Linux 4.4.145
[linux/fpc-iii.git] / drivers / net / wireless / iwlegacy / prph.h
blobffec4b4a248ab498bff1bee28d2868a10c53e65d
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #ifndef __il_prph_h__
64 #define __il_prph_h__
67 * Registers in this file are internal, not PCI bus memory mapped.
68 * Driver accesses these via HBUS_TARG_PRPH_* registers.
70 #define PRPH_BASE (0x00000)
71 #define PRPH_END (0xFFFFF)
73 /* APMG (power management) constants */
74 #define APMG_BASE (PRPH_BASE + 0x3000)
75 #define APMG_CLK_CTRL_REG (APMG_BASE + 0x0000)
76 #define APMG_CLK_EN_REG (APMG_BASE + 0x0004)
77 #define APMG_CLK_DIS_REG (APMG_BASE + 0x0008)
78 #define APMG_PS_CTRL_REG (APMG_BASE + 0x000c)
79 #define APMG_PCIDEV_STT_REG (APMG_BASE + 0x0010)
80 #define APMG_RFKILL_REG (APMG_BASE + 0x0014)
81 #define APMG_RTC_INT_STT_REG (APMG_BASE + 0x001c)
82 #define APMG_RTC_INT_MSK_REG (APMG_BASE + 0x0020)
83 #define APMG_DIGITAL_SVR_REG (APMG_BASE + 0x0058)
84 #define APMG_ANALOG_SVR_REG (APMG_BASE + 0x006C)
86 #define APMS_CLK_VAL_MRB_FUNC_MODE (0x00000001)
87 #define APMG_CLK_VAL_DMA_CLK_RQT (0x00000200)
88 #define APMG_CLK_VAL_BSM_CLK_RQT (0x00000800)
90 #define APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS (0x00400000)
91 #define APMG_PS_CTRL_VAL_RESET_REQ (0x04000000)
92 #define APMG_PS_CTRL_MSK_PWR_SRC (0x03000000)
93 #define APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000)
94 #define APMG_PS_CTRL_VAL_PWR_SRC_MAX (0x01000000) /* 3945 only */
95 #define APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x02000000)
96 #define APMG_SVR_VOLTAGE_CONFIG_BIT_MSK (0x000001E0) /* bit 8:5 */
97 #define APMG_SVR_DIGITAL_VOLTAGE_1_32 (0x00000060)
99 #define APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800)
102 * BSM (Bootstrap State Machine)
104 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
105 * in special SRAM that does not power down when the embedded control
106 * processor is sleeping (e.g. for periodic power-saving shutdowns of radio).
108 * When powering back up after sleeps (or during initial uCode load), the BSM
109 * internally loads the short bootstrap program from the special SRAM into the
110 * embedded processor's instruction SRAM, and starts the processor so it runs
111 * the bootstrap program.
113 * This bootstrap program loads (via PCI busmaster DMA) instructions and data
114 * images for a uCode program from host DRAM locations. The host driver
115 * indicates DRAM locations and sizes for instruction and data images via the
116 * four BSM_DRAM_* registers. Once the bootstrap program loads the new program,
117 * the new program starts automatically.
119 * The uCode used for open-source drivers includes two programs:
121 * 1) Initialization -- performs hardware calibration and sets up some
122 * internal data, then notifies host via "initialize alive" notification
123 * (struct il_init_alive_resp) that it has completed all of its work.
124 * After signal from host, it then loads and starts the runtime program.
125 * The initialization program must be used when initially setting up the
126 * NIC after loading the driver.
128 * 2) Runtime/Protocol -- performs all normal runtime operations. This
129 * notifies host via "alive" notification (struct il_alive_resp) that it
130 * is ready to be used.
132 * When initializing the NIC, the host driver does the following procedure:
134 * 1) Load bootstrap program (instructions only, no data image for bootstrap)
135 * into bootstrap memory. Use dword writes starting at BSM_SRAM_LOWER_BOUND
137 * 2) Point (via BSM_DRAM_*) to the "initialize" uCode data and instruction
138 * images in host DRAM.
140 * 3) Set up BSM to copy from BSM SRAM into uCode instruction SRAM when asked:
141 * BSM_WR_MEM_SRC_REG = 0
142 * BSM_WR_MEM_DST_REG = RTC_INST_LOWER_BOUND
143 * BSM_WR_MEM_DWCOUNT_REG = # dwords in bootstrap instruction image
145 * 4) Load bootstrap into instruction SRAM:
146 * BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START
148 * 5) Wait for load completion:
149 * Poll BSM_WR_CTRL_REG for BSM_WR_CTRL_REG_BIT_START = 0
151 * 6) Enable future boot loads whenever NIC's power management triggers it:
152 * BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START_EN
154 * 7) Start the NIC by removing all reset bits:
155 * CSR_RESET = 0
157 * The bootstrap uCode (already in instruction SRAM) loads initialization
158 * uCode. Initialization uCode performs data initialization, sends
159 * "initialize alive" notification to host, and waits for a signal from
160 * host to load runtime code.
162 * 4) Point (via BSM_DRAM_*) to the "runtime" uCode data and instruction
163 * images in host DRAM. The last register loaded must be the instruction
164 * byte count register ("1" in MSbit tells initialization uCode to load
165 * the runtime uCode):
166 * BSM_DRAM_INST_BYTECOUNT_REG = byte count | BSM_DRAM_INST_LOAD
168 * 5) Wait for "alive" notification, then issue normal runtime commands.
170 * Data caching during power-downs:
172 * Just before the embedded controller powers down (e.g for automatic
173 * power-saving modes, or for RFKILL), uCode stores (via PCI busmaster DMA)
174 * a current snapshot of the embedded processor's data SRAM into host DRAM.
175 * This caches the data while the embedded processor's memory is powered down.
176 * Location and size are controlled by BSM_DRAM_DATA_* registers.
178 * NOTE: Instruction SRAM does not need to be saved, since that doesn't
179 * change during operation; the original image (from uCode distribution
180 * file) can be used for reload.
182 * When powering back up, the BSM loads the bootstrap program. Bootstrap looks
183 * at the BSM_DRAM_* registers, which now point to the runtime instruction
184 * image and the cached (modified) runtime data (*not* the initialization
185 * uCode). Bootstrap reloads these runtime images into SRAM, and restarts the
186 * uCode from where it left off before the power-down.
188 * NOTE: Initialization uCode does *not* run as part of the save/restore
189 * procedure.
191 * This save/restore method is mostly for autonomous power management during
192 * normal operation (result of C_POWER_TBL). Platform suspend/resume and
193 * RFKILL should use complete restarts (with total re-initialization) of uCode,
194 * allowing total shutdown (including BSM memory).
196 * Note that, during normal operation, the host DRAM that held the initial
197 * startup data for the runtime code is now being used as a backup data cache
198 * for modified data! If you need to completely re-initialize the NIC, make
199 * sure that you use the runtime data image from the uCode distribution file,
200 * not the modified/saved runtime data. You may want to store a separate
201 * "clean" runtime data image in DRAM to avoid disk reads of distribution file.
204 /* BSM bit fields */
205 #define BSM_WR_CTRL_REG_BIT_START (0x80000000) /* start boot load now */
206 #define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000) /* enable boot after pwrup */
207 #define BSM_DRAM_INST_LOAD (0x80000000) /* start program load now */
209 /* BSM addresses */
210 #define BSM_BASE (PRPH_BASE + 0x3400)
211 #define BSM_END (PRPH_BASE + 0x3800)
213 #define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */
214 #define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */
215 #define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */
216 #define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */
217 #define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */
220 * Pointers and size regs for bootstrap load and data SRAM save/restore.
221 * NOTE: 3945 pointers use bits 31:0 of DRAM address.
222 * 4965 pointers use bits 35:4 of DRAM address.
224 #define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090)
225 #define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094)
226 #define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098)
227 #define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C)
230 * BSM special memory, stays powered on during power-save sleeps.
231 * Read/write, address range from LOWER_BOUND to (LOWER_BOUND + SIZE -1)
233 #define BSM_SRAM_LOWER_BOUND (PRPH_BASE + 0x3800)
234 #define BSM_SRAM_SIZE (1024) /* bytes */
236 /* 3945 Tx scheduler registers */
237 #define ALM_SCD_BASE (PRPH_BASE + 0x2E00)
238 #define ALM_SCD_MODE_REG (ALM_SCD_BASE + 0x000)
239 #define ALM_SCD_ARASTAT_REG (ALM_SCD_BASE + 0x004)
240 #define ALM_SCD_TXFACT_REG (ALM_SCD_BASE + 0x010)
241 #define ALM_SCD_TXF4MF_REG (ALM_SCD_BASE + 0x014)
242 #define ALM_SCD_TXF5MF_REG (ALM_SCD_BASE + 0x020)
243 #define ALM_SCD_SBYP_MODE_1_REG (ALM_SCD_BASE + 0x02C)
244 #define ALM_SCD_SBYP_MODE_2_REG (ALM_SCD_BASE + 0x030)
247 * Tx Scheduler
249 * The Tx Scheduler selects the next frame to be transmitted, choosing TFDs
250 * (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in
251 * host DRAM. It steers each frame's Tx command (which contains the frame
252 * data) into one of up to 7 prioritized Tx DMA FIFO channels within the
253 * device. A queue maps to only one (selectable by driver) Tx DMA channel,
254 * but one DMA channel may take input from several queues.
256 * Tx DMA FIFOs have dedicated purposes. For 4965, they are used as follows
257 * (cf. default_queue_to_tx_fifo in 4965.c):
259 * 0 -- EDCA BK (background) frames, lowest priority
260 * 1 -- EDCA BE (best effort) frames, normal priority
261 * 2 -- EDCA VI (video) frames, higher priority
262 * 3 -- EDCA VO (voice) and management frames, highest priority
263 * 4 -- Commands (e.g. RXON, etc.)
264 * 5 -- unused (HCCA)
265 * 6 -- unused (HCCA)
266 * 7 -- not used by driver (device-internal only)
269 * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6.
270 * In addition, driver can map the remaining queues to Tx DMA/FIFO
271 * channels 0-3 to support 11n aggregation via EDCA DMA channels.
273 * The driver sets up each queue to work in one of two modes:
275 * 1) Scheduler-Ack, in which the scheduler automatically supports a
276 * block-ack (BA) win of up to 64 TFDs. In this mode, each queue
277 * contains TFDs for a unique combination of Recipient Address (RA)
278 * and Traffic Identifier (TID), that is, traffic of a given
279 * Quality-Of-Service (QOS) priority, destined for a single station.
281 * In scheduler-ack mode, the scheduler keeps track of the Tx status of
282 * each frame within the BA win, including whether it's been transmitted,
283 * and whether it's been acknowledged by the receiving station. The device
284 * automatically processes block-acks received from the receiving STA,
285 * and reschedules un-acked frames to be retransmitted (successful
286 * Tx completion may end up being out-of-order).
288 * The driver must maintain the queue's Byte Count table in host DRAM
289 * (struct il4965_sched_queue_byte_cnt_tbl) for this mode.
290 * This mode does not support fragmentation.
292 * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order.
293 * The device may automatically retry Tx, but will retry only one frame
294 * at a time, until receiving ACK from receiving station, or reaching
295 * retry limit and giving up.
297 * The command queue (#4/#9) must use this mode!
298 * This mode does not require use of the Byte Count table in host DRAM.
300 * Driver controls scheduler operation via 3 means:
301 * 1) Scheduler registers
302 * 2) Shared scheduler data base in internal 4956 SRAM
303 * 3) Shared data in host DRAM
305 * Initialization:
307 * When loading, driver should allocate memory for:
308 * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs.
309 * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory
310 * (1024 bytes for each queue).
312 * After receiving "Alive" response from uCode, driver must initialize
313 * the scheduler (especially for queue #4/#9, the command queue, otherwise
314 * the driver can't issue commands!):
318 * Max Tx win size is the max number of contiguous TFDs that the scheduler
319 * can keep track of at one time when creating block-ack chains of frames.
320 * Note that "64" matches the number of ack bits in a block-ack packet.
321 * Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize
322 * IL49_SCD_CONTEXT_QUEUE_OFFSET(x) values.
324 #define SCD_WIN_SIZE 64
325 #define SCD_FRAME_LIMIT 64
327 /* SCD registers are internal, must be accessed via HBUS_TARG_PRPH regs */
328 #define IL49_SCD_START_OFFSET 0xa02c00
331 * 4965 tells driver SRAM address for internal scheduler structs via this reg.
332 * Value is valid only after "Alive" response from uCode.
334 #define IL49_SCD_SRAM_BASE_ADDR (IL49_SCD_START_OFFSET + 0x0)
337 * Driver may need to update queue-empty bits after changing queue's
338 * write and read pointers (idxes) during (re-)initialization (i.e. when
339 * scheduler is not tracking what's happening).
340 * Bit fields:
341 * 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit
342 * 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty
343 * NOTE: This register is not used by Linux driver.
345 #define IL49_SCD_EMPTY_BITS (IL49_SCD_START_OFFSET + 0x4)
348 * Physical base address of array of byte count (BC) circular buffers (CBs).
349 * Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode.
350 * This register points to BC CB for queue 0, must be on 1024-byte boundary.
351 * Others are spaced by 1024 bytes.
352 * Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad.
353 * (Index into a queue's BC CB) = (idx into queue's TFD CB) = (SSN & 0xff).
354 * Bit fields:
355 * 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned.
357 #define IL49_SCD_DRAM_BASE_ADDR (IL49_SCD_START_OFFSET + 0x10)
360 * Enables any/all Tx DMA/FIFO channels.
361 * Scheduler generates requests for only the active channels.
362 * Set this to 0xff to enable all 8 channels (normal usage).
363 * Bit fields:
364 * 7- 0: Enable (1), disable (0), one bit for each channel 0-7
366 #define IL49_SCD_TXFACT (IL49_SCD_START_OFFSET + 0x1c)
368 * Queue (x) Write Pointers (idxes, really!), one for each Tx queue.
369 * Initialized and updated by driver as new TFDs are added to queue.
370 * NOTE: If using Block Ack, idx must correspond to frame's
371 * Start Sequence Number; idx = (SSN & 0xff)
372 * NOTE: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses?
374 #define IL49_SCD_QUEUE_WRPTR(x) (IL49_SCD_START_OFFSET + 0x24 + (x) * 4)
377 * Queue (x) Read Pointers (idxes, really!), one for each Tx queue.
378 * For FIFO mode, idx indicates next frame to transmit.
379 * For Scheduler-ACK mode, idx indicates first frame in Tx win.
380 * Initialized by driver, updated by scheduler.
382 #define IL49_SCD_QUEUE_RDPTR(x) (IL49_SCD_START_OFFSET + 0x64 + (x) * 4)
385 * Select which queues work in chain mode (1) vs. not (0).
386 * Use chain mode to build chains of aggregated frames.
387 * Bit fields:
388 * 31-16: Reserved
389 * 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time
390 * NOTE: If driver sets up queue for chain mode, it should be also set up
391 * Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x).
393 #define IL49_SCD_QUEUECHAIN_SEL (IL49_SCD_START_OFFSET + 0xd0)
396 * Select which queues interrupt driver when scheduler increments
397 * a queue's read pointer (idx).
398 * Bit fields:
399 * 31-16: Reserved
400 * 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled
401 * NOTE: This functionality is apparently a no-op; driver relies on interrupts
402 * from Rx queue to read Tx command responses and update Tx queues.
404 #define IL49_SCD_INTERRUPT_MASK (IL49_SCD_START_OFFSET + 0xe4)
407 * Queue search status registers. One for each queue.
408 * Sets up queue mode and assigns queue to Tx DMA channel.
409 * Bit fields:
410 * 19-10: Write mask/enable bits for bits 0-9
411 * 9: Driver should init to "0"
412 * 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0).
413 * Driver should init to "1" for aggregation mode, or "0" otherwise.
414 * 7-6: Driver should init to "0"
415 * 5: Window Size Left; indicates whether scheduler can request
416 * another TFD, based on win size, etc. Driver should init
417 * this bit to "1" for aggregation mode, or "0" for non-agg.
418 * 4-1: Tx FIFO to use (range 0-7).
419 * 0: Queue is active (1), not active (0).
420 * Other bits should be written as "0"
422 * NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled
423 * via SCD_QUEUECHAIN_SEL.
425 #define IL49_SCD_QUEUE_STATUS_BITS(x)\
426 (IL49_SCD_START_OFFSET + 0x104 + (x) * 4)
428 /* Bit field positions */
429 #define IL49_SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
430 #define IL49_SCD_QUEUE_STTS_REG_POS_TXF (1)
431 #define IL49_SCD_QUEUE_STTS_REG_POS_WSL (5)
432 #define IL49_SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
434 /* Write masks */
435 #define IL49_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
436 #define IL49_SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
439 * 4965 internal SRAM structures for scheduler, shared with driver ...
441 * Driver should clear and initialize the following areas after receiving
442 * "Alive" response from 4965 uCode, i.e. after initial
443 * uCode load, or after a uCode load done for error recovery:
445 * SCD_CONTEXT_DATA_OFFSET (size 128 bytes)
446 * SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes)
447 * SCD_TRANSLATE_TBL_OFFSET (size 32 bytes)
449 * Driver accesses SRAM via HBUS_TARG_MEM_* registers.
450 * Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR.
451 * All OFFSET values must be added to this base address.
455 * Queue context. One 8-byte entry for each of 16 queues.
457 * Driver should clear this entire area (size 0x80) to 0 after receiving
458 * "Alive" notification from uCode. Additionally, driver should init
459 * each queue's entry as follows:
461 * LS Dword bit fields:
462 * 0-06: Max Tx win size for Scheduler-ACK. Driver should init to 64.
464 * MS Dword bit fields:
465 * 16-22: Frame limit. Driver should init to 10 (0xa).
467 * Driver should init all other bits to 0.
469 * Init must be done after driver receives "Alive" response from 4965 uCode,
470 * and when setting up queue for aggregation.
472 #define IL49_SCD_CONTEXT_DATA_OFFSET 0x380
473 #define IL49_SCD_CONTEXT_QUEUE_OFFSET(x) \
474 (IL49_SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
476 #define IL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
477 #define IL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
478 #define IL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
479 #define IL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
482 * Tx Status Bitmap
484 * Driver should clear this entire area (size 0x100) to 0 after receiving
485 * "Alive" notification from uCode. Area is used only by device itself;
486 * no other support (besides clearing) is required from driver.
488 #define IL49_SCD_TX_STTS_BITMAP_OFFSET 0x400
491 * RAxTID to queue translation mapping.
493 * When queue is in Scheduler-ACK mode, frames placed in a that queue must be
494 * for only one combination of receiver address (RA) and traffic ID (TID), i.e.
495 * one QOS priority level destined for one station (for this wireless link,
496 * not final destination). The SCD_TRANSLATE_TBL area provides 16 16-bit
497 * mappings, one for each of the 16 queues. If queue is not in Scheduler-ACK
498 * mode, the device ignores the mapping value.
500 * Bit fields, for each 16-bit map:
501 * 15-9: Reserved, set to 0
502 * 8-4: Index into device's station table for recipient station
503 * 3-0: Traffic ID (tid), range 0-15
505 * Driver should clear this entire area (size 32 bytes) to 0 after receiving
506 * "Alive" notification from uCode. To update a 16-bit map value, driver
507 * must read a dword-aligned value from device SRAM, replace the 16-bit map
508 * value of interest, and write the dword value back into device SRAM.
510 #define IL49_SCD_TRANSLATE_TBL_OFFSET 0x500
512 /* Find translation table dword to read/write for given queue */
513 #define IL49_SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
514 ((IL49_SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
516 #define IL_SCD_TXFIFO_POS_TID (0)
517 #define IL_SCD_TXFIFO_POS_RA (4)
518 #define IL_SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
520 /*********************** END TX SCHEDULER *************************************/
522 #endif /* __il_prph_h__ */