Linux 4.4.145
[linux/fpc-iii.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
blob36818c7f30b962d549867c354521cc72cbb4d26d
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
166 #include <net/lib80211.h>
168 #include "ipw2100.h"
169 #include "ipw.h"
171 #define IPW2100_VERSION "git-1.2.2"
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
178 static struct pm_qos_request ipw2100_pm_qos_req;
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
300 #endif
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
347 struct ipw2100_priv *priv = libipw_priv(dev);
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
355 struct ipw2100_priv *priv = libipw_priv(dev);
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
364 struct ipw2100_priv *priv = libipw_priv(dev);
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
372 struct ipw2100_priv *priv = libipw_priv(dev);
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
380 struct ipw2100_priv *priv = libipw_priv(dev);
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
388 struct ipw2100_priv *priv = libipw_priv(dev);
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
467 len -= dif_len;
468 aligned_addr += 4;
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
505 len -= dif_len;
506 aligned_addr += 4;
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
524 u32 dbg;
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
555 return -EINVAL;
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
564 return 0;
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
569 ord -= IPW_START_ORD_TAB_2;
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
594 *len = total_length;
595 if (!total_length)
596 return 0;
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
601 return 0;
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
607 return -EINVAL;
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
626 write_nic_dword(priv->net_dev, addr, *val);
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
630 return 0;
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
637 return -EINVAL;
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
643 int out, i, j, l;
644 char c;
646 out = snprintf(buf, count, "%08X", ofs);
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
665 out += snprintf(buf + out, count - out, "%c", c);
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
672 return buf;
675 static void printk_buf(int level, const u8 * data, u32 len)
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
691 #define MAX_RESET_BACKOFF 10
693 static void schedule_reset(struct ipw2100_priv *priv)
695 unsigned long now = get_seconds();
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
704 priv->last_reset = get_seconds();
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
743 spin_lock_irqsave(&priv->low_lock, flags);
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
774 element = priv->msg_free_list.next;
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
799 spin_unlock_irqrestore(&priv->low_lock, flags);
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
835 return 0;
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
840 return err;
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
847 static int ipw2100_verify(struct ipw2100_priv *priv)
849 u32 data1, data2;
850 u32 address;
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
878 return -EIO;
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
918 return 0;
921 udelay(50);
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
936 int i;
937 u32 r;
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
953 if (i == 1000)
954 return -EIO; // TODO: better error value
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
979 return 0;
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
995 u32 address;
996 int err;
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1080 #ifndef CONFIG_PM
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1109 return 0;
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1136 IPW_DEBUG_INFO("enter\n");
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1147 ord->table2_size &= 0x0000FFFF;
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1156 u32 reg = 0;
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1195 return (value == 0);
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1200 u32 addr, len;
1201 u32 val;
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1237 return 0;
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1248 int i;
1249 u32 inta, inta_mask, gpio;
1251 IPW_DEBUG_INFO("enter\n");
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1272 ipw2100_hw_set_gpio(priv);
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1307 } while (--i);
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1341 IPW_DEBUG_INFO("exit\n");
1343 return 0;
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1348 if (!priv->fatal_error)
1349 return;
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1359 u32 reg;
1360 int i;
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1364 ipw2100_hw_set_gpio(priv);
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1381 priv->status &= ~STATUS_RESET_PENDING;
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1399 return 0;
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1420 int err, i;
1421 u32 val1, val2;
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1441 return -EIO;
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1451 int err = 0;
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1458 mutex_lock(&priv->adapter_mutex);
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1497 int err, i;
1498 u32 reg;
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1503 priv->status |= STATUS_STOPPING;
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1549 priv->status &= ~STATUS_ENABLED;
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1555 ipw2100_hw_set_gpio(priv);
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1591 return 0;
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1601 int err = 0;
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1616 mutex_lock(&priv->adapter_mutex);
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1646 int err;
1648 IPW_DEBUG_INFO("enter\n");
1650 IPW_DEBUG_SCAN("setting scan options\n");
1652 cmd.host_command_parameters[0] = 0;
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1663 err = ipw2100_hw_send_command(priv, &cmd);
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1668 return err;
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1678 int err;
1680 IPW_DEBUG_HC("START_SCAN\n");
1682 cmd.host_command_parameters[0] = 0;
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1693 IPW_DEBUG_INFO("enter\n");
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1700 IPW_DEBUG_SCAN("starting scan\n");
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1707 IPW_DEBUG_INFO("exit\n");
1709 return err;
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1767 } else
1768 priv->status |= STATUS_POWERED;
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1779 ipw2100_initialize_ordinals(priv);
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1803 priv->status &= ~STATUS_SCANNING;
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1815 deferred = 1;
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1846 exit:
1847 return rc;
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1857 int associated = priv->status & STATUS_ASSOCIATED;
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1903 static int ipw2100_wdev_init(struct net_device *dev)
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1916 bg_band->band = IEEE80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1948 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1969 int associated = priv->status & STATUS_ASSOCIATED;
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 * an actual MAC of the AP. Seems like FW sets this
2012 * address too late. Read it later and expose through
2013 * /proc or schedule a later task to query and update
2016 essid_len = IW_ESSID_MAX_SIZE;
2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 essid, &essid_len);
2019 if (ret) {
2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 __LINE__);
2022 return;
2025 len = sizeof(u32);
2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 if (ret) {
2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 __LINE__);
2030 return;
2033 len = sizeof(u32);
2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 if (ret) {
2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 __LINE__);
2038 return;
2040 len = ETH_ALEN;
2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 &len);
2043 if (ret) {
2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 __LINE__);
2046 return;
2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050 switch (txrate) {
2051 case TX_RATE_1_MBIT:
2052 txratename = "1Mbps";
2053 break;
2054 case TX_RATE_2_MBIT:
2055 txratename = "2Mbsp";
2056 break;
2057 case TX_RATE_5_5_MBIT:
2058 txratename = "5.5Mbps";
2059 break;
2060 case TX_RATE_11_MBIT:
2061 txratename = "11Mbps";
2062 break;
2063 default:
2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 txratename = "unknown rate";
2066 break;
2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 priv->net_dev->name, essid_len, essid,
2071 txratename, chan, bssid);
2073 /* now we copy read ssid into dev */
2074 if (!(priv->config & CFG_STATIC_ESSID)) {
2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 memcpy(priv->essid, essid, priv->essid_len);
2078 priv->channel = chan;
2079 memcpy(priv->bssid, bssid, ETH_ALEN);
2081 priv->status |= STATUS_ASSOCIATING;
2082 priv->connect_start = get_seconds();
2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 int length, int batch_mode)
2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 struct host_command cmd = {
2092 .host_command = SSID,
2093 .host_command_sequence = 0,
2094 .host_command_length = ssid_len
2096 int err;
2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2100 if (ssid_len)
2101 memcpy(cmd.host_command_parameters, essid, ssid_len);
2103 if (!batch_mode) {
2104 err = ipw2100_disable_adapter(priv);
2105 if (err)
2106 return err;
2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 * disable auto association -- so we cheat by setting a bogus SSID */
2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 int i;
2113 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 bogus[i] = 0x18 + i;
2116 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119 /* NOTE: We always send the SSID command even if the provided ESSID is
2120 * the same as what we currently think is set. */
2122 err = ipw2100_hw_send_command(priv, &cmd);
2123 if (!err) {
2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 memcpy(priv->essid, essid, ssid_len);
2126 priv->essid_len = ssid_len;
2129 if (!batch_mode) {
2130 if (ipw2100_enable_adapter(priv))
2131 err = -EIO;
2134 return err;
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 priv->bssid);
2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2145 if (priv->status & STATUS_STOPPING) {
2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 return;
2150 eth_zero_addr(priv->bssid);
2151 eth_zero_addr(priv->ieee->bssid);
2153 netif_carrier_off(priv->net_dev);
2154 netif_stop_queue(priv->net_dev);
2156 if (!(priv->status & STATUS_RUNNING))
2157 return;
2159 if (priv->status & STATUS_SECURITY_UPDATED)
2160 schedule_delayed_work(&priv->security_work, 0);
2162 schedule_delayed_work(&priv->wx_event_work, 0);
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 priv->net_dev->name);
2170 /* RF_KILL is now enabled (else we wouldn't be here) */
2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 priv->status |= STATUS_RF_KILL_HW;
2174 /* Make sure the RF Kill check timer is running */
2175 priv->stop_rf_kill = 0;
2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2179 static void ipw2100_scan_event(struct work_struct *work)
2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 scan_event.work);
2183 union iwreq_data wrqu;
2185 wrqu.data.length = 0;
2186 wrqu.data.flags = 0;
2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2192 IPW_DEBUG_SCAN("scan complete\n");
2193 /* Age the scan results... */
2194 priv->ieee->scans++;
2195 priv->status &= ~STATUS_SCANNING;
2197 /* Only userspace-requested scan completion events go out immediately */
2198 if (!priv->user_requested_scan) {
2199 schedule_delayed_work(&priv->scan_event,
2200 round_jiffies_relative(msecs_to_jiffies(4000)));
2201 } else {
2202 priv->user_requested_scan = 0;
2203 mod_delayed_work(system_wq, &priv->scan_event, 0);
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 int status;
2211 void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 char *name;
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 int status;
2218 void (*cb) (struct ipw2100_priv * priv, u32 status);
2220 #endif /* CONFIG_IPW2100_DEBUG */
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2224 IPW_DEBUG_SCAN("Scanning...\n");
2225 priv->status |= STATUS_SCANNING;
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 IPW2100_HANDLER(-1, NULL)
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2246 int i;
2248 if (status == IPW_STATE_SCANNING &&
2249 priv->status & STATUS_ASSOCIATED &&
2250 !(priv->status & STATUS_SCANNING)) {
2251 IPW_DEBUG_INFO("Scan detected while associated, with "
2252 "no scan request. Restarting firmware.\n");
2254 /* Wake up any sleeping jobs */
2255 schedule_reset(priv);
2258 for (i = 0; status_handlers[i].status != -1; i++) {
2259 if (status == status_handlers[i].status) {
2260 IPW_DEBUG_NOTIF("Status change: %s\n",
2261 status_handlers[i].name);
2262 if (status_handlers[i].cb)
2263 status_handlers[i].cb(priv, status);
2264 priv->wstats.status = status;
2265 return;
2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 struct ipw2100_cmd_header *cmd)
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 command_types[cmd->host_command_reg],
2279 cmd->host_command_reg);
2281 #endif
2282 if (cmd->host_command_reg == HOST_COMPLETE)
2283 priv->status |= STATUS_ENABLED;
2285 if (cmd->host_command_reg == CARD_DISABLE)
2286 priv->status &= ~STATUS_ENABLED;
2288 priv->status &= ~STATUS_CMD_ACTIVE;
2290 wake_up_interruptible(&priv->wait_command_queue);
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 "COMMAND_STATUS_VAL",
2296 "STATUS_CHANGE_VAL",
2297 "P80211_DATA_VAL",
2298 "P8023_DATA_VAL",
2299 "HOST_NOTIFICATION_VAL"
2301 #endif
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 struct ipw2100_rx_packet *packet)
2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 if (!packet->skb)
2308 return -ENOMEM;
2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 sizeof(struct ipw2100_rx),
2313 PCI_DMA_FROMDEVICE);
2314 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2315 * dma_addr */
2317 return 0;
2320 #define SEARCH_ERROR 0xffffffff
2321 #define SEARCH_FAIL 0xfffffffe
2322 #define SEARCH_SUCCESS 0xfffffff0
2323 #define SEARCH_DISCARD 0
2324 #define SEARCH_SNAPSHOT 1
2326 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2327 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2329 int i;
2330 if (!priv->snapshot[0])
2331 return;
2332 for (i = 0; i < 0x30; i++)
2333 kfree(priv->snapshot[i]);
2334 priv->snapshot[0] = NULL;
2337 #ifdef IPW2100_DEBUG_C3
2338 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2340 int i;
2341 if (priv->snapshot[0])
2342 return 1;
2343 for (i = 0; i < 0x30; i++) {
2344 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2345 if (!priv->snapshot[i]) {
2346 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2347 "buffer %d\n", priv->net_dev->name, i);
2348 while (i > 0)
2349 kfree(priv->snapshot[--i]);
2350 priv->snapshot[0] = NULL;
2351 return 0;
2355 return 1;
2358 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2359 size_t len, int mode)
2361 u32 i, j;
2362 u32 tmp;
2363 u8 *s, *d;
2364 u32 ret;
2366 s = in_buf;
2367 if (mode == SEARCH_SNAPSHOT) {
2368 if (!ipw2100_snapshot_alloc(priv))
2369 mode = SEARCH_DISCARD;
2372 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2373 read_nic_dword(priv->net_dev, i, &tmp);
2374 if (mode == SEARCH_SNAPSHOT)
2375 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2376 if (ret == SEARCH_FAIL) {
2377 d = (u8 *) & tmp;
2378 for (j = 0; j < 4; j++) {
2379 if (*s != *d) {
2380 s = in_buf;
2381 continue;
2384 s++;
2385 d++;
2387 if ((s - in_buf) == len)
2388 ret = (i + j) - len + 1;
2390 } else if (mode == SEARCH_DISCARD)
2391 return ret;
2394 return ret;
2396 #endif
2400 * 0) Disconnect the SKB from the firmware (just unmap)
2401 * 1) Pack the ETH header into the SKB
2402 * 2) Pass the SKB to the network stack
2404 * When packet is provided by the firmware, it contains the following:
2406 * . libipw_hdr
2407 * . libipw_snap_hdr
2409 * The size of the constructed ethernet
2412 #ifdef IPW2100_RX_DEBUG
2413 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2414 #endif
2416 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2418 #ifdef IPW2100_DEBUG_C3
2419 struct ipw2100_status *status = &priv->status_queue.drv[i];
2420 u32 match, reg;
2421 int j;
2422 #endif
2424 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2425 i * sizeof(struct ipw2100_status));
2427 #ifdef IPW2100_DEBUG_C3
2428 /* Halt the firmware so we can get a good image */
2429 write_register(priv->net_dev, IPW_REG_RESET_REG,
2430 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2431 j = 5;
2432 do {
2433 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2434 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2436 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2437 break;
2438 } while (j--);
2440 match = ipw2100_match_buf(priv, (u8 *) status,
2441 sizeof(struct ipw2100_status),
2442 SEARCH_SNAPSHOT);
2443 if (match < SEARCH_SUCCESS)
2444 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2445 "offset 0x%06X, length %d:\n",
2446 priv->net_dev->name, match,
2447 sizeof(struct ipw2100_status));
2448 else
2449 IPW_DEBUG_INFO("%s: No DMA status match in "
2450 "Firmware.\n", priv->net_dev->name);
2452 printk_buf((u8 *) priv->status_queue.drv,
2453 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2454 #endif
2456 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2457 priv->net_dev->stats.rx_errors++;
2458 schedule_reset(priv);
2461 static void isr_rx(struct ipw2100_priv *priv, int i,
2462 struct libipw_rx_stats *stats)
2464 struct net_device *dev = priv->net_dev;
2465 struct ipw2100_status *status = &priv->status_queue.drv[i];
2466 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2468 IPW_DEBUG_RX("Handler...\n");
2470 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2471 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 " Dropping.\n",
2473 dev->name,
2474 status->frame_size, skb_tailroom(packet->skb));
2475 dev->stats.rx_errors++;
2476 return;
2479 if (unlikely(!netif_running(dev))) {
2480 dev->stats.rx_errors++;
2481 priv->wstats.discard.misc++;
2482 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483 return;
2486 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2487 !(priv->status & STATUS_ASSOCIATED))) {
2488 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2489 priv->wstats.discard.misc++;
2490 return;
2493 pci_unmap_single(priv->pci_dev,
2494 packet->dma_addr,
2495 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2497 skb_put(packet->skb, status->frame_size);
2499 #ifdef IPW2100_RX_DEBUG
2500 /* Make a copy of the frame so we can dump it to the logs if
2501 * libipw_rx fails */
2502 skb_copy_from_linear_data(packet->skb, packet_data,
2503 min_t(u32, status->frame_size,
2504 IPW_RX_NIC_BUFFER_LENGTH));
2505 #endif
2507 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2508 #ifdef IPW2100_RX_DEBUG
2509 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2510 dev->name);
2511 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2512 #endif
2513 dev->stats.rx_errors++;
2515 /* libipw_rx failed, so it didn't free the SKB */
2516 dev_kfree_skb_any(packet->skb);
2517 packet->skb = NULL;
2520 /* We need to allocate a new SKB and attach it to the RDB. */
2521 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522 printk(KERN_WARNING DRV_NAME ": "
2523 "%s: Unable to allocate SKB onto RBD ring - disabling "
2524 "adapter.\n", dev->name);
2525 /* TODO: schedule adapter shutdown */
2526 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529 /* Update the RDB entry */
2530 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 #ifdef CONFIG_IPW2100_MONITOR
2535 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2536 struct libipw_rx_stats *stats)
2538 struct net_device *dev = priv->net_dev;
2539 struct ipw2100_status *status = &priv->status_queue.drv[i];
2540 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2542 /* Magic struct that slots into the radiotap header -- no reason
2543 * to build this manually element by element, we can write it much
2544 * more efficiently than we can parse it. ORDER MATTERS HERE */
2545 struct ipw_rt_hdr {
2546 struct ieee80211_radiotap_header rt_hdr;
2547 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2548 } *ipw_rt;
2550 IPW_DEBUG_RX("Handler...\n");
2552 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2553 sizeof(struct ipw_rt_hdr))) {
2554 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2555 " Dropping.\n",
2556 dev->name,
2557 status->frame_size,
2558 skb_tailroom(packet->skb));
2559 dev->stats.rx_errors++;
2560 return;
2563 if (unlikely(!netif_running(dev))) {
2564 dev->stats.rx_errors++;
2565 priv->wstats.discard.misc++;
2566 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2567 return;
2570 if (unlikely(priv->config & CFG_CRC_CHECK &&
2571 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2572 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2573 dev->stats.rx_errors++;
2574 return;
2577 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2578 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2579 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2580 packet->skb->data, status->frame_size);
2582 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2584 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2585 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2586 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2588 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2590 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2592 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2594 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2595 dev->stats.rx_errors++;
2597 /* libipw_rx failed, so it didn't free the SKB */
2598 dev_kfree_skb_any(packet->skb);
2599 packet->skb = NULL;
2602 /* We need to allocate a new SKB and attach it to the RDB. */
2603 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2604 IPW_DEBUG_WARNING(
2605 "%s: Unable to allocate SKB onto RBD ring - disabling "
2606 "adapter.\n", dev->name);
2607 /* TODO: schedule adapter shutdown */
2608 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611 /* Update the RDB entry */
2612 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 #endif
2617 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2619 struct ipw2100_status *status = &priv->status_queue.drv[i];
2620 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2621 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2623 switch (frame_type) {
2624 case COMMAND_STATUS_VAL:
2625 return (status->frame_size != sizeof(u->rx_data.command));
2626 case STATUS_CHANGE_VAL:
2627 return (status->frame_size != sizeof(u->rx_data.status));
2628 case HOST_NOTIFICATION_VAL:
2629 return (status->frame_size < sizeof(u->rx_data.notification));
2630 case P80211_DATA_VAL:
2631 case P8023_DATA_VAL:
2632 #ifdef CONFIG_IPW2100_MONITOR
2633 return 0;
2634 #else
2635 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2636 case IEEE80211_FTYPE_MGMT:
2637 case IEEE80211_FTYPE_CTL:
2638 return 0;
2639 case IEEE80211_FTYPE_DATA:
2640 return (status->frame_size >
2641 IPW_MAX_802_11_PAYLOAD_LENGTH);
2643 #endif
2646 return 1;
2650 * ipw2100 interrupts are disabled at this point, and the ISR
2651 * is the only code that calls this method. So, we do not need
2652 * to play with any locks.
2654 * RX Queue works as follows:
2656 * Read index - firmware places packet in entry identified by the
2657 * Read index and advances Read index. In this manner,
2658 * Read index will always point to the next packet to
2659 * be filled--but not yet valid.
2661 * Write index - driver fills this entry with an unused RBD entry.
2662 * This entry has not filled by the firmware yet.
2664 * In between the W and R indexes are the RBDs that have been received
2665 * but not yet processed.
2667 * The process of handling packets will start at WRITE + 1 and advance
2668 * until it reaches the READ index.
2670 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2675 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2676 struct ipw2100_status_queue *sq = &priv->status_queue;
2677 struct ipw2100_rx_packet *packet;
2678 u16 frame_type;
2679 u32 r, w, i, s;
2680 struct ipw2100_rx *u;
2681 struct libipw_rx_stats stats = {
2682 .mac_time = jiffies,
2685 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2686 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2688 if (r >= rxq->entries) {
2689 IPW_DEBUG_RX("exit - bad read index\n");
2690 return;
2693 i = (rxq->next + 1) % rxq->entries;
2694 s = i;
2695 while (i != r) {
2696 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2697 r, rxq->next, i); */
2699 packet = &priv->rx_buffers[i];
2701 /* Sync the DMA for the RX buffer so CPU is sure to get
2702 * the correct values */
2703 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2704 sizeof(struct ipw2100_rx),
2705 PCI_DMA_FROMDEVICE);
2707 if (unlikely(ipw2100_corruption_check(priv, i))) {
2708 ipw2100_corruption_detected(priv, i);
2709 goto increment;
2712 u = packet->rxp;
2713 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2714 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2715 stats.len = sq->drv[i].frame_size;
2717 stats.mask = 0;
2718 if (stats.rssi != 0)
2719 stats.mask |= LIBIPW_STATMASK_RSSI;
2720 stats.freq = LIBIPW_24GHZ_BAND;
2722 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2723 priv->net_dev->name, frame_types[frame_type],
2724 stats.len);
2726 switch (frame_type) {
2727 case COMMAND_STATUS_VAL:
2728 /* Reset Rx watchdog */
2729 isr_rx_complete_command(priv, &u->rx_data.command);
2730 break;
2732 case STATUS_CHANGE_VAL:
2733 isr_status_change(priv, u->rx_data.status);
2734 break;
2736 case P80211_DATA_VAL:
2737 case P8023_DATA_VAL:
2738 #ifdef CONFIG_IPW2100_MONITOR
2739 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2740 isr_rx_monitor(priv, i, &stats);
2741 break;
2743 #endif
2744 if (stats.len < sizeof(struct libipw_hdr_3addr))
2745 break;
2746 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2747 case IEEE80211_FTYPE_MGMT:
2748 libipw_rx_mgt(priv->ieee,
2749 &u->rx_data.header, &stats);
2750 break;
2752 case IEEE80211_FTYPE_CTL:
2753 break;
2755 case IEEE80211_FTYPE_DATA:
2756 isr_rx(priv, i, &stats);
2757 break;
2760 break;
2763 increment:
2764 /* clear status field associated with this RBD */
2765 rxq->drv[i].status.info.field = 0;
2767 i = (i + 1) % rxq->entries;
2770 if (i != s) {
2771 /* backtrack one entry, wrapping to end if at 0 */
2772 rxq->next = (i ? i : rxq->entries) - 1;
2774 write_register(priv->net_dev,
2775 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2780 * __ipw2100_tx_process
2782 * This routine will determine whether the next packet on
2783 * the fw_pend_list has been processed by the firmware yet.
2785 * If not, then it does nothing and returns.
2787 * If so, then it removes the item from the fw_pend_list, frees
2788 * any associated storage, and places the item back on the
2789 * free list of its source (either msg_free_list or tx_free_list)
2791 * TX Queue works as follows:
2793 * Read index - points to the next TBD that the firmware will
2794 * process. The firmware will read the data, and once
2795 * done processing, it will advance the Read index.
2797 * Write index - driver fills this entry with an constructed TBD
2798 * entry. The Write index is not advanced until the
2799 * packet has been configured.
2801 * In between the W and R indexes are the TBDs that have NOT been
2802 * processed. Lagging behind the R index are packets that have
2803 * been processed but have not been freed by the driver.
2805 * In order to free old storage, an internal index will be maintained
2806 * that points to the next packet to be freed. When all used
2807 * packets have been freed, the oldest index will be the same as the
2808 * firmware's read index.
2810 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2812 * Because the TBD structure can not contain arbitrary data, the
2813 * driver must keep an internal queue of cached allocations such that
2814 * it can put that data back into the tx_free_list and msg_free_list
2815 * for use by future command and data packets.
2818 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2820 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2821 struct ipw2100_bd *tbd;
2822 struct list_head *element;
2823 struct ipw2100_tx_packet *packet;
2824 int descriptors_used;
2825 int e, i;
2826 u32 r, w, frag_num = 0;
2828 if (list_empty(&priv->fw_pend_list))
2829 return 0;
2831 element = priv->fw_pend_list.next;
2833 packet = list_entry(element, struct ipw2100_tx_packet, list);
2834 tbd = &txq->drv[packet->index];
2836 /* Determine how many TBD entries must be finished... */
2837 switch (packet->type) {
2838 case COMMAND:
2839 /* COMMAND uses only one slot; don't advance */
2840 descriptors_used = 1;
2841 e = txq->oldest;
2842 break;
2844 case DATA:
2845 /* DATA uses two slots; advance and loop position. */
2846 descriptors_used = tbd->num_fragments;
2847 frag_num = tbd->num_fragments - 1;
2848 e = txq->oldest + frag_num;
2849 e %= txq->entries;
2850 break;
2852 default:
2853 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2854 priv->net_dev->name);
2855 return 0;
2858 /* if the last TBD is not done by NIC yet, then packet is
2859 * not ready to be released.
2862 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2863 &r);
2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2865 &w);
2866 if (w != txq->next)
2867 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2868 priv->net_dev->name);
2871 * txq->next is the index of the last packet written txq->oldest is
2872 * the index of the r is the index of the next packet to be read by
2873 * firmware
2877 * Quick graphic to help you visualize the following
2878 * if / else statement
2880 * ===>| s---->|===============
2881 * e>|
2882 * | a | b | c | d | e | f | g | h | i | j | k | l
2883 * r---->|
2886 * w - updated by driver
2887 * r - updated by firmware
2888 * s - start of oldest BD entry (txq->oldest)
2889 * e - end of oldest BD entry
2892 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2893 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2894 return 0;
2897 list_del(element);
2898 DEC_STAT(&priv->fw_pend_stat);
2900 #ifdef CONFIG_IPW2100_DEBUG
2902 i = txq->oldest;
2903 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2904 &txq->drv[i],
2905 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2906 txq->drv[i].host_addr, txq->drv[i].buf_length);
2908 if (packet->type == DATA) {
2909 i = (i + 1) % txq->entries;
2911 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2912 &txq->drv[i],
2913 (u32) (txq->nic + i *
2914 sizeof(struct ipw2100_bd)),
2915 (u32) txq->drv[i].host_addr,
2916 txq->drv[i].buf_length);
2919 #endif
2921 switch (packet->type) {
2922 case DATA:
2923 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2924 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2925 "Expecting DATA TBD but pulled "
2926 "something else: ids %d=%d.\n",
2927 priv->net_dev->name, txq->oldest, packet->index);
2929 /* DATA packet; we have to unmap and free the SKB */
2930 for (i = 0; i < frag_num; i++) {
2931 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2933 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2934 (packet->index + 1 + i) % txq->entries,
2935 tbd->host_addr, tbd->buf_length);
2937 pci_unmap_single(priv->pci_dev,
2938 tbd->host_addr,
2939 tbd->buf_length, PCI_DMA_TODEVICE);
2942 libipw_txb_free(packet->info.d_struct.txb);
2943 packet->info.d_struct.txb = NULL;
2945 list_add_tail(element, &priv->tx_free_list);
2946 INC_STAT(&priv->tx_free_stat);
2948 /* We have a free slot in the Tx queue, so wake up the
2949 * transmit layer if it is stopped. */
2950 if (priv->status & STATUS_ASSOCIATED)
2951 netif_wake_queue(priv->net_dev);
2953 /* A packet was processed by the hardware, so update the
2954 * watchdog */
2955 priv->net_dev->trans_start = jiffies;
2957 break;
2959 case COMMAND:
2960 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2961 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2962 "Expecting COMMAND TBD but pulled "
2963 "something else: ids %d=%d.\n",
2964 priv->net_dev->name, txq->oldest, packet->index);
2966 #ifdef CONFIG_IPW2100_DEBUG
2967 if (packet->info.c_struct.cmd->host_command_reg <
2968 ARRAY_SIZE(command_types))
2969 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2970 command_types[packet->info.c_struct.cmd->
2971 host_command_reg],
2972 packet->info.c_struct.cmd->
2973 host_command_reg,
2974 packet->info.c_struct.cmd->cmd_status_reg);
2975 #endif
2977 list_add_tail(element, &priv->msg_free_list);
2978 INC_STAT(&priv->msg_free_stat);
2979 break;
2982 /* advance oldest used TBD pointer to start of next entry */
2983 txq->oldest = (e + 1) % txq->entries;
2984 /* increase available TBDs number */
2985 txq->available += descriptors_used;
2986 SET_STAT(&priv->txq_stat, txq->available);
2988 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2989 jiffies - packet->jiffy_start);
2991 return (!list_empty(&priv->fw_pend_list));
2994 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2996 int i = 0;
2998 while (__ipw2100_tx_process(priv) && i < 200)
2999 i++;
3001 if (i == 200) {
3002 printk(KERN_WARNING DRV_NAME ": "
3003 "%s: Driver is running slow (%d iters).\n",
3004 priv->net_dev->name, i);
3008 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3010 struct list_head *element;
3011 struct ipw2100_tx_packet *packet;
3012 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3013 struct ipw2100_bd *tbd;
3014 int next = txq->next;
3016 while (!list_empty(&priv->msg_pend_list)) {
3017 /* if there isn't enough space in TBD queue, then
3018 * don't stuff a new one in.
3019 * NOTE: 3 are needed as a command will take one,
3020 * and there is a minimum of 2 that must be
3021 * maintained between the r and w indexes
3023 if (txq->available <= 3) {
3024 IPW_DEBUG_TX("no room in tx_queue\n");
3025 break;
3028 element = priv->msg_pend_list.next;
3029 list_del(element);
3030 DEC_STAT(&priv->msg_pend_stat);
3032 packet = list_entry(element, struct ipw2100_tx_packet, list);
3034 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3035 &txq->drv[txq->next],
3036 (u32) (txq->nic + txq->next *
3037 sizeof(struct ipw2100_bd)));
3039 packet->index = txq->next;
3041 tbd = &txq->drv[txq->next];
3043 /* initialize TBD */
3044 tbd->host_addr = packet->info.c_struct.cmd_phys;
3045 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3046 /* not marking number of fragments causes problems
3047 * with f/w debug version */
3048 tbd->num_fragments = 1;
3049 tbd->status.info.field =
3050 IPW_BD_STATUS_TX_FRAME_COMMAND |
3051 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3053 /* update TBD queue counters */
3054 txq->next++;
3055 txq->next %= txq->entries;
3056 txq->available--;
3057 DEC_STAT(&priv->txq_stat);
3059 list_add_tail(element, &priv->fw_pend_list);
3060 INC_STAT(&priv->fw_pend_stat);
3063 if (txq->next != next) {
3064 /* kick off the DMA by notifying firmware the
3065 * write index has moved; make sure TBD stores are sync'd */
3066 wmb();
3067 write_register(priv->net_dev,
3068 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3069 txq->next);
3074 * ipw2100_tx_send_data
3077 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3079 struct list_head *element;
3080 struct ipw2100_tx_packet *packet;
3081 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3082 struct ipw2100_bd *tbd;
3083 int next = txq->next;
3084 int i = 0;
3085 struct ipw2100_data_header *ipw_hdr;
3086 struct libipw_hdr_3addr *hdr;
3088 while (!list_empty(&priv->tx_pend_list)) {
3089 /* if there isn't enough space in TBD queue, then
3090 * don't stuff a new one in.
3091 * NOTE: 4 are needed as a data will take two,
3092 * and there is a minimum of 2 that must be
3093 * maintained between the r and w indexes
3095 element = priv->tx_pend_list.next;
3096 packet = list_entry(element, struct ipw2100_tx_packet, list);
3098 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3099 IPW_MAX_BDS)) {
3100 /* TODO: Support merging buffers if more than
3101 * IPW_MAX_BDS are used */
3102 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3103 "Increase fragmentation level.\n",
3104 priv->net_dev->name);
3107 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3108 IPW_DEBUG_TX("no room in tx_queue\n");
3109 break;
3112 list_del(element);
3113 DEC_STAT(&priv->tx_pend_stat);
3115 tbd = &txq->drv[txq->next];
3117 packet->index = txq->next;
3119 ipw_hdr = packet->info.d_struct.data;
3120 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3121 fragments[0]->data;
3123 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3124 /* To DS: Addr1 = BSSID, Addr2 = SA,
3125 Addr3 = DA */
3126 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3127 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3128 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3129 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3130 Addr3 = BSSID */
3131 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135 ipw_hdr->host_command_reg = SEND;
3136 ipw_hdr->host_command_reg1 = 0;
3138 /* For now we only support host based encryption */
3139 ipw_hdr->needs_encryption = 0;
3140 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3141 if (packet->info.d_struct.txb->nr_frags > 1)
3142 ipw_hdr->fragment_size =
3143 packet->info.d_struct.txb->frag_size -
3144 LIBIPW_3ADDR_LEN;
3145 else
3146 ipw_hdr->fragment_size = 0;
3148 tbd->host_addr = packet->info.d_struct.data_phys;
3149 tbd->buf_length = sizeof(struct ipw2100_data_header);
3150 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3151 tbd->status.info.field =
3152 IPW_BD_STATUS_TX_FRAME_802_3 |
3153 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3154 txq->next++;
3155 txq->next %= txq->entries;
3157 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3158 packet->index, tbd->host_addr, tbd->buf_length);
3159 #ifdef CONFIG_IPW2100_DEBUG
3160 if (packet->info.d_struct.txb->nr_frags > 1)
3161 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3162 packet->info.d_struct.txb->nr_frags);
3163 #endif
3165 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3166 tbd = &txq->drv[txq->next];
3167 if (i == packet->info.d_struct.txb->nr_frags - 1)
3168 tbd->status.info.field =
3169 IPW_BD_STATUS_TX_FRAME_802_3 |
3170 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3171 else
3172 tbd->status.info.field =
3173 IPW_BD_STATUS_TX_FRAME_802_3 |
3174 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3176 tbd->buf_length = packet->info.d_struct.txb->
3177 fragments[i]->len - LIBIPW_3ADDR_LEN;
3179 tbd->host_addr = pci_map_single(priv->pci_dev,
3180 packet->info.d_struct.
3181 txb->fragments[i]->
3182 data +
3183 LIBIPW_3ADDR_LEN,
3184 tbd->buf_length,
3185 PCI_DMA_TODEVICE);
3187 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3188 txq->next, tbd->host_addr,
3189 tbd->buf_length);
3191 pci_dma_sync_single_for_device(priv->pci_dev,
3192 tbd->host_addr,
3193 tbd->buf_length,
3194 PCI_DMA_TODEVICE);
3196 txq->next++;
3197 txq->next %= txq->entries;
3200 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3201 SET_STAT(&priv->txq_stat, txq->available);
3203 list_add_tail(element, &priv->fw_pend_list);
3204 INC_STAT(&priv->fw_pend_stat);
3207 if (txq->next != next) {
3208 /* kick off the DMA by notifying firmware the
3209 * write index has moved; make sure TBD stores are sync'd */
3210 write_register(priv->net_dev,
3211 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3212 txq->next);
3216 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3218 struct net_device *dev = priv->net_dev;
3219 unsigned long flags;
3220 u32 inta, tmp;
3222 spin_lock_irqsave(&priv->low_lock, flags);
3223 ipw2100_disable_interrupts(priv);
3225 read_register(dev, IPW_REG_INTA, &inta);
3227 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3228 (unsigned long)inta & IPW_INTERRUPT_MASK);
3230 priv->in_isr++;
3231 priv->interrupts++;
3233 /* We do not loop and keep polling for more interrupts as this
3234 * is frowned upon and doesn't play nicely with other potentially
3235 * chained IRQs */
3236 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3237 (unsigned long)inta & IPW_INTERRUPT_MASK);
3239 if (inta & IPW2100_INTA_FATAL_ERROR) {
3240 printk(KERN_WARNING DRV_NAME
3241 ": Fatal interrupt. Scheduling firmware restart.\n");
3242 priv->inta_other++;
3243 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3245 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3246 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3247 priv->net_dev->name, priv->fatal_error);
3249 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3250 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3251 priv->net_dev->name, tmp);
3253 /* Wake up any sleeping jobs */
3254 schedule_reset(priv);
3257 if (inta & IPW2100_INTA_PARITY_ERROR) {
3258 printk(KERN_ERR DRV_NAME
3259 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3260 priv->inta_other++;
3261 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3264 if (inta & IPW2100_INTA_RX_TRANSFER) {
3265 IPW_DEBUG_ISR("RX interrupt\n");
3267 priv->rx_interrupts++;
3269 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3271 __ipw2100_rx_process(priv);
3272 __ipw2100_tx_complete(priv);
3275 if (inta & IPW2100_INTA_TX_TRANSFER) {
3276 IPW_DEBUG_ISR("TX interrupt\n");
3278 priv->tx_interrupts++;
3280 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3282 __ipw2100_tx_complete(priv);
3283 ipw2100_tx_send_commands(priv);
3284 ipw2100_tx_send_data(priv);
3287 if (inta & IPW2100_INTA_TX_COMPLETE) {
3288 IPW_DEBUG_ISR("TX complete\n");
3289 priv->inta_other++;
3290 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3292 __ipw2100_tx_complete(priv);
3295 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3296 /* ipw2100_handle_event(dev); */
3297 priv->inta_other++;
3298 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3301 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3302 IPW_DEBUG_ISR("FW init done interrupt\n");
3303 priv->inta_other++;
3305 read_register(dev, IPW_REG_INTA, &tmp);
3306 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3307 IPW2100_INTA_PARITY_ERROR)) {
3308 write_register(dev, IPW_REG_INTA,
3309 IPW2100_INTA_FATAL_ERROR |
3310 IPW2100_INTA_PARITY_ERROR);
3313 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3316 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3317 IPW_DEBUG_ISR("Status change interrupt\n");
3318 priv->inta_other++;
3319 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3322 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3323 IPW_DEBUG_ISR("slave host mode interrupt\n");
3324 priv->inta_other++;
3325 write_register(dev, IPW_REG_INTA,
3326 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3329 priv->in_isr--;
3330 ipw2100_enable_interrupts(priv);
3332 spin_unlock_irqrestore(&priv->low_lock, flags);
3334 IPW_DEBUG_ISR("exit\n");
3337 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3339 struct ipw2100_priv *priv = data;
3340 u32 inta, inta_mask;
3342 if (!data)
3343 return IRQ_NONE;
3345 spin_lock(&priv->low_lock);
3347 /* We check to see if we should be ignoring interrupts before
3348 * we touch the hardware. During ucode load if we try and handle
3349 * an interrupt we can cause keyboard problems as well as cause
3350 * the ucode to fail to initialize */
3351 if (!(priv->status & STATUS_INT_ENABLED)) {
3352 /* Shared IRQ */
3353 goto none;
3356 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3357 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3359 if (inta == 0xFFFFFFFF) {
3360 /* Hardware disappeared */
3361 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3362 goto none;
3365 inta &= IPW_INTERRUPT_MASK;
3367 if (!(inta & inta_mask)) {
3368 /* Shared interrupt */
3369 goto none;
3372 /* We disable the hardware interrupt here just to prevent unneeded
3373 * calls to be made. We disable this again within the actual
3374 * work tasklet, so if another part of the code re-enables the
3375 * interrupt, that is fine */
3376 ipw2100_disable_interrupts(priv);
3378 tasklet_schedule(&priv->irq_tasklet);
3379 spin_unlock(&priv->low_lock);
3381 return IRQ_HANDLED;
3382 none:
3383 spin_unlock(&priv->low_lock);
3384 return IRQ_NONE;
3387 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3388 struct net_device *dev, int pri)
3390 struct ipw2100_priv *priv = libipw_priv(dev);
3391 struct list_head *element;
3392 struct ipw2100_tx_packet *packet;
3393 unsigned long flags;
3395 spin_lock_irqsave(&priv->low_lock, flags);
3397 if (!(priv->status & STATUS_ASSOCIATED)) {
3398 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3399 priv->net_dev->stats.tx_carrier_errors++;
3400 netif_stop_queue(dev);
3401 goto fail_unlock;
3404 if (list_empty(&priv->tx_free_list))
3405 goto fail_unlock;
3407 element = priv->tx_free_list.next;
3408 packet = list_entry(element, struct ipw2100_tx_packet, list);
3410 packet->info.d_struct.txb = txb;
3412 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3413 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3415 packet->jiffy_start = jiffies;
3417 list_del(element);
3418 DEC_STAT(&priv->tx_free_stat);
3420 list_add_tail(element, &priv->tx_pend_list);
3421 INC_STAT(&priv->tx_pend_stat);
3423 ipw2100_tx_send_data(priv);
3425 spin_unlock_irqrestore(&priv->low_lock, flags);
3426 return NETDEV_TX_OK;
3428 fail_unlock:
3429 netif_stop_queue(dev);
3430 spin_unlock_irqrestore(&priv->low_lock, flags);
3431 return NETDEV_TX_BUSY;
3434 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3436 int i, j, err = -EINVAL;
3437 void *v;
3438 dma_addr_t p;
3440 priv->msg_buffers =
3441 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3442 GFP_KERNEL);
3443 if (!priv->msg_buffers)
3444 return -ENOMEM;
3446 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3447 v = pci_zalloc_consistent(priv->pci_dev,
3448 sizeof(struct ipw2100_cmd_header),
3449 &p);
3450 if (!v) {
3451 printk(KERN_ERR DRV_NAME ": "
3452 "%s: PCI alloc failed for msg "
3453 "buffers.\n", priv->net_dev->name);
3454 err = -ENOMEM;
3455 break;
3458 priv->msg_buffers[i].type = COMMAND;
3459 priv->msg_buffers[i].info.c_struct.cmd =
3460 (struct ipw2100_cmd_header *)v;
3461 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3464 if (i == IPW_COMMAND_POOL_SIZE)
3465 return 0;
3467 for (j = 0; j < i; j++) {
3468 pci_free_consistent(priv->pci_dev,
3469 sizeof(struct ipw2100_cmd_header),
3470 priv->msg_buffers[j].info.c_struct.cmd,
3471 priv->msg_buffers[j].info.c_struct.
3472 cmd_phys);
3475 kfree(priv->msg_buffers);
3476 priv->msg_buffers = NULL;
3478 return err;
3481 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3483 int i;
3485 INIT_LIST_HEAD(&priv->msg_free_list);
3486 INIT_LIST_HEAD(&priv->msg_pend_list);
3488 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3489 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3490 SET_STAT(&priv->msg_free_stat, i);
3492 return 0;
3495 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3497 int i;
3499 if (!priv->msg_buffers)
3500 return;
3502 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3503 pci_free_consistent(priv->pci_dev,
3504 sizeof(struct ipw2100_cmd_header),
3505 priv->msg_buffers[i].info.c_struct.cmd,
3506 priv->msg_buffers[i].info.c_struct.
3507 cmd_phys);
3510 kfree(priv->msg_buffers);
3511 priv->msg_buffers = NULL;
3514 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3515 char *buf)
3517 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3518 char *out = buf;
3519 int i, j;
3520 u32 val;
3522 for (i = 0; i < 16; i++) {
3523 out += sprintf(out, "[%08X] ", i * 16);
3524 for (j = 0; j < 16; j += 4) {
3525 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3526 out += sprintf(out, "%08X ", val);
3528 out += sprintf(out, "\n");
3531 return out - buf;
3534 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3537 char *buf)
3539 struct ipw2100_priv *p = dev_get_drvdata(d);
3540 return sprintf(buf, "0x%08x\n", (int)p->config);
3543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3545 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3546 char *buf)
3548 struct ipw2100_priv *p = dev_get_drvdata(d);
3549 return sprintf(buf, "0x%08x\n", (int)p->status);
3552 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3554 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3555 char *buf)
3557 struct ipw2100_priv *p = dev_get_drvdata(d);
3558 return sprintf(buf, "0x%08x\n", (int)p->capability);
3561 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3563 #define IPW2100_REG(x) { IPW_ ##x, #x }
3564 static const struct {
3565 u32 addr;
3566 const char *name;
3567 } hw_data[] = {
3568 IPW2100_REG(REG_GP_CNTRL),
3569 IPW2100_REG(REG_GPIO),
3570 IPW2100_REG(REG_INTA),
3571 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3572 #define IPW2100_NIC(x, s) { x, #x, s }
3573 static const struct {
3574 u32 addr;
3575 const char *name;
3576 size_t size;
3577 } nic_data[] = {
3578 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3579 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3580 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3581 static const struct {
3582 u8 index;
3583 const char *name;
3584 const char *desc;
3585 } ord_data[] = {
3586 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3587 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3588 "successful Host Tx's (MSDU)"),
3589 IPW2100_ORD(STAT_TX_DIR_DATA,
3590 "successful Directed Tx's (MSDU)"),
3591 IPW2100_ORD(STAT_TX_DIR_DATA1,
3592 "successful Directed Tx's (MSDU) @ 1MB"),
3593 IPW2100_ORD(STAT_TX_DIR_DATA2,
3594 "successful Directed Tx's (MSDU) @ 2MB"),
3595 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3596 "successful Directed Tx's (MSDU) @ 5_5MB"),
3597 IPW2100_ORD(STAT_TX_DIR_DATA11,
3598 "successful Directed Tx's (MSDU) @ 11MB"),
3599 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3600 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3601 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3602 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3603 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3604 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3605 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3606 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3607 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3608 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3609 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3610 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3611 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3612 IPW2100_ORD(STAT_TX_ASSN_RESP,
3613 "successful Association response Tx's"),
3614 IPW2100_ORD(STAT_TX_REASSN,
3615 "successful Reassociation Tx's"),
3616 IPW2100_ORD(STAT_TX_REASSN_RESP,
3617 "successful Reassociation response Tx's"),
3618 IPW2100_ORD(STAT_TX_PROBE,
3619 "probes successfully transmitted"),
3620 IPW2100_ORD(STAT_TX_PROBE_RESP,
3621 "probe responses successfully transmitted"),
3622 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3623 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3624 IPW2100_ORD(STAT_TX_DISASSN,
3625 "successful Disassociation TX"),
3626 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3627 IPW2100_ORD(STAT_TX_DEAUTH,
3628 "successful Deauthentication TX"),
3629 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3630 "Total successful Tx data bytes"),
3631 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3632 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3633 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3634 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3635 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3636 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3637 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3638 "times max tries in a hop failed"),
3639 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3640 "times disassociation failed"),
3641 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3642 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3643 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3644 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3645 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3646 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3647 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3648 "directed packets at 5.5MB"),
3649 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3650 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3651 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3652 "nondirected packets at 1MB"),
3653 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3654 "nondirected packets at 2MB"),
3655 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3656 "nondirected packets at 5.5MB"),
3657 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3658 "nondirected packets at 11MB"),
3659 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3660 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3661 "Rx CTS"),
3662 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3663 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3664 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3665 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3666 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3667 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3668 IPW2100_ORD(STAT_RX_REASSN_RESP,
3669 "Reassociation response Rx's"),
3670 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3671 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3672 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3673 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3674 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3675 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3676 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3677 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3678 "Total rx data bytes received"),
3679 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3680 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3681 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3682 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3683 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3684 IPW2100_ORD(STAT_RX_DUPLICATE1,
3685 "duplicate rx packets at 1MB"),
3686 IPW2100_ORD(STAT_RX_DUPLICATE2,
3687 "duplicate rx packets at 2MB"),
3688 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3689 "duplicate rx packets at 5.5MB"),
3690 IPW2100_ORD(STAT_RX_DUPLICATE11,
3691 "duplicate rx packets at 11MB"),
3692 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3693 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3694 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3695 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3696 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3697 "rx frames with invalid protocol"),
3698 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3699 IPW2100_ORD(STAT_RX_NO_BUFFER,
3700 "rx frames rejected due to no buffer"),
3701 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3702 "rx frames dropped due to missing fragment"),
3703 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3704 "rx frames dropped due to non-sequential fragment"),
3705 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3706 "rx frames dropped due to unmatched 1st frame"),
3707 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3708 "rx frames dropped due to uncompleted frame"),
3709 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3710 "ICV errors during decryption"),
3711 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3712 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3713 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3714 "poll response timeouts"),
3715 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3716 "timeouts waiting for last {broad,multi}cast pkt"),
3717 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3718 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3719 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3720 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3721 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3722 "current calculation of % missed beacons"),
3723 IPW2100_ORD(STAT_PERCENT_RETRIES,
3724 "current calculation of % missed tx retries"),
3725 IPW2100_ORD(ASSOCIATED_AP_PTR,
3726 "0 if not associated, else pointer to AP table entry"),
3727 IPW2100_ORD(AVAILABLE_AP_CNT,
3728 "AP's decsribed in the AP table"),
3729 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3730 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3731 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3732 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3733 "failures due to response fail"),
3734 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3735 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3736 IPW2100_ORD(STAT_ROAM_INHIBIT,
3737 "times roaming was inhibited due to activity"),
3738 IPW2100_ORD(RSSI_AT_ASSN,
3739 "RSSI of associated AP at time of association"),
3740 IPW2100_ORD(STAT_ASSN_CAUSE1,
3741 "reassociation: no probe response or TX on hop"),
3742 IPW2100_ORD(STAT_ASSN_CAUSE2,
3743 "reassociation: poor tx/rx quality"),
3744 IPW2100_ORD(STAT_ASSN_CAUSE3,
3745 "reassociation: tx/rx quality (excessive AP load"),
3746 IPW2100_ORD(STAT_ASSN_CAUSE4,
3747 "reassociation: AP RSSI level"),
3748 IPW2100_ORD(STAT_ASSN_CAUSE5,
3749 "reassociations due to load leveling"),
3750 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3751 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3752 "times authentication response failed"),
3753 IPW2100_ORD(STATION_TABLE_CNT,
3754 "entries in association table"),
3755 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3756 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3757 IPW2100_ORD(COUNTRY_CODE,
3758 "IEEE country code as recv'd from beacon"),
3759 IPW2100_ORD(COUNTRY_CHANNELS,
3760 "channels supported by country"),
3761 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3762 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3763 IPW2100_ORD(ANTENNA_DIVERSITY,
3764 "TRUE if antenna diversity is disabled"),
3765 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3766 IPW2100_ORD(OUR_FREQ,
3767 "current radio freq lower digits - channel ID"),
3768 IPW2100_ORD(RTC_TIME, "current RTC time"),
3769 IPW2100_ORD(PORT_TYPE, "operating mode"),
3770 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3771 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3772 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3773 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3774 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3775 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3776 IPW2100_ORD(CAPABILITIES,
3777 "Management frame capability field"),
3778 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3779 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3780 IPW2100_ORD(RTS_THRESHOLD,
3781 "Min packet length for RTS handshaking"),
3782 IPW2100_ORD(INT_MODE, "International mode"),
3783 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3784 "protocol frag threshold"),
3785 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3786 "EEPROM offset in SRAM"),
3787 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3788 "EEPROM size in SRAM"),
3789 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3790 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3791 "EEPROM IBSS 11b channel set"),
3792 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3793 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3794 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3795 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3796 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3798 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3799 char *buf)
3801 int i;
3802 struct ipw2100_priv *priv = dev_get_drvdata(d);
3803 struct net_device *dev = priv->net_dev;
3804 char *out = buf;
3805 u32 val = 0;
3807 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3809 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3810 read_register(dev, hw_data[i].addr, &val);
3811 out += sprintf(out, "%30s [%08X] : %08X\n",
3812 hw_data[i].name, hw_data[i].addr, val);
3815 return out - buf;
3818 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3820 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3821 char *buf)
3823 struct ipw2100_priv *priv = dev_get_drvdata(d);
3824 struct net_device *dev = priv->net_dev;
3825 char *out = buf;
3826 int i;
3828 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3830 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3831 u8 tmp8;
3832 u16 tmp16;
3833 u32 tmp32;
3835 switch (nic_data[i].size) {
3836 case 1:
3837 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3838 out += sprintf(out, "%30s [%08X] : %02X\n",
3839 nic_data[i].name, nic_data[i].addr,
3840 tmp8);
3841 break;
3842 case 2:
3843 read_nic_word(dev, nic_data[i].addr, &tmp16);
3844 out += sprintf(out, "%30s [%08X] : %04X\n",
3845 nic_data[i].name, nic_data[i].addr,
3846 tmp16);
3847 break;
3848 case 4:
3849 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3850 out += sprintf(out, "%30s [%08X] : %08X\n",
3851 nic_data[i].name, nic_data[i].addr,
3852 tmp32);
3853 break;
3856 return out - buf;
3859 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3861 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3862 char *buf)
3864 struct ipw2100_priv *priv = dev_get_drvdata(d);
3865 struct net_device *dev = priv->net_dev;
3866 static unsigned long loop = 0;
3867 int len = 0;
3868 u32 buffer[4];
3869 int i;
3870 char line[81];
3872 if (loop >= 0x30000)
3873 loop = 0;
3875 /* sysfs provides us PAGE_SIZE buffer */
3876 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3878 if (priv->snapshot[0])
3879 for (i = 0; i < 4; i++)
3880 buffer[i] =
3881 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3882 else
3883 for (i = 0; i < 4; i++)
3884 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3886 if (priv->dump_raw)
3887 len += sprintf(buf + len,
3888 "%c%c%c%c"
3889 "%c%c%c%c"
3890 "%c%c%c%c"
3891 "%c%c%c%c",
3892 ((u8 *) buffer)[0x0],
3893 ((u8 *) buffer)[0x1],
3894 ((u8 *) buffer)[0x2],
3895 ((u8 *) buffer)[0x3],
3896 ((u8 *) buffer)[0x4],
3897 ((u8 *) buffer)[0x5],
3898 ((u8 *) buffer)[0x6],
3899 ((u8 *) buffer)[0x7],
3900 ((u8 *) buffer)[0x8],
3901 ((u8 *) buffer)[0x9],
3902 ((u8 *) buffer)[0xa],
3903 ((u8 *) buffer)[0xb],
3904 ((u8 *) buffer)[0xc],
3905 ((u8 *) buffer)[0xd],
3906 ((u8 *) buffer)[0xe],
3907 ((u8 *) buffer)[0xf]);
3908 else
3909 len += sprintf(buf + len, "%s\n",
3910 snprint_line(line, sizeof(line),
3911 (u8 *) buffer, 16, loop));
3912 loop += 16;
3915 return len;
3918 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3919 const char *buf, size_t count)
3921 struct ipw2100_priv *priv = dev_get_drvdata(d);
3922 struct net_device *dev = priv->net_dev;
3923 const char *p = buf;
3925 (void)dev; /* kill unused-var warning for debug-only code */
3927 if (count < 1)
3928 return count;
3930 if (p[0] == '1' ||
3931 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3932 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3933 dev->name);
3934 priv->dump_raw = 1;
3936 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3937 tolower(p[1]) == 'f')) {
3938 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3939 dev->name);
3940 priv->dump_raw = 0;
3942 } else if (tolower(p[0]) == 'r') {
3943 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3944 ipw2100_snapshot_free(priv);
3946 } else
3947 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3948 "reset = clear memory snapshot\n", dev->name);
3950 return count;
3953 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3955 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3956 char *buf)
3958 struct ipw2100_priv *priv = dev_get_drvdata(d);
3959 u32 val = 0;
3960 int len = 0;
3961 u32 val_len;
3962 static int loop = 0;
3964 if (priv->status & STATUS_RF_KILL_MASK)
3965 return 0;
3967 if (loop >= ARRAY_SIZE(ord_data))
3968 loop = 0;
3970 /* sysfs provides us PAGE_SIZE buffer */
3971 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3972 val_len = sizeof(u32);
3974 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3975 &val_len))
3976 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3977 ord_data[loop].index,
3978 ord_data[loop].desc);
3979 else
3980 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3981 ord_data[loop].index, val,
3982 ord_data[loop].desc);
3983 loop++;
3986 return len;
3989 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3991 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3992 char *buf)
3994 struct ipw2100_priv *priv = dev_get_drvdata(d);
3995 char *out = buf;
3997 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3998 priv->interrupts, priv->tx_interrupts,
3999 priv->rx_interrupts, priv->inta_other);
4000 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4001 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4002 #ifdef CONFIG_IPW2100_DEBUG
4003 out += sprintf(out, "packet mismatch image: %s\n",
4004 priv->snapshot[0] ? "YES" : "NO");
4005 #endif
4007 return out - buf;
4010 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4012 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4014 int err;
4016 if (mode == priv->ieee->iw_mode)
4017 return 0;
4019 err = ipw2100_disable_adapter(priv);
4020 if (err) {
4021 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4022 priv->net_dev->name, err);
4023 return err;
4026 switch (mode) {
4027 case IW_MODE_INFRA:
4028 priv->net_dev->type = ARPHRD_ETHER;
4029 break;
4030 case IW_MODE_ADHOC:
4031 priv->net_dev->type = ARPHRD_ETHER;
4032 break;
4033 #ifdef CONFIG_IPW2100_MONITOR
4034 case IW_MODE_MONITOR:
4035 priv->last_mode = priv->ieee->iw_mode;
4036 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4037 break;
4038 #endif /* CONFIG_IPW2100_MONITOR */
4041 priv->ieee->iw_mode = mode;
4043 #ifdef CONFIG_PM
4044 /* Indicate ipw2100_download_firmware download firmware
4045 * from disk instead of memory. */
4046 ipw2100_firmware.version = 0;
4047 #endif
4049 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4050 priv->reset_backoff = 0;
4051 schedule_reset(priv);
4053 return 0;
4056 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4057 char *buf)
4059 struct ipw2100_priv *priv = dev_get_drvdata(d);
4060 int len = 0;
4062 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4064 if (priv->status & STATUS_ASSOCIATED)
4065 len += sprintf(buf + len, "connected: %lu\n",
4066 get_seconds() - priv->connect_start);
4067 else
4068 len += sprintf(buf + len, "not connected\n");
4070 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4071 DUMP_VAR(status, "08lx");
4072 DUMP_VAR(config, "08lx");
4073 DUMP_VAR(capability, "08lx");
4075 len +=
4076 sprintf(buf + len, "last_rtc: %lu\n",
4077 (unsigned long)priv->last_rtc);
4079 DUMP_VAR(fatal_error, "d");
4080 DUMP_VAR(stop_hang_check, "d");
4081 DUMP_VAR(stop_rf_kill, "d");
4082 DUMP_VAR(messages_sent, "d");
4084 DUMP_VAR(tx_pend_stat.value, "d");
4085 DUMP_VAR(tx_pend_stat.hi, "d");
4087 DUMP_VAR(tx_free_stat.value, "d");
4088 DUMP_VAR(tx_free_stat.lo, "d");
4090 DUMP_VAR(msg_free_stat.value, "d");
4091 DUMP_VAR(msg_free_stat.lo, "d");
4093 DUMP_VAR(msg_pend_stat.value, "d");
4094 DUMP_VAR(msg_pend_stat.hi, "d");
4096 DUMP_VAR(fw_pend_stat.value, "d");
4097 DUMP_VAR(fw_pend_stat.hi, "d");
4099 DUMP_VAR(txq_stat.value, "d");
4100 DUMP_VAR(txq_stat.lo, "d");
4102 DUMP_VAR(ieee->scans, "d");
4103 DUMP_VAR(reset_backoff, "d");
4105 return len;
4108 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4110 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4111 char *buf)
4113 struct ipw2100_priv *priv = dev_get_drvdata(d);
4114 char essid[IW_ESSID_MAX_SIZE + 1];
4115 u8 bssid[ETH_ALEN];
4116 u32 chan = 0;
4117 char *out = buf;
4118 unsigned int length;
4119 int ret;
4121 if (priv->status & STATUS_RF_KILL_MASK)
4122 return 0;
4124 memset(essid, 0, sizeof(essid));
4125 memset(bssid, 0, sizeof(bssid));
4127 length = IW_ESSID_MAX_SIZE;
4128 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4129 if (ret)
4130 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4131 __LINE__);
4133 length = sizeof(bssid);
4134 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4135 bssid, &length);
4136 if (ret)
4137 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138 __LINE__);
4140 length = sizeof(u32);
4141 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4142 if (ret)
4143 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144 __LINE__);
4146 out += sprintf(out, "ESSID: %s\n", essid);
4147 out += sprintf(out, "BSSID: %pM\n", bssid);
4148 out += sprintf(out, "Channel: %d\n", chan);
4150 return out - buf;
4153 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4155 #ifdef CONFIG_IPW2100_DEBUG
4156 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4158 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4161 static ssize_t store_debug_level(struct device_driver *d,
4162 const char *buf, size_t count)
4164 u32 val;
4165 int ret;
4167 ret = kstrtou32(buf, 0, &val);
4168 if (ret)
4169 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4170 else
4171 ipw2100_debug_level = val;
4173 return strnlen(buf, count);
4176 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4177 store_debug_level);
4178 #endif /* CONFIG_IPW2100_DEBUG */
4180 static ssize_t show_fatal_error(struct device *d,
4181 struct device_attribute *attr, char *buf)
4183 struct ipw2100_priv *priv = dev_get_drvdata(d);
4184 char *out = buf;
4185 int i;
4187 if (priv->fatal_error)
4188 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4189 else
4190 out += sprintf(out, "0\n");
4192 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4193 if (!priv->fatal_errors[(priv->fatal_index - i) %
4194 IPW2100_ERROR_QUEUE])
4195 continue;
4197 out += sprintf(out, "%d. 0x%08X\n", i,
4198 priv->fatal_errors[(priv->fatal_index - i) %
4199 IPW2100_ERROR_QUEUE]);
4202 return out - buf;
4205 static ssize_t store_fatal_error(struct device *d,
4206 struct device_attribute *attr, const char *buf,
4207 size_t count)
4209 struct ipw2100_priv *priv = dev_get_drvdata(d);
4210 schedule_reset(priv);
4211 return count;
4214 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4215 store_fatal_error);
4217 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4218 char *buf)
4220 struct ipw2100_priv *priv = dev_get_drvdata(d);
4221 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4224 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4225 const char *buf, size_t count)
4227 struct ipw2100_priv *priv = dev_get_drvdata(d);
4228 struct net_device *dev = priv->net_dev;
4229 unsigned long val;
4230 int ret;
4232 (void)dev; /* kill unused-var warning for debug-only code */
4234 IPW_DEBUG_INFO("enter\n");
4236 ret = kstrtoul(buf, 0, &val);
4237 if (ret) {
4238 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4239 } else {
4240 priv->ieee->scan_age = val;
4241 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4244 IPW_DEBUG_INFO("exit\n");
4245 return strnlen(buf, count);
4248 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4250 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4251 char *buf)
4253 /* 0 - RF kill not enabled
4254 1 - SW based RF kill active (sysfs)
4255 2 - HW based RF kill active
4256 3 - Both HW and SW baed RF kill active */
4257 struct ipw2100_priv *priv = dev_get_drvdata(d);
4258 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4259 (rf_kill_active(priv) ? 0x2 : 0x0);
4260 return sprintf(buf, "%i\n", val);
4263 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4265 if ((disable_radio ? 1 : 0) ==
4266 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4267 return 0;
4269 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4270 disable_radio ? "OFF" : "ON");
4272 mutex_lock(&priv->action_mutex);
4274 if (disable_radio) {
4275 priv->status |= STATUS_RF_KILL_SW;
4276 ipw2100_down(priv);
4277 } else {
4278 priv->status &= ~STATUS_RF_KILL_SW;
4279 if (rf_kill_active(priv)) {
4280 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4281 "disabled by HW switch\n");
4282 /* Make sure the RF_KILL check timer is running */
4283 priv->stop_rf_kill = 0;
4284 mod_delayed_work(system_wq, &priv->rf_kill,
4285 round_jiffies_relative(HZ));
4286 } else
4287 schedule_reset(priv);
4290 mutex_unlock(&priv->action_mutex);
4291 return 1;
4294 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4295 const char *buf, size_t count)
4297 struct ipw2100_priv *priv = dev_get_drvdata(d);
4298 ipw_radio_kill_sw(priv, buf[0] == '1');
4299 return count;
4302 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4304 static struct attribute *ipw2100_sysfs_entries[] = {
4305 &dev_attr_hardware.attr,
4306 &dev_attr_registers.attr,
4307 &dev_attr_ordinals.attr,
4308 &dev_attr_pci.attr,
4309 &dev_attr_stats.attr,
4310 &dev_attr_internals.attr,
4311 &dev_attr_bssinfo.attr,
4312 &dev_attr_memory.attr,
4313 &dev_attr_scan_age.attr,
4314 &dev_attr_fatal_error.attr,
4315 &dev_attr_rf_kill.attr,
4316 &dev_attr_cfg.attr,
4317 &dev_attr_status.attr,
4318 &dev_attr_capability.attr,
4319 NULL,
4322 static struct attribute_group ipw2100_attribute_group = {
4323 .attrs = ipw2100_sysfs_entries,
4326 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4328 struct ipw2100_status_queue *q = &priv->status_queue;
4330 IPW_DEBUG_INFO("enter\n");
4332 q->size = entries * sizeof(struct ipw2100_status);
4333 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4334 if (!q->drv) {
4335 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4336 return -ENOMEM;
4339 IPW_DEBUG_INFO("exit\n");
4341 return 0;
4344 static void status_queue_free(struct ipw2100_priv *priv)
4346 IPW_DEBUG_INFO("enter\n");
4348 if (priv->status_queue.drv) {
4349 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4350 priv->status_queue.drv,
4351 priv->status_queue.nic);
4352 priv->status_queue.drv = NULL;
4355 IPW_DEBUG_INFO("exit\n");
4358 static int bd_queue_allocate(struct ipw2100_priv *priv,
4359 struct ipw2100_bd_queue *q, int entries)
4361 IPW_DEBUG_INFO("enter\n");
4363 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4365 q->entries = entries;
4366 q->size = entries * sizeof(struct ipw2100_bd);
4367 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4368 if (!q->drv) {
4369 IPW_DEBUG_INFO
4370 ("can't allocate shared memory for buffer descriptors\n");
4371 return -ENOMEM;
4374 IPW_DEBUG_INFO("exit\n");
4376 return 0;
4379 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4381 IPW_DEBUG_INFO("enter\n");
4383 if (!q)
4384 return;
4386 if (q->drv) {
4387 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4388 q->drv = NULL;
4391 IPW_DEBUG_INFO("exit\n");
4394 static void bd_queue_initialize(struct ipw2100_priv *priv,
4395 struct ipw2100_bd_queue *q, u32 base, u32 size,
4396 u32 r, u32 w)
4398 IPW_DEBUG_INFO("enter\n");
4400 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4401 (u32) q->nic);
4403 write_register(priv->net_dev, base, q->nic);
4404 write_register(priv->net_dev, size, q->entries);
4405 write_register(priv->net_dev, r, q->oldest);
4406 write_register(priv->net_dev, w, q->next);
4408 IPW_DEBUG_INFO("exit\n");
4411 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4413 priv->stop_rf_kill = 1;
4414 priv->stop_hang_check = 1;
4415 cancel_delayed_work_sync(&priv->reset_work);
4416 cancel_delayed_work_sync(&priv->security_work);
4417 cancel_delayed_work_sync(&priv->wx_event_work);
4418 cancel_delayed_work_sync(&priv->hang_check);
4419 cancel_delayed_work_sync(&priv->rf_kill);
4420 cancel_delayed_work_sync(&priv->scan_event);
4423 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4425 int i, j, err = -EINVAL;
4426 void *v;
4427 dma_addr_t p;
4429 IPW_DEBUG_INFO("enter\n");
4431 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4432 if (err) {
4433 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4434 priv->net_dev->name);
4435 return err;
4438 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4439 sizeof(struct ipw2100_tx_packet),
4440 GFP_ATOMIC);
4441 if (!priv->tx_buffers) {
4442 bd_queue_free(priv, &priv->tx_queue);
4443 return -ENOMEM;
4446 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4447 v = pci_alloc_consistent(priv->pci_dev,
4448 sizeof(struct ipw2100_data_header),
4449 &p);
4450 if (!v) {
4451 printk(KERN_ERR DRV_NAME
4452 ": %s: PCI alloc failed for tx " "buffers.\n",
4453 priv->net_dev->name);
4454 err = -ENOMEM;
4455 break;
4458 priv->tx_buffers[i].type = DATA;
4459 priv->tx_buffers[i].info.d_struct.data =
4460 (struct ipw2100_data_header *)v;
4461 priv->tx_buffers[i].info.d_struct.data_phys = p;
4462 priv->tx_buffers[i].info.d_struct.txb = NULL;
4465 if (i == TX_PENDED_QUEUE_LENGTH)
4466 return 0;
4468 for (j = 0; j < i; j++) {
4469 pci_free_consistent(priv->pci_dev,
4470 sizeof(struct ipw2100_data_header),
4471 priv->tx_buffers[j].info.d_struct.data,
4472 priv->tx_buffers[j].info.d_struct.
4473 data_phys);
4476 kfree(priv->tx_buffers);
4477 priv->tx_buffers = NULL;
4479 return err;
4482 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4484 int i;
4486 IPW_DEBUG_INFO("enter\n");
4489 * reinitialize packet info lists
4491 INIT_LIST_HEAD(&priv->fw_pend_list);
4492 INIT_STAT(&priv->fw_pend_stat);
4495 * reinitialize lists
4497 INIT_LIST_HEAD(&priv->tx_pend_list);
4498 INIT_LIST_HEAD(&priv->tx_free_list);
4499 INIT_STAT(&priv->tx_pend_stat);
4500 INIT_STAT(&priv->tx_free_stat);
4502 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503 /* We simply drop any SKBs that have been queued for
4504 * transmit */
4505 if (priv->tx_buffers[i].info.d_struct.txb) {
4506 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4507 txb);
4508 priv->tx_buffers[i].info.d_struct.txb = NULL;
4511 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4514 SET_STAT(&priv->tx_free_stat, i);
4516 priv->tx_queue.oldest = 0;
4517 priv->tx_queue.available = priv->tx_queue.entries;
4518 priv->tx_queue.next = 0;
4519 INIT_STAT(&priv->txq_stat);
4520 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4522 bd_queue_initialize(priv, &priv->tx_queue,
4523 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4524 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4525 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4526 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4528 IPW_DEBUG_INFO("exit\n");
4532 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4534 int i;
4536 IPW_DEBUG_INFO("enter\n");
4538 bd_queue_free(priv, &priv->tx_queue);
4540 if (!priv->tx_buffers)
4541 return;
4543 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4544 if (priv->tx_buffers[i].info.d_struct.txb) {
4545 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4546 txb);
4547 priv->tx_buffers[i].info.d_struct.txb = NULL;
4549 if (priv->tx_buffers[i].info.d_struct.data)
4550 pci_free_consistent(priv->pci_dev,
4551 sizeof(struct ipw2100_data_header),
4552 priv->tx_buffers[i].info.d_struct.
4553 data,
4554 priv->tx_buffers[i].info.d_struct.
4555 data_phys);
4558 kfree(priv->tx_buffers);
4559 priv->tx_buffers = NULL;
4561 IPW_DEBUG_INFO("exit\n");
4564 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4566 int i, j, err = -EINVAL;
4568 IPW_DEBUG_INFO("enter\n");
4570 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4571 if (err) {
4572 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4573 return err;
4576 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4577 if (err) {
4578 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4579 bd_queue_free(priv, &priv->rx_queue);
4580 return err;
4584 * allocate packets
4586 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4587 sizeof(struct ipw2100_rx_packet),
4588 GFP_KERNEL);
4589 if (!priv->rx_buffers) {
4590 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4592 bd_queue_free(priv, &priv->rx_queue);
4594 status_queue_free(priv);
4596 return -ENOMEM;
4599 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4600 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4602 err = ipw2100_alloc_skb(priv, packet);
4603 if (unlikely(err)) {
4604 err = -ENOMEM;
4605 break;
4608 /* The BD holds the cache aligned address */
4609 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4610 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4611 priv->status_queue.drv[i].status_fields = 0;
4614 if (i == RX_QUEUE_LENGTH)
4615 return 0;
4617 for (j = 0; j < i; j++) {
4618 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4619 sizeof(struct ipw2100_rx_packet),
4620 PCI_DMA_FROMDEVICE);
4621 dev_kfree_skb(priv->rx_buffers[j].skb);
4624 kfree(priv->rx_buffers);
4625 priv->rx_buffers = NULL;
4627 bd_queue_free(priv, &priv->rx_queue);
4629 status_queue_free(priv);
4631 return err;
4634 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4636 IPW_DEBUG_INFO("enter\n");
4638 priv->rx_queue.oldest = 0;
4639 priv->rx_queue.available = priv->rx_queue.entries - 1;
4640 priv->rx_queue.next = priv->rx_queue.entries - 1;
4642 INIT_STAT(&priv->rxq_stat);
4643 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4645 bd_queue_initialize(priv, &priv->rx_queue,
4646 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4647 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4648 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4649 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4651 /* set up the status queue */
4652 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4653 priv->status_queue.nic);
4655 IPW_DEBUG_INFO("exit\n");
4658 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4660 int i;
4662 IPW_DEBUG_INFO("enter\n");
4664 bd_queue_free(priv, &priv->rx_queue);
4665 status_queue_free(priv);
4667 if (!priv->rx_buffers)
4668 return;
4670 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4671 if (priv->rx_buffers[i].rxp) {
4672 pci_unmap_single(priv->pci_dev,
4673 priv->rx_buffers[i].dma_addr,
4674 sizeof(struct ipw2100_rx),
4675 PCI_DMA_FROMDEVICE);
4676 dev_kfree_skb(priv->rx_buffers[i].skb);
4680 kfree(priv->rx_buffers);
4681 priv->rx_buffers = NULL;
4683 IPW_DEBUG_INFO("exit\n");
4686 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4688 u32 length = ETH_ALEN;
4689 u8 addr[ETH_ALEN];
4691 int err;
4693 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4694 if (err) {
4695 IPW_DEBUG_INFO("MAC address read failed\n");
4696 return -EIO;
4699 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4700 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4702 return 0;
4705 /********************************************************************
4707 * Firmware Commands
4709 ********************************************************************/
4711 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4713 struct host_command cmd = {
4714 .host_command = ADAPTER_ADDRESS,
4715 .host_command_sequence = 0,
4716 .host_command_length = ETH_ALEN
4718 int err;
4720 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4722 IPW_DEBUG_INFO("enter\n");
4724 if (priv->config & CFG_CUSTOM_MAC) {
4725 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4726 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4727 } else
4728 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4729 ETH_ALEN);
4731 err = ipw2100_hw_send_command(priv, &cmd);
4733 IPW_DEBUG_INFO("exit\n");
4734 return err;
4737 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4738 int batch_mode)
4740 struct host_command cmd = {
4741 .host_command = PORT_TYPE,
4742 .host_command_sequence = 0,
4743 .host_command_length = sizeof(u32)
4745 int err;
4747 switch (port_type) {
4748 case IW_MODE_INFRA:
4749 cmd.host_command_parameters[0] = IPW_BSS;
4750 break;
4751 case IW_MODE_ADHOC:
4752 cmd.host_command_parameters[0] = IPW_IBSS;
4753 break;
4756 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4757 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4759 if (!batch_mode) {
4760 err = ipw2100_disable_adapter(priv);
4761 if (err) {
4762 printk(KERN_ERR DRV_NAME
4763 ": %s: Could not disable adapter %d\n",
4764 priv->net_dev->name, err);
4765 return err;
4769 /* send cmd to firmware */
4770 err = ipw2100_hw_send_command(priv, &cmd);
4772 if (!batch_mode)
4773 ipw2100_enable_adapter(priv);
4775 return err;
4778 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4779 int batch_mode)
4781 struct host_command cmd = {
4782 .host_command = CHANNEL,
4783 .host_command_sequence = 0,
4784 .host_command_length = sizeof(u32)
4786 int err;
4788 cmd.host_command_parameters[0] = channel;
4790 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4792 /* If BSS then we don't support channel selection */
4793 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4794 return 0;
4796 if ((channel != 0) &&
4797 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4798 return -EINVAL;
4800 if (!batch_mode) {
4801 err = ipw2100_disable_adapter(priv);
4802 if (err)
4803 return err;
4806 err = ipw2100_hw_send_command(priv, &cmd);
4807 if (err) {
4808 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4809 return err;
4812 if (channel)
4813 priv->config |= CFG_STATIC_CHANNEL;
4814 else
4815 priv->config &= ~CFG_STATIC_CHANNEL;
4817 priv->channel = channel;
4819 if (!batch_mode) {
4820 err = ipw2100_enable_adapter(priv);
4821 if (err)
4822 return err;
4825 return 0;
4828 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4830 struct host_command cmd = {
4831 .host_command = SYSTEM_CONFIG,
4832 .host_command_sequence = 0,
4833 .host_command_length = 12,
4835 u32 ibss_mask, len = sizeof(u32);
4836 int err;
4838 /* Set system configuration */
4840 if (!batch_mode) {
4841 err = ipw2100_disable_adapter(priv);
4842 if (err)
4843 return err;
4846 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4847 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4849 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4850 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4852 if (!(priv->config & CFG_LONG_PREAMBLE))
4853 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4855 err = ipw2100_get_ordinal(priv,
4856 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4857 &ibss_mask, &len);
4858 if (err)
4859 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4861 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4862 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4864 /* 11b only */
4865 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4867 err = ipw2100_hw_send_command(priv, &cmd);
4868 if (err)
4869 return err;
4871 /* If IPv6 is configured in the kernel then we don't want to filter out all
4872 * of the multicast packets as IPv6 needs some. */
4873 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4874 cmd.host_command = ADD_MULTICAST;
4875 cmd.host_command_sequence = 0;
4876 cmd.host_command_length = 0;
4878 ipw2100_hw_send_command(priv, &cmd);
4879 #endif
4880 if (!batch_mode) {
4881 err = ipw2100_enable_adapter(priv);
4882 if (err)
4883 return err;
4886 return 0;
4889 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4890 int batch_mode)
4892 struct host_command cmd = {
4893 .host_command = BASIC_TX_RATES,
4894 .host_command_sequence = 0,
4895 .host_command_length = 4
4897 int err;
4899 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4901 if (!batch_mode) {
4902 err = ipw2100_disable_adapter(priv);
4903 if (err)
4904 return err;
4907 /* Set BASIC TX Rate first */
4908 ipw2100_hw_send_command(priv, &cmd);
4910 /* Set TX Rate */
4911 cmd.host_command = TX_RATES;
4912 ipw2100_hw_send_command(priv, &cmd);
4914 /* Set MSDU TX Rate */
4915 cmd.host_command = MSDU_TX_RATES;
4916 ipw2100_hw_send_command(priv, &cmd);
4918 if (!batch_mode) {
4919 err = ipw2100_enable_adapter(priv);
4920 if (err)
4921 return err;
4924 priv->tx_rates = rate;
4926 return 0;
4929 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4931 struct host_command cmd = {
4932 .host_command = POWER_MODE,
4933 .host_command_sequence = 0,
4934 .host_command_length = 4
4936 int err;
4938 cmd.host_command_parameters[0] = power_level;
4940 err = ipw2100_hw_send_command(priv, &cmd);
4941 if (err)
4942 return err;
4944 if (power_level == IPW_POWER_MODE_CAM)
4945 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4946 else
4947 priv->power_mode = IPW_POWER_ENABLED | power_level;
4949 #ifdef IPW2100_TX_POWER
4950 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4951 /* Set beacon interval */
4952 cmd.host_command = TX_POWER_INDEX;
4953 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4955 err = ipw2100_hw_send_command(priv, &cmd);
4956 if (err)
4957 return err;
4959 #endif
4961 return 0;
4964 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4966 struct host_command cmd = {
4967 .host_command = RTS_THRESHOLD,
4968 .host_command_sequence = 0,
4969 .host_command_length = 4
4971 int err;
4973 if (threshold & RTS_DISABLED)
4974 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4975 else
4976 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4978 err = ipw2100_hw_send_command(priv, &cmd);
4979 if (err)
4980 return err;
4982 priv->rts_threshold = threshold;
4984 return 0;
4987 #if 0
4988 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4989 u32 threshold, int batch_mode)
4991 struct host_command cmd = {
4992 .host_command = FRAG_THRESHOLD,
4993 .host_command_sequence = 0,
4994 .host_command_length = 4,
4995 .host_command_parameters[0] = 0,
4997 int err;
4999 if (!batch_mode) {
5000 err = ipw2100_disable_adapter(priv);
5001 if (err)
5002 return err;
5005 if (threshold == 0)
5006 threshold = DEFAULT_FRAG_THRESHOLD;
5007 else {
5008 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5009 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5012 cmd.host_command_parameters[0] = threshold;
5014 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5016 err = ipw2100_hw_send_command(priv, &cmd);
5018 if (!batch_mode)
5019 ipw2100_enable_adapter(priv);
5021 if (!err)
5022 priv->frag_threshold = threshold;
5024 return err;
5026 #endif
5028 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5030 struct host_command cmd = {
5031 .host_command = SHORT_RETRY_LIMIT,
5032 .host_command_sequence = 0,
5033 .host_command_length = 4
5035 int err;
5037 cmd.host_command_parameters[0] = retry;
5039 err = ipw2100_hw_send_command(priv, &cmd);
5040 if (err)
5041 return err;
5043 priv->short_retry_limit = retry;
5045 return 0;
5048 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5050 struct host_command cmd = {
5051 .host_command = LONG_RETRY_LIMIT,
5052 .host_command_sequence = 0,
5053 .host_command_length = 4
5055 int err;
5057 cmd.host_command_parameters[0] = retry;
5059 err = ipw2100_hw_send_command(priv, &cmd);
5060 if (err)
5061 return err;
5063 priv->long_retry_limit = retry;
5065 return 0;
5068 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5069 int batch_mode)
5071 struct host_command cmd = {
5072 .host_command = MANDATORY_BSSID,
5073 .host_command_sequence = 0,
5074 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5076 int err;
5078 #ifdef CONFIG_IPW2100_DEBUG
5079 if (bssid != NULL)
5080 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5081 else
5082 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5083 #endif
5084 /* if BSSID is empty then we disable mandatory bssid mode */
5085 if (bssid != NULL)
5086 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5088 if (!batch_mode) {
5089 err = ipw2100_disable_adapter(priv);
5090 if (err)
5091 return err;
5094 err = ipw2100_hw_send_command(priv, &cmd);
5096 if (!batch_mode)
5097 ipw2100_enable_adapter(priv);
5099 return err;
5102 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5104 struct host_command cmd = {
5105 .host_command = DISASSOCIATION_BSSID,
5106 .host_command_sequence = 0,
5107 .host_command_length = ETH_ALEN
5109 int err;
5110 int len;
5112 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5114 len = ETH_ALEN;
5115 /* The Firmware currently ignores the BSSID and just disassociates from
5116 * the currently associated AP -- but in the off chance that a future
5117 * firmware does use the BSSID provided here, we go ahead and try and
5118 * set it to the currently associated AP's BSSID */
5119 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5121 err = ipw2100_hw_send_command(priv, &cmd);
5123 return err;
5126 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5127 struct ipw2100_wpa_assoc_frame *, int)
5128 __attribute__ ((unused));
5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5131 struct ipw2100_wpa_assoc_frame *wpa_frame,
5132 int batch_mode)
5134 struct host_command cmd = {
5135 .host_command = SET_WPA_IE,
5136 .host_command_sequence = 0,
5137 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5139 int err;
5141 IPW_DEBUG_HC("SET_WPA_IE\n");
5143 if (!batch_mode) {
5144 err = ipw2100_disable_adapter(priv);
5145 if (err)
5146 return err;
5149 memcpy(cmd.host_command_parameters, wpa_frame,
5150 sizeof(struct ipw2100_wpa_assoc_frame));
5152 err = ipw2100_hw_send_command(priv, &cmd);
5154 if (!batch_mode) {
5155 if (ipw2100_enable_adapter(priv))
5156 err = -EIO;
5159 return err;
5162 struct security_info_params {
5163 u32 allowed_ciphers;
5164 u16 version;
5165 u8 auth_mode;
5166 u8 replay_counters_number;
5167 u8 unicast_using_group;
5168 } __packed;
5170 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5171 int auth_mode,
5172 int security_level,
5173 int unicast_using_group,
5174 int batch_mode)
5176 struct host_command cmd = {
5177 .host_command = SET_SECURITY_INFORMATION,
5178 .host_command_sequence = 0,
5179 .host_command_length = sizeof(struct security_info_params)
5181 struct security_info_params *security =
5182 (struct security_info_params *)&cmd.host_command_parameters;
5183 int err;
5184 memset(security, 0, sizeof(*security));
5186 /* If shared key AP authentication is turned on, then we need to
5187 * configure the firmware to try and use it.
5189 * Actual data encryption/decryption is handled by the host. */
5190 security->auth_mode = auth_mode;
5191 security->unicast_using_group = unicast_using_group;
5193 switch (security_level) {
5194 default:
5195 case SEC_LEVEL_0:
5196 security->allowed_ciphers = IPW_NONE_CIPHER;
5197 break;
5198 case SEC_LEVEL_1:
5199 security->allowed_ciphers = IPW_WEP40_CIPHER |
5200 IPW_WEP104_CIPHER;
5201 break;
5202 case SEC_LEVEL_2:
5203 security->allowed_ciphers = IPW_WEP40_CIPHER |
5204 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5205 break;
5206 case SEC_LEVEL_2_CKIP:
5207 security->allowed_ciphers = IPW_WEP40_CIPHER |
5208 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5209 break;
5210 case SEC_LEVEL_3:
5211 security->allowed_ciphers = IPW_WEP40_CIPHER |
5212 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5213 break;
5216 IPW_DEBUG_HC
5217 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5218 security->auth_mode, security->allowed_ciphers, security_level);
5220 security->replay_counters_number = 0;
5222 if (!batch_mode) {
5223 err = ipw2100_disable_adapter(priv);
5224 if (err)
5225 return err;
5228 err = ipw2100_hw_send_command(priv, &cmd);
5230 if (!batch_mode)
5231 ipw2100_enable_adapter(priv);
5233 return err;
5236 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5238 struct host_command cmd = {
5239 .host_command = TX_POWER_INDEX,
5240 .host_command_sequence = 0,
5241 .host_command_length = 4
5243 int err = 0;
5244 u32 tmp = tx_power;
5246 if (tx_power != IPW_TX_POWER_DEFAULT)
5247 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5248 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5250 cmd.host_command_parameters[0] = tmp;
5252 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5253 err = ipw2100_hw_send_command(priv, &cmd);
5254 if (!err)
5255 priv->tx_power = tx_power;
5257 return 0;
5260 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5261 u32 interval, int batch_mode)
5263 struct host_command cmd = {
5264 .host_command = BEACON_INTERVAL,
5265 .host_command_sequence = 0,
5266 .host_command_length = 4
5268 int err;
5270 cmd.host_command_parameters[0] = interval;
5272 IPW_DEBUG_INFO("enter\n");
5274 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5275 if (!batch_mode) {
5276 err = ipw2100_disable_adapter(priv);
5277 if (err)
5278 return err;
5281 ipw2100_hw_send_command(priv, &cmd);
5283 if (!batch_mode) {
5284 err = ipw2100_enable_adapter(priv);
5285 if (err)
5286 return err;
5290 IPW_DEBUG_INFO("exit\n");
5292 return 0;
5295 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5297 ipw2100_tx_initialize(priv);
5298 ipw2100_rx_initialize(priv);
5299 ipw2100_msg_initialize(priv);
5302 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5304 ipw2100_tx_free(priv);
5305 ipw2100_rx_free(priv);
5306 ipw2100_msg_free(priv);
5309 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5311 if (ipw2100_tx_allocate(priv) ||
5312 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5313 goto fail;
5315 return 0;
5317 fail:
5318 ipw2100_tx_free(priv);
5319 ipw2100_rx_free(priv);
5320 ipw2100_msg_free(priv);
5321 return -ENOMEM;
5324 #define IPW_PRIVACY_CAPABLE 0x0008
5326 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5327 int batch_mode)
5329 struct host_command cmd = {
5330 .host_command = WEP_FLAGS,
5331 .host_command_sequence = 0,
5332 .host_command_length = 4
5334 int err;
5336 cmd.host_command_parameters[0] = flags;
5338 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5340 if (!batch_mode) {
5341 err = ipw2100_disable_adapter(priv);
5342 if (err) {
5343 printk(KERN_ERR DRV_NAME
5344 ": %s: Could not disable adapter %d\n",
5345 priv->net_dev->name, err);
5346 return err;
5350 /* send cmd to firmware */
5351 err = ipw2100_hw_send_command(priv, &cmd);
5353 if (!batch_mode)
5354 ipw2100_enable_adapter(priv);
5356 return err;
5359 struct ipw2100_wep_key {
5360 u8 idx;
5361 u8 len;
5362 u8 key[13];
5365 /* Macros to ease up priting WEP keys */
5366 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5367 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5368 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5369 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5372 * Set a the wep key
5374 * @priv: struct to work on
5375 * @idx: index of the key we want to set
5376 * @key: ptr to the key data to set
5377 * @len: length of the buffer at @key
5378 * @batch_mode: FIXME perform the operation in batch mode, not
5379 * disabling the device.
5381 * @returns 0 if OK, < 0 errno code on error.
5383 * Fill out a command structure with the new wep key, length an
5384 * index and send it down the wire.
5386 static int ipw2100_set_key(struct ipw2100_priv *priv,
5387 int idx, char *key, int len, int batch_mode)
5389 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5390 struct host_command cmd = {
5391 .host_command = WEP_KEY_INFO,
5392 .host_command_sequence = 0,
5393 .host_command_length = sizeof(struct ipw2100_wep_key),
5395 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5396 int err;
5398 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5399 idx, keylen, len);
5401 /* NOTE: We don't check cached values in case the firmware was reset
5402 * or some other problem is occurring. If the user is setting the key,
5403 * then we push the change */
5405 wep_key->idx = idx;
5406 wep_key->len = keylen;
5408 if (keylen) {
5409 memcpy(wep_key->key, key, len);
5410 memset(wep_key->key + len, 0, keylen - len);
5413 /* Will be optimized out on debug not being configured in */
5414 if (keylen == 0)
5415 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5416 priv->net_dev->name, wep_key->idx);
5417 else if (keylen == 5)
5418 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5419 priv->net_dev->name, wep_key->idx, wep_key->len,
5420 WEP_STR_64(wep_key->key));
5421 else
5422 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5423 "\n",
5424 priv->net_dev->name, wep_key->idx, wep_key->len,
5425 WEP_STR_128(wep_key->key));
5427 if (!batch_mode) {
5428 err = ipw2100_disable_adapter(priv);
5429 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5430 if (err) {
5431 printk(KERN_ERR DRV_NAME
5432 ": %s: Could not disable adapter %d\n",
5433 priv->net_dev->name, err);
5434 return err;
5438 /* send cmd to firmware */
5439 err = ipw2100_hw_send_command(priv, &cmd);
5441 if (!batch_mode) {
5442 int err2 = ipw2100_enable_adapter(priv);
5443 if (err == 0)
5444 err = err2;
5446 return err;
5449 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5450 int idx, int batch_mode)
5452 struct host_command cmd = {
5453 .host_command = WEP_KEY_INDEX,
5454 .host_command_sequence = 0,
5455 .host_command_length = 4,
5456 .host_command_parameters = {idx},
5458 int err;
5460 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5462 if (idx < 0 || idx > 3)
5463 return -EINVAL;
5465 if (!batch_mode) {
5466 err = ipw2100_disable_adapter(priv);
5467 if (err) {
5468 printk(KERN_ERR DRV_NAME
5469 ": %s: Could not disable adapter %d\n",
5470 priv->net_dev->name, err);
5471 return err;
5475 /* send cmd to firmware */
5476 err = ipw2100_hw_send_command(priv, &cmd);
5478 if (!batch_mode)
5479 ipw2100_enable_adapter(priv);
5481 return err;
5484 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5486 int i, err, auth_mode, sec_level, use_group;
5488 if (!(priv->status & STATUS_RUNNING))
5489 return 0;
5491 if (!batch_mode) {
5492 err = ipw2100_disable_adapter(priv);
5493 if (err)
5494 return err;
5497 if (!priv->ieee->sec.enabled) {
5498 err =
5499 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5500 SEC_LEVEL_0, 0, 1);
5501 } else {
5502 auth_mode = IPW_AUTH_OPEN;
5503 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5504 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5505 auth_mode = IPW_AUTH_SHARED;
5506 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5507 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5510 sec_level = SEC_LEVEL_0;
5511 if (priv->ieee->sec.flags & SEC_LEVEL)
5512 sec_level = priv->ieee->sec.level;
5514 use_group = 0;
5515 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5516 use_group = priv->ieee->sec.unicast_uses_group;
5518 err =
5519 ipw2100_set_security_information(priv, auth_mode, sec_level,
5520 use_group, 1);
5523 if (err)
5524 goto exit;
5526 if (priv->ieee->sec.enabled) {
5527 for (i = 0; i < 4; i++) {
5528 if (!(priv->ieee->sec.flags & (1 << i))) {
5529 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5530 priv->ieee->sec.key_sizes[i] = 0;
5531 } else {
5532 err = ipw2100_set_key(priv, i,
5533 priv->ieee->sec.keys[i],
5534 priv->ieee->sec.
5535 key_sizes[i], 1);
5536 if (err)
5537 goto exit;
5541 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5544 /* Always enable privacy so the Host can filter WEP packets if
5545 * encrypted data is sent up */
5546 err =
5547 ipw2100_set_wep_flags(priv,
5548 priv->ieee->sec.
5549 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5550 if (err)
5551 goto exit;
5553 priv->status &= ~STATUS_SECURITY_UPDATED;
5555 exit:
5556 if (!batch_mode)
5557 ipw2100_enable_adapter(priv);
5559 return err;
5562 static void ipw2100_security_work(struct work_struct *work)
5564 struct ipw2100_priv *priv =
5565 container_of(work, struct ipw2100_priv, security_work.work);
5567 /* If we happen to have reconnected before we get a chance to
5568 * process this, then update the security settings--which causes
5569 * a disassociation to occur */
5570 if (!(priv->status & STATUS_ASSOCIATED) &&
5571 priv->status & STATUS_SECURITY_UPDATED)
5572 ipw2100_configure_security(priv, 0);
5575 static void shim__set_security(struct net_device *dev,
5576 struct libipw_security *sec)
5578 struct ipw2100_priv *priv = libipw_priv(dev);
5579 int i, force_update = 0;
5581 mutex_lock(&priv->action_mutex);
5582 if (!(priv->status & STATUS_INITIALIZED))
5583 goto done;
5585 for (i = 0; i < 4; i++) {
5586 if (sec->flags & (1 << i)) {
5587 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5588 if (sec->key_sizes[i] == 0)
5589 priv->ieee->sec.flags &= ~(1 << i);
5590 else
5591 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5592 sec->key_sizes[i]);
5593 if (sec->level == SEC_LEVEL_1) {
5594 priv->ieee->sec.flags |= (1 << i);
5595 priv->status |= STATUS_SECURITY_UPDATED;
5596 } else
5597 priv->ieee->sec.flags &= ~(1 << i);
5601 if ((sec->flags & SEC_ACTIVE_KEY) &&
5602 priv->ieee->sec.active_key != sec->active_key) {
5603 if (sec->active_key <= 3) {
5604 priv->ieee->sec.active_key = sec->active_key;
5605 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5606 } else
5607 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5609 priv->status |= STATUS_SECURITY_UPDATED;
5612 if ((sec->flags & SEC_AUTH_MODE) &&
5613 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5614 priv->ieee->sec.auth_mode = sec->auth_mode;
5615 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5616 priv->status |= STATUS_SECURITY_UPDATED;
5619 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5620 priv->ieee->sec.flags |= SEC_ENABLED;
5621 priv->ieee->sec.enabled = sec->enabled;
5622 priv->status |= STATUS_SECURITY_UPDATED;
5623 force_update = 1;
5626 if (sec->flags & SEC_ENCRYPT)
5627 priv->ieee->sec.encrypt = sec->encrypt;
5629 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5630 priv->ieee->sec.level = sec->level;
5631 priv->ieee->sec.flags |= SEC_LEVEL;
5632 priv->status |= STATUS_SECURITY_UPDATED;
5635 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5636 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5637 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5638 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5639 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5640 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5641 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5642 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5643 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5644 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5646 /* As a temporary work around to enable WPA until we figure out why
5647 * wpa_supplicant toggles the security capability of the driver, which
5648 * forces a disassocation with force_update...
5650 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5651 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5652 ipw2100_configure_security(priv, 0);
5653 done:
5654 mutex_unlock(&priv->action_mutex);
5657 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5659 int err;
5660 int batch_mode = 1;
5661 u8 *bssid;
5663 IPW_DEBUG_INFO("enter\n");
5665 err = ipw2100_disable_adapter(priv);
5666 if (err)
5667 return err;
5668 #ifdef CONFIG_IPW2100_MONITOR
5669 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5670 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5671 if (err)
5672 return err;
5674 IPW_DEBUG_INFO("exit\n");
5676 return 0;
5678 #endif /* CONFIG_IPW2100_MONITOR */
5680 err = ipw2100_read_mac_address(priv);
5681 if (err)
5682 return -EIO;
5684 err = ipw2100_set_mac_address(priv, batch_mode);
5685 if (err)
5686 return err;
5688 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5689 if (err)
5690 return err;
5692 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5693 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5694 if (err)
5695 return err;
5698 err = ipw2100_system_config(priv, batch_mode);
5699 if (err)
5700 return err;
5702 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5703 if (err)
5704 return err;
5706 /* Default to power mode OFF */
5707 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5708 if (err)
5709 return err;
5711 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5712 if (err)
5713 return err;
5715 if (priv->config & CFG_STATIC_BSSID)
5716 bssid = priv->bssid;
5717 else
5718 bssid = NULL;
5719 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5720 if (err)
5721 return err;
5723 if (priv->config & CFG_STATIC_ESSID)
5724 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5725 batch_mode);
5726 else
5727 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5728 if (err)
5729 return err;
5731 err = ipw2100_configure_security(priv, batch_mode);
5732 if (err)
5733 return err;
5735 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5736 err =
5737 ipw2100_set_ibss_beacon_interval(priv,
5738 priv->beacon_interval,
5739 batch_mode);
5740 if (err)
5741 return err;
5743 err = ipw2100_set_tx_power(priv, priv->tx_power);
5744 if (err)
5745 return err;
5749 err = ipw2100_set_fragmentation_threshold(
5750 priv, priv->frag_threshold, batch_mode);
5751 if (err)
5752 return err;
5755 IPW_DEBUG_INFO("exit\n");
5757 return 0;
5760 /*************************************************************************
5762 * EXTERNALLY CALLED METHODS
5764 *************************************************************************/
5766 /* This method is called by the network layer -- not to be confused with
5767 * ipw2100_set_mac_address() declared above called by this driver (and this
5768 * method as well) to talk to the firmware */
5769 static int ipw2100_set_address(struct net_device *dev, void *p)
5771 struct ipw2100_priv *priv = libipw_priv(dev);
5772 struct sockaddr *addr = p;
5773 int err = 0;
5775 if (!is_valid_ether_addr(addr->sa_data))
5776 return -EADDRNOTAVAIL;
5778 mutex_lock(&priv->action_mutex);
5780 priv->config |= CFG_CUSTOM_MAC;
5781 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5783 err = ipw2100_set_mac_address(priv, 0);
5784 if (err)
5785 goto done;
5787 priv->reset_backoff = 0;
5788 mutex_unlock(&priv->action_mutex);
5789 ipw2100_reset_adapter(&priv->reset_work.work);
5790 return 0;
5792 done:
5793 mutex_unlock(&priv->action_mutex);
5794 return err;
5797 static int ipw2100_open(struct net_device *dev)
5799 struct ipw2100_priv *priv = libipw_priv(dev);
5800 unsigned long flags;
5801 IPW_DEBUG_INFO("dev->open\n");
5803 spin_lock_irqsave(&priv->low_lock, flags);
5804 if (priv->status & STATUS_ASSOCIATED) {
5805 netif_carrier_on(dev);
5806 netif_start_queue(dev);
5808 spin_unlock_irqrestore(&priv->low_lock, flags);
5810 return 0;
5813 static int ipw2100_close(struct net_device *dev)
5815 struct ipw2100_priv *priv = libipw_priv(dev);
5816 unsigned long flags;
5817 struct list_head *element;
5818 struct ipw2100_tx_packet *packet;
5820 IPW_DEBUG_INFO("enter\n");
5822 spin_lock_irqsave(&priv->low_lock, flags);
5824 if (priv->status & STATUS_ASSOCIATED)
5825 netif_carrier_off(dev);
5826 netif_stop_queue(dev);
5828 /* Flush the TX queue ... */
5829 while (!list_empty(&priv->tx_pend_list)) {
5830 element = priv->tx_pend_list.next;
5831 packet = list_entry(element, struct ipw2100_tx_packet, list);
5833 list_del(element);
5834 DEC_STAT(&priv->tx_pend_stat);
5836 libipw_txb_free(packet->info.d_struct.txb);
5837 packet->info.d_struct.txb = NULL;
5839 list_add_tail(element, &priv->tx_free_list);
5840 INC_STAT(&priv->tx_free_stat);
5842 spin_unlock_irqrestore(&priv->low_lock, flags);
5844 IPW_DEBUG_INFO("exit\n");
5846 return 0;
5850 * TODO: Fix this function... its just wrong
5852 static void ipw2100_tx_timeout(struct net_device *dev)
5854 struct ipw2100_priv *priv = libipw_priv(dev);
5856 dev->stats.tx_errors++;
5858 #ifdef CONFIG_IPW2100_MONITOR
5859 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5860 return;
5861 #endif
5863 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5864 dev->name);
5865 schedule_reset(priv);
5868 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5870 /* This is called when wpa_supplicant loads and closes the driver
5871 * interface. */
5872 priv->ieee->wpa_enabled = value;
5873 return 0;
5876 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5879 struct libipw_device *ieee = priv->ieee;
5880 struct libipw_security sec = {
5881 .flags = SEC_AUTH_MODE,
5883 int ret = 0;
5885 if (value & IW_AUTH_ALG_SHARED_KEY) {
5886 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5887 ieee->open_wep = 0;
5888 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5889 sec.auth_mode = WLAN_AUTH_OPEN;
5890 ieee->open_wep = 1;
5891 } else if (value & IW_AUTH_ALG_LEAP) {
5892 sec.auth_mode = WLAN_AUTH_LEAP;
5893 ieee->open_wep = 1;
5894 } else
5895 return -EINVAL;
5897 if (ieee->set_security)
5898 ieee->set_security(ieee->dev, &sec);
5899 else
5900 ret = -EOPNOTSUPP;
5902 return ret;
5905 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5906 char *wpa_ie, int wpa_ie_len)
5909 struct ipw2100_wpa_assoc_frame frame;
5911 frame.fixed_ie_mask = 0;
5913 /* copy WPA IE */
5914 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5915 frame.var_ie_len = wpa_ie_len;
5917 /* make sure WPA is enabled */
5918 ipw2100_wpa_enable(priv, 1);
5919 ipw2100_set_wpa_ie(priv, &frame, 0);
5922 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5923 struct ethtool_drvinfo *info)
5925 struct ipw2100_priv *priv = libipw_priv(dev);
5926 char fw_ver[64], ucode_ver[64];
5928 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5929 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5931 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5932 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5934 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5935 fw_ver, priv->eeprom_version, ucode_ver);
5937 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5938 sizeof(info->bus_info));
5941 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5943 struct ipw2100_priv *priv = libipw_priv(dev);
5944 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5947 static const struct ethtool_ops ipw2100_ethtool_ops = {
5948 .get_link = ipw2100_ethtool_get_link,
5949 .get_drvinfo = ipw_ethtool_get_drvinfo,
5952 static void ipw2100_hang_check(struct work_struct *work)
5954 struct ipw2100_priv *priv =
5955 container_of(work, struct ipw2100_priv, hang_check.work);
5956 unsigned long flags;
5957 u32 rtc = 0xa5a5a5a5;
5958 u32 len = sizeof(rtc);
5959 int restart = 0;
5961 spin_lock_irqsave(&priv->low_lock, flags);
5963 if (priv->fatal_error != 0) {
5964 /* If fatal_error is set then we need to restart */
5965 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5966 priv->net_dev->name);
5968 restart = 1;
5969 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5970 (rtc == priv->last_rtc)) {
5971 /* Check if firmware is hung */
5972 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5973 priv->net_dev->name);
5975 restart = 1;
5978 if (restart) {
5979 /* Kill timer */
5980 priv->stop_hang_check = 1;
5981 priv->hangs++;
5983 /* Restart the NIC */
5984 schedule_reset(priv);
5987 priv->last_rtc = rtc;
5989 if (!priv->stop_hang_check)
5990 schedule_delayed_work(&priv->hang_check, HZ / 2);
5992 spin_unlock_irqrestore(&priv->low_lock, flags);
5995 static void ipw2100_rf_kill(struct work_struct *work)
5997 struct ipw2100_priv *priv =
5998 container_of(work, struct ipw2100_priv, rf_kill.work);
5999 unsigned long flags;
6001 spin_lock_irqsave(&priv->low_lock, flags);
6003 if (rf_kill_active(priv)) {
6004 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6005 if (!priv->stop_rf_kill)
6006 schedule_delayed_work(&priv->rf_kill,
6007 round_jiffies_relative(HZ));
6008 goto exit_unlock;
6011 /* RF Kill is now disabled, so bring the device back up */
6013 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6014 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6015 "device\n");
6016 schedule_reset(priv);
6017 } else
6018 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6019 "enabled\n");
6021 exit_unlock:
6022 spin_unlock_irqrestore(&priv->low_lock, flags);
6025 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6027 static const struct net_device_ops ipw2100_netdev_ops = {
6028 .ndo_open = ipw2100_open,
6029 .ndo_stop = ipw2100_close,
6030 .ndo_start_xmit = libipw_xmit,
6031 .ndo_change_mtu = libipw_change_mtu,
6032 .ndo_tx_timeout = ipw2100_tx_timeout,
6033 .ndo_set_mac_address = ipw2100_set_address,
6034 .ndo_validate_addr = eth_validate_addr,
6037 /* Look into using netdev destructor to shutdown libipw? */
6039 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6040 void __iomem * ioaddr)
6042 struct ipw2100_priv *priv;
6043 struct net_device *dev;
6045 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6046 if (!dev)
6047 return NULL;
6048 priv = libipw_priv(dev);
6049 priv->ieee = netdev_priv(dev);
6050 priv->pci_dev = pci_dev;
6051 priv->net_dev = dev;
6052 priv->ioaddr = ioaddr;
6054 priv->ieee->hard_start_xmit = ipw2100_tx;
6055 priv->ieee->set_security = shim__set_security;
6057 priv->ieee->perfect_rssi = -20;
6058 priv->ieee->worst_rssi = -85;
6060 dev->netdev_ops = &ipw2100_netdev_ops;
6061 dev->ethtool_ops = &ipw2100_ethtool_ops;
6062 dev->wireless_handlers = &ipw2100_wx_handler_def;
6063 priv->wireless_data.libipw = priv->ieee;
6064 dev->wireless_data = &priv->wireless_data;
6065 dev->watchdog_timeo = 3 * HZ;
6066 dev->irq = 0;
6068 /* NOTE: We don't use the wireless_handlers hook
6069 * in dev as the system will start throwing WX requests
6070 * to us before we're actually initialized and it just
6071 * ends up causing problems. So, we just handle
6072 * the WX extensions through the ipw2100_ioctl interface */
6074 /* memset() puts everything to 0, so we only have explicitly set
6075 * those values that need to be something else */
6077 /* If power management is turned on, default to AUTO mode */
6078 priv->power_mode = IPW_POWER_AUTO;
6080 #ifdef CONFIG_IPW2100_MONITOR
6081 priv->config |= CFG_CRC_CHECK;
6082 #endif
6083 priv->ieee->wpa_enabled = 0;
6084 priv->ieee->drop_unencrypted = 0;
6085 priv->ieee->privacy_invoked = 0;
6086 priv->ieee->ieee802_1x = 1;
6088 /* Set module parameters */
6089 switch (network_mode) {
6090 case 1:
6091 priv->ieee->iw_mode = IW_MODE_ADHOC;
6092 break;
6093 #ifdef CONFIG_IPW2100_MONITOR
6094 case 2:
6095 priv->ieee->iw_mode = IW_MODE_MONITOR;
6096 break;
6097 #endif
6098 default:
6099 case 0:
6100 priv->ieee->iw_mode = IW_MODE_INFRA;
6101 break;
6104 if (disable == 1)
6105 priv->status |= STATUS_RF_KILL_SW;
6107 if (channel != 0 &&
6108 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6109 priv->config |= CFG_STATIC_CHANNEL;
6110 priv->channel = channel;
6113 if (associate)
6114 priv->config |= CFG_ASSOCIATE;
6116 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6117 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6118 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6119 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6120 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6121 priv->tx_power = IPW_TX_POWER_DEFAULT;
6122 priv->tx_rates = DEFAULT_TX_RATES;
6124 strcpy(priv->nick, "ipw2100");
6126 spin_lock_init(&priv->low_lock);
6127 mutex_init(&priv->action_mutex);
6128 mutex_init(&priv->adapter_mutex);
6130 init_waitqueue_head(&priv->wait_command_queue);
6132 netif_carrier_off(dev);
6134 INIT_LIST_HEAD(&priv->msg_free_list);
6135 INIT_LIST_HEAD(&priv->msg_pend_list);
6136 INIT_STAT(&priv->msg_free_stat);
6137 INIT_STAT(&priv->msg_pend_stat);
6139 INIT_LIST_HEAD(&priv->tx_free_list);
6140 INIT_LIST_HEAD(&priv->tx_pend_list);
6141 INIT_STAT(&priv->tx_free_stat);
6142 INIT_STAT(&priv->tx_pend_stat);
6144 INIT_LIST_HEAD(&priv->fw_pend_list);
6145 INIT_STAT(&priv->fw_pend_stat);
6147 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6148 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6149 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6150 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6151 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6152 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6154 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6155 ipw2100_irq_tasklet, (unsigned long)priv);
6157 /* NOTE: We do not start the deferred work for status checks yet */
6158 priv->stop_rf_kill = 1;
6159 priv->stop_hang_check = 1;
6161 return dev;
6164 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6165 const struct pci_device_id *ent)
6167 void __iomem *ioaddr;
6168 struct net_device *dev = NULL;
6169 struct ipw2100_priv *priv = NULL;
6170 int err = 0;
6171 int registered = 0;
6172 u32 val;
6174 IPW_DEBUG_INFO("enter\n");
6176 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6177 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6178 err = -ENODEV;
6179 goto out;
6182 ioaddr = pci_iomap(pci_dev, 0, 0);
6183 if (!ioaddr) {
6184 printk(KERN_WARNING DRV_NAME
6185 "Error calling ioremap_nocache.\n");
6186 err = -EIO;
6187 goto fail;
6190 /* allocate and initialize our net_device */
6191 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6192 if (!dev) {
6193 printk(KERN_WARNING DRV_NAME
6194 "Error calling ipw2100_alloc_device.\n");
6195 err = -ENOMEM;
6196 goto fail;
6199 /* set up PCI mappings for device */
6200 err = pci_enable_device(pci_dev);
6201 if (err) {
6202 printk(KERN_WARNING DRV_NAME
6203 "Error calling pci_enable_device.\n");
6204 return err;
6207 priv = libipw_priv(dev);
6209 pci_set_master(pci_dev);
6210 pci_set_drvdata(pci_dev, priv);
6212 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6213 if (err) {
6214 printk(KERN_WARNING DRV_NAME
6215 "Error calling pci_set_dma_mask.\n");
6216 pci_disable_device(pci_dev);
6217 return err;
6220 err = pci_request_regions(pci_dev, DRV_NAME);
6221 if (err) {
6222 printk(KERN_WARNING DRV_NAME
6223 "Error calling pci_request_regions.\n");
6224 pci_disable_device(pci_dev);
6225 return err;
6228 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6229 * PCI Tx retries from interfering with C3 CPU state */
6230 pci_read_config_dword(pci_dev, 0x40, &val);
6231 if ((val & 0x0000ff00) != 0)
6232 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6234 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6235 printk(KERN_WARNING DRV_NAME
6236 "Device not found via register read.\n");
6237 err = -ENODEV;
6238 goto fail;
6241 SET_NETDEV_DEV(dev, &pci_dev->dev);
6243 /* Force interrupts to be shut off on the device */
6244 priv->status |= STATUS_INT_ENABLED;
6245 ipw2100_disable_interrupts(priv);
6247 /* Allocate and initialize the Tx/Rx queues and lists */
6248 if (ipw2100_queues_allocate(priv)) {
6249 printk(KERN_WARNING DRV_NAME
6250 "Error calling ipw2100_queues_allocate.\n");
6251 err = -ENOMEM;
6252 goto fail;
6254 ipw2100_queues_initialize(priv);
6256 err = request_irq(pci_dev->irq,
6257 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6258 if (err) {
6259 printk(KERN_WARNING DRV_NAME
6260 "Error calling request_irq: %d.\n", pci_dev->irq);
6261 goto fail;
6263 dev->irq = pci_dev->irq;
6265 IPW_DEBUG_INFO("Attempting to register device...\n");
6267 printk(KERN_INFO DRV_NAME
6268 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6270 err = ipw2100_up(priv, 1);
6271 if (err)
6272 goto fail;
6274 err = ipw2100_wdev_init(dev);
6275 if (err)
6276 goto fail;
6277 registered = 1;
6279 /* Bring up the interface. Pre 0.46, after we registered the
6280 * network device we would call ipw2100_up. This introduced a race
6281 * condition with newer hotplug configurations (network was coming
6282 * up and making calls before the device was initialized).
6284 err = register_netdev(dev);
6285 if (err) {
6286 printk(KERN_WARNING DRV_NAME
6287 "Error calling register_netdev.\n");
6288 goto fail;
6290 registered = 2;
6292 mutex_lock(&priv->action_mutex);
6294 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6296 /* perform this after register_netdev so that dev->name is set */
6297 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6298 if (err)
6299 goto fail_unlock;
6301 /* If the RF Kill switch is disabled, go ahead and complete the
6302 * startup sequence */
6303 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6304 /* Enable the adapter - sends HOST_COMPLETE */
6305 if (ipw2100_enable_adapter(priv)) {
6306 printk(KERN_WARNING DRV_NAME
6307 ": %s: failed in call to enable adapter.\n",
6308 priv->net_dev->name);
6309 ipw2100_hw_stop_adapter(priv);
6310 err = -EIO;
6311 goto fail_unlock;
6314 /* Start a scan . . . */
6315 ipw2100_set_scan_options(priv);
6316 ipw2100_start_scan(priv);
6319 IPW_DEBUG_INFO("exit\n");
6321 priv->status |= STATUS_INITIALIZED;
6323 mutex_unlock(&priv->action_mutex);
6324 out:
6325 return err;
6327 fail_unlock:
6328 mutex_unlock(&priv->action_mutex);
6329 fail:
6330 if (dev) {
6331 if (registered >= 2)
6332 unregister_netdev(dev);
6334 if (registered) {
6335 wiphy_unregister(priv->ieee->wdev.wiphy);
6336 kfree(priv->ieee->bg_band.channels);
6339 ipw2100_hw_stop_adapter(priv);
6341 ipw2100_disable_interrupts(priv);
6343 if (dev->irq)
6344 free_irq(dev->irq, priv);
6346 ipw2100_kill_works(priv);
6348 /* These are safe to call even if they weren't allocated */
6349 ipw2100_queues_free(priv);
6350 sysfs_remove_group(&pci_dev->dev.kobj,
6351 &ipw2100_attribute_group);
6353 free_libipw(dev, 0);
6356 pci_iounmap(pci_dev, ioaddr);
6358 pci_release_regions(pci_dev);
6359 pci_disable_device(pci_dev);
6360 goto out;
6363 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6365 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6366 struct net_device *dev = priv->net_dev;
6368 mutex_lock(&priv->action_mutex);
6370 priv->status &= ~STATUS_INITIALIZED;
6372 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6374 #ifdef CONFIG_PM
6375 if (ipw2100_firmware.version)
6376 ipw2100_release_firmware(priv, &ipw2100_firmware);
6377 #endif
6378 /* Take down the hardware */
6379 ipw2100_down(priv);
6381 /* Release the mutex so that the network subsystem can
6382 * complete any needed calls into the driver... */
6383 mutex_unlock(&priv->action_mutex);
6385 /* Unregister the device first - this results in close()
6386 * being called if the device is open. If we free storage
6387 * first, then close() will crash.
6388 * FIXME: remove the comment above. */
6389 unregister_netdev(dev);
6391 ipw2100_kill_works(priv);
6393 ipw2100_queues_free(priv);
6395 /* Free potential debugging firmware snapshot */
6396 ipw2100_snapshot_free(priv);
6398 free_irq(dev->irq, priv);
6400 pci_iounmap(pci_dev, priv->ioaddr);
6402 /* wiphy_unregister needs to be here, before free_libipw */
6403 wiphy_unregister(priv->ieee->wdev.wiphy);
6404 kfree(priv->ieee->bg_band.channels);
6405 free_libipw(dev, 0);
6407 pci_release_regions(pci_dev);
6408 pci_disable_device(pci_dev);
6410 IPW_DEBUG_INFO("exit\n");
6413 #ifdef CONFIG_PM
6414 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6416 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6417 struct net_device *dev = priv->net_dev;
6419 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6421 mutex_lock(&priv->action_mutex);
6422 if (priv->status & STATUS_INITIALIZED) {
6423 /* Take down the device; powers it off, etc. */
6424 ipw2100_down(priv);
6427 /* Remove the PRESENT state of the device */
6428 netif_device_detach(dev);
6430 pci_save_state(pci_dev);
6431 pci_disable_device(pci_dev);
6432 pci_set_power_state(pci_dev, PCI_D3hot);
6434 priv->suspend_at = get_seconds();
6436 mutex_unlock(&priv->action_mutex);
6438 return 0;
6441 static int ipw2100_resume(struct pci_dev *pci_dev)
6443 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444 struct net_device *dev = priv->net_dev;
6445 int err;
6446 u32 val;
6448 if (IPW2100_PM_DISABLED)
6449 return 0;
6451 mutex_lock(&priv->action_mutex);
6453 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6455 pci_set_power_state(pci_dev, PCI_D0);
6456 err = pci_enable_device(pci_dev);
6457 if (err) {
6458 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6459 dev->name);
6460 mutex_unlock(&priv->action_mutex);
6461 return err;
6463 pci_restore_state(pci_dev);
6466 * Suspend/Resume resets the PCI configuration space, so we have to
6467 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6468 * from interfering with C3 CPU state. pci_restore_state won't help
6469 * here since it only restores the first 64 bytes pci config header.
6471 pci_read_config_dword(pci_dev, 0x40, &val);
6472 if ((val & 0x0000ff00) != 0)
6473 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6475 /* Set the device back into the PRESENT state; this will also wake
6476 * the queue of needed */
6477 netif_device_attach(dev);
6479 priv->suspend_time = get_seconds() - priv->suspend_at;
6481 /* Bring the device back up */
6482 if (!(priv->status & STATUS_RF_KILL_SW))
6483 ipw2100_up(priv, 0);
6485 mutex_unlock(&priv->action_mutex);
6487 return 0;
6489 #endif
6491 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6493 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6495 /* Take down the device; powers it off, etc. */
6496 ipw2100_down(priv);
6498 pci_disable_device(pci_dev);
6501 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6503 static const struct pci_device_id ipw2100_pci_id_table[] = {
6504 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6505 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6507 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6508 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6509 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6511 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6512 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6513 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6515 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6516 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6518 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6519 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6520 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6521 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6522 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6524 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6525 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6526 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6527 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6528 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6529 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6530 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6532 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6534 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6535 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6536 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6537 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6538 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6539 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6540 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6542 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6543 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6544 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6545 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6546 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6547 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6549 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6550 {0,},
6553 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6555 static struct pci_driver ipw2100_pci_driver = {
6556 .name = DRV_NAME,
6557 .id_table = ipw2100_pci_id_table,
6558 .probe = ipw2100_pci_init_one,
6559 .remove = ipw2100_pci_remove_one,
6560 #ifdef CONFIG_PM
6561 .suspend = ipw2100_suspend,
6562 .resume = ipw2100_resume,
6563 #endif
6564 .shutdown = ipw2100_shutdown,
6568 * Initialize the ipw2100 driver/module
6570 * @returns 0 if ok, < 0 errno node con error.
6572 * Note: we cannot init the /proc stuff until the PCI driver is there,
6573 * or we risk an unlikely race condition on someone accessing
6574 * uninitialized data in the PCI dev struct through /proc.
6576 static int __init ipw2100_init(void)
6578 int ret;
6580 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6581 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6583 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6584 PM_QOS_DEFAULT_VALUE);
6586 ret = pci_register_driver(&ipw2100_pci_driver);
6587 if (ret)
6588 goto out;
6590 #ifdef CONFIG_IPW2100_DEBUG
6591 ipw2100_debug_level = debug;
6592 ret = driver_create_file(&ipw2100_pci_driver.driver,
6593 &driver_attr_debug_level);
6594 #endif
6596 out:
6597 return ret;
6601 * Cleanup ipw2100 driver registration
6603 static void __exit ipw2100_exit(void)
6605 /* FIXME: IPG: check that we have no instances of the devices open */
6606 #ifdef CONFIG_IPW2100_DEBUG
6607 driver_remove_file(&ipw2100_pci_driver.driver,
6608 &driver_attr_debug_level);
6609 #endif
6610 pci_unregister_driver(&ipw2100_pci_driver);
6611 pm_qos_remove_request(&ipw2100_pm_qos_req);
6614 module_init(ipw2100_init);
6615 module_exit(ipw2100_exit);
6617 static int ipw2100_wx_get_name(struct net_device *dev,
6618 struct iw_request_info *info,
6619 union iwreq_data *wrqu, char *extra)
6622 * This can be called at any time. No action lock required
6625 struct ipw2100_priv *priv = libipw_priv(dev);
6626 if (!(priv->status & STATUS_ASSOCIATED))
6627 strcpy(wrqu->name, "unassociated");
6628 else
6629 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6631 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6632 return 0;
6635 static int ipw2100_wx_set_freq(struct net_device *dev,
6636 struct iw_request_info *info,
6637 union iwreq_data *wrqu, char *extra)
6639 struct ipw2100_priv *priv = libipw_priv(dev);
6640 struct iw_freq *fwrq = &wrqu->freq;
6641 int err = 0;
6643 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6644 return -EOPNOTSUPP;
6646 mutex_lock(&priv->action_mutex);
6647 if (!(priv->status & STATUS_INITIALIZED)) {
6648 err = -EIO;
6649 goto done;
6652 /* if setting by freq convert to channel */
6653 if (fwrq->e == 1) {
6654 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6655 int f = fwrq->m / 100000;
6656 int c = 0;
6658 while ((c < REG_MAX_CHANNEL) &&
6659 (f != ipw2100_frequencies[c]))
6660 c++;
6662 /* hack to fall through */
6663 fwrq->e = 0;
6664 fwrq->m = c + 1;
6668 if (fwrq->e > 0 || fwrq->m > 1000) {
6669 err = -EOPNOTSUPP;
6670 goto done;
6671 } else { /* Set the channel */
6672 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6673 err = ipw2100_set_channel(priv, fwrq->m, 0);
6676 done:
6677 mutex_unlock(&priv->action_mutex);
6678 return err;
6681 static int ipw2100_wx_get_freq(struct net_device *dev,
6682 struct iw_request_info *info,
6683 union iwreq_data *wrqu, char *extra)
6686 * This can be called at any time. No action lock required
6689 struct ipw2100_priv *priv = libipw_priv(dev);
6691 wrqu->freq.e = 0;
6693 /* If we are associated, trying to associate, or have a statically
6694 * configured CHANNEL then return that; otherwise return ANY */
6695 if (priv->config & CFG_STATIC_CHANNEL ||
6696 priv->status & STATUS_ASSOCIATED)
6697 wrqu->freq.m = priv->channel;
6698 else
6699 wrqu->freq.m = 0;
6701 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6702 return 0;
6706 static int ipw2100_wx_set_mode(struct net_device *dev,
6707 struct iw_request_info *info,
6708 union iwreq_data *wrqu, char *extra)
6710 struct ipw2100_priv *priv = libipw_priv(dev);
6711 int err = 0;
6713 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6715 if (wrqu->mode == priv->ieee->iw_mode)
6716 return 0;
6718 mutex_lock(&priv->action_mutex);
6719 if (!(priv->status & STATUS_INITIALIZED)) {
6720 err = -EIO;
6721 goto done;
6724 switch (wrqu->mode) {
6725 #ifdef CONFIG_IPW2100_MONITOR
6726 case IW_MODE_MONITOR:
6727 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6728 break;
6729 #endif /* CONFIG_IPW2100_MONITOR */
6730 case IW_MODE_ADHOC:
6731 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6732 break;
6733 case IW_MODE_INFRA:
6734 case IW_MODE_AUTO:
6735 default:
6736 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6737 break;
6740 done:
6741 mutex_unlock(&priv->action_mutex);
6742 return err;
6745 static int ipw2100_wx_get_mode(struct net_device *dev,
6746 struct iw_request_info *info,
6747 union iwreq_data *wrqu, char *extra)
6750 * This can be called at any time. No action lock required
6753 struct ipw2100_priv *priv = libipw_priv(dev);
6755 wrqu->mode = priv->ieee->iw_mode;
6756 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6758 return 0;
6761 #define POWER_MODES 5
6763 /* Values are in microsecond */
6764 static const s32 timeout_duration[POWER_MODES] = {
6765 350000,
6766 250000,
6767 75000,
6768 37000,
6769 25000,
6772 static const s32 period_duration[POWER_MODES] = {
6773 400000,
6774 700000,
6775 1000000,
6776 1000000,
6777 1000000
6780 static int ipw2100_wx_get_range(struct net_device *dev,
6781 struct iw_request_info *info,
6782 union iwreq_data *wrqu, char *extra)
6785 * This can be called at any time. No action lock required
6788 struct ipw2100_priv *priv = libipw_priv(dev);
6789 struct iw_range *range = (struct iw_range *)extra;
6790 u16 val;
6791 int i, level;
6793 wrqu->data.length = sizeof(*range);
6794 memset(range, 0, sizeof(*range));
6796 /* Let's try to keep this struct in the same order as in
6797 * linux/include/wireless.h
6800 /* TODO: See what values we can set, and remove the ones we can't
6801 * set, or fill them with some default data.
6804 /* ~5 Mb/s real (802.11b) */
6805 range->throughput = 5 * 1000 * 1000;
6807 // range->sensitivity; /* signal level threshold range */
6809 range->max_qual.qual = 100;
6810 /* TODO: Find real max RSSI and stick here */
6811 range->max_qual.level = 0;
6812 range->max_qual.noise = 0;
6813 range->max_qual.updated = 7; /* Updated all three */
6815 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6816 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6817 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6818 range->avg_qual.noise = 0;
6819 range->avg_qual.updated = 7; /* Updated all three */
6821 range->num_bitrates = RATE_COUNT;
6823 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6824 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6827 range->min_rts = MIN_RTS_THRESHOLD;
6828 range->max_rts = MAX_RTS_THRESHOLD;
6829 range->min_frag = MIN_FRAG_THRESHOLD;
6830 range->max_frag = MAX_FRAG_THRESHOLD;
6832 range->min_pmp = period_duration[0]; /* Minimal PM period */
6833 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6834 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6835 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6837 /* How to decode max/min PM period */
6838 range->pmp_flags = IW_POWER_PERIOD;
6839 /* How to decode max/min PM period */
6840 range->pmt_flags = IW_POWER_TIMEOUT;
6841 /* What PM options are supported */
6842 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6844 range->encoding_size[0] = 5;
6845 range->encoding_size[1] = 13; /* Different token sizes */
6846 range->num_encoding_sizes = 2; /* Number of entry in the list */
6847 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6848 // range->encoding_login_index; /* token index for login token */
6850 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6851 range->txpower_capa = IW_TXPOW_DBM;
6852 range->num_txpower = IW_MAX_TXPOWER;
6853 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6854 i < IW_MAX_TXPOWER;
6855 i++, level -=
6856 ((IPW_TX_POWER_MAX_DBM -
6857 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6858 range->txpower[i] = level / 16;
6859 } else {
6860 range->txpower_capa = 0;
6861 range->num_txpower = 0;
6864 /* Set the Wireless Extension versions */
6865 range->we_version_compiled = WIRELESS_EXT;
6866 range->we_version_source = 18;
6868 // range->retry_capa; /* What retry options are supported */
6869 // range->retry_flags; /* How to decode max/min retry limit */
6870 // range->r_time_flags; /* How to decode max/min retry life */
6871 // range->min_retry; /* Minimal number of retries */
6872 // range->max_retry; /* Maximal number of retries */
6873 // range->min_r_time; /* Minimal retry lifetime */
6874 // range->max_r_time; /* Maximal retry lifetime */
6876 range->num_channels = FREQ_COUNT;
6878 val = 0;
6879 for (i = 0; i < FREQ_COUNT; i++) {
6880 // TODO: Include only legal frequencies for some countries
6881 // if (local->channel_mask & (1 << i)) {
6882 range->freq[val].i = i + 1;
6883 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6884 range->freq[val].e = 1;
6885 val++;
6886 // }
6887 if (val == IW_MAX_FREQUENCIES)
6888 break;
6890 range->num_frequency = val;
6892 /* Event capability (kernel + driver) */
6893 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6894 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6895 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6897 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6898 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6900 IPW_DEBUG_WX("GET Range\n");
6902 return 0;
6905 static int ipw2100_wx_set_wap(struct net_device *dev,
6906 struct iw_request_info *info,
6907 union iwreq_data *wrqu, char *extra)
6909 struct ipw2100_priv *priv = libipw_priv(dev);
6910 int err = 0;
6912 // sanity checks
6913 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6914 return -EINVAL;
6916 mutex_lock(&priv->action_mutex);
6917 if (!(priv->status & STATUS_INITIALIZED)) {
6918 err = -EIO;
6919 goto done;
6922 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6923 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6924 /* we disable mandatory BSSID association */
6925 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6926 priv->config &= ~CFG_STATIC_BSSID;
6927 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6928 goto done;
6931 priv->config |= CFG_STATIC_BSSID;
6932 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6934 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6936 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6938 done:
6939 mutex_unlock(&priv->action_mutex);
6940 return err;
6943 static int ipw2100_wx_get_wap(struct net_device *dev,
6944 struct iw_request_info *info,
6945 union iwreq_data *wrqu, char *extra)
6948 * This can be called at any time. No action lock required
6951 struct ipw2100_priv *priv = libipw_priv(dev);
6953 /* If we are associated, trying to associate, or have a statically
6954 * configured BSSID then return that; otherwise return ANY */
6955 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6956 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6957 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6958 } else
6959 eth_zero_addr(wrqu->ap_addr.sa_data);
6961 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6962 return 0;
6965 static int ipw2100_wx_set_essid(struct net_device *dev,
6966 struct iw_request_info *info,
6967 union iwreq_data *wrqu, char *extra)
6969 struct ipw2100_priv *priv = libipw_priv(dev);
6970 char *essid = ""; /* ANY */
6971 int length = 0;
6972 int err = 0;
6974 mutex_lock(&priv->action_mutex);
6975 if (!(priv->status & STATUS_INITIALIZED)) {
6976 err = -EIO;
6977 goto done;
6980 if (wrqu->essid.flags && wrqu->essid.length) {
6981 length = wrqu->essid.length;
6982 essid = extra;
6985 if (length == 0) {
6986 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6987 priv->config &= ~CFG_STATIC_ESSID;
6988 err = ipw2100_set_essid(priv, NULL, 0, 0);
6989 goto done;
6992 length = min(length, IW_ESSID_MAX_SIZE);
6994 priv->config |= CFG_STATIC_ESSID;
6996 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6997 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6998 err = 0;
6999 goto done;
7002 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7004 priv->essid_len = length;
7005 memcpy(priv->essid, essid, priv->essid_len);
7007 err = ipw2100_set_essid(priv, essid, length, 0);
7009 done:
7010 mutex_unlock(&priv->action_mutex);
7011 return err;
7014 static int ipw2100_wx_get_essid(struct net_device *dev,
7015 struct iw_request_info *info,
7016 union iwreq_data *wrqu, char *extra)
7019 * This can be called at any time. No action lock required
7022 struct ipw2100_priv *priv = libipw_priv(dev);
7024 /* If we are associated, trying to associate, or have a statically
7025 * configured ESSID then return that; otherwise return ANY */
7026 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7027 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7028 priv->essid_len, priv->essid);
7029 memcpy(extra, priv->essid, priv->essid_len);
7030 wrqu->essid.length = priv->essid_len;
7031 wrqu->essid.flags = 1; /* active */
7032 } else {
7033 IPW_DEBUG_WX("Getting essid: ANY\n");
7034 wrqu->essid.length = 0;
7035 wrqu->essid.flags = 0; /* active */
7038 return 0;
7041 static int ipw2100_wx_set_nick(struct net_device *dev,
7042 struct iw_request_info *info,
7043 union iwreq_data *wrqu, char *extra)
7046 * This can be called at any time. No action lock required
7049 struct ipw2100_priv *priv = libipw_priv(dev);
7051 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7052 return -E2BIG;
7054 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7055 memset(priv->nick, 0, sizeof(priv->nick));
7056 memcpy(priv->nick, extra, wrqu->data.length);
7058 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7060 return 0;
7063 static int ipw2100_wx_get_nick(struct net_device *dev,
7064 struct iw_request_info *info,
7065 union iwreq_data *wrqu, char *extra)
7068 * This can be called at any time. No action lock required
7071 struct ipw2100_priv *priv = libipw_priv(dev);
7073 wrqu->data.length = strlen(priv->nick);
7074 memcpy(extra, priv->nick, wrqu->data.length);
7075 wrqu->data.flags = 1; /* active */
7077 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7079 return 0;
7082 static int ipw2100_wx_set_rate(struct net_device *dev,
7083 struct iw_request_info *info,
7084 union iwreq_data *wrqu, char *extra)
7086 struct ipw2100_priv *priv = libipw_priv(dev);
7087 u32 target_rate = wrqu->bitrate.value;
7088 u32 rate;
7089 int err = 0;
7091 mutex_lock(&priv->action_mutex);
7092 if (!(priv->status & STATUS_INITIALIZED)) {
7093 err = -EIO;
7094 goto done;
7097 rate = 0;
7099 if (target_rate == 1000000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 1000000))
7101 rate |= TX_RATE_1_MBIT;
7102 if (target_rate == 2000000 ||
7103 (!wrqu->bitrate.fixed && target_rate > 2000000))
7104 rate |= TX_RATE_2_MBIT;
7105 if (target_rate == 5500000 ||
7106 (!wrqu->bitrate.fixed && target_rate > 5500000))
7107 rate |= TX_RATE_5_5_MBIT;
7108 if (target_rate == 11000000 ||
7109 (!wrqu->bitrate.fixed && target_rate > 11000000))
7110 rate |= TX_RATE_11_MBIT;
7111 if (rate == 0)
7112 rate = DEFAULT_TX_RATES;
7114 err = ipw2100_set_tx_rates(priv, rate, 0);
7116 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7117 done:
7118 mutex_unlock(&priv->action_mutex);
7119 return err;
7122 static int ipw2100_wx_get_rate(struct net_device *dev,
7123 struct iw_request_info *info,
7124 union iwreq_data *wrqu, char *extra)
7126 struct ipw2100_priv *priv = libipw_priv(dev);
7127 int val;
7128 unsigned int len = sizeof(val);
7129 int err = 0;
7131 if (!(priv->status & STATUS_ENABLED) ||
7132 priv->status & STATUS_RF_KILL_MASK ||
7133 !(priv->status & STATUS_ASSOCIATED)) {
7134 wrqu->bitrate.value = 0;
7135 return 0;
7138 mutex_lock(&priv->action_mutex);
7139 if (!(priv->status & STATUS_INITIALIZED)) {
7140 err = -EIO;
7141 goto done;
7144 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7145 if (err) {
7146 IPW_DEBUG_WX("failed querying ordinals.\n");
7147 goto done;
7150 switch (val & TX_RATE_MASK) {
7151 case TX_RATE_1_MBIT:
7152 wrqu->bitrate.value = 1000000;
7153 break;
7154 case TX_RATE_2_MBIT:
7155 wrqu->bitrate.value = 2000000;
7156 break;
7157 case TX_RATE_5_5_MBIT:
7158 wrqu->bitrate.value = 5500000;
7159 break;
7160 case TX_RATE_11_MBIT:
7161 wrqu->bitrate.value = 11000000;
7162 break;
7163 default:
7164 wrqu->bitrate.value = 0;
7167 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7169 done:
7170 mutex_unlock(&priv->action_mutex);
7171 return err;
7174 static int ipw2100_wx_set_rts(struct net_device *dev,
7175 struct iw_request_info *info,
7176 union iwreq_data *wrqu, char *extra)
7178 struct ipw2100_priv *priv = libipw_priv(dev);
7179 int value, err;
7181 /* Auto RTS not yet supported */
7182 if (wrqu->rts.fixed == 0)
7183 return -EINVAL;
7185 mutex_lock(&priv->action_mutex);
7186 if (!(priv->status & STATUS_INITIALIZED)) {
7187 err = -EIO;
7188 goto done;
7191 if (wrqu->rts.disabled)
7192 value = priv->rts_threshold | RTS_DISABLED;
7193 else {
7194 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7195 err = -EINVAL;
7196 goto done;
7198 value = wrqu->rts.value;
7201 err = ipw2100_set_rts_threshold(priv, value);
7203 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7204 done:
7205 mutex_unlock(&priv->action_mutex);
7206 return err;
7209 static int ipw2100_wx_get_rts(struct net_device *dev,
7210 struct iw_request_info *info,
7211 union iwreq_data *wrqu, char *extra)
7214 * This can be called at any time. No action lock required
7217 struct ipw2100_priv *priv = libipw_priv(dev);
7219 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7220 wrqu->rts.fixed = 1; /* no auto select */
7222 /* If RTS is set to the default value, then it is disabled */
7223 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7225 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7227 return 0;
7230 static int ipw2100_wx_set_txpow(struct net_device *dev,
7231 struct iw_request_info *info,
7232 union iwreq_data *wrqu, char *extra)
7234 struct ipw2100_priv *priv = libipw_priv(dev);
7235 int err = 0, value;
7237 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7238 return -EINPROGRESS;
7240 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7241 return 0;
7243 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7244 return -EINVAL;
7246 if (wrqu->txpower.fixed == 0)
7247 value = IPW_TX_POWER_DEFAULT;
7248 else {
7249 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7250 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7251 return -EINVAL;
7253 value = wrqu->txpower.value;
7256 mutex_lock(&priv->action_mutex);
7257 if (!(priv->status & STATUS_INITIALIZED)) {
7258 err = -EIO;
7259 goto done;
7262 err = ipw2100_set_tx_power(priv, value);
7264 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7266 done:
7267 mutex_unlock(&priv->action_mutex);
7268 return err;
7271 static int ipw2100_wx_get_txpow(struct net_device *dev,
7272 struct iw_request_info *info,
7273 union iwreq_data *wrqu, char *extra)
7276 * This can be called at any time. No action lock required
7279 struct ipw2100_priv *priv = libipw_priv(dev);
7281 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7283 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7284 wrqu->txpower.fixed = 0;
7285 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7286 } else {
7287 wrqu->txpower.fixed = 1;
7288 wrqu->txpower.value = priv->tx_power;
7291 wrqu->txpower.flags = IW_TXPOW_DBM;
7293 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7295 return 0;
7298 static int ipw2100_wx_set_frag(struct net_device *dev,
7299 struct iw_request_info *info,
7300 union iwreq_data *wrqu, char *extra)
7303 * This can be called at any time. No action lock required
7306 struct ipw2100_priv *priv = libipw_priv(dev);
7308 if (!wrqu->frag.fixed)
7309 return -EINVAL;
7311 if (wrqu->frag.disabled) {
7312 priv->frag_threshold |= FRAG_DISABLED;
7313 priv->ieee->fts = DEFAULT_FTS;
7314 } else {
7315 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7316 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7317 return -EINVAL;
7319 priv->ieee->fts = wrqu->frag.value & ~0x1;
7320 priv->frag_threshold = priv->ieee->fts;
7323 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7325 return 0;
7328 static int ipw2100_wx_get_frag(struct net_device *dev,
7329 struct iw_request_info *info,
7330 union iwreq_data *wrqu, char *extra)
7333 * This can be called at any time. No action lock required
7336 struct ipw2100_priv *priv = libipw_priv(dev);
7337 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7338 wrqu->frag.fixed = 0; /* no auto select */
7339 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7341 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7343 return 0;
7346 static int ipw2100_wx_set_retry(struct net_device *dev,
7347 struct iw_request_info *info,
7348 union iwreq_data *wrqu, char *extra)
7350 struct ipw2100_priv *priv = libipw_priv(dev);
7351 int err = 0;
7353 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7354 return -EINVAL;
7356 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7357 return 0;
7359 mutex_lock(&priv->action_mutex);
7360 if (!(priv->status & STATUS_INITIALIZED)) {
7361 err = -EIO;
7362 goto done;
7365 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7366 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7367 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7368 wrqu->retry.value);
7369 goto done;
7372 if (wrqu->retry.flags & IW_RETRY_LONG) {
7373 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7375 wrqu->retry.value);
7376 goto done;
7379 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7380 if (!err)
7381 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7383 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7385 done:
7386 mutex_unlock(&priv->action_mutex);
7387 return err;
7390 static int ipw2100_wx_get_retry(struct net_device *dev,
7391 struct iw_request_info *info,
7392 union iwreq_data *wrqu, char *extra)
7395 * This can be called at any time. No action lock required
7398 struct ipw2100_priv *priv = libipw_priv(dev);
7400 wrqu->retry.disabled = 0; /* can't be disabled */
7402 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7403 return -EINVAL;
7405 if (wrqu->retry.flags & IW_RETRY_LONG) {
7406 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7407 wrqu->retry.value = priv->long_retry_limit;
7408 } else {
7409 wrqu->retry.flags =
7410 (priv->short_retry_limit !=
7411 priv->long_retry_limit) ?
7412 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7414 wrqu->retry.value = priv->short_retry_limit;
7417 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7419 return 0;
7422 static int ipw2100_wx_set_scan(struct net_device *dev,
7423 struct iw_request_info *info,
7424 union iwreq_data *wrqu, char *extra)
7426 struct ipw2100_priv *priv = libipw_priv(dev);
7427 int err = 0;
7429 mutex_lock(&priv->action_mutex);
7430 if (!(priv->status & STATUS_INITIALIZED)) {
7431 err = -EIO;
7432 goto done;
7435 IPW_DEBUG_WX("Initiating scan...\n");
7437 priv->user_requested_scan = 1;
7438 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7439 IPW_DEBUG_WX("Start scan failed.\n");
7441 /* TODO: Mark a scan as pending so when hardware initialized
7442 * a scan starts */
7445 done:
7446 mutex_unlock(&priv->action_mutex);
7447 return err;
7450 static int ipw2100_wx_get_scan(struct net_device *dev,
7451 struct iw_request_info *info,
7452 union iwreq_data *wrqu, char *extra)
7455 * This can be called at any time. No action lock required
7458 struct ipw2100_priv *priv = libipw_priv(dev);
7459 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7463 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7465 static int ipw2100_wx_set_encode(struct net_device *dev,
7466 struct iw_request_info *info,
7467 union iwreq_data *wrqu, char *key)
7470 * No check of STATUS_INITIALIZED required
7473 struct ipw2100_priv *priv = libipw_priv(dev);
7474 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7477 static int ipw2100_wx_get_encode(struct net_device *dev,
7478 struct iw_request_info *info,
7479 union iwreq_data *wrqu, char *key)
7482 * This can be called at any time. No action lock required
7485 struct ipw2100_priv *priv = libipw_priv(dev);
7486 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7489 static int ipw2100_wx_set_power(struct net_device *dev,
7490 struct iw_request_info *info,
7491 union iwreq_data *wrqu, char *extra)
7493 struct ipw2100_priv *priv = libipw_priv(dev);
7494 int err = 0;
7496 mutex_lock(&priv->action_mutex);
7497 if (!(priv->status & STATUS_INITIALIZED)) {
7498 err = -EIO;
7499 goto done;
7502 if (wrqu->power.disabled) {
7503 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7504 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7505 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7506 goto done;
7509 switch (wrqu->power.flags & IW_POWER_MODE) {
7510 case IW_POWER_ON: /* If not specified */
7511 case IW_POWER_MODE: /* If set all mask */
7512 case IW_POWER_ALL_R: /* If explicitly state all */
7513 break;
7514 default: /* Otherwise we don't support it */
7515 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7516 wrqu->power.flags);
7517 err = -EOPNOTSUPP;
7518 goto done;
7521 /* If the user hasn't specified a power management mode yet, default
7522 * to BATTERY */
7523 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7524 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7526 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7528 done:
7529 mutex_unlock(&priv->action_mutex);
7530 return err;
7534 static int ipw2100_wx_get_power(struct net_device *dev,
7535 struct iw_request_info *info,
7536 union iwreq_data *wrqu, char *extra)
7539 * This can be called at any time. No action lock required
7542 struct ipw2100_priv *priv = libipw_priv(dev);
7544 if (!(priv->power_mode & IPW_POWER_ENABLED))
7545 wrqu->power.disabled = 1;
7546 else {
7547 wrqu->power.disabled = 0;
7548 wrqu->power.flags = 0;
7551 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7553 return 0;
7557 * WE-18 WPA support
7560 /* SIOCSIWGENIE */
7561 static int ipw2100_wx_set_genie(struct net_device *dev,
7562 struct iw_request_info *info,
7563 union iwreq_data *wrqu, char *extra)
7566 struct ipw2100_priv *priv = libipw_priv(dev);
7567 struct libipw_device *ieee = priv->ieee;
7568 u8 *buf;
7570 if (!ieee->wpa_enabled)
7571 return -EOPNOTSUPP;
7573 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7574 (wrqu->data.length && extra == NULL))
7575 return -EINVAL;
7577 if (wrqu->data.length) {
7578 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7579 if (buf == NULL)
7580 return -ENOMEM;
7582 kfree(ieee->wpa_ie);
7583 ieee->wpa_ie = buf;
7584 ieee->wpa_ie_len = wrqu->data.length;
7585 } else {
7586 kfree(ieee->wpa_ie);
7587 ieee->wpa_ie = NULL;
7588 ieee->wpa_ie_len = 0;
7591 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7593 return 0;
7596 /* SIOCGIWGENIE */
7597 static int ipw2100_wx_get_genie(struct net_device *dev,
7598 struct iw_request_info *info,
7599 union iwreq_data *wrqu, char *extra)
7601 struct ipw2100_priv *priv = libipw_priv(dev);
7602 struct libipw_device *ieee = priv->ieee;
7604 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7605 wrqu->data.length = 0;
7606 return 0;
7609 if (wrqu->data.length < ieee->wpa_ie_len)
7610 return -E2BIG;
7612 wrqu->data.length = ieee->wpa_ie_len;
7613 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7615 return 0;
7618 /* SIOCSIWAUTH */
7619 static int ipw2100_wx_set_auth(struct net_device *dev,
7620 struct iw_request_info *info,
7621 union iwreq_data *wrqu, char *extra)
7623 struct ipw2100_priv *priv = libipw_priv(dev);
7624 struct libipw_device *ieee = priv->ieee;
7625 struct iw_param *param = &wrqu->param;
7626 struct lib80211_crypt_data *crypt;
7627 unsigned long flags;
7628 int ret = 0;
7630 switch (param->flags & IW_AUTH_INDEX) {
7631 case IW_AUTH_WPA_VERSION:
7632 case IW_AUTH_CIPHER_PAIRWISE:
7633 case IW_AUTH_CIPHER_GROUP:
7634 case IW_AUTH_KEY_MGMT:
7636 * ipw2200 does not use these parameters
7638 break;
7640 case IW_AUTH_TKIP_COUNTERMEASURES:
7641 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7642 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7643 break;
7645 flags = crypt->ops->get_flags(crypt->priv);
7647 if (param->value)
7648 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7649 else
7650 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7652 crypt->ops->set_flags(flags, crypt->priv);
7654 break;
7656 case IW_AUTH_DROP_UNENCRYPTED:{
7657 /* HACK:
7659 * wpa_supplicant calls set_wpa_enabled when the driver
7660 * is loaded and unloaded, regardless of if WPA is being
7661 * used. No other calls are made which can be used to
7662 * determine if encryption will be used or not prior to
7663 * association being expected. If encryption is not being
7664 * used, drop_unencrypted is set to false, else true -- we
7665 * can use this to determine if the CAP_PRIVACY_ON bit should
7666 * be set.
7668 struct libipw_security sec = {
7669 .flags = SEC_ENABLED,
7670 .enabled = param->value,
7672 priv->ieee->drop_unencrypted = param->value;
7673 /* We only change SEC_LEVEL for open mode. Others
7674 * are set by ipw_wpa_set_encryption.
7676 if (!param->value) {
7677 sec.flags |= SEC_LEVEL;
7678 sec.level = SEC_LEVEL_0;
7679 } else {
7680 sec.flags |= SEC_LEVEL;
7681 sec.level = SEC_LEVEL_1;
7683 if (priv->ieee->set_security)
7684 priv->ieee->set_security(priv->ieee->dev, &sec);
7685 break;
7688 case IW_AUTH_80211_AUTH_ALG:
7689 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7690 break;
7692 case IW_AUTH_WPA_ENABLED:
7693 ret = ipw2100_wpa_enable(priv, param->value);
7694 break;
7696 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7697 ieee->ieee802_1x = param->value;
7698 break;
7700 //case IW_AUTH_ROAMING_CONTROL:
7701 case IW_AUTH_PRIVACY_INVOKED:
7702 ieee->privacy_invoked = param->value;
7703 break;
7705 default:
7706 return -EOPNOTSUPP;
7708 return ret;
7711 /* SIOCGIWAUTH */
7712 static int ipw2100_wx_get_auth(struct net_device *dev,
7713 struct iw_request_info *info,
7714 union iwreq_data *wrqu, char *extra)
7716 struct ipw2100_priv *priv = libipw_priv(dev);
7717 struct libipw_device *ieee = priv->ieee;
7718 struct lib80211_crypt_data *crypt;
7719 struct iw_param *param = &wrqu->param;
7720 int ret = 0;
7722 switch (param->flags & IW_AUTH_INDEX) {
7723 case IW_AUTH_WPA_VERSION:
7724 case IW_AUTH_CIPHER_PAIRWISE:
7725 case IW_AUTH_CIPHER_GROUP:
7726 case IW_AUTH_KEY_MGMT:
7728 * wpa_supplicant will control these internally
7730 ret = -EOPNOTSUPP;
7731 break;
7733 case IW_AUTH_TKIP_COUNTERMEASURES:
7734 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7735 if (!crypt || !crypt->ops->get_flags) {
7736 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7737 "crypt not set!\n");
7738 break;
7741 param->value = (crypt->ops->get_flags(crypt->priv) &
7742 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7744 break;
7746 case IW_AUTH_DROP_UNENCRYPTED:
7747 param->value = ieee->drop_unencrypted;
7748 break;
7750 case IW_AUTH_80211_AUTH_ALG:
7751 param->value = priv->ieee->sec.auth_mode;
7752 break;
7754 case IW_AUTH_WPA_ENABLED:
7755 param->value = ieee->wpa_enabled;
7756 break;
7758 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7759 param->value = ieee->ieee802_1x;
7760 break;
7762 case IW_AUTH_ROAMING_CONTROL:
7763 case IW_AUTH_PRIVACY_INVOKED:
7764 param->value = ieee->privacy_invoked;
7765 break;
7767 default:
7768 return -EOPNOTSUPP;
7770 return 0;
7773 /* SIOCSIWENCODEEXT */
7774 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7775 struct iw_request_info *info,
7776 union iwreq_data *wrqu, char *extra)
7778 struct ipw2100_priv *priv = libipw_priv(dev);
7779 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7782 /* SIOCGIWENCODEEXT */
7783 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7784 struct iw_request_info *info,
7785 union iwreq_data *wrqu, char *extra)
7787 struct ipw2100_priv *priv = libipw_priv(dev);
7788 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7791 /* SIOCSIWMLME */
7792 static int ipw2100_wx_set_mlme(struct net_device *dev,
7793 struct iw_request_info *info,
7794 union iwreq_data *wrqu, char *extra)
7796 struct ipw2100_priv *priv = libipw_priv(dev);
7797 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7798 __le16 reason;
7800 reason = cpu_to_le16(mlme->reason_code);
7802 switch (mlme->cmd) {
7803 case IW_MLME_DEAUTH:
7804 // silently ignore
7805 break;
7807 case IW_MLME_DISASSOC:
7808 ipw2100_disassociate_bssid(priv);
7809 break;
7811 default:
7812 return -EOPNOTSUPP;
7814 return 0;
7819 * IWPRIV handlers
7822 #ifdef CONFIG_IPW2100_MONITOR
7823 static int ipw2100_wx_set_promisc(struct net_device *dev,
7824 struct iw_request_info *info,
7825 union iwreq_data *wrqu, char *extra)
7827 struct ipw2100_priv *priv = libipw_priv(dev);
7828 int *parms = (int *)extra;
7829 int enable = (parms[0] > 0);
7830 int err = 0;
7832 mutex_lock(&priv->action_mutex);
7833 if (!(priv->status & STATUS_INITIALIZED)) {
7834 err = -EIO;
7835 goto done;
7838 if (enable) {
7839 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7840 err = ipw2100_set_channel(priv, parms[1], 0);
7841 goto done;
7843 priv->channel = parms[1];
7844 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7845 } else {
7846 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7847 err = ipw2100_switch_mode(priv, priv->last_mode);
7849 done:
7850 mutex_unlock(&priv->action_mutex);
7851 return err;
7854 static int ipw2100_wx_reset(struct net_device *dev,
7855 struct iw_request_info *info,
7856 union iwreq_data *wrqu, char *extra)
7858 struct ipw2100_priv *priv = libipw_priv(dev);
7859 if (priv->status & STATUS_INITIALIZED)
7860 schedule_reset(priv);
7861 return 0;
7864 #endif
7866 static int ipw2100_wx_set_powermode(struct net_device *dev,
7867 struct iw_request_info *info,
7868 union iwreq_data *wrqu, char *extra)
7870 struct ipw2100_priv *priv = libipw_priv(dev);
7871 int err = 0, mode = *(int *)extra;
7873 mutex_lock(&priv->action_mutex);
7874 if (!(priv->status & STATUS_INITIALIZED)) {
7875 err = -EIO;
7876 goto done;
7879 if ((mode < 0) || (mode > POWER_MODES))
7880 mode = IPW_POWER_AUTO;
7882 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7883 err = ipw2100_set_power_mode(priv, mode);
7884 done:
7885 mutex_unlock(&priv->action_mutex);
7886 return err;
7889 #define MAX_POWER_STRING 80
7890 static int ipw2100_wx_get_powermode(struct net_device *dev,
7891 struct iw_request_info *info,
7892 union iwreq_data *wrqu, char *extra)
7895 * This can be called at any time. No action lock required
7898 struct ipw2100_priv *priv = libipw_priv(dev);
7899 int level = IPW_POWER_LEVEL(priv->power_mode);
7900 s32 timeout, period;
7902 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7903 snprintf(extra, MAX_POWER_STRING,
7904 "Power save level: %d (Off)", level);
7905 } else {
7906 switch (level) {
7907 case IPW_POWER_MODE_CAM:
7908 snprintf(extra, MAX_POWER_STRING,
7909 "Power save level: %d (None)", level);
7910 break;
7911 case IPW_POWER_AUTO:
7912 snprintf(extra, MAX_POWER_STRING,
7913 "Power save level: %d (Auto)", level);
7914 break;
7915 default:
7916 timeout = timeout_duration[level - 1] / 1000;
7917 period = period_duration[level - 1] / 1000;
7918 snprintf(extra, MAX_POWER_STRING,
7919 "Power save level: %d "
7920 "(Timeout %dms, Period %dms)",
7921 level, timeout, period);
7925 wrqu->data.length = strlen(extra) + 1;
7927 return 0;
7930 static int ipw2100_wx_set_preamble(struct net_device *dev,
7931 struct iw_request_info *info,
7932 union iwreq_data *wrqu, char *extra)
7934 struct ipw2100_priv *priv = libipw_priv(dev);
7935 int err, mode = *(int *)extra;
7937 mutex_lock(&priv->action_mutex);
7938 if (!(priv->status & STATUS_INITIALIZED)) {
7939 err = -EIO;
7940 goto done;
7943 if (mode == 1)
7944 priv->config |= CFG_LONG_PREAMBLE;
7945 else if (mode == 0)
7946 priv->config &= ~CFG_LONG_PREAMBLE;
7947 else {
7948 err = -EINVAL;
7949 goto done;
7952 err = ipw2100_system_config(priv, 0);
7954 done:
7955 mutex_unlock(&priv->action_mutex);
7956 return err;
7959 static int ipw2100_wx_get_preamble(struct net_device *dev,
7960 struct iw_request_info *info,
7961 union iwreq_data *wrqu, char *extra)
7964 * This can be called at any time. No action lock required
7967 struct ipw2100_priv *priv = libipw_priv(dev);
7969 if (priv->config & CFG_LONG_PREAMBLE)
7970 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7971 else
7972 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7974 return 0;
7977 #ifdef CONFIG_IPW2100_MONITOR
7978 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7979 struct iw_request_info *info,
7980 union iwreq_data *wrqu, char *extra)
7982 struct ipw2100_priv *priv = libipw_priv(dev);
7983 int err, mode = *(int *)extra;
7985 mutex_lock(&priv->action_mutex);
7986 if (!(priv->status & STATUS_INITIALIZED)) {
7987 err = -EIO;
7988 goto done;
7991 if (mode == 1)
7992 priv->config |= CFG_CRC_CHECK;
7993 else if (mode == 0)
7994 priv->config &= ~CFG_CRC_CHECK;
7995 else {
7996 err = -EINVAL;
7997 goto done;
7999 err = 0;
8001 done:
8002 mutex_unlock(&priv->action_mutex);
8003 return err;
8006 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8007 struct iw_request_info *info,
8008 union iwreq_data *wrqu, char *extra)
8011 * This can be called at any time. No action lock required
8014 struct ipw2100_priv *priv = libipw_priv(dev);
8016 if (priv->config & CFG_CRC_CHECK)
8017 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8018 else
8019 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8021 return 0;
8023 #endif /* CONFIG_IPW2100_MONITOR */
8025 static iw_handler ipw2100_wx_handlers[] = {
8026 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8027 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8028 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8029 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8030 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8031 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8032 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8033 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8034 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8035 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8036 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8037 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8038 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8039 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8040 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8041 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8042 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8043 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8044 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8045 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8046 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8047 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8048 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8049 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8050 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8051 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8052 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8053 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8054 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8055 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8056 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8057 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8058 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8059 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8060 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8063 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8074 #ifdef CONFIG_IPW2100_MONITOR
8076 IPW2100_PRIV_SET_MONITOR,
8077 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8079 IPW2100_PRIV_RESET,
8080 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif /* CONFIG_IPW2100_MONITOR */
8084 IPW2100_PRIV_SET_POWER,
8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8087 IPW2100_PRIV_GET_POWER,
8088 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089 "get_power"},
8091 IPW2100_PRIV_SET_LONGPREAMBLE,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8094 IPW2100_PRIV_GET_LONGPREAMBLE,
8095 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8098 IPW2100_PRIV_SET_CRC_CHECK,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8101 IPW2100_PRIV_GET_CRC_CHECK,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif /* CONFIG_IPW2100_MONITOR */
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108 ipw2100_wx_set_promisc,
8109 ipw2100_wx_reset,
8110 #else /* CONFIG_IPW2100_MONITOR */
8111 NULL,
8112 NULL,
8113 #endif /* CONFIG_IPW2100_MONITOR */
8114 ipw2100_wx_set_powermode,
8115 ipw2100_wx_get_powermode,
8116 ipw2100_wx_set_preamble,
8117 ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119 ipw2100_wx_set_crc_check,
8120 ipw2100_wx_get_crc_check,
8121 #else /* CONFIG_IPW2100_MONITOR */
8122 NULL,
8123 NULL,
8124 #endif /* CONFIG_IPW2100_MONITOR */
8128 * Get wireless statistics.
8129 * Called by /proc/net/wireless
8130 * Also called by SIOCGIWSTATS
8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8134 enum {
8135 POOR = 30,
8136 FAIR = 60,
8137 GOOD = 80,
8138 VERY_GOOD = 90,
8139 EXCELLENT = 95,
8140 PERFECT = 100
8142 int rssi_qual;
8143 int tx_qual;
8144 int beacon_qual;
8145 int quality;
8147 struct ipw2100_priv *priv = libipw_priv(dev);
8148 struct iw_statistics *wstats;
8149 u32 rssi, tx_retries, missed_beacons, tx_failures;
8150 u32 ord_len = sizeof(u32);
8152 if (!priv)
8153 return (struct iw_statistics *)NULL;
8155 wstats = &priv->wstats;
8157 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8158 * ipw2100_wx_wireless_stats seems to be called before fw is
8159 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8160 * and associated; if not associcated, the values are all meaningless
8161 * anyway, so set them all to NULL and INVALID */
8162 if (!(priv->status & STATUS_ASSOCIATED)) {
8163 wstats->miss.beacon = 0;
8164 wstats->discard.retries = 0;
8165 wstats->qual.qual = 0;
8166 wstats->qual.level = 0;
8167 wstats->qual.noise = 0;
8168 wstats->qual.updated = 7;
8169 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8170 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8171 return wstats;
8174 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8175 &missed_beacons, &ord_len))
8176 goto fail_get_ordinal;
8178 /* If we don't have a connection the quality and level is 0 */
8179 if (!(priv->status & STATUS_ASSOCIATED)) {
8180 wstats->qual.qual = 0;
8181 wstats->qual.level = 0;
8182 } else {
8183 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8184 &rssi, &ord_len))
8185 goto fail_get_ordinal;
8186 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8187 if (rssi < 10)
8188 rssi_qual = rssi * POOR / 10;
8189 else if (rssi < 15)
8190 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8191 else if (rssi < 20)
8192 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8193 else if (rssi < 30)
8194 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8195 10 + GOOD;
8196 else
8197 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8198 10 + VERY_GOOD;
8200 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8201 &tx_retries, &ord_len))
8202 goto fail_get_ordinal;
8204 if (tx_retries > 75)
8205 tx_qual = (90 - tx_retries) * POOR / 15;
8206 else if (tx_retries > 70)
8207 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8208 else if (tx_retries > 65)
8209 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8210 else if (tx_retries > 50)
8211 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8212 15 + GOOD;
8213 else
8214 tx_qual = (50 - tx_retries) *
8215 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8217 if (missed_beacons > 50)
8218 beacon_qual = (60 - missed_beacons) * POOR / 10;
8219 else if (missed_beacons > 40)
8220 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8221 10 + POOR;
8222 else if (missed_beacons > 32)
8223 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8224 18 + FAIR;
8225 else if (missed_beacons > 20)
8226 beacon_qual = (32 - missed_beacons) *
8227 (VERY_GOOD - GOOD) / 20 + GOOD;
8228 else
8229 beacon_qual = (20 - missed_beacons) *
8230 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8232 quality = min(tx_qual, rssi_qual);
8233 quality = min(beacon_qual, quality);
8235 #ifdef CONFIG_IPW2100_DEBUG
8236 if (beacon_qual == quality)
8237 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8238 else if (tx_qual == quality)
8239 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8240 else if (quality != 100)
8241 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8242 else
8243 IPW_DEBUG_WX("Quality not clamped.\n");
8244 #endif
8246 wstats->qual.qual = quality;
8247 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8250 wstats->qual.noise = 0;
8251 wstats->qual.updated = 7;
8252 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8254 /* FIXME: this is percent and not a # */
8255 wstats->miss.beacon = missed_beacons;
8257 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8258 &tx_failures, &ord_len))
8259 goto fail_get_ordinal;
8260 wstats->discard.retries = tx_failures;
8262 return wstats;
8264 fail_get_ordinal:
8265 IPW_DEBUG_WX("failed querying ordinals.\n");
8267 return (struct iw_statistics *)NULL;
8270 static struct iw_handler_def ipw2100_wx_handler_def = {
8271 .standard = ipw2100_wx_handlers,
8272 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8273 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8274 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8275 .private = (iw_handler *) ipw2100_private_handler,
8276 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8277 .get_wireless_stats = ipw2100_wx_wireless_stats,
8280 static void ipw2100_wx_event_work(struct work_struct *work)
8282 struct ipw2100_priv *priv =
8283 container_of(work, struct ipw2100_priv, wx_event_work.work);
8284 union iwreq_data wrqu;
8285 unsigned int len = ETH_ALEN;
8287 if (priv->status & STATUS_STOPPING)
8288 return;
8290 mutex_lock(&priv->action_mutex);
8292 IPW_DEBUG_WX("enter\n");
8294 mutex_unlock(&priv->action_mutex);
8296 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8298 /* Fetch BSSID from the hardware */
8299 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8300 priv->status & STATUS_RF_KILL_MASK ||
8301 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8302 &priv->bssid, &len)) {
8303 eth_zero_addr(wrqu.ap_addr.sa_data);
8304 } else {
8305 /* We now have the BSSID, so can finish setting to the full
8306 * associated state */
8307 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8308 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8309 priv->status &= ~STATUS_ASSOCIATING;
8310 priv->status |= STATUS_ASSOCIATED;
8311 netif_carrier_on(priv->net_dev);
8312 netif_wake_queue(priv->net_dev);
8315 if (!(priv->status & STATUS_ASSOCIATED)) {
8316 IPW_DEBUG_WX("Configuring ESSID\n");
8317 mutex_lock(&priv->action_mutex);
8318 /* This is a disassociation event, so kick the firmware to
8319 * look for another AP */
8320 if (priv->config & CFG_STATIC_ESSID)
8321 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8323 else
8324 ipw2100_set_essid(priv, NULL, 0, 0);
8325 mutex_unlock(&priv->action_mutex);
8328 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8331 #define IPW2100_FW_MAJOR_VERSION 1
8332 #define IPW2100_FW_MINOR_VERSION 3
8334 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8335 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8337 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8338 IPW2100_FW_MAJOR_VERSION)
8340 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8341 "." __stringify(IPW2100_FW_MINOR_VERSION)
8343 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8347 BINARY FIRMWARE HEADER FORMAT
8349 offset length desc
8350 0 2 version
8351 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8352 4 4 fw_len
8353 8 4 uc_len
8354 C fw_len firmware data
8355 12 + fw_len uc_len microcode data
8359 struct ipw2100_fw_header {
8360 short version;
8361 short mode;
8362 unsigned int fw_size;
8363 unsigned int uc_size;
8364 } __packed;
8366 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8368 struct ipw2100_fw_header *h =
8369 (struct ipw2100_fw_header *)fw->fw_entry->data;
8371 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8372 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8373 "(detected version id of %u). "
8374 "See Documentation/networking/README.ipw2100\n",
8375 h->version);
8376 return 1;
8379 fw->version = h->version;
8380 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8381 fw->fw.size = h->fw_size;
8382 fw->uc.data = fw->fw.data + h->fw_size;
8383 fw->uc.size = h->uc_size;
8385 return 0;
8388 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8389 struct ipw2100_fw *fw)
8391 char *fw_name;
8392 int rc;
8394 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8395 priv->net_dev->name);
8397 switch (priv->ieee->iw_mode) {
8398 case IW_MODE_ADHOC:
8399 fw_name = IPW2100_FW_NAME("-i");
8400 break;
8401 #ifdef CONFIG_IPW2100_MONITOR
8402 case IW_MODE_MONITOR:
8403 fw_name = IPW2100_FW_NAME("-p");
8404 break;
8405 #endif
8406 case IW_MODE_INFRA:
8407 default:
8408 fw_name = IPW2100_FW_NAME("");
8409 break;
8412 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8414 if (rc < 0) {
8415 printk(KERN_ERR DRV_NAME ": "
8416 "%s: Firmware '%s' not available or load failed.\n",
8417 priv->net_dev->name, fw_name);
8418 return rc;
8420 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8421 fw->fw_entry->size);
8423 ipw2100_mod_firmware_load(fw);
8425 return 0;
8428 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8429 #ifdef CONFIG_IPW2100_MONITOR
8430 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8431 #endif
8432 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8434 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8435 struct ipw2100_fw *fw)
8437 fw->version = 0;
8438 release_firmware(fw->fw_entry);
8439 fw->fw_entry = NULL;
8442 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8443 size_t max)
8445 char ver[MAX_FW_VERSION_LEN];
8446 u32 len = MAX_FW_VERSION_LEN;
8447 u32 tmp;
8448 int i;
8449 /* firmware version is an ascii string (max len of 14) */
8450 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8451 return -EIO;
8452 tmp = max;
8453 if (len >= max)
8454 len = max - 1;
8455 for (i = 0; i < len; i++)
8456 buf[i] = ver[i];
8457 buf[i] = '\0';
8458 return tmp;
8461 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8462 size_t max)
8464 u32 ver;
8465 u32 len = sizeof(ver);
8466 /* microcode version is a 32 bit integer */
8467 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8468 return -EIO;
8469 return snprintf(buf, max, "%08X", ver);
8473 * On exit, the firmware will have been freed from the fw list
8475 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8477 /* firmware is constructed of N contiguous entries, each entry is
8478 * structured as:
8480 * offset sie desc
8481 * 0 4 address to write to
8482 * 4 2 length of data run
8483 * 6 length data
8485 unsigned int addr;
8486 unsigned short len;
8488 const unsigned char *firmware_data = fw->fw.data;
8489 unsigned int firmware_data_left = fw->fw.size;
8491 while (firmware_data_left > 0) {
8492 addr = *(u32 *) (firmware_data);
8493 firmware_data += 4;
8494 firmware_data_left -= 4;
8496 len = *(u16 *) (firmware_data);
8497 firmware_data += 2;
8498 firmware_data_left -= 2;
8500 if (len > 32) {
8501 printk(KERN_ERR DRV_NAME ": "
8502 "Invalid firmware run-length of %d bytes\n",
8503 len);
8504 return -EINVAL;
8507 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8508 firmware_data += len;
8509 firmware_data_left -= len;
8512 return 0;
8515 struct symbol_alive_response {
8516 u8 cmd_id;
8517 u8 seq_num;
8518 u8 ucode_rev;
8519 u8 eeprom_valid;
8520 u16 valid_flags;
8521 u8 IEEE_addr[6];
8522 u16 flags;
8523 u16 pcb_rev;
8524 u16 clock_settle_time; // 1us LSB
8525 u16 powerup_settle_time; // 1us LSB
8526 u16 hop_settle_time; // 1us LSB
8527 u8 date[3]; // month, day, year
8528 u8 time[2]; // hours, minutes
8529 u8 ucode_valid;
8532 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8533 struct ipw2100_fw *fw)
8535 struct net_device *dev = priv->net_dev;
8536 const unsigned char *microcode_data = fw->uc.data;
8537 unsigned int microcode_data_left = fw->uc.size;
8538 void __iomem *reg = priv->ioaddr;
8540 struct symbol_alive_response response;
8541 int i, j;
8542 u8 data;
8544 /* Symbol control */
8545 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8546 readl(reg);
8547 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8548 readl(reg);
8550 /* HW config */
8551 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8552 readl(reg);
8553 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8554 readl(reg);
8556 /* EN_CS_ACCESS bit to reset control store pointer */
8557 write_nic_byte(dev, 0x210000, 0x40);
8558 readl(reg);
8559 write_nic_byte(dev, 0x210000, 0x0);
8560 readl(reg);
8561 write_nic_byte(dev, 0x210000, 0x40);
8562 readl(reg);
8564 /* copy microcode from buffer into Symbol */
8566 while (microcode_data_left > 0) {
8567 write_nic_byte(dev, 0x210010, *microcode_data++);
8568 write_nic_byte(dev, 0x210010, *microcode_data++);
8569 microcode_data_left -= 2;
8572 /* EN_CS_ACCESS bit to reset the control store pointer */
8573 write_nic_byte(dev, 0x210000, 0x0);
8574 readl(reg);
8576 /* Enable System (Reg 0)
8577 * first enable causes garbage in RX FIFO */
8578 write_nic_byte(dev, 0x210000, 0x0);
8579 readl(reg);
8580 write_nic_byte(dev, 0x210000, 0x80);
8581 readl(reg);
8583 /* Reset External Baseband Reg */
8584 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8585 readl(reg);
8586 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8587 readl(reg);
8589 /* HW Config (Reg 5) */
8590 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8591 readl(reg);
8592 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8593 readl(reg);
8595 /* Enable System (Reg 0)
8596 * second enable should be OK */
8597 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8598 readl(reg);
8599 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8601 /* check Symbol is enabled - upped this from 5 as it wasn't always
8602 * catching the update */
8603 for (i = 0; i < 10; i++) {
8604 udelay(10);
8606 /* check Dino is enabled bit */
8607 read_nic_byte(dev, 0x210000, &data);
8608 if (data & 0x1)
8609 break;
8612 if (i == 10) {
8613 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8614 dev->name);
8615 return -EIO;
8618 /* Get Symbol alive response */
8619 for (i = 0; i < 30; i++) {
8620 /* Read alive response structure */
8621 for (j = 0;
8622 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8623 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8625 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8626 break;
8627 udelay(10);
8630 if (i == 30) {
8631 printk(KERN_ERR DRV_NAME
8632 ": %s: No response from Symbol - hw not alive\n",
8633 dev->name);
8634 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8635 return -EIO;
8638 return 0;