
644 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
646 ath_txq_unlock(sc, txq);
647 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
648 ath_txq_lock(sc, txq);
651 rcu_read_unlock();
653 if (needreset)
654 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
657 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
659 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
660 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
663 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
664 struct ath_tx_status *ts, struct ath_buf *bf,
665 struct list_head *bf_head)
667 struct ieee80211_tx_info *info;
668 bool txok, flush;
670 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
671 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
672 txq->axq_tx_inprogress = false;
674 txq->axq_depth--;
675 if (bf_is_ampdu_not_probing(bf))
676 txq->axq_ampdu_depth--;
678 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
679 ts->ts_rateindex);
680 if (!bf_isampdu(bf)) {
681 if (!flush) {
682 info = IEEE80211_SKB_CB(bf->bf_mpdu);
683 memcpy(info->control.rates, bf->rates,
684 sizeof(info->control.rates));
685 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
686 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
688 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
689 } else
690 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
692 if (!flush)
693 ath_txq_schedule(sc, txq);
696 static bool ath_lookup_legacy(struct ath_buf *bf)
698 struct sk_buff *skb;
699 struct ieee80211_tx_info *tx_info;
700 struct ieee80211_tx_rate *rates;
701 int i;
703 skb = bf->bf_mpdu;
704 tx_info = IEEE80211_SKB_CB(skb);
705 rates = tx_info->control.rates;
707 for (i = 0; i < 4; i++) {
708 if (!rates[i].count || rates[i].idx < 0)
709 break;
711 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
712 return true;
715 return false;
718 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
719 struct ath_atx_tid *tid)
721 struct sk_buff *skb;
722 struct ieee80211_tx_info *tx_info;
723 struct ieee80211_tx_rate *rates;
724 u32 max_4ms_framelen, frmlen;
725 u16 aggr_limit, bt_aggr_limit, legacy = 0;
726 int q = tid->txq->mac80211_qnum;
727 int i;
729 skb = bf->bf_mpdu;
730 tx_info = IEEE80211_SKB_CB(skb);
731 rates = bf->rates;
734 * Find the lowest frame length among the rate series that will have a
735 * 4ms (or TXOP limited) transmit duration.
737 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
739 for (i = 0; i < 4; i++) {
740 int modeidx;
742 if (!rates[i].count)
743 continue;
745 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
746 legacy = 1;
747 break;
750 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
751 modeidx = MCS_HT40;
752 else
753 modeidx = MCS_HT20;
755 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
756 modeidx++;
758 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
759 max_4ms_framelen = min(max_4ms_framelen, frmlen);
763 * limit aggregate size by the minimum rate if rate selected is
764 * not a probe rate, if rate selected is a probe rate then
765 * avoid aggregation of this packet.
767 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
768 return 0;
770 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
773 * Override the default aggregation limit for BTCOEX.
775 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
776 if (bt_aggr_limit)
777 aggr_limit = bt_aggr_limit;
779 if (tid->an->maxampdu)
780 aggr_limit = min(aggr_limit, tid->an->maxampdu);
782 return aggr_limit;
786 * Returns the number of delimiters to be added to
787 * meet the minimum required mpdudensity.
789 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
790 struct ath_buf *bf, u16 frmlen,
791 bool first_subfrm)
793 #define FIRST_DESC_NDELIMS 60
794 u32 nsymbits, nsymbols;
795 u16 minlen;
796 u8 flags, rix;
797 int width, streams, half_gi, ndelim, mindelim;
798 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
800 /* Select standard number of delimiters based on frame length alone */
801 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
804 * If encryption enabled, hardware requires some more padding between
805 * subframes.
806 * TODO - this could be improved to be dependent on the rate.
807 * The hardware can keep up at lower rates, but not higher rates
809 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
810 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
811 ndelim += ATH_AGGR_ENCRYPTDELIM;
814 * Add delimiter when using RTS/CTS with aggregation
815 * and non enterprise AR9003 card
817 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
818 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
819 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
822 * Convert desired mpdu density from microeconds to bytes based
823 * on highest rate in rate series (i.e. first rate) to determine
824 * required minimum length for subframe. Take into account
825 * whether high rate is 20 or 40Mhz and half or full GI.
827 * If there is no mpdu density restriction, no further calculation
828 * is needed.
831 if (tid->an->mpdudensity == 0)
832 return ndelim;
834 rix = bf->rates[0].idx;
835 flags = bf->rates[0].flags;
836 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
837 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
839 if (half_gi)
840 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
841 else
842 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
844 if (nsymbols == 0)
845 nsymbols = 1;
847 streams = HT_RC_2_STREAMS(rix);
848 nsymbits = bits_per_symbol[rix % 8][width] * streams;
849 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
851 if (frmlen < minlen) {
852 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
853 ndelim = max(mindelim, ndelim);
856 return ndelim;
859 static struct ath_buf *
860 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
861 struct ath_atx_tid *tid, struct sk_buff_head **q)
863 struct ieee80211_tx_info *tx_info;
864 struct ath_frame_info *fi;
865 struct sk_buff *skb;
866 struct ath_buf *bf;
867 u16 seqno;
869 while (1) {
870 *q = &tid->retry_q;
871 if (skb_queue_empty(*q))
872 *q = &tid->buf_q;
874 skb = skb_peek(*q);
875 if (!skb)
876 break;
878 fi = get_frame_info(skb);
879 bf = fi->bf;
880 if (!fi->bf)
881 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
882 else
883 bf->bf_state.stale = false;
885 if (!bf) {
886 __skb_unlink(skb, *q);
887 ath_txq_skb_done(sc, txq, skb);
888 ieee80211_free_txskb(sc->hw, skb);
889 continue;
892 bf->bf_next = NULL;
893 bf->bf_lastbf = bf;
895 tx_info = IEEE80211_SKB_CB(skb);
896 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
899 * No aggregation session is running, but there may be frames
900 * from a previous session or a failed attempt in the queue.
901 * Send them out as normal data frames
903 if (!tid->active)
904 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
906 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
907 bf->bf_state.bf_type = 0;
908 return bf;
911 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
912 seqno = bf->bf_state.seqno;
914 /* do not step over block-ack window */
915 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
916 break;
918 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
919 struct ath_tx_status ts = {};
920 struct list_head bf_head;
922 INIT_LIST_HEAD(&bf_head);
923 list_add(&bf->list, &bf_head);
924 __skb_unlink(skb, *q);
925 ath_tx_update_baw(sc, tid, seqno);
926 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
927 continue;
930 return bf;
933 return NULL;
936 static bool
937 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
938 struct ath_atx_tid *tid, struct list_head *bf_q,
939 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
940 int *aggr_len)
942 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
943 struct ath_buf *bf = bf_first, *bf_prev = NULL;
944 int nframes = 0, ndelim;
945 u16 aggr_limit = 0, al = 0, bpad = 0,
946 al_delta, h_baw = tid->baw_size / 2;
947 struct ieee80211_tx_info *tx_info;
948 struct ath_frame_info *fi;
949 struct sk_buff *skb;
950 bool closed = false;
952 bf = bf_first;
953 aggr_limit = ath_lookup_rate(sc, bf, tid);
955 do {
956 skb = bf->bf_mpdu;
957 fi = get_frame_info(skb);
959 /* do not exceed aggregation limit */
960 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
961 if (nframes) {
962 if (aggr_limit < al + bpad + al_delta ||
963 ath_lookup_legacy(bf) || nframes >= h_baw)
964 break;
966 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
967 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
968 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
969 break;
972 /* add padding for previous frame to aggregation length */
973 al += bpad + al_delta;
976 * Get the delimiters needed to meet the MPDU
977 * density for this node.
979 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
980 !nframes);
981 bpad = PADBYTES(al_delta) + (ndelim << 2);
983 nframes++;
984 bf->bf_next = NULL;
986 /* link buffers of this frame to the aggregate */
987 if (!fi->baw_tracked)
988 ath_tx_addto_baw(sc, tid, bf);
989 bf->bf_state.ndelim = ndelim;
991 __skb_unlink(skb, tid_q);
992 list_add_tail(&bf->list, bf_q);
993 if (bf_prev)
994 bf_prev->bf_next = bf;
996 bf_prev = bf;
998 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
999 if (!bf) {
1000 closed = true;
1001 break;
1003 } while (ath_tid_has_buffered(tid));
1005 bf = bf_first;
1006 bf->bf_lastbf = bf_prev;
1008 if (bf == bf_prev) {
1009 al = get_frame_info(bf->bf_mpdu)->framelen;
1010 bf->bf_state.bf_type = BUF_AMPDU;
1011 } else {
1012 TX_STAT_INC(txq->axq_qnum, a_aggr);
1015 *aggr_len = al;
1017 return closed;
1018 #undef PADBYTES
1022 * rix - rate index
1023 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1024 * width - 0 for 20 MHz, 1 for 40 MHz
1025 * half_gi - to use 4us v/s 3.6 us for symbol time
1027 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1028 int width, int half_gi, bool shortPreamble)
1030 u32 nbits, nsymbits, duration, nsymbols;
1031 int streams;
1033 /* find number of symbols: PLCP + data */
1034 streams = HT_RC_2_STREAMS(rix);
1035 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1036 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1037 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1039 if (!half_gi)
1040 duration = SYMBOL_TIME(nsymbols);
1041 else
1042 duration = SYMBOL_TIME_HALFGI(nsymbols);
1044 /* addup duration for legacy/ht training and signal fields */
1045 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1047 return duration;
1050 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1052 int streams = HT_RC_2_STREAMS(mcs);
1053 int symbols, bits;
1054 int bytes = 0;
1056 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1058 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1059 bits -= OFDM_PLCP_BITS;
1060 bytes = bits / 8;
1061 if (bytes > 65532)
1062 bytes = 65532;
1064 return bytes;
1067 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1069 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1070 int mcs;
1072 /* 4ms is the default (and maximum) duration */
1073 if (!txop || txop > 4096)
1074 txop = 4096;
1076 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1077 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1078 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1079 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1080 for (mcs = 0; mcs < 32; mcs++) {
1081 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1082 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1083 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1084 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1088 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1089 u8 rateidx, bool is_40, bool is_cck)
1091 u8 max_power;
1092 struct sk_buff *skb;
1093 struct ath_frame_info *fi;
1094 struct ieee80211_tx_info *info;
1095 struct ath_hw *ah = sc->sc_ah;
1097 if (sc->tx99_state || !ah->tpc_enabled)
1098 return MAX_RATE_POWER;
1100 skb = bf->bf_mpdu;
1101 fi = get_frame_info(skb);
1102 info = IEEE80211_SKB_CB(skb);
1104 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1105 int txpower = fi->tx_power;
1107 if (is_40) {
1108 u8 power_ht40delta;
1109 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1111 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1112 bool is_2ghz;
1113 struct modal_eep_header *pmodal;
1115 is_2ghz = info->band == IEEE80211_BAND_2GHZ;
1116 pmodal = &eep->modalHeader[is_2ghz];
1117 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1118 } else {
1119 power_ht40delta = 2;
1121 txpower += power_ht40delta;
1124 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1125 AR_SREV_9271(ah)) {
1126 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1127 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1128 s8 power_offset;
1130 power_offset = ah->eep_ops->get_eeprom(ah,
1131 EEP_PWR_TABLE_OFFSET);
1132 txpower -= 2 * power_offset;
1135 if (OLC_FOR_AR9280_20_LATER && is_cck)
1136 txpower -= 2;
1138 txpower = max(txpower, 0);
1139 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1141 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1142 * max_power is set to 0, frames are transmitted at max
1143 * TX power
1145 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1146 max_power = 1;
1147 } else if (!bf->bf_state.bfs_paprd) {
1148 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1149 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1150 fi->tx_power);
1151 else
1152 max_power = min_t(u8, ah->tx_power[rateidx],
1153 fi->tx_power);
1154 } else {
1155 max_power = ah->paprd_training_power;
1158 return max_power;
1161 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1162 struct ath_tx_info *info, int len, bool rts)
1164 struct ath_hw *ah = sc->sc_ah;
1165 struct ath_common *common = ath9k_hw_common(ah);
1166 struct sk_buff *skb;
1167 struct ieee80211_tx_info *tx_info;
1168 struct ieee80211_tx_rate *rates;
1169 const struct ieee80211_rate *rate;
1170 struct ieee80211_hdr *hdr;
1171 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1172 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1173 int i;
1174 u8 rix = 0;
1176 skb = bf->bf_mpdu;
1177 tx_info = IEEE80211_SKB_CB(skb);
1178 rates = bf->rates;
1179 hdr = (struct ieee80211_hdr *)skb->data;
1181 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1182 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1183 info->rtscts_rate = fi->rtscts_rate;
1185 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1186 bool is_40, is_sgi, is_sp, is_cck;
1187 int phy;
1189 if (!rates[i].count || (rates[i].idx < 0))
1190 continue;
1192 rix = rates[i].idx;
1193 info->rates[i].Tries = rates[i].count;
1196 * Handle RTS threshold for unaggregated HT frames.
1198 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1199 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1200 unlikely(rts_thresh != (u32) -1)) {
1201 if (!rts_thresh || (len > rts_thresh))
1202 rts = true;
1205 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1206 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1207 info->flags |= ATH9K_TXDESC_RTSENA;
1208 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1209 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1210 info->flags |= ATH9K_TXDESC_CTSENA;
1213 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1214 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1215 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1216 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1218 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1219 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1220 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1222 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1223 /* MCS rates */
1224 info->rates[i].Rate = rix | 0x80;
1225 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1226 ah->txchainmask, info->rates[i].Rate);
1227 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1228 is_40, is_sgi, is_sp);
1229 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1230 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1232 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1233 is_40, false);
1234 continue;
1237 /* legacy rates */
1238 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1239 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1240 !(rate->flags & IEEE80211_RATE_ERP_G))
1241 phy = WLAN_RC_PHY_CCK;
1242 else
1243 phy = WLAN_RC_PHY_OFDM;
1245 info->rates[i].Rate = rate->hw_value;
1246 if (rate->hw_value_short) {
1247 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1248 info->rates[i].Rate |= rate->hw_value_short;
1249 } else {
1250 is_sp = false;
1253 if (bf->bf_state.bfs_paprd)
1254 info->rates[i].ChSel = ah->txchainmask;
1255 else
1256 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1257 ah->txchainmask, info->rates[i].Rate);
1259 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1260 phy, rate->bitrate * 100, len, rix, is_sp);
1262 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1263 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1264 is_cck);
1267 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1268 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1269 info->flags &= ~ATH9K_TXDESC_RTSENA;
1271 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1272 if (info->flags & ATH9K_TXDESC_RTSENA)
1273 info->flags &= ~ATH9K_TXDESC_CTSENA;
1276 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1278 struct ieee80211_hdr *hdr;
1279 enum ath9k_pkt_type htype;
1280 __le16 fc;
1282 hdr = (struct ieee80211_hdr *)skb->data;
1283 fc = hdr->frame_control;
1285 if (ieee80211_is_beacon(fc))
1286 htype = ATH9K_PKT_TYPE_BEACON;
1287 else if (ieee80211_is_probe_resp(fc))
1288 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1289 else if (ieee80211_is_atim(fc))
1290 htype = ATH9K_PKT_TYPE_ATIM;
1291 else if (ieee80211_is_pspoll(fc))
1292 htype = ATH9K_PKT_TYPE_PSPOLL;
1293 else
1294 htype = ATH9K_PKT_TYPE_NORMAL;
1296 return htype;
1299 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1300 struct ath_txq *txq, int len)
1302 struct ath_hw *ah = sc->sc_ah;
1303 struct ath_buf *bf_first = NULL;
1304 struct ath_tx_info info;
1305 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1306 bool rts = false;
1308 memset(&info, 0, sizeof(info));
1309 info.is_first = true;
1310 info.is_last = true;
1311 info.qcu = txq->axq_qnum;
1313 while (bf) {
1314 struct sk_buff *skb = bf->bf_mpdu;
1315 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1316 struct ath_frame_info *fi = get_frame_info(skb);
1317 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1319 info.type = get_hw_packet_type(skb);
1320 if (bf->bf_next)
1321 info.link = bf->bf_next->bf_daddr;
1322 else
1323 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1325 if (!bf_first) {
1326 bf_first = bf;
1328 if (!sc->tx99_state)
1329 info.flags = ATH9K_TXDESC_INTREQ;
1330 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1331 txq == sc->tx.uapsdq)
1332 info.flags |= ATH9K_TXDESC_CLRDMASK;
1334 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1335 info.flags |= ATH9K_TXDESC_NOACK;
1336 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1337 info.flags |= ATH9K_TXDESC_LDPC;
1339 if (bf->bf_state.bfs_paprd)
1340 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1341 ATH9K_TXDESC_PAPRD_S;
1344 * mac80211 doesn't handle RTS threshold for HT because
1345 * the decision has to be taken based on AMPDU length
1346 * and aggregation is done entirely inside ath9k.
1347 * Set the RTS/CTS flag for the first subframe based
1348 * on the threshold.
1350 if (aggr && (bf == bf_first) &&
1351 unlikely(rts_thresh != (u32) -1)) {
1353 * "len" is the size of the entire AMPDU.
1355 if (!rts_thresh || (len > rts_thresh))
1356 rts = true;
1359 if (!aggr)
1360 len = fi->framelen;
1362 ath_buf_set_rate(sc, bf, &info, len, rts);
1365 info.buf_addr[0] = bf->bf_buf_addr;
1366 info.buf_len[0] = skb->len;
1367 info.pkt_len = fi->framelen;
1368 info.keyix = fi->keyix;
1369 info.keytype = fi->keytype;
1371 if (aggr) {
1372 if (bf == bf_first)
1373 info.aggr = AGGR_BUF_FIRST;
1374 else if (bf == bf_first->bf_lastbf)
1375 info.aggr = AGGR_BUF_LAST;
1376 else
1377 info.aggr = AGGR_BUF_MIDDLE;
1379 info.ndelim = bf->bf_state.ndelim;
1380 info.aggr_len = len;
1383 if (bf == bf_first->bf_lastbf)
1384 bf_first = NULL;
1386 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1387 bf = bf->bf_next;
1391 static void
1392 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1393 struct ath_atx_tid *tid, struct list_head *bf_q,
1394 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1396 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1397 struct sk_buff *skb;
1398 int nframes = 0;
1400 do {
1401 struct ieee80211_tx_info *tx_info;
1402 skb = bf->bf_mpdu;
1404 nframes++;
1405 __skb_unlink(skb, tid_q);
1406 list_add_tail(&bf->list, bf_q);
1407 if (bf_prev)
1408 bf_prev->bf_next = bf;
1409 bf_prev = bf;
1411 if (nframes >= 2)
1412 break;
1414 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1415 if (!bf)
1416 break;
1418 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1419 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1420 break;
1422 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1423 } while (1);
1426 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1427 struct ath_atx_tid *tid, bool *stop)
1429 struct ath_buf *bf;
1430 struct ieee80211_tx_info *tx_info;
1431 struct sk_buff_head *tid_q;
1432 struct list_head bf_q;
1433 int aggr_len = 0;
1434 bool aggr, last = true;
1436 if (!ath_tid_has_buffered(tid))
1437 return false;
1439 INIT_LIST_HEAD(&bf_q);
1441 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1442 if (!bf)
1443 return false;
1445 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1446 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1447 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1448 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1449 *stop = true;
1450 return false;
1453 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1454 if (aggr)
1455 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1456 tid_q, &aggr_len);
1457 else
1458 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1460 if (list_empty(&bf_q))
1461 return false;
1463 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1464 tid->clear_ps_filter = false;
1465 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1468 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1469 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1470 return true;
1473 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1474 u16 tid, u16 *ssn)
1476 struct ath_atx_tid *txtid;
1477 struct ath_txq *txq;
1478 struct ath_node *an;
1479 u8 density;
1481 an = (struct ath_node *)sta->drv_priv;
1482 txtid = ATH_AN_2_TID(an, tid);
1483 txq = txtid->txq;
1485 ath_txq_lock(sc, txq);
1487 /* update ampdu factor/density, they may have changed. This may happen
1488 * in HT IBSS when a beacon with HT-info is received after the station
1489 * has already been added.
1491 if (sta->ht_cap.ht_supported) {
1492 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1493 sta->ht_cap.ampdu_factor)) - 1;
1494 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1495 an->mpdudensity = density;
1498 /* force sequence number allocation for pending frames */
1499 ath_tx_tid_change_state(sc, txtid);
1501 txtid->active = true;
1502 *ssn = txtid->seq_start = txtid->seq_next;
1503 txtid->bar_index = -1;
1505 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1506 txtid->baw_head = txtid->baw_tail = 0;
1508 ath_txq_unlock_complete(sc, txq);
1510 return 0;
1513 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1515 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1516 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1517 struct ath_txq *txq = txtid->txq;
1519 ath_txq_lock(sc, txq);
1520 txtid->active = false;
1521 ath_tx_flush_tid(sc, txtid);
1522 ath_tx_tid_change_state(sc, txtid);
1523 ath_txq_unlock_complete(sc, txq);
1526 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1527 struct ath_node *an)
1529 struct ath_atx_tid *tid;
1530 struct ath_txq *txq;
1531 bool buffered;
1532 int tidno;
1534 for (tidno = 0, tid = &an->tid[tidno];
1535 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1537 txq = tid->txq;
1539 ath_txq_lock(sc, txq);
1541 if (list_empty(&tid->list)) {
1542 ath_txq_unlock(sc, txq);
1543 continue;
1546 buffered = ath_tid_has_buffered(tid);
1548 list_del_init(&tid->list);
1550 ath_txq_unlock(sc, txq);
1552 ieee80211_sta_set_buffered(sta, tidno, buffered);
1556 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1558 struct ath_atx_tid *tid;
1559 struct ath_txq *txq;
1560 int tidno;
1562 for (tidno = 0, tid = &an->tid[tidno];
1563 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1565 txq = tid->txq;
1567 ath_txq_lock(sc, txq);
1568 tid->clear_ps_filter = true;
1570 if (ath_tid_has_buffered(tid)) {
1571 ath_tx_queue_tid(sc, txq, tid);
1572 ath_txq_schedule(sc, txq);
1575 ath_txq_unlock_complete(sc, txq);
1579 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1580 u16 tidno)
1582 struct ath_atx_tid *tid;
1583 struct ath_node *an;
1584 struct ath_txq *txq;
1586 an = (struct ath_node *)sta->drv_priv;
1587 tid = ATH_AN_2_TID(an, tidno);
1588 txq = tid->txq;
1590 ath_txq_lock(sc, txq);
1592 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1594 if (ath_tid_has_buffered(tid)) {
1595 ath_tx_queue_tid(sc, txq, tid);
1596 ath_txq_schedule(sc, txq);
1599 ath_txq_unlock_complete(sc, txq);
1602 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1603 struct ieee80211_sta *sta,
1604 u16 tids, int nframes,
1605 enum ieee80211_frame_release_type reason,
1606 bool more_data)
1608 struct ath_softc *sc = hw->priv;
1609 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1610 struct ath_txq *txq = sc->tx.uapsdq;
1611 struct ieee80211_tx_info *info;
1612 struct list_head bf_q;
1613 struct ath_buf *bf_tail = NULL, *bf;
1614 struct sk_buff_head *tid_q;
1615 int sent = 0;
1616 int i;
1618 INIT_LIST_HEAD(&bf_q);
1619 for (i = 0; tids && nframes; i++, tids >>= 1) {
1620 struct ath_atx_tid *tid;
1622 if (!(tids & 1))
1623 continue;
1625 tid = ATH_AN_2_TID(an, i);
1627 ath_txq_lock(sc, tid->txq);
1628 while (nframes > 0) {
1629 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1630 if (!bf)
1631 break;
1633 __skb_unlink(bf->bf_mpdu, tid_q);
1634 list_add_tail(&bf->list, &bf_q);
1635 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1636 if (bf_isampdu(bf)) {
1637 ath_tx_addto_baw(sc, tid, bf);
1638 bf->bf_state.bf_type &= ~BUF_AGGR;
1640 if (bf_tail)
1641 bf_tail->bf_next = bf;
1643 bf_tail = bf;
1644 nframes--;
1645 sent++;
1646 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1648 if (an->sta && !ath_tid_has_buffered(tid))
1649 ieee80211_sta_set_buffered(an->sta, i, false);
1651 ath_txq_unlock_complete(sc, tid->txq);
1654 if (list_empty(&bf_q))
1655 return;
1657 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1658 info->flags |= IEEE80211_TX_STATUS_EOSP;
1660 bf = list_first_entry(&bf_q, struct ath_buf, list);
1661 ath_txq_lock(sc, txq);
1662 ath_tx_fill_desc(sc, bf, txq, 0);
1663 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1664 ath_txq_unlock(sc, txq);
1667 /********************/
1668 /* Queue Management */
1669 /********************/
1671 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1673 struct ath_hw *ah = sc->sc_ah;
1674 struct ath9k_tx_queue_info qi;
1675 static const int subtype_txq_to_hwq[] = {
1676 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1677 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1678 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1679 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1681 int axq_qnum, i;
1683 memset(&qi, 0, sizeof(qi));
1684 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1685 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1686 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1687 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1688 qi.tqi_physCompBuf = 0;
1691 * Enable interrupts only for EOL and DESC conditions.
1692 * We mark tx descriptors to receive a DESC interrupt
1693 * when a tx queue gets deep; otherwise waiting for the
1694 * EOL to reap descriptors. Note that this is done to
1695 * reduce interrupt load and this only defers reaping
1696 * descriptors, never transmitting frames. Aside from
1697 * reducing interrupts this also permits more concurrency.
1698 * The only potential downside is if the tx queue backs
1699 * up in which case the top half of the kernel may backup
1700 * due to a lack of tx descriptors.
1702 * The UAPSD queue is an exception, since we take a desc-
1703 * based intr on the EOSP frames.
1705 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1706 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1707 } else {
1708 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1709 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1710 else
1711 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1712 TXQ_FLAG_TXDESCINT_ENABLE;
1714 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1715 if (axq_qnum == -1) {
1717 * NB: don't print a message, this happens
1718 * normally on parts with too few tx queues
1720 return NULL;
1722 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1723 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1725 txq->axq_qnum = axq_qnum;
1726 txq->mac80211_qnum = -1;
1727 txq->axq_link = NULL;
1728 __skb_queue_head_init(&txq->complete_q);
1729 INIT_LIST_HEAD(&txq->axq_q);
1730 spin_lock_init(&txq->axq_lock);
1731 txq->axq_depth = 0;
1732 txq->axq_ampdu_depth = 0;
1733 txq->axq_tx_inprogress = false;
1734 sc->tx.txqsetup |= 1<<axq_qnum;
1736 txq->txq_headidx = txq->txq_tailidx = 0;
1737 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1738 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1740 return &sc->tx.txq[axq_qnum];
1743 int ath_txq_update(struct ath_softc *sc, int qnum,
1744 struct ath9k_tx_queue_info *qinfo)
1746 struct ath_hw *ah = sc->sc_ah;
1747 int error = 0;
1748 struct ath9k_tx_queue_info qi;
1750 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1752 ath9k_hw_get_txq_props(ah, qnum, &qi);
1753 qi.tqi_aifs = qinfo->tqi_aifs;
1754 qi.tqi_cwmin = qinfo->tqi_cwmin;
1755 qi.tqi_cwmax = qinfo->tqi_cwmax;
1756 qi.tqi_burstTime = qinfo->tqi_burstTime;
1757 qi.tqi_readyTime = qinfo->tqi_readyTime;
1759 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1760 ath_err(ath9k_hw_common(sc->sc_ah),
1761 "Unable to update hardware queue %u!\n", qnum);
1762 error = -EIO;
1763 } else {
1764 ath9k_hw_resettxqueue(ah, qnum);
1767 return error;
1770 int ath_cabq_update(struct ath_softc *sc)
1772 struct ath9k_tx_queue_info qi;
1773 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1774 int qnum = sc->beacon.cabq->axq_qnum;
1776 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1778 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1779 ATH_CABQ_READY_TIME) / 100;
1780 ath_txq_update(sc, qnum, &qi);
1782 return 0;
1785 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1786 struct list_head *list)
1788 struct ath_buf *bf, *lastbf;
1789 struct list_head bf_head;
1790 struct ath_tx_status ts;
1792 memset(&ts, 0, sizeof(ts));
1793 ts.ts_status = ATH9K_TX_FLUSH;
1794 INIT_LIST_HEAD(&bf_head);
1796 while (!list_empty(list)) {
1797 bf = list_first_entry(list, struct ath_buf, list);
1799 if (bf->bf_state.stale) {
1800 list_del(&bf->list);
1802 ath_tx_return_buffer(sc, bf);
1803 continue;
1806 lastbf = bf->bf_lastbf;
1807 list_cut_position(&bf_head, list, &lastbf->list);
1808 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1813 * Drain a given TX queue (could be Beacon or Data)
1815 * This assumes output has been stopped and
1816 * we do not need to block ath_tx_tasklet.
1818 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1820 ath_txq_lock(sc, txq);
1822 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1823 int idx = txq->txq_tailidx;
1825 while (!list_empty(&txq->txq_fifo[idx])) {
1826 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1828 INCR(idx, ATH_TXFIFO_DEPTH);
1830 txq->txq_tailidx = idx;
1833 txq->axq_link = NULL;
1834 txq->axq_tx_inprogress = false;
1835 ath_drain_txq_list(sc, txq, &txq->axq_q);
1837 ath_txq_unlock_complete(sc, txq);
1840 bool ath_drain_all_txq(struct ath_softc *sc)
1842 struct ath_hw *ah = sc->sc_ah;
1843 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1844 struct ath_txq *txq;
1845 int i;
1846 u32 npend = 0;
1848 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1849 return true;
1851 ath9k_hw_abort_tx_dma(ah);
1853 /* Check if any queue remains active */
1854 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1855 if (!ATH_TXQ_SETUP(sc, i))
1856 continue;
1858 if (!sc->tx.txq[i].axq_depth)
1859 continue;
1861 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1862 npend |= BIT(i);
1865 if (npend) {
1866 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1867 ath_dbg(common, RESET,
1868 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1871 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1872 if (!ATH_TXQ_SETUP(sc, i))
1873 continue;
1876 * The caller will resume queues with ieee80211_wake_queues.
1877 * Mark the queue as not stopped to prevent ath_tx_complete
1878 * from waking the queue too early.
1880 txq = &sc->tx.txq[i];
1881 txq->stopped = false;
1882 ath_draintxq(sc, txq);
1885 return !npend;
1888 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1890 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1891 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1894 /* For each acq entry, for each tid, try to schedule packets
1895 * for transmit until ampdu_depth has reached min Q depth.
1897 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1899 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1900 struct ath_atx_tid *tid, *last_tid;
1901 struct list_head *tid_list;
1902 bool sent = false;
1904 if (txq->mac80211_qnum < 0)
1905 return;
1907 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1908 return;
1910 spin_lock_bh(&sc->chan_lock);
1911 tid_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1913 if (list_empty(tid_list)) {
1914 spin_unlock_bh(&sc->chan_lock);
1915 return;
1918 rcu_read_lock();
1920 last_tid = list_entry(tid_list->prev, struct ath_atx_tid, list);
1921 while (!list_empty(tid_list)) {
1922 bool stop = false;
1924 if (sc->cur_chan->stopped)
1925 break;
1927 tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1928 list_del_init(&tid->list);
1930 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1931 sent = true;
1934 * add tid to round-robin queue if more frames
1935 * are pending for the tid
1937 if (ath_tid_has_buffered(tid))
1938 ath_tx_queue_tid(sc, txq, tid);
1940 if (stop)
1941 break;
1943 if (tid == last_tid) {
1944 if (!sent)
1945 break;
1947 sent = false;
1948 last_tid = list_entry(tid_list->prev,
1949 struct ath_atx_tid, list);
1953 rcu_read_unlock();
1954 spin_unlock_bh(&sc->chan_lock);
1957 void ath_txq_schedule_all(struct ath_softc *sc)
1959 struct ath_txq *txq;
1960 int i;
1962 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1963 txq = sc->tx.txq_map[i];
1965 spin_lock_bh(&txq->axq_lock);
1966 ath_txq_schedule(sc, txq);
1967 spin_unlock_bh(&txq->axq_lock);
1971 /***********/
1972 /* TX, DMA */
1973 /***********/
1976 * Insert a chain of ath_buf (descriptors) on a txq and
1977 * assume the descriptors are already chained together by caller.
1979 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1980 struct list_head *head, bool internal)
1982 struct ath_hw *ah = sc->sc_ah;
1983 struct ath_common *common = ath9k_hw_common(ah);
1984 struct ath_buf *bf, *bf_last;
1985 bool puttxbuf = false;
1986 bool edma;
1989 * Insert the frame on the outbound list and
1990 * pass it on to the hardware.
1993 if (list_empty(head))
1994 return;
1996 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1997 bf = list_first_entry(head, struct ath_buf, list);
1998 bf_last = list_entry(head->prev, struct ath_buf, list);
2000 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2001 txq->axq_qnum, txq->axq_depth);
2003 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2004 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2005 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2006 puttxbuf = true;
2007 } else {
2008 list_splice_tail_init(head, &txq->axq_q);
2010 if (txq->axq_link) {
2011 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2012 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2013 txq->axq_qnum, txq->axq_link,
2014 ito64(bf->bf_daddr), bf->bf_desc);
2015 } else if (!edma)
2016 puttxbuf = true;
2018 txq->axq_link = bf_last->bf_desc;
2021 if (puttxbuf) {
2022 TX_STAT_INC(txq->axq_qnum, puttxbuf);
2023 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2024 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2025 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2028 if (!edma || sc->tx99_state) {
2029 TX_STAT_INC(txq->axq_qnum, txstart);
2030 ath9k_hw_txstart(ah, txq->axq_qnum);
2033 if (!internal) {
2034 while (bf) {
2035 txq->axq_depth++;
2036 if (bf_is_ampdu_not_probing(bf))
2037 txq->axq_ampdu_depth++;
2039 bf_last = bf->bf_lastbf;
2040 bf = bf_last->bf_next;
2041 bf_last->bf_next = NULL;
2046 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2047 struct ath_atx_tid *tid, struct sk_buff *skb)
2049 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2050 struct ath_frame_info *fi = get_frame_info(skb);
2051 struct list_head bf_head;
2052 struct ath_buf *bf = fi->bf;
2054 INIT_LIST_HEAD(&bf_head);
2055 list_add_tail(&bf->list, &bf_head);
2056 bf->bf_state.bf_type = 0;
2057 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2058 bf->bf_state.bf_type = BUF_AMPDU;
2059 ath_tx_addto_baw(sc, tid, bf);
2062 bf->bf_next = NULL;
2063 bf->bf_lastbf = bf;
2064 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2065 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2066 TX_STAT_INC(txq->axq_qnum, queued);
2069 static void setup_frame_info(struct ieee80211_hw *hw,
2070 struct ieee80211_sta *sta,
2071 struct sk_buff *skb,
2072 int framelen)
2074 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2075 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2076 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2077 const struct ieee80211_rate *rate;
2078 struct ath_frame_info *fi = get_frame_info(skb);
2079 struct ath_node *an = NULL;
2080 enum ath9k_key_type keytype;
2081 bool short_preamble = false;
2082 u8 txpower;
2085 * We check if Short Preamble is needed for the CTS rate by
2086 * checking the BSS's global flag.
2087 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2089 if (tx_info->control.vif &&
2090 tx_info->control.vif->bss_conf.use_short_preamble)
2091 short_preamble = true;
2093 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2094 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2096 if (sta)
2097 an = (struct ath_node *) sta->drv_priv;
2099 if (tx_info->control.vif) {
2100 struct ieee80211_vif *vif = tx_info->control.vif;
2102 txpower = 2 * vif->bss_conf.txpower;
2103 } else {
2104 struct ath_softc *sc = hw->priv;
2106 txpower = sc->cur_chan->cur_txpower;
2109 memset(fi, 0, sizeof(*fi));
2110 fi->txq = -1;
2111 if (hw_key)
2112 fi->keyix = hw_key->hw_key_idx;
2113 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2114 fi->keyix = an->ps_key;
2115 else
2116 fi->keyix = ATH9K_TXKEYIX_INVALID;
2117 fi->keytype = keytype;
2118 fi->framelen = framelen;
2119 fi->tx_power = txpower;
2121 if (!rate)
2122 return;
2123 fi->rtscts_rate = rate->hw_value;
2124 if (short_preamble)
2125 fi->rtscts_rate |= rate->hw_value_short;
2128 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2130 struct ath_hw *ah = sc->sc_ah;
2131 struct ath9k_channel *curchan = ah->curchan;
2133 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2134 (chainmask == 0x7) && (rate < 0x90))
2135 return 0x3;
2136 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2137 IS_CCK_RATE(rate))
2138 return 0x2;
2139 else
2140 return chainmask;
2144 * Assign a descriptor (and sequence number if necessary,
2145 * and map buffer for DMA. Frees skb on error
2147 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2148 struct ath_txq *txq,
2149 struct ath_atx_tid *tid,
2150 struct sk_buff *skb)
2152 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2153 struct ath_frame_info *fi = get_frame_info(skb);
2154 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2155 struct ath_buf *bf;
2156 int fragno;
2157 u16 seqno;
2159 bf = ath_tx_get_buffer(sc);
2160 if (!bf) {
2161 ath_dbg(common, XMIT, "TX buffers are full\n");
2162 return NULL;
2165 ATH_TXBUF_RESET(bf);
2167 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2168 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2169 seqno = tid->seq_next;
2170 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2172 if (fragno)
2173 hdr->seq_ctrl |= cpu_to_le16(fragno);
2175 if (!ieee80211_has_morefrags(hdr->frame_control))
2176 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2178 bf->bf_state.seqno = seqno;
2181 bf->bf_mpdu = skb;
2183 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2184 skb->len, DMA_TO_DEVICE);
2185 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2186 bf->bf_mpdu = NULL;
2187 bf->bf_buf_addr = 0;
2188 ath_err(ath9k_hw_common(sc->sc_ah),
2189 "dma_mapping_error() on TX\n");
2190 ath_tx_return_buffer(sc, bf);
2191 return NULL;
2194 fi->bf = bf;
2196 return bf;
2199 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2201 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2202 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2203 struct ieee80211_vif *vif = info->control.vif;
2204 struct ath_vif *avp;
2206 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2207 return;
2209 if (!vif)
2210 return;
2212 avp = (struct ath_vif *)vif->drv_priv;
2214 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2215 avp->seq_no += 0x10;
2217 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2218 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2221 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2222 struct ath_tx_control *txctl)
2224 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2225 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2226 struct ieee80211_sta *sta = txctl->sta;
2227 struct ieee80211_vif *vif = info->control.vif;
2228 struct ath_vif *avp;
2229 struct ath_softc *sc = hw->priv;
2230 int frmlen = skb->len + FCS_LEN;
2231 int padpos, padsize;
2233 /* NOTE: sta can be NULL according to net/mac80211.h */
2234 if (sta)
2235 txctl->an = (struct ath_node *)sta->drv_priv;
2236 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2237 avp = (void *)vif->drv_priv;
2238 txctl->an = &avp->mcast_node;
2241 if (info->control.hw_key)
2242 frmlen += info->control.hw_key->icv_len;
2244 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2246 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2247 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2248 !ieee80211_is_data(hdr->frame_control))
2249 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2251 /* Add the padding after the header if this is not already done */
2252 padpos = ieee80211_hdrlen(hdr->frame_control);
2253 padsize = padpos & 3;
2254 if (padsize && skb->len > padpos) {
2255 if (skb_headroom(skb) < padsize)
2256 return -ENOMEM;
2258 skb_push(skb, padsize);
2259 memmove(skb->data, skb->data + padsize, padpos);
2262 setup_frame_info(hw, sta, skb, frmlen);
2263 return 0;
2267 /* Upon failure caller should free skb */
2268 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2269 struct ath_tx_control *txctl)
2271 struct ieee80211_hdr *hdr;
2272 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2273 struct ieee80211_sta *sta = txctl->sta;
2274 struct ieee80211_vif *vif = info->control.vif;
2275 struct ath_frame_info *fi = get_frame_info(skb);
2276 struct ath_vif *avp = NULL;
2277 struct ath_softc *sc = hw->priv;
2278 struct ath_txq *txq = txctl->txq;
2279 struct ath_atx_tid *tid = NULL;
2280 struct ath_buf *bf;
2281 bool queue, skip_uapsd = false, ps_resp;
2282 int q, ret;
2284 if (vif)
2285 avp = (void *)vif->drv_priv;
2287 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2288 txctl->force_channel = true;
2290 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2292 ret = ath_tx_prepare(hw, skb, txctl);
2293 if (ret)
2294 return ret;
2296 hdr = (struct ieee80211_hdr *) skb->data;
2298 * At this point, the vif, hw_key and sta pointers in the tx control
2299 * info are no longer valid (overwritten by the ath_frame_info data.
2302 q = skb_get_queue_mapping(skb);
2304 ath_txq_lock(sc, txq);
2305 if (txq == sc->tx.txq_map[q]) {
2306 fi->txq = q;
2307 if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2308 !txq->stopped) {
2309 if (ath9k_is_chanctx_enabled())
2310 ieee80211_stop_queue(sc->hw, info->hw_queue);
2311 else
2312 ieee80211_stop_queue(sc->hw, q);
2313 txq->stopped = true;
2317 queue = ieee80211_is_data_present(hdr->frame_control);
2319 /* Force queueing of all frames that belong to a virtual interface on
2320 * a different channel context, to ensure that they are sent on the
2321 * correct channel.
2323 if (((avp && avp->chanctx != sc->cur_chan) ||
2324 sc->cur_chan->stopped) && !txctl->force_channel) {
2325 if (!txctl->an)
2326 txctl->an = &avp->mcast_node;
2327 queue = true;
2328 skip_uapsd = true;
2331 if (txctl->an && queue)
2332 tid = ath_get_skb_tid(sc, txctl->an, skb);
2334 if (!skip_uapsd && ps_resp) {
2335 ath_txq_unlock(sc, txq);
2336 txq = sc->tx.uapsdq;
2337 ath_txq_lock(sc, txq);
2338 } else if (txctl->an && queue) {
2339 WARN_ON(tid->txq != txctl->txq);
2341 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2342 tid->clear_ps_filter = true;
2345 * Add this frame to software queue for scheduling later
2346 * for aggregation.
2348 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2349 __skb_queue_tail(&tid->buf_q, skb);
2350 if (!txctl->an->sleeping)
2351 ath_tx_queue_tid(sc, txq, tid);
2353 ath_txq_schedule(sc, txq);
2354 goto out;
2357 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2358 if (!bf) {
2359 ath_txq_skb_done(sc, txq, skb);
2360 if (txctl->paprd)
2361 dev_kfree_skb_any(skb);
2362 else
2363 ieee80211_free_txskb(sc->hw, skb);
2364 goto out;
2367 bf->bf_state.bfs_paprd = txctl->paprd;
2369 if (txctl->paprd)
2370 bf->bf_state.bfs_paprd_timestamp = jiffies;
2372 ath_set_rates(vif, sta, bf);
2373 ath_tx_send_normal(sc, txq, tid, skb);
2375 out:
2376 ath_txq_unlock(sc, txq);
2378 return 0;
2381 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2382 struct sk_buff *skb)
2384 struct ath_softc *sc = hw->priv;
2385 struct ath_tx_control txctl = {
2386 .txq = sc->beacon.cabq
2388 struct ath_tx_info info = {};
2389 struct ieee80211_hdr *hdr;
2390 struct ath_buf *bf_tail = NULL;
2391 struct ath_buf *bf;
2392 LIST_HEAD(bf_q);
2393 int duration = 0;
2394 int max_duration;
2396 max_duration =
2397 sc->cur_chan->beacon.beacon_interval * 1000 *
2398 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2400 do {
2401 struct ath_frame_info *fi = get_frame_info(skb);
2403 if (ath_tx_prepare(hw, skb, &txctl))
2404 break;
2406 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2407 if (!bf)
2408 break;
2410 bf->bf_lastbf = bf;
2411 ath_set_rates(vif, NULL, bf);
2412 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2413 duration += info.rates[0].PktDuration;
2414 if (bf_tail)
2415 bf_tail->bf_next = bf;
2417 list_add_tail(&bf->list, &bf_q);
2418 bf_tail = bf;
2419 skb = NULL;
2421 if (duration > max_duration)
2422 break;
2424 skb = ieee80211_get_buffered_bc(hw, vif);
2425 } while(skb);
2427 if (skb)
2428 ieee80211_free_txskb(hw, skb);
2430 if (list_empty(&bf_q))
2431 return;
2433 bf = list_first_entry(&bf_q, struct ath_buf, list);
2434 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2436 if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2437 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2438 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2439 sizeof(*hdr), DMA_TO_DEVICE);
2442 ath_txq_lock(sc, txctl.txq);
2443 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2444 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2445 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2446 ath_txq_unlock(sc, txctl.txq);
2449 /*****************/
2450 /* TX Completion */
2451 /*****************/
2453 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2454 int tx_flags, struct ath_txq *txq)
2456 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2457 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2458 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2459 int padpos, padsize;
2460 unsigned long flags;
2462 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2464 if (sc->sc_ah->caldata)
2465 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2467 if (!(tx_flags & ATH_TX_ERROR)) {
2468 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2469 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2470 else
2471 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2474 padpos = ieee80211_hdrlen(hdr->frame_control);
2475 padsize = padpos & 3;
2476 if (padsize && skb->len>padpos+padsize) {
2478 * Remove MAC header padding before giving the frame back to
2479 * mac80211.
2481 memmove(skb->data + padsize, skb->data, padpos);
2482 skb_pull(skb, padsize);
2485 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2486 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2487 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2488 ath_dbg(common, PS,
2489 "Going back to sleep after having received TX status (0x%lx)\n",
2490 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2491 PS_WAIT_FOR_CAB |
2492 PS_WAIT_FOR_PSPOLL_DATA |
2493 PS_WAIT_FOR_TX_ACK));
2495 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2497 __skb_queue_tail(&txq->complete_q, skb);
2498 ath_txq_skb_done(sc, txq, skb);
2501 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2502 struct ath_txq *txq, struct list_head *bf_q,
2503 struct ath_tx_status *ts, int txok)
2505 struct sk_buff *skb = bf->bf_mpdu;
2506 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2507 unsigned long flags;
2508 int tx_flags = 0;
2510 if (!txok)
2511 tx_flags |= ATH_TX_ERROR;
2513 if (ts->ts_status & ATH9K_TXERR_FILT)
2514 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2516 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2517 bf->bf_buf_addr = 0;
2518 if (sc->tx99_state)
2519 goto skip_tx_complete;
2521 if (bf->bf_state.bfs_paprd) {
2522 if (time_after(jiffies,
2523 bf->bf_state.bfs_paprd_timestamp +
2524 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2525 dev_kfree_skb_any(skb);
2526 else
2527 complete(&sc->paprd_complete);
2528 } else {
2529 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2530 ath_tx_complete(sc, skb, tx_flags, txq);
2532 skip_tx_complete:
2533 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2534 * accidentally reference it later.
2536 bf->bf_mpdu = NULL;
2539 * Return the list of ath_buf of this mpdu to free queue
2541 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2542 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2543 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2546 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2547 struct ath_tx_status *ts, int nframes, int nbad,
2548 int txok)
2550 struct sk_buff *skb = bf->bf_mpdu;
2551 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2552 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2553 struct ieee80211_hw *hw = sc->hw;
2554 struct ath_hw *ah = sc->sc_ah;
2555 u8 i, tx_rateindex;
2557 if (txok)
2558 tx_info->status.ack_signal = ts->ts_rssi;
2560 tx_rateindex = ts->ts_rateindex;
2561 WARN_ON(tx_rateindex >= hw->max_rates);
2563 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2564 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2566 BUG_ON(nbad > nframes);
2568 tx_info->status.ampdu_len = nframes;
2569 tx_info->status.ampdu_ack_len = nframes - nbad;
2571 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2572 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2574 * If an underrun error is seen assume it as an excessive
2575 * retry only if max frame trigger level has been reached
2576 * (2 KB for single stream, and 4 KB for dual stream).
2577 * Adjust the long retry as if the frame was tried
2578 * hw->max_rate_tries times to affect how rate control updates
2579 * PER for the failed rate.
2580 * In case of congestion on the bus penalizing this type of
2581 * underruns should help hardware actually transmit new frames
2582 * successfully by eventually preferring slower rates.
2583 * This itself should also alleviate congestion on the bus.
2585 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2586 ATH9K_TX_DELIM_UNDERRUN)) &&
2587 ieee80211_is_data(hdr->frame_control) &&
2588 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2589 tx_info->status.rates[tx_rateindex].count =
2590 hw->max_rate_tries;
2593 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2594 tx_info->status.rates[i].count = 0;
2595 tx_info->status.rates[i].idx = -1;
2598 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2601 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2603 struct ath_hw *ah = sc->sc_ah;
2604 struct ath_common *common = ath9k_hw_common(ah);
2605 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2606 struct list_head bf_head;
2607 struct ath_desc *ds;
2608 struct ath_tx_status ts;
2609 int status;
2611 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2612 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2613 txq->axq_link);
2615 ath_txq_lock(sc, txq);
2616 for (;;) {
2617 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2618 break;
2620 if (list_empty(&txq->axq_q)) {
2621 txq->axq_link = NULL;
2622 ath_txq_schedule(sc, txq);
2623 break;
2625 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2628 * There is a race condition that a BH gets scheduled
2629 * after sw writes TxE and before hw re-load the last
2630 * descriptor to get the newly chained one.
2631 * Software must keep the last DONE descriptor as a
2632 * holding descriptor - software does so by marking
2633 * it with the STALE flag.
2635 bf_held = NULL;
2636 if (bf->bf_state.stale) {
2637 bf_held = bf;
2638 if (list_is_last(&bf_held->list, &txq->axq_q))
2639 break;
2641 bf = list_entry(bf_held->list.next, struct ath_buf,
2642 list);
2645 lastbf = bf->bf_lastbf;
2646 ds = lastbf->bf_desc;
2648 memset(&ts, 0, sizeof(ts));
2649 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2650 if (status == -EINPROGRESS)
2651 break;
2653 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2656 * Remove ath_buf's of the same transmit unit from txq,
2657 * however leave the last descriptor back as the holding
2658 * descriptor for hw.
2660 lastbf->bf_state.stale = true;
2661 INIT_LIST_HEAD(&bf_head);
2662 if (!list_is_singular(&lastbf->list))
2663 list_cut_position(&bf_head,
2664 &txq->axq_q, lastbf->list.prev);
2666 if (bf_held) {
2667 list_del(&bf_held->list);
2668 ath_tx_return_buffer(sc, bf_held);
2671 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2673 ath_txq_unlock_complete(sc, txq);
2676 void ath_tx_tasklet(struct ath_softc *sc)
2678 struct ath_hw *ah = sc->sc_ah;
2679 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2680 int i;
2682 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2683 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2684 ath_tx_processq(sc, &sc->tx.txq[i]);
2688 void ath_tx_edma_tasklet(struct ath_softc *sc)
2690 struct ath_tx_status ts;
2691 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2692 struct ath_hw *ah = sc->sc_ah;
2693 struct ath_txq *txq;
2694 struct ath_buf *bf, *lastbf;
2695 struct list_head bf_head;
2696 struct list_head *fifo_list;
2697 int status;
2699 for (;;) {
2700 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2701 break;
2703 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2704 if (status == -EINPROGRESS)
2705 break;
2706 if (status == -EIO) {
2707 ath_dbg(common, XMIT, "Error processing tx status\n");
2708 break;
2711 /* Process beacon completions separately */
2712 if (ts.qid == sc->beacon.beaconq) {
2713 sc->beacon.tx_processed = true;
2714 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2716 if (ath9k_is_chanctx_enabled()) {
2717 ath_chanctx_event(sc, NULL,
2718 ATH_CHANCTX_EVENT_BEACON_SENT);
2721 ath9k_csa_update(sc);
2722 continue;
2725 txq = &sc->tx.txq[ts.qid];
2727 ath_txq_lock(sc, txq);
2729 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2731 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2732 if (list_empty(fifo_list)) {
2733 ath_txq_unlock(sc, txq);
2734 return;
2737 bf = list_first_entry(fifo_list, struct ath_buf, list);
2738 if (bf->bf_state.stale) {
2739 list_del(&bf->list);
2740 ath_tx_return_buffer(sc, bf);
2741 bf = list_first_entry(fifo_list, struct ath_buf, list);
2744 lastbf = bf->bf_lastbf;
2746 INIT_LIST_HEAD(&bf_head);
2747 if (list_is_last(&lastbf->list, fifo_list)) {
2748 list_splice_tail_init(fifo_list, &bf_head);
2749 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2751 if (!list_empty(&txq->axq_q)) {
2752 struct list_head bf_q;
2754 INIT_LIST_HEAD(&bf_q);
2755 txq->axq_link = NULL;
2756 list_splice_tail_init(&txq->axq_q, &bf_q);
2757 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2759 } else {
2760 lastbf->bf_state.stale = true;
2761 if (bf != lastbf)
2762 list_cut_position(&bf_head, fifo_list,
2763 lastbf->list.prev);
2766 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2767 ath_txq_unlock_complete(sc, txq);
2771 /*****************/
2772 /* Init, Cleanup */
2773 /*****************/
2775 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2777 struct ath_descdma *dd = &sc->txsdma;
2778 u8 txs_len = sc->sc_ah->caps.txs_len;
2780 dd->dd_desc_len = size * txs_len;
2781 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2782 &dd->dd_desc_paddr, GFP_KERNEL);
2783 if (!dd->dd_desc)
2784 return -ENOMEM;
2786 return 0;
2789 static int ath_tx_edma_init(struct ath_softc *sc)
2791 int err;
2793 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2794 if (!err)
2795 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2796 sc->txsdma.dd_desc_paddr,
2797 ATH_TXSTATUS_RING_SIZE);
2799 return err;
2802 int ath_tx_init(struct ath_softc *sc, int nbufs)
2804 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2805 int error = 0;
2807 spin_lock_init(&sc->tx.txbuflock);
2809 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2810 "tx", nbufs, 1, 1);
2811 if (error != 0) {
2812 ath_err(common,
2813 "Failed to allocate tx descriptors: %d\n", error);
2814 return error;
2817 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2818 "beacon", ATH_BCBUF, 1, 1);
2819 if (error != 0) {
2820 ath_err(common,
2821 "Failed to allocate beacon descriptors: %d\n", error);
2822 return error;
2825 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2827 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2828 error = ath_tx_edma_init(sc);
2830 return error;
2833 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2835 struct ath_atx_tid *tid;
2836 int tidno, acno;
2838 for (tidno = 0, tid = &an->tid[tidno];
2839 tidno < IEEE80211_NUM_TIDS;
2840 tidno++, tid++) {
2841 tid->an = an;
2842 tid->tidno = tidno;
2843 tid->seq_start = tid->seq_next = 0;
2844 tid->baw_size = WME_MAX_BA;
2845 tid->baw_head = tid->baw_tail = 0;
2846 tid->active = false;
2847 tid->clear_ps_filter = true;
2848 __skb_queue_head_init(&tid->buf_q);
2849 __skb_queue_head_init(&tid->retry_q);
2850 INIT_LIST_HEAD(&tid->list);
2851 acno = TID_TO_WME_AC(tidno);
2852 tid->txq = sc->tx.txq_map[acno];
2856 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2858 struct ath_atx_tid *tid;
2859 struct ath_txq *txq;
2860 int tidno;
2862 for (tidno = 0, tid = &an->tid[tidno];
2863 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2865 txq = tid->txq;
2867 ath_txq_lock(sc, txq);
2869 if (!list_empty(&tid->list))
2870 list_del_init(&tid->list);
2872 ath_tid_drain(sc, txq, tid);
2873 tid->active = false;
2875 ath_txq_unlock(sc, txq);
2879 #ifdef CONFIG_ATH9K_TX99
2881 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2882 struct ath_tx_control *txctl)
2884 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2885 struct ath_frame_info *fi = get_frame_info(skb);
2886 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2887 struct ath_buf *bf;
2888 int padpos, padsize;
2890 padpos = ieee80211_hdrlen(hdr->frame_control);
2891 padsize = padpos & 3;
2893 if (padsize && skb->len > padpos) {
2894 if (skb_headroom(skb) < padsize) {
2895 ath_dbg(common, XMIT,
2896 "tx99 padding failed\n");
2897 return -EINVAL;
2900 skb_push(skb, padsize);
2901 memmove(skb->data, skb->data + padsize, padpos);
2904 fi->keyix = ATH9K_TXKEYIX_INVALID;
2905 fi->framelen = skb->len + FCS_LEN;
2906 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2908 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2909 if (!bf) {
2910 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2911 return -EINVAL;
2914 ath_set_rates(sc->tx99_vif, NULL, bf);
2916 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2917 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2919 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2921 return 0;
2924 #endif /* CONFIG_ATH9K_TX99 */