2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt2500pci device specific routines.
22 Supported chipsets: RT2560.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56 static void rt2500pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
57 const unsigned int word
, const u8 value
)
61 mutex_lock(&rt2x00dev
->csr_mutex
);
64 * Wait until the BBP becomes available, afterwards we
65 * can safely write the new data into the register.
67 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
69 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
70 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
71 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
72 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
74 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
77 mutex_unlock(&rt2x00dev
->csr_mutex
);
80 static void rt2500pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
81 const unsigned int word
, u8
*value
)
85 mutex_lock(&rt2x00dev
->csr_mutex
);
88 * Wait until the BBP becomes available, afterwards we
89 * can safely write the read request into the register.
90 * After the data has been written, we wait until hardware
91 * returns the correct value, if at any time the register
92 * doesn't become available in time, reg will be 0xffffffff
93 * which means we return 0xff to the caller.
95 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
97 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
98 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
99 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
101 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
103 WAIT_FOR_BBP(rt2x00dev
, ®
);
106 *value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
108 mutex_unlock(&rt2x00dev
->csr_mutex
);
111 static void rt2500pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
112 const unsigned int word
, const u32 value
)
116 mutex_lock(&rt2x00dev
->csr_mutex
);
119 * Wait until the RF becomes available, afterwards we
120 * can safely write the new data into the register.
122 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
124 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
125 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
126 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
127 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
129 rt2x00mmio_register_write(rt2x00dev
, RFCSR
, reg
);
130 rt2x00_rf_write(rt2x00dev
, word
, value
);
133 mutex_unlock(&rt2x00dev
->csr_mutex
);
136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
138 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
141 rt2x00mmio_register_read(rt2x00dev
, CSR21
, ®
);
143 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
144 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
145 eeprom
->reg_data_clock
=
146 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
147 eeprom
->reg_chip_select
=
148 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
153 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
156 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
157 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
158 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
159 !!eeprom
->reg_data_clock
);
160 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
161 !!eeprom
->reg_chip_select
);
163 rt2x00mmio_register_write(rt2x00dev
, CSR21
, reg
);
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
168 .owner
= THIS_MODULE
,
170 .read
= rt2x00mmio_register_read
,
171 .write
= rt2x00mmio_register_write
,
172 .flags
= RT2X00DEBUGFS_OFFSET
,
173 .word_base
= CSR_REG_BASE
,
174 .word_size
= sizeof(u32
),
175 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
178 .read
= rt2x00_eeprom_read
,
179 .write
= rt2x00_eeprom_write
,
180 .word_base
= EEPROM_BASE
,
181 .word_size
= sizeof(u16
),
182 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
185 .read
= rt2500pci_bbp_read
,
186 .write
= rt2500pci_bbp_write
,
187 .word_base
= BBP_BASE
,
188 .word_size
= sizeof(u8
),
189 .word_count
= BBP_SIZE
/ sizeof(u8
),
192 .read
= rt2x00_rf_read
,
193 .write
= rt2500pci_rf_write
,
194 .word_base
= RF_BASE
,
195 .word_size
= sizeof(u32
),
196 .word_count
= RF_SIZE
/ sizeof(u32
),
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
205 rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
, ®
);
206 return rt2x00_get_field32(reg
, GPIOCSR_VAL0
);
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2500pci_brightness_set(struct led_classdev
*led_cdev
,
211 enum led_brightness brightness
)
213 struct rt2x00_led
*led
=
214 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
215 unsigned int enabled
= brightness
!= LED_OFF
;
218 rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
220 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
221 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
222 else if (led
->type
== LED_TYPE_ACTIVITY
)
223 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
225 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
228 static int rt2500pci_blink_set(struct led_classdev
*led_cdev
,
229 unsigned long *delay_on
,
230 unsigned long *delay_off
)
232 struct rt2x00_led
*led
=
233 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
236 rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
237 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
238 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
239 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
244 static void rt2500pci_init_led(struct rt2x00_dev
*rt2x00dev
,
245 struct rt2x00_led
*led
,
248 led
->rt2x00dev
= rt2x00dev
;
250 led
->led_dev
.brightness_set
= rt2500pci_brightness_set
;
251 led
->led_dev
.blink_set
= rt2500pci_blink_set
;
252 led
->flags
= LED_INITIALIZED
;
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
257 * Configuration handlers.
259 static void rt2500pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
260 const unsigned int filter_flags
)
265 * Start configuration steps.
266 * Note that the version error will always be dropped
267 * and broadcast frames will always be accepted since
268 * there is no filter for it at this time.
270 rt2x00mmio_register_read(rt2x00dev
, RXCSR0
, ®
);
271 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
272 !(filter_flags
& FIF_FCSFAIL
));
273 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
274 !(filter_flags
& FIF_PLCPFAIL
));
275 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
276 !(filter_flags
& FIF_CONTROL
));
277 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
, 1);
278 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
279 !rt2x00dev
->intf_ap_count
);
280 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
281 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
282 !(filter_flags
& FIF_ALLMULTI
));
283 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
284 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
287 static void rt2500pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
288 struct rt2x00_intf
*intf
,
289 struct rt2x00intf_conf
*conf
,
290 const unsigned int flags
)
292 struct data_queue
*queue
= rt2x00dev
->bcn
;
293 unsigned int bcn_preload
;
296 if (flags
& CONFIG_UPDATE_TYPE
) {
298 * Enable beacon config
300 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
301 rt2x00mmio_register_read(rt2x00dev
, BCNCSR1
, ®
);
302 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
303 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
, queue
->cw_min
);
304 rt2x00mmio_register_write(rt2x00dev
, BCNCSR1
, reg
);
307 * Enable synchronisation.
309 rt2x00mmio_register_read(rt2x00dev
, CSR14
, ®
);
310 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
311 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
314 if (flags
& CONFIG_UPDATE_MAC
)
315 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR3
,
316 conf
->mac
, sizeof(conf
->mac
));
318 if (flags
& CONFIG_UPDATE_BSSID
)
319 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR5
,
320 conf
->bssid
, sizeof(conf
->bssid
));
323 static void rt2500pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
324 struct rt2x00lib_erp
*erp
,
331 * When short preamble is enabled, we should set bit 0x08
333 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
334 preamble_mask
= erp
->short_preamble
<< 3;
336 rt2x00mmio_register_read(rt2x00dev
, TXCSR1
, ®
);
337 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x162);
338 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0xa2);
339 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
340 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
341 rt2x00mmio_register_write(rt2x00dev
, TXCSR1
, reg
);
343 rt2x00mmio_register_read(rt2x00dev
, ARCSR2
, ®
);
344 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
345 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
346 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
347 GET_DURATION(ACK_SIZE
, 10));
348 rt2x00mmio_register_write(rt2x00dev
, ARCSR2
, reg
);
350 rt2x00mmio_register_read(rt2x00dev
, ARCSR3
, ®
);
351 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
352 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
353 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
354 GET_DURATION(ACK_SIZE
, 20));
355 rt2x00mmio_register_write(rt2x00dev
, ARCSR3
, reg
);
357 rt2x00mmio_register_read(rt2x00dev
, ARCSR4
, ®
);
358 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
359 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
360 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
361 GET_DURATION(ACK_SIZE
, 55));
362 rt2x00mmio_register_write(rt2x00dev
, ARCSR4
, reg
);
364 rt2x00mmio_register_read(rt2x00dev
, ARCSR5
, ®
);
365 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
366 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
367 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
368 GET_DURATION(ACK_SIZE
, 110));
369 rt2x00mmio_register_write(rt2x00dev
, ARCSR5
, reg
);
372 if (changed
& BSS_CHANGED_BASIC_RATES
)
373 rt2x00mmio_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
375 if (changed
& BSS_CHANGED_ERP_SLOT
) {
376 rt2x00mmio_register_read(rt2x00dev
, CSR11
, ®
);
377 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
378 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
380 rt2x00mmio_register_read(rt2x00dev
, CSR18
, ®
);
381 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
382 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
383 rt2x00mmio_register_write(rt2x00dev
, CSR18
, reg
);
385 rt2x00mmio_register_read(rt2x00dev
, CSR19
, ®
);
386 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
387 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
388 rt2x00mmio_register_write(rt2x00dev
, CSR19
, reg
);
391 if (changed
& BSS_CHANGED_BEACON_INT
) {
392 rt2x00mmio_register_read(rt2x00dev
, CSR12
, ®
);
393 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
394 erp
->beacon_int
* 16);
395 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
396 erp
->beacon_int
* 16);
397 rt2x00mmio_register_write(rt2x00dev
, CSR12
, reg
);
402 static void rt2500pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
403 struct antenna_setup
*ant
)
410 * We should never come here because rt2x00lib is supposed
411 * to catch this and send us the correct antenna explicitely.
413 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
414 ant
->tx
== ANTENNA_SW_DIVERSITY
);
416 rt2x00mmio_register_read(rt2x00dev
, BBPCSR1
, ®
);
417 rt2500pci_bbp_read(rt2x00dev
, 14, &r14
);
418 rt2500pci_bbp_read(rt2x00dev
, 2, &r2
);
421 * Configure the TX antenna.
425 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
426 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
427 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
431 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
432 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
433 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
438 * Configure the RX antenna.
442 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
446 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
451 * RT2525E and RT5222 need to flip TX I/Q
453 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
454 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
455 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
456 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
459 * RT2525E does not need RX I/Q Flip.
461 if (rt2x00_rf(rt2x00dev
, RF2525E
))
462 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
464 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
465 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
468 rt2x00mmio_register_write(rt2x00dev
, BBPCSR1
, reg
);
469 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
470 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
473 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
474 struct rf_channel
*rf
, const int txpower
)
481 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
484 * Switch on tuning bits.
485 * For RT2523 devices we do not need to update the R1 register.
487 if (!rt2x00_rf(rt2x00dev
, RF2523
))
488 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
489 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
492 * For RT2525 we should first set the channel to half band higher.
494 if (rt2x00_rf(rt2x00dev
, RF2525
)) {
495 static const u32 vals
[] = {
496 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
497 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
498 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
499 0x00080d2e, 0x00080d3a
502 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
503 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
504 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
506 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
509 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
510 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
511 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
513 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
516 * Channel 14 requires the Japan filter bit to be set.
519 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
520 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
525 * Switch off tuning bits.
526 * For RT2523 devices we do not need to update the R1 register.
528 if (!rt2x00_rf(rt2x00dev
, RF2523
)) {
529 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
530 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
533 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
534 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
537 * Clear false CRC during channel switch.
539 rt2x00mmio_register_read(rt2x00dev
, CNT0
, &rf
->rf1
);
542 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
547 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
548 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
549 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
552 static void rt2500pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
553 struct rt2x00lib_conf
*libconf
)
557 rt2x00mmio_register_read(rt2x00dev
, CSR11
, ®
);
558 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
559 libconf
->conf
->long_frame_max_tx_count
);
560 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
561 libconf
->conf
->short_frame_max_tx_count
);
562 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
565 static void rt2500pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
566 struct rt2x00lib_conf
*libconf
)
568 enum dev_state state
=
569 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
570 STATE_SLEEP
: STATE_AWAKE
;
573 if (state
== STATE_SLEEP
) {
574 rt2x00mmio_register_read(rt2x00dev
, CSR20
, ®
);
575 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
576 (rt2x00dev
->beacon_int
- 20) * 16);
577 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
578 libconf
->conf
->listen_interval
- 1);
580 /* We must first disable autowake before it can be enabled */
581 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
582 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
584 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
585 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
587 rt2x00mmio_register_read(rt2x00dev
, CSR20
, ®
);
588 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
589 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
592 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
595 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
596 struct rt2x00lib_conf
*libconf
,
597 const unsigned int flags
)
599 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
600 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
601 libconf
->conf
->power_level
);
602 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
603 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
604 rt2500pci_config_txpower(rt2x00dev
,
605 libconf
->conf
->power_level
);
606 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
607 rt2500pci_config_retry_limit(rt2x00dev
, libconf
);
608 if (flags
& IEEE80211_CONF_CHANGE_PS
)
609 rt2500pci_config_ps(rt2x00dev
, libconf
);
615 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
616 struct link_qual
*qual
)
621 * Update FCS error count from register.
623 rt2x00mmio_register_read(rt2x00dev
, CNT0
, ®
);
624 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
627 * Update False CCA count from register.
629 rt2x00mmio_register_read(rt2x00dev
, CNT3
, ®
);
630 qual
->false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
633 static inline void rt2500pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
634 struct link_qual
*qual
, u8 vgc_level
)
636 if (qual
->vgc_level_reg
!= vgc_level
) {
637 rt2500pci_bbp_write(rt2x00dev
, 17, vgc_level
);
638 qual
->vgc_level
= vgc_level
;
639 qual
->vgc_level_reg
= vgc_level
;
643 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
644 struct link_qual
*qual
)
646 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x48);
649 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
650 struct link_qual
*qual
, const u32 count
)
653 * To prevent collisions with MAC ASIC on chipsets
654 * up to version C the link tuning should halt after 20
655 * seconds while being associated.
657 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
&&
658 rt2x00dev
->intf_associated
&& count
> 20)
662 * Chipset versions C and lower should directly continue
663 * to the dynamic CCA tuning. Chipset version D and higher
664 * should go straight to dynamic CCA tuning when they
665 * are not associated.
667 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
||
668 !rt2x00dev
->intf_associated
)
669 goto dynamic_cca_tune
;
672 * A too low RSSI will cause too much false CCA which will
673 * then corrupt the R17 tuning. To remidy this the tuning should
674 * be stopped (While making sure the R17 value will not exceed limits)
676 if (qual
->rssi
< -80 && count
> 20) {
677 if (qual
->vgc_level_reg
>= 0x41)
678 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
683 * Special big-R17 for short distance
685 if (qual
->rssi
>= -58) {
686 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x50);
691 * Special mid-R17 for middle distance
693 if (qual
->rssi
>= -74) {
694 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x41);
699 * Leave short or middle distance condition, restore r17
700 * to the dynamic tuning range.
702 if (qual
->vgc_level_reg
>= 0x41) {
703 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
710 * R17 is inside the dynamic tuning range,
711 * start tuning the link based on the false cca counter.
713 if (qual
->false_cca
> 512 && qual
->vgc_level_reg
< 0x40)
714 rt2500pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level_reg
);
715 else if (qual
->false_cca
< 100 && qual
->vgc_level_reg
> 0x32)
716 rt2500pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level_reg
);
722 static void rt2500pci_start_queue(struct data_queue
*queue
)
724 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
727 switch (queue
->qid
) {
729 rt2x00mmio_register_read(rt2x00dev
, RXCSR0
, ®
);
730 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 0);
731 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
734 rt2x00mmio_register_read(rt2x00dev
, CSR14
, ®
);
735 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
736 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
737 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
738 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
745 static void rt2500pci_kick_queue(struct data_queue
*queue
)
747 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
750 switch (queue
->qid
) {
752 rt2x00mmio_register_read(rt2x00dev
, TXCSR0
, ®
);
753 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
754 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
757 rt2x00mmio_register_read(rt2x00dev
, TXCSR0
, ®
);
758 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
759 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
762 rt2x00mmio_register_read(rt2x00dev
, TXCSR0
, ®
);
763 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
764 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
771 static void rt2500pci_stop_queue(struct data_queue
*queue
)
773 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
776 switch (queue
->qid
) {
780 rt2x00mmio_register_read(rt2x00dev
, TXCSR0
, ®
);
781 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
782 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
785 rt2x00mmio_register_read(rt2x00dev
, RXCSR0
, ®
);
786 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 1);
787 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
790 rt2x00mmio_register_read(rt2x00dev
, CSR14
, ®
);
791 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
792 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
793 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
794 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
797 * Wait for possibly running tbtt tasklets.
799 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
807 * Initialization functions.
809 static bool rt2500pci_get_entry_state(struct queue_entry
*entry
)
811 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
814 if (entry
->queue
->qid
== QID_RX
) {
815 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
817 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
819 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
821 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
822 rt2x00_get_field32(word
, TXD_W0_VALID
));
826 static void rt2500pci_clear_entry(struct queue_entry
*entry
)
828 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
829 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
832 if (entry
->queue
->qid
== QID_RX
) {
833 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
834 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
835 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
837 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
838 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
839 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
841 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
842 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
843 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
844 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
848 static int rt2500pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
850 struct queue_entry_priv_mmio
*entry_priv
;
854 * Initialize registers.
856 rt2x00mmio_register_read(rt2x00dev
, TXCSR2
, ®
);
857 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
858 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
859 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->atim
->limit
);
860 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
861 rt2x00mmio_register_write(rt2x00dev
, TXCSR2
, reg
);
863 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
864 rt2x00mmio_register_read(rt2x00dev
, TXCSR3
, ®
);
865 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
866 entry_priv
->desc_dma
);
867 rt2x00mmio_register_write(rt2x00dev
, TXCSR3
, reg
);
869 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
870 rt2x00mmio_register_read(rt2x00dev
, TXCSR5
, ®
);
871 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
872 entry_priv
->desc_dma
);
873 rt2x00mmio_register_write(rt2x00dev
, TXCSR5
, reg
);
875 entry_priv
= rt2x00dev
->atim
->entries
[0].priv_data
;
876 rt2x00mmio_register_read(rt2x00dev
, TXCSR4
, ®
);
877 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
878 entry_priv
->desc_dma
);
879 rt2x00mmio_register_write(rt2x00dev
, TXCSR4
, reg
);
881 entry_priv
= rt2x00dev
->bcn
->entries
[0].priv_data
;
882 rt2x00mmio_register_read(rt2x00dev
, TXCSR6
, ®
);
883 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
884 entry_priv
->desc_dma
);
885 rt2x00mmio_register_write(rt2x00dev
, TXCSR6
, reg
);
887 rt2x00mmio_register_read(rt2x00dev
, RXCSR1
, ®
);
888 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
889 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
890 rt2x00mmio_register_write(rt2x00dev
, RXCSR1
, reg
);
892 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
893 rt2x00mmio_register_read(rt2x00dev
, RXCSR2
, ®
);
894 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
895 entry_priv
->desc_dma
);
896 rt2x00mmio_register_write(rt2x00dev
, RXCSR2
, reg
);
901 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
905 rt2x00mmio_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
906 rt2x00mmio_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
907 rt2x00mmio_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
908 rt2x00mmio_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
910 rt2x00mmio_register_read(rt2x00dev
, TIMECSR
, ®
);
911 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
912 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
913 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
914 rt2x00mmio_register_write(rt2x00dev
, TIMECSR
, reg
);
916 rt2x00mmio_register_read(rt2x00dev
, CSR9
, ®
);
917 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
918 rt2x00dev
->rx
->data_size
/ 128);
919 rt2x00mmio_register_write(rt2x00dev
, CSR9
, reg
);
922 * Always use CWmin and CWmax set in descriptor.
924 rt2x00mmio_register_read(rt2x00dev
, CSR11
, ®
);
925 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
926 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
928 rt2x00mmio_register_read(rt2x00dev
, CSR14
, ®
);
929 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
930 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
931 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
932 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
933 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
934 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
935 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
936 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
937 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
939 rt2x00mmio_register_write(rt2x00dev
, CNT3
, 0);
941 rt2x00mmio_register_read(rt2x00dev
, TXCSR8
, ®
);
942 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
943 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
944 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
945 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
946 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
947 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
948 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
949 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
950 rt2x00mmio_register_write(rt2x00dev
, TXCSR8
, reg
);
952 rt2x00mmio_register_read(rt2x00dev
, ARTCSR0
, ®
);
953 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
954 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
955 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
956 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
957 rt2x00mmio_register_write(rt2x00dev
, ARTCSR0
, reg
);
959 rt2x00mmio_register_read(rt2x00dev
, ARTCSR1
, ®
);
960 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
961 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
962 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
963 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
964 rt2x00mmio_register_write(rt2x00dev
, ARTCSR1
, reg
);
966 rt2x00mmio_register_read(rt2x00dev
, ARTCSR2
, ®
);
967 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
968 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
969 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
970 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
971 rt2x00mmio_register_write(rt2x00dev
, ARTCSR2
, reg
);
973 rt2x00mmio_register_read(rt2x00dev
, RXCSR3
, ®
);
974 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
975 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
976 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
977 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
978 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
979 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
980 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
981 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
982 rt2x00mmio_register_write(rt2x00dev
, RXCSR3
, reg
);
984 rt2x00mmio_register_read(rt2x00dev
, PCICSR
, ®
);
985 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
986 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
987 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
988 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
989 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
990 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
991 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
992 rt2x00mmio_register_write(rt2x00dev
, PCICSR
, reg
);
994 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
996 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
997 rt2x00mmio_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
999 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1002 rt2x00mmio_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
1003 rt2x00mmio_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
1005 rt2x00mmio_register_read(rt2x00dev
, MACCSR2
, ®
);
1006 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
1007 rt2x00mmio_register_write(rt2x00dev
, MACCSR2
, reg
);
1009 rt2x00mmio_register_read(rt2x00dev
, RALINKCSR
, ®
);
1010 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
1011 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
1012 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
1013 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
1014 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
1015 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
1016 rt2x00mmio_register_write(rt2x00dev
, RALINKCSR
, reg
);
1018 rt2x00mmio_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
1020 rt2x00mmio_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
1022 rt2x00mmio_register_read(rt2x00dev
, CSR1
, ®
);
1023 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
1024 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
1025 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
1026 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
1028 rt2x00mmio_register_read(rt2x00dev
, CSR1
, ®
);
1029 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
1030 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
1031 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
1034 * We must clear the FCS and FIFO error count.
1035 * These registers are cleared on read,
1036 * so we may pass a useless variable to store the value.
1038 rt2x00mmio_register_read(rt2x00dev
, CNT0
, ®
);
1039 rt2x00mmio_register_read(rt2x00dev
, CNT4
, ®
);
1044 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1049 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1050 rt2500pci_bbp_read(rt2x00dev
, 0, &value
);
1051 if ((value
!= 0xff) && (value
!= 0x00))
1053 udelay(REGISTER_BUSY_DELAY
);
1056 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1060 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1067 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev
)))
1070 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
1071 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
1072 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
1073 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
1074 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
1075 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
1076 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
1077 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
1078 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
1079 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
1080 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
1081 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
1082 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
1083 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
1084 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
1085 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
1086 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
1087 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
1088 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
1089 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
1090 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
1091 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
1092 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
1093 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
1094 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
1095 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
1096 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
1097 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
1098 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
1099 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
1101 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1102 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1104 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1105 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1106 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1107 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
1115 * Device state switch handlers.
1117 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1118 enum dev_state state
)
1120 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1122 unsigned long flags
;
1125 * When interrupts are being enabled, the interrupt registers
1126 * should clear the register to assure a clean state.
1128 if (state
== STATE_RADIO_IRQ_ON
) {
1129 rt2x00mmio_register_read(rt2x00dev
, CSR7
, ®
);
1130 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1134 * Only toggle the interrupts bits we are going to use.
1135 * Non-checked interrupt bits are disabled by default.
1137 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1139 rt2x00mmio_register_read(rt2x00dev
, CSR8
, ®
);
1140 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1141 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1142 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1143 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1144 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1145 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1147 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1149 if (state
== STATE_RADIO_IRQ_OFF
) {
1151 * Ensure that all tasklets are finished.
1153 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1154 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1155 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1159 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1162 * Initialize all registers.
1164 if (unlikely(rt2500pci_init_queues(rt2x00dev
) ||
1165 rt2500pci_init_registers(rt2x00dev
) ||
1166 rt2500pci_init_bbp(rt2x00dev
)))
1172 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1177 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0);
1180 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1181 enum dev_state state
)
1189 put_to_sleep
= (state
!= STATE_AWAKE
);
1191 rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
, ®
);
1192 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1193 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1194 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1195 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1196 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1199 * Device is not guaranteed to be in the requested state yet.
1200 * We must wait until the register indicates that the
1201 * device has entered the correct state.
1203 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1204 rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
, ®2
);
1205 bbp_state
= rt2x00_get_field32(reg2
, PWRCSR1_BBP_CURR_STATE
);
1206 rf_state
= rt2x00_get_field32(reg2
, PWRCSR1_RF_CURR_STATE
);
1207 if (bbp_state
== state
&& rf_state
== state
)
1209 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1216 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1217 enum dev_state state
)
1222 case STATE_RADIO_ON
:
1223 retval
= rt2500pci_enable_radio(rt2x00dev
);
1225 case STATE_RADIO_OFF
:
1226 rt2500pci_disable_radio(rt2x00dev
);
1228 case STATE_RADIO_IRQ_ON
:
1229 case STATE_RADIO_IRQ_OFF
:
1230 rt2500pci_toggle_irq(rt2x00dev
, state
);
1232 case STATE_DEEP_SLEEP
:
1236 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1243 if (unlikely(retval
))
1244 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1251 * TX descriptor initialization
1253 static void rt2500pci_write_tx_desc(struct queue_entry
*entry
,
1254 struct txentry_desc
*txdesc
)
1256 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1257 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1258 __le32
*txd
= entry_priv
->desc
;
1262 * Start writing the descriptor words.
1264 rt2x00_desc_read(txd
, 1, &word
);
1265 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1266 rt2x00_desc_write(txd
, 1, word
);
1268 rt2x00_desc_read(txd
, 2, &word
);
1269 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1270 rt2x00_set_field32(&word
, TXD_W2_AIFS
, entry
->queue
->aifs
);
1271 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, entry
->queue
->cw_min
);
1272 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, entry
->queue
->cw_max
);
1273 rt2x00_desc_write(txd
, 2, word
);
1275 rt2x00_desc_read(txd
, 3, &word
);
1276 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1277 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1278 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
,
1279 txdesc
->u
.plcp
.length_low
);
1280 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
,
1281 txdesc
->u
.plcp
.length_high
);
1282 rt2x00_desc_write(txd
, 3, word
);
1284 rt2x00_desc_read(txd
, 10, &word
);
1285 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1286 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1287 rt2x00_desc_write(txd
, 10, word
);
1290 * Writing TXD word 0 must the last to prevent a race condition with
1291 * the device, whereby the device may take hold of the TXD before we
1292 * finished updating it.
1294 rt2x00_desc_read(txd
, 0, &word
);
1295 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1296 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1297 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1298 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1299 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1300 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1301 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1302 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1303 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1304 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1305 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1306 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1307 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1308 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1309 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1310 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1311 rt2x00_desc_write(txd
, 0, word
);
1314 * Register descriptor details in skb frame descriptor.
1316 skbdesc
->desc
= txd
;
1317 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1321 * TX data initialization
1323 static void rt2500pci_write_beacon(struct queue_entry
*entry
,
1324 struct txentry_desc
*txdesc
)
1326 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1330 * Disable beaconing while we are reloading the beacon data,
1331 * otherwise we might be sending out invalid data.
1333 rt2x00mmio_register_read(rt2x00dev
, CSR14
, ®
);
1334 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1335 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1337 if (rt2x00queue_map_txskb(entry
)) {
1338 rt2x00_err(rt2x00dev
, "Fail to map beacon, aborting\n");
1343 * Write the TX descriptor for the beacon.
1345 rt2500pci_write_tx_desc(entry
, txdesc
);
1348 * Dump beacon to userspace through debugfs.
1350 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
1353 * Enable beaconing again.
1355 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1356 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1360 * RX control handlers
1362 static void rt2500pci_fill_rxdone(struct queue_entry
*entry
,
1363 struct rxdone_entry_desc
*rxdesc
)
1365 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1369 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
1370 rt2x00_desc_read(entry_priv
->desc
, 2, &word2
);
1372 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1373 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1374 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1375 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1378 * Obtain the status about this packet.
1379 * When frame was received with an OFDM bitrate,
1380 * the signal is the PLCP value. If it was received with
1381 * a CCK bitrate the signal is the rate in 100kbit/s.
1383 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1384 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1385 entry
->queue
->rt2x00dev
->rssi_offset
;
1386 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1388 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1389 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1391 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1392 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1393 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1397 * Interrupt functions.
1399 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1400 const enum data_queue_qid queue_idx
)
1402 struct data_queue
*queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
1403 struct queue_entry_priv_mmio
*entry_priv
;
1404 struct queue_entry
*entry
;
1405 struct txdone_entry_desc txdesc
;
1408 while (!rt2x00queue_empty(queue
)) {
1409 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1410 entry_priv
= entry
->priv_data
;
1411 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1413 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1414 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1418 * Obtain the status about this packet.
1421 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1422 case 0: /* Success */
1423 case 1: /* Success with retry */
1424 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1426 case 2: /* Failure, excessive retries */
1427 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1428 /* Don't break, this is a failed frame! */
1429 default: /* Failure */
1430 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1432 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1434 rt2x00lib_txdone(entry
, &txdesc
);
1438 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
1439 struct rt2x00_field32 irq_field
)
1444 * Enable a single interrupt. The interrupt mask register
1445 * access needs locking.
1447 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1449 rt2x00mmio_register_read(rt2x00dev
, CSR8
, ®
);
1450 rt2x00_set_field32(®
, irq_field
, 0);
1451 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1453 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1456 static void rt2500pci_txstatus_tasklet(unsigned long data
)
1458 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1462 * Handle all tx queues.
1464 rt2500pci_txdone(rt2x00dev
, QID_ATIM
);
1465 rt2500pci_txdone(rt2x00dev
, QID_AC_VO
);
1466 rt2500pci_txdone(rt2x00dev
, QID_AC_VI
);
1469 * Enable all TXDONE interrupts again.
1471 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
)) {
1472 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1474 rt2x00mmio_register_read(rt2x00dev
, CSR8
, ®
);
1475 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, 0);
1476 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, 0);
1477 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, 0);
1478 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1480 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1484 static void rt2500pci_tbtt_tasklet(unsigned long data
)
1486 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1487 rt2x00lib_beacondone(rt2x00dev
);
1488 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1489 rt2500pci_enable_interrupt(rt2x00dev
, CSR8_TBCN_EXPIRE
);
1492 static void rt2500pci_rxdone_tasklet(unsigned long data
)
1494 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1495 if (rt2x00mmio_rxdone(rt2x00dev
))
1496 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1497 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1498 rt2500pci_enable_interrupt(rt2x00dev
, CSR8_RXDONE
);
1501 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1503 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1507 * Get the interrupt sources & saved to local variable.
1508 * Write register value back to clear pending interrupts.
1510 rt2x00mmio_register_read(rt2x00dev
, CSR7
, ®
);
1511 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1516 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1522 * Schedule tasklets for interrupt handling.
1524 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1525 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
1527 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1528 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1530 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
) ||
1531 rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
) ||
1532 rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
)) {
1533 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
1535 * Mask out all txdone interrupts.
1537 rt2x00_set_field32(&mask
, CSR8_TXDONE_TXRING
, 1);
1538 rt2x00_set_field32(&mask
, CSR8_TXDONE_ATIMRING
, 1);
1539 rt2x00_set_field32(&mask
, CSR8_TXDONE_PRIORING
, 1);
1543 * Disable all interrupts for which a tasklet was scheduled right now,
1544 * the tasklet will reenable the appropriate interrupts.
1546 spin_lock(&rt2x00dev
->irqmask_lock
);
1548 rt2x00mmio_register_read(rt2x00dev
, CSR8
, ®
);
1550 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1552 spin_unlock(&rt2x00dev
->irqmask_lock
);
1558 * Device probe functions.
1560 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1562 struct eeprom_93cx6 eeprom
;
1567 rt2x00mmio_register_read(rt2x00dev
, CSR21
, ®
);
1569 eeprom
.data
= rt2x00dev
;
1570 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1571 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1572 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1573 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1574 eeprom
.reg_data_in
= 0;
1575 eeprom
.reg_data_out
= 0;
1576 eeprom
.reg_data_clock
= 0;
1577 eeprom
.reg_chip_select
= 0;
1579 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1580 EEPROM_SIZE
/ sizeof(u16
));
1583 * Start validation of the data that has been read.
1585 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1586 if (!is_valid_ether_addr(mac
)) {
1587 eth_random_addr(mac
);
1588 rt2x00_eeprom_dbg(rt2x00dev
, "MAC: %pM\n", mac
);
1591 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1592 if (word
== 0xffff) {
1593 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1594 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1595 ANTENNA_SW_DIVERSITY
);
1596 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1597 ANTENNA_SW_DIVERSITY
);
1598 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1600 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1601 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1602 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1603 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1604 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1607 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1608 if (word
== 0xffff) {
1609 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1610 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1611 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1612 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1613 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1616 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1617 if (word
== 0xffff) {
1618 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1619 DEFAULT_RSSI_OFFSET
);
1620 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1621 rt2x00_eeprom_dbg(rt2x00dev
, "Calibrate offset: 0x%04x\n",
1628 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1635 * Read EEPROM word for configuration.
1637 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1640 * Identify RF chipset.
1642 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1643 rt2x00mmio_register_read(rt2x00dev
, CSR0
, ®
);
1644 rt2x00_set_chip(rt2x00dev
, RT2560
, value
,
1645 rt2x00_get_field32(reg
, CSR0_REVISION
));
1647 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1648 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1649 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1650 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1651 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1652 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1653 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1658 * Identify default antenna configuration.
1660 rt2x00dev
->default_ant
.tx
=
1661 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1662 rt2x00dev
->default_ant
.rx
=
1663 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1666 * Store led mode, for correct led behaviour.
1668 #ifdef CONFIG_RT2X00_LIB_LEDS
1669 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1671 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1672 if (value
== LED_MODE_TXRX_ACTIVITY
||
1673 value
== LED_MODE_DEFAULT
||
1674 value
== LED_MODE_ASUS
)
1675 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1677 #endif /* CONFIG_RT2X00_LIB_LEDS */
1680 * Detect if this device has an hardware controlled radio.
1682 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
)) {
1683 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1685 * On this device RFKILL initialized during probe does not work.
1687 __set_bit(REQUIRE_DELAYED_RFKILL
, &rt2x00dev
->cap_flags
);
1691 * Check if the BBP tuning should be enabled.
1693 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1694 if (!rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1695 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
1698 * Read the RSSI <-> dBm offset information.
1700 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1701 rt2x00dev
->rssi_offset
=
1702 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1708 * RF value list for RF2522
1711 static const struct rf_channel rf_vals_bg_2522
[] = {
1712 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1713 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1714 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1715 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1716 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1717 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1718 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1719 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1720 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1721 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1722 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1723 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1724 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1725 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1729 * RF value list for RF2523
1732 static const struct rf_channel rf_vals_bg_2523
[] = {
1733 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1734 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1735 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1736 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1737 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1738 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1739 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1740 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1741 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1742 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1743 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1744 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1745 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1746 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1750 * RF value list for RF2524
1753 static const struct rf_channel rf_vals_bg_2524
[] = {
1754 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1755 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1756 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1757 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1758 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1759 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1760 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1761 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1762 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1763 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1764 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1765 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1766 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1767 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1771 * RF value list for RF2525
1774 static const struct rf_channel rf_vals_bg_2525
[] = {
1775 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1776 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1777 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1778 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1779 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1780 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1781 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1782 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1783 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1784 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1785 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1786 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1787 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1788 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1792 * RF value list for RF2525e
1795 static const struct rf_channel rf_vals_bg_2525e
[] = {
1796 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1797 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1798 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1799 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1800 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1801 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1802 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1803 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1804 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1805 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1806 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1807 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1808 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1809 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1813 * RF value list for RF5222
1814 * Supports: 2.4 GHz & 5.2 GHz
1816 static const struct rf_channel rf_vals_5222
[] = {
1817 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1818 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1819 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1820 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1821 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1822 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1823 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1824 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1825 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1826 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1827 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1828 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1829 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1830 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1832 /* 802.11 UNI / HyperLan 2 */
1833 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1834 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1835 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1836 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1837 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1838 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1839 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1840 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1842 /* 802.11 HyperLan 2 */
1843 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1844 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1845 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1846 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1847 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1848 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1849 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1850 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1851 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1852 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1856 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1857 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1858 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1859 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862 static int rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1864 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1865 struct channel_info
*info
;
1870 * Initialize all hw fields.
1872 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1873 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1874 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
1875 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1877 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1878 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1879 rt2x00_eeprom_addr(rt2x00dev
,
1880 EEPROM_MAC_ADDR_0
));
1883 * Disable powersaving as default.
1885 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
1888 * Initialize hw_mode information.
1890 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1891 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1893 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1894 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1895 spec
->channels
= rf_vals_bg_2522
;
1896 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1897 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1898 spec
->channels
= rf_vals_bg_2523
;
1899 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1900 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1901 spec
->channels
= rf_vals_bg_2524
;
1902 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1903 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1904 spec
->channels
= rf_vals_bg_2525
;
1905 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1906 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1907 spec
->channels
= rf_vals_bg_2525e
;
1908 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1909 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1910 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1911 spec
->channels
= rf_vals_5222
;
1915 * Create channel information array
1917 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1921 spec
->channels_info
= info
;
1923 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1924 for (i
= 0; i
< 14; i
++) {
1925 info
[i
].max_power
= MAX_TXPOWER
;
1926 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1929 if (spec
->num_channels
> 14) {
1930 for (i
= 14; i
< spec
->num_channels
; i
++) {
1931 info
[i
].max_power
= MAX_TXPOWER
;
1932 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1939 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1945 * Allocate eeprom data.
1947 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1951 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1956 * Enable rfkill polling by setting GPIO direction of the
1957 * rfkill switch GPIO pin correctly.
1959 rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
, ®
);
1960 rt2x00_set_field32(®
, GPIOCSR_DIR0
, 1);
1961 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, reg
);
1964 * Initialize hw specifications.
1966 retval
= rt2500pci_probe_hw_mode(rt2x00dev
);
1971 * This device requires the atim queue and DMA-mapped skbs.
1973 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1974 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
1975 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1978 * Set the rssi offset.
1980 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1986 * IEEE80211 stack callback functions.
1988 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
,
1989 struct ieee80211_vif
*vif
)
1991 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1995 rt2x00mmio_register_read(rt2x00dev
, CSR17
, ®
);
1996 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1997 rt2x00mmio_register_read(rt2x00dev
, CSR16
, ®
);
1998 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
2003 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
2005 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2008 rt2x00mmio_register_read(rt2x00dev
, CSR15
, ®
);
2009 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
2012 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
2014 .start
= rt2x00mac_start
,
2015 .stop
= rt2x00mac_stop
,
2016 .add_interface
= rt2x00mac_add_interface
,
2017 .remove_interface
= rt2x00mac_remove_interface
,
2018 .config
= rt2x00mac_config
,
2019 .configure_filter
= rt2x00mac_configure_filter
,
2020 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2021 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2022 .get_stats
= rt2x00mac_get_stats
,
2023 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2024 .conf_tx
= rt2x00mac_conf_tx
,
2025 .get_tsf
= rt2500pci_get_tsf
,
2026 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
2027 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2028 .flush
= rt2x00mac_flush
,
2029 .set_antenna
= rt2x00mac_set_antenna
,
2030 .get_antenna
= rt2x00mac_get_antenna
,
2031 .get_ringparam
= rt2x00mac_get_ringparam
,
2032 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2035 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
2036 .irq_handler
= rt2500pci_interrupt
,
2037 .txstatus_tasklet
= rt2500pci_txstatus_tasklet
,
2038 .tbtt_tasklet
= rt2500pci_tbtt_tasklet
,
2039 .rxdone_tasklet
= rt2500pci_rxdone_tasklet
,
2040 .probe_hw
= rt2500pci_probe_hw
,
2041 .initialize
= rt2x00mmio_initialize
,
2042 .uninitialize
= rt2x00mmio_uninitialize
,
2043 .get_entry_state
= rt2500pci_get_entry_state
,
2044 .clear_entry
= rt2500pci_clear_entry
,
2045 .set_device_state
= rt2500pci_set_device_state
,
2046 .rfkill_poll
= rt2500pci_rfkill_poll
,
2047 .link_stats
= rt2500pci_link_stats
,
2048 .reset_tuner
= rt2500pci_reset_tuner
,
2049 .link_tuner
= rt2500pci_link_tuner
,
2050 .start_queue
= rt2500pci_start_queue
,
2051 .kick_queue
= rt2500pci_kick_queue
,
2052 .stop_queue
= rt2500pci_stop_queue
,
2053 .flush_queue
= rt2x00mmio_flush_queue
,
2054 .write_tx_desc
= rt2500pci_write_tx_desc
,
2055 .write_beacon
= rt2500pci_write_beacon
,
2056 .fill_rxdone
= rt2500pci_fill_rxdone
,
2057 .config_filter
= rt2500pci_config_filter
,
2058 .config_intf
= rt2500pci_config_intf
,
2059 .config_erp
= rt2500pci_config_erp
,
2060 .config_ant
= rt2500pci_config_ant
,
2061 .config
= rt2500pci_config
,
2064 static void rt2500pci_queue_init(struct data_queue
*queue
)
2066 switch (queue
->qid
) {
2069 queue
->data_size
= DATA_FRAME_SIZE
;
2070 queue
->desc_size
= RXD_DESC_SIZE
;
2071 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2079 queue
->data_size
= DATA_FRAME_SIZE
;
2080 queue
->desc_size
= TXD_DESC_SIZE
;
2081 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2086 queue
->data_size
= MGMT_FRAME_SIZE
;
2087 queue
->desc_size
= TXD_DESC_SIZE
;
2088 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2093 queue
->data_size
= DATA_FRAME_SIZE
;
2094 queue
->desc_size
= TXD_DESC_SIZE
;
2095 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2104 static const struct rt2x00_ops rt2500pci_ops
= {
2105 .name
= KBUILD_MODNAME
,
2107 .eeprom_size
= EEPROM_SIZE
,
2109 .tx_queues
= NUM_TX_QUEUES
,
2110 .queue_init
= rt2500pci_queue_init
,
2111 .lib
= &rt2500pci_rt2x00_ops
,
2112 .hw
= &rt2500pci_mac80211_ops
,
2113 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2114 .debugfs
= &rt2500pci_rt2x00debug
,
2115 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2119 * RT2500pci module information.
2121 static const struct pci_device_id rt2500pci_device_table
[] = {
2122 { PCI_DEVICE(0x1814, 0x0201) },
2126 MODULE_AUTHOR(DRV_PROJECT
);
2127 MODULE_VERSION(DRV_VERSION
);
2128 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2129 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2130 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
2131 MODULE_LICENSE("GPL");
2133 static int rt2500pci_probe(struct pci_dev
*pci_dev
,
2134 const struct pci_device_id
*id
)
2136 return rt2x00pci_probe(pci_dev
, &rt2500pci_ops
);
2139 static struct pci_driver rt2500pci_driver
= {
2140 .name
= KBUILD_MODNAME
,
2141 .id_table
= rt2500pci_device_table
,
2142 .probe
= rt2500pci_probe
,
2143 .remove
= rt2x00pci_remove
,
2144 .suspend
= rt2x00pci_suspend
,
2145 .resume
= rt2x00pci_resume
,
2148 module_pci_driver(rt2500pci_driver
);