2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt61pci device specific routines.
22 Supported chipsets: RT2561, RT2561s, RT2661.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
40 * Allow hardware encryption to be disabled.
42 static bool modparam_nohwcrypt
= false;
43 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
44 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attempt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 H2M_MAILBOX_CSR_OWNER, (__reg))
65 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
66 const unsigned int word
, const u8 value
)
70 mutex_lock(&rt2x00dev
->csr_mutex
);
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
76 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
78 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
79 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
80 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
81 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
83 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR3
, reg
);
86 mutex_unlock(&rt2x00dev
->csr_mutex
);
89 static void rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
90 const unsigned int word
, u8
*value
)
94 mutex_lock(&rt2x00dev
->csr_mutex
);
97 * Wait until the BBP becomes available, afterwards we
98 * can safely write the read request into the register.
99 * After the data has been written, we wait until hardware
100 * returns the correct value, if at any time the register
101 * doesn't become available in time, reg will be 0xffffffff
102 * which means we return 0xff to the caller.
104 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
106 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
107 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
108 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
110 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR3
, reg
);
112 WAIT_FOR_BBP(rt2x00dev
, ®
);
115 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
117 mutex_unlock(&rt2x00dev
->csr_mutex
);
120 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
121 const unsigned int word
, const u32 value
)
125 mutex_lock(&rt2x00dev
->csr_mutex
);
128 * Wait until the RF becomes available, afterwards we
129 * can safely write the new data into the register.
131 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
133 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
134 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
135 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
136 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
138 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR4
, reg
);
139 rt2x00_rf_write(rt2x00dev
, word
, value
);
142 mutex_unlock(&rt2x00dev
->csr_mutex
);
145 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
146 const u8 command
, const u8 token
,
147 const u8 arg0
, const u8 arg1
)
151 mutex_lock(&rt2x00dev
->csr_mutex
);
154 * Wait until the MCU becomes available, afterwards we
155 * can safely write the new data into the register.
157 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
158 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
159 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
160 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
161 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
162 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
164 rt2x00mmio_register_read(rt2x00dev
, HOST_CMD_CSR
, ®
);
165 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
166 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
167 rt2x00mmio_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
170 mutex_unlock(&rt2x00dev
->csr_mutex
);
174 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
176 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
179 rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
181 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
182 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
183 eeprom
->reg_data_clock
=
184 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
185 eeprom
->reg_chip_select
=
186 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
189 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
191 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
194 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
195 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
196 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
197 !!eeprom
->reg_data_clock
);
198 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
199 !!eeprom
->reg_chip_select
);
201 rt2x00mmio_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
204 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
205 static const struct rt2x00debug rt61pci_rt2x00debug
= {
206 .owner
= THIS_MODULE
,
208 .read
= rt2x00mmio_register_read
,
209 .write
= rt2x00mmio_register_write
,
210 .flags
= RT2X00DEBUGFS_OFFSET
,
211 .word_base
= CSR_REG_BASE
,
212 .word_size
= sizeof(u32
),
213 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
216 .read
= rt2x00_eeprom_read
,
217 .write
= rt2x00_eeprom_write
,
218 .word_base
= EEPROM_BASE
,
219 .word_size
= sizeof(u16
),
220 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
223 .read
= rt61pci_bbp_read
,
224 .write
= rt61pci_bbp_write
,
225 .word_base
= BBP_BASE
,
226 .word_size
= sizeof(u8
),
227 .word_count
= BBP_SIZE
/ sizeof(u8
),
230 .read
= rt2x00_rf_read
,
231 .write
= rt61pci_rf_write
,
232 .word_base
= RF_BASE
,
233 .word_size
= sizeof(u32
),
234 .word_count
= RF_SIZE
/ sizeof(u32
),
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
243 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
, ®
);
244 return rt2x00_get_field32(reg
, MAC_CSR13_VAL5
);
247 #ifdef CONFIG_RT2X00_LIB_LEDS
248 static void rt61pci_brightness_set(struct led_classdev
*led_cdev
,
249 enum led_brightness brightness
)
251 struct rt2x00_led
*led
=
252 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
253 unsigned int enabled
= brightness
!= LED_OFF
;
254 unsigned int a_mode
=
255 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
256 unsigned int bg_mode
=
257 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
259 if (led
->type
== LED_TYPE_RADIO
) {
260 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
261 MCU_LEDCS_RADIO_STATUS
, enabled
);
263 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
264 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
265 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
266 } else if (led
->type
== LED_TYPE_ASSOC
) {
267 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
268 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
269 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
270 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
272 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
273 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
274 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
275 } else if (led
->type
== LED_TYPE_QUALITY
) {
277 * The brightness is divided into 6 levels (0 - 5),
278 * this means we need to convert the brightness
279 * argument into the matching level within that range.
281 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
282 brightness
/ (LED_FULL
/ 6), 0);
286 static int rt61pci_blink_set(struct led_classdev
*led_cdev
,
287 unsigned long *delay_on
,
288 unsigned long *delay_off
)
290 struct rt2x00_led
*led
=
291 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
294 rt2x00mmio_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
295 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
296 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
297 rt2x00mmio_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
302 static void rt61pci_init_led(struct rt2x00_dev
*rt2x00dev
,
303 struct rt2x00_led
*led
,
306 led
->rt2x00dev
= rt2x00dev
;
308 led
->led_dev
.brightness_set
= rt61pci_brightness_set
;
309 led
->led_dev
.blink_set
= rt61pci_blink_set
;
310 led
->flags
= LED_INITIALIZED
;
312 #endif /* CONFIG_RT2X00_LIB_LEDS */
315 * Configuration handlers.
317 static int rt61pci_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
318 struct rt2x00lib_crypto
*crypto
,
319 struct ieee80211_key_conf
*key
)
321 struct hw_key_entry key_entry
;
322 struct rt2x00_field32 field
;
326 if (crypto
->cmd
== SET_KEY
) {
328 * rt2x00lib can't determine the correct free
329 * key_idx for shared keys. We have 1 register
330 * with key valid bits. The goal is simple, read
331 * the register, if that is full we have no slots
333 * Note that each BSS is allowed to have up to 4
334 * shared keys, so put a mask over the allowed
337 mask
= (0xf << crypto
->bssidx
);
339 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR0
, ®
);
342 if (reg
&& reg
== mask
)
345 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
348 * Upload key to hardware
350 memcpy(key_entry
.key
, crypto
->key
,
351 sizeof(key_entry
.key
));
352 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
353 sizeof(key_entry
.tx_mic
));
354 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
355 sizeof(key_entry
.rx_mic
));
357 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
358 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
359 &key_entry
, sizeof(key_entry
));
362 * The cipher types are stored over 2 registers.
363 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
364 * bssidx 1 and 2 keys are stored in SEC_CSR5.
365 * Using the correct defines correctly will cause overhead,
366 * so just calculate the correct offset.
368 if (key
->hw_key_idx
< 8) {
369 field
.bit_offset
= (3 * key
->hw_key_idx
);
370 field
.bit_mask
= 0x7 << field
.bit_offset
;
372 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR1
, ®
);
373 rt2x00_set_field32(®
, field
, crypto
->cipher
);
374 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR1
, reg
);
376 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
377 field
.bit_mask
= 0x7 << field
.bit_offset
;
379 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR5
, ®
);
380 rt2x00_set_field32(®
, field
, crypto
->cipher
);
381 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR5
, reg
);
385 * The driver does not support the IV/EIV generation
386 * in hardware. However it doesn't support the IV/EIV
387 * inside the ieee80211 frame either, but requires it
388 * to be provided separately for the descriptor.
389 * rt2x00lib will cut the IV/EIV data out of all frames
390 * given to us by mac80211, but we must tell mac80211
391 * to generate the IV/EIV data.
393 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
397 * SEC_CSR0 contains only single-bit fields to indicate
398 * a particular key is valid. Because using the FIELD32()
399 * defines directly will cause a lot of overhead, we use
400 * a calculation to determine the correct bit directly.
402 mask
= 1 << key
->hw_key_idx
;
404 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR0
, ®
);
405 if (crypto
->cmd
== SET_KEY
)
407 else if (crypto
->cmd
== DISABLE_KEY
)
409 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR0
, reg
);
414 static int rt61pci_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
415 struct rt2x00lib_crypto
*crypto
,
416 struct ieee80211_key_conf
*key
)
418 struct hw_pairwise_ta_entry addr_entry
;
419 struct hw_key_entry key_entry
;
423 if (crypto
->cmd
== SET_KEY
) {
425 * rt2x00lib can't determine the correct free
426 * key_idx for pairwise keys. We have 2 registers
427 * with key valid bits. The goal is simple: read
428 * the first register. If that is full, move to
430 * When both registers are full, we drop the key.
431 * Otherwise, we use the first invalid entry.
433 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR2
, ®
);
434 if (reg
&& reg
== ~0) {
435 key
->hw_key_idx
= 32;
436 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR3
, ®
);
437 if (reg
&& reg
== ~0)
441 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
444 * Upload key to hardware
446 memcpy(key_entry
.key
, crypto
->key
,
447 sizeof(key_entry
.key
));
448 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
449 sizeof(key_entry
.tx_mic
));
450 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
451 sizeof(key_entry
.rx_mic
));
453 memset(&addr_entry
, 0, sizeof(addr_entry
));
454 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
455 addr_entry
.cipher
= crypto
->cipher
;
457 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
458 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
459 &key_entry
, sizeof(key_entry
));
461 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
462 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
463 &addr_entry
, sizeof(addr_entry
));
466 * Enable pairwise lookup table for given BSS idx.
467 * Without this, received frames will not be decrypted
470 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR4
, ®
);
471 reg
|= (1 << crypto
->bssidx
);
472 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR4
, reg
);
475 * The driver does not support the IV/EIV generation
476 * in hardware. However it doesn't support the IV/EIV
477 * inside the ieee80211 frame either, but requires it
478 * to be provided separately for the descriptor.
479 * rt2x00lib will cut the IV/EIV data out of all frames
480 * given to us by mac80211, but we must tell mac80211
481 * to generate the IV/EIV data.
483 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
487 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
488 * a particular key is valid. Because using the FIELD32()
489 * defines directly will cause a lot of overhead, we use
490 * a calculation to determine the correct bit directly.
492 if (key
->hw_key_idx
< 32) {
493 mask
= 1 << key
->hw_key_idx
;
495 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR2
, ®
);
496 if (crypto
->cmd
== SET_KEY
)
498 else if (crypto
->cmd
== DISABLE_KEY
)
500 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR2
, reg
);
502 mask
= 1 << (key
->hw_key_idx
- 32);
504 rt2x00mmio_register_read(rt2x00dev
, SEC_CSR3
, ®
);
505 if (crypto
->cmd
== SET_KEY
)
507 else if (crypto
->cmd
== DISABLE_KEY
)
509 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR3
, reg
);
515 static void rt61pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
516 const unsigned int filter_flags
)
521 * Start configuration steps.
522 * Note that the version error will always be dropped
523 * and broadcast frames will always be accepted since
524 * there is no filter for it at this time.
526 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
527 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
528 !(filter_flags
& FIF_FCSFAIL
));
529 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
530 !(filter_flags
& FIF_PLCPFAIL
));
531 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
532 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
533 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
, 1);
534 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
535 !rt2x00dev
->intf_ap_count
);
536 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
537 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
538 !(filter_flags
& FIF_ALLMULTI
));
539 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
540 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
541 !(filter_flags
& FIF_CONTROL
));
542 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
545 static void rt61pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
546 struct rt2x00_intf
*intf
,
547 struct rt2x00intf_conf
*conf
,
548 const unsigned int flags
)
552 if (flags
& CONFIG_UPDATE_TYPE
) {
554 * Enable synchronisation.
556 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
557 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
558 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
561 if (flags
& CONFIG_UPDATE_MAC
) {
562 reg
= le32_to_cpu(conf
->mac
[1]);
563 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
564 conf
->mac
[1] = cpu_to_le32(reg
);
566 rt2x00mmio_register_multiwrite(rt2x00dev
, MAC_CSR2
,
567 conf
->mac
, sizeof(conf
->mac
));
570 if (flags
& CONFIG_UPDATE_BSSID
) {
571 reg
= le32_to_cpu(conf
->bssid
[1]);
572 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
573 conf
->bssid
[1] = cpu_to_le32(reg
);
575 rt2x00mmio_register_multiwrite(rt2x00dev
, MAC_CSR4
,
577 sizeof(conf
->bssid
));
581 static void rt61pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
582 struct rt2x00lib_erp
*erp
,
587 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
588 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
589 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
590 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
592 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
593 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
594 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
595 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
596 !!erp
->short_preamble
);
597 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
600 if (changed
& BSS_CHANGED_BASIC_RATES
)
601 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR5
,
604 if (changed
& BSS_CHANGED_BEACON_INT
) {
605 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
606 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
607 erp
->beacon_int
* 16);
608 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
611 if (changed
& BSS_CHANGED_ERP_SLOT
) {
612 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR9
, ®
);
613 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
614 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR9
, reg
);
616 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR8
, ®
);
617 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
618 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
619 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
620 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR8
, reg
);
624 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
625 struct antenna_setup
*ant
)
631 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
632 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
633 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
635 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF5325
));
638 * Configure the RX antenna.
641 case ANTENNA_HW_DIVERSITY
:
642 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
643 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
644 (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
));
647 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
648 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
649 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
650 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
652 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
656 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
657 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
658 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
659 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
661 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
665 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
666 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
667 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
670 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
671 struct antenna_setup
*ant
)
677 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
678 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
679 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
681 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF2529
));
682 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
683 !rt2x00_has_cap_frame_type(rt2x00dev
));
686 * Configure the RX antenna.
689 case ANTENNA_HW_DIVERSITY
:
690 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
693 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
694 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
698 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
699 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
703 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
704 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
705 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
708 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
709 const int p1
, const int p2
)
713 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
, ®
);
715 rt2x00_set_field32(®
, MAC_CSR13_DIR4
, 0);
716 rt2x00_set_field32(®
, MAC_CSR13_VAL4
, p1
);
718 rt2x00_set_field32(®
, MAC_CSR13_DIR3
, 0);
719 rt2x00_set_field32(®
, MAC_CSR13_VAL3
, !p2
);
721 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, reg
);
724 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
725 struct antenna_setup
*ant
)
731 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
732 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
733 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
736 * Configure the RX antenna.
740 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
741 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
742 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
744 case ANTENNA_HW_DIVERSITY
:
746 * FIXME: Antenna selection for the rf 2529 is very confusing
747 * in the legacy driver. Just default to antenna B until the
748 * legacy code can be properly translated into rt2x00 code.
752 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
753 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
754 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
758 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
759 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
760 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
766 * value[0] -> non-LNA
772 static const struct antenna_sel antenna_sel_a
[] = {
773 { 96, { 0x58, 0x78 } },
774 { 104, { 0x38, 0x48 } },
775 { 75, { 0xfe, 0x80 } },
776 { 86, { 0xfe, 0x80 } },
777 { 88, { 0xfe, 0x80 } },
778 { 35, { 0x60, 0x60 } },
779 { 97, { 0x58, 0x58 } },
780 { 98, { 0x58, 0x58 } },
783 static const struct antenna_sel antenna_sel_bg
[] = {
784 { 96, { 0x48, 0x68 } },
785 { 104, { 0x2c, 0x3c } },
786 { 75, { 0xfe, 0x80 } },
787 { 86, { 0xfe, 0x80 } },
788 { 88, { 0xfe, 0x80 } },
789 { 35, { 0x50, 0x50 } },
790 { 97, { 0x48, 0x48 } },
791 { 98, { 0x48, 0x48 } },
794 static void rt61pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
795 struct antenna_setup
*ant
)
797 const struct antenna_sel
*sel
;
803 * We should never come here because rt2x00lib is supposed
804 * to catch this and send us the correct antenna explicitely.
806 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
807 ant
->tx
== ANTENNA_SW_DIVERSITY
);
809 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
811 lna
= rt2x00_has_cap_external_lna_a(rt2x00dev
);
813 sel
= antenna_sel_bg
;
814 lna
= rt2x00_has_cap_external_lna_bg(rt2x00dev
);
817 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
818 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
820 rt2x00mmio_register_read(rt2x00dev
, PHY_CSR0
, ®
);
822 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
823 rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
824 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
825 rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
827 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR0
, reg
);
829 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
))
830 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
831 else if (rt2x00_rf(rt2x00dev
, RF2527
))
832 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
833 else if (rt2x00_rf(rt2x00dev
, RF2529
)) {
834 if (rt2x00_has_cap_double_antenna(rt2x00dev
))
835 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
837 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
841 static void rt61pci_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
842 struct rt2x00lib_conf
*libconf
)
847 if (libconf
->conf
->chandef
.chan
->band
== IEEE80211_BAND_2GHZ
) {
848 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
))
851 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
852 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
854 if (rt2x00_has_cap_external_lna_a(rt2x00dev
))
857 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
858 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
861 rt2x00dev
->lna_gain
= lna_gain
;
864 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
865 struct rf_channel
*rf
, const int txpower
)
871 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
872 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
874 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
876 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
877 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
878 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
881 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
882 r94
+= txpower
- MAX_TXPOWER
;
883 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
885 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
887 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
888 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
889 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
890 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
894 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
895 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
896 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
897 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
901 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
902 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
903 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
904 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
909 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
912 struct rf_channel rf
;
914 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
915 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
916 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
917 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
919 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
922 static void rt61pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
923 struct rt2x00lib_conf
*libconf
)
927 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
928 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
929 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
930 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
931 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
932 libconf
->conf
->long_frame_max_tx_count
);
933 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
934 libconf
->conf
->short_frame_max_tx_count
);
935 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
938 static void rt61pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
939 struct rt2x00lib_conf
*libconf
)
941 enum dev_state state
=
942 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
943 STATE_SLEEP
: STATE_AWAKE
;
946 if (state
== STATE_SLEEP
) {
947 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR11
, ®
);
948 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
949 rt2x00dev
->beacon_int
- 10);
950 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
951 libconf
->conf
->listen_interval
- 1);
952 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
954 /* We must first disable autowake before it can be enabled */
955 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
956 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
958 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
959 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
961 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
,
963 rt2x00mmio_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x0000001c);
964 rt2x00mmio_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000060);
966 rt61pci_mcu_request(rt2x00dev
, MCU_SLEEP
, 0xff, 0, 0);
968 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR11
, ®
);
969 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
970 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
971 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
972 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
973 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
975 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
,
977 rt2x00mmio_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x00000018);
978 rt2x00mmio_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000020);
980 rt61pci_mcu_request(rt2x00dev
, MCU_WAKEUP
, 0xff, 0, 0);
984 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
985 struct rt2x00lib_conf
*libconf
,
986 const unsigned int flags
)
988 /* Always recalculate LNA gain before changing configuration */
989 rt61pci_config_lna_gain(rt2x00dev
, libconf
);
991 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
992 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
993 libconf
->conf
->power_level
);
994 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
995 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
996 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
997 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
998 rt61pci_config_retry_limit(rt2x00dev
, libconf
);
999 if (flags
& IEEE80211_CONF_CHANGE_PS
)
1000 rt61pci_config_ps(rt2x00dev
, libconf
);
1006 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
1007 struct link_qual
*qual
)
1012 * Update FCS error count from register.
1014 rt2x00mmio_register_read(rt2x00dev
, STA_CSR0
, ®
);
1015 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
1018 * Update False CCA count from register.
1020 rt2x00mmio_register_read(rt2x00dev
, STA_CSR1
, ®
);
1021 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
1024 static inline void rt61pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
1025 struct link_qual
*qual
, u8 vgc_level
)
1027 if (qual
->vgc_level
!= vgc_level
) {
1028 rt61pci_bbp_write(rt2x00dev
, 17, vgc_level
);
1029 qual
->vgc_level
= vgc_level
;
1030 qual
->vgc_level_reg
= vgc_level
;
1034 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
1035 struct link_qual
*qual
)
1037 rt61pci_set_vgc(rt2x00dev
, qual
, 0x20);
1040 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
1041 struct link_qual
*qual
, const u32 count
)
1047 * Determine r17 bounds.
1049 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
1052 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
1059 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
)) {
1066 * If we are not associated, we should go straight to the
1067 * dynamic CCA tuning.
1069 if (!rt2x00dev
->intf_associated
)
1070 goto dynamic_cca_tune
;
1073 * Special big-R17 for very short distance
1075 if (qual
->rssi
>= -35) {
1076 rt61pci_set_vgc(rt2x00dev
, qual
, 0x60);
1081 * Special big-R17 for short distance
1083 if (qual
->rssi
>= -58) {
1084 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1089 * Special big-R17 for middle-short distance
1091 if (qual
->rssi
>= -66) {
1092 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
1097 * Special mid-R17 for middle distance
1099 if (qual
->rssi
>= -74) {
1100 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
1105 * Special case: Change up_bound based on the rssi.
1106 * Lower up_bound when rssi is weaker then -74 dBm.
1108 up_bound
-= 2 * (-74 - qual
->rssi
);
1109 if (low_bound
> up_bound
)
1110 up_bound
= low_bound
;
1112 if (qual
->vgc_level
> up_bound
) {
1113 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1120 * r17 does not yet exceed upper limit, continue and base
1121 * the r17 tuning on the false CCA count.
1123 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1124 rt61pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
1125 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1126 rt61pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
1132 static void rt61pci_start_queue(struct data_queue
*queue
)
1134 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1137 switch (queue
->qid
) {
1139 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1140 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1141 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1144 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1145 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1146 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1147 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1148 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1155 static void rt61pci_kick_queue(struct data_queue
*queue
)
1157 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1160 switch (queue
->qid
) {
1162 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1163 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
, 1);
1164 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1167 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1168 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
, 1);
1169 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1172 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1173 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
, 1);
1174 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1177 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1178 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
, 1);
1179 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1186 static void rt61pci_stop_queue(struct data_queue
*queue
)
1188 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1191 switch (queue
->qid
) {
1193 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1194 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1195 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1198 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1199 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1200 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1203 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1204 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1205 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1208 rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1209 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1210 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1213 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1214 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1215 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1218 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1219 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1220 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1221 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1222 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1225 * Wait for possibly running tbtt tasklets.
1227 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1235 * Firmware functions
1237 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1242 pci_read_config_word(to_pci_dev(rt2x00dev
->dev
), PCI_DEVICE_ID
, &chip
);
1245 fw_name
= FIRMWARE_RT2561
;
1247 case RT2561s_PCI_ID
:
1248 fw_name
= FIRMWARE_RT2561s
;
1251 fw_name
= FIRMWARE_RT2661
;
1261 static int rt61pci_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1262 const u8
*data
, const size_t len
)
1268 * Only support 8kb firmware files.
1271 return FW_BAD_LENGTH
;
1274 * The last 2 bytes in the firmware array are the crc checksum itself.
1275 * This means that we should never pass those 2 bytes to the crc
1278 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1281 * Use the crc itu-t algorithm.
1283 crc
= crc_itu_t(0, data
, len
- 2);
1284 crc
= crc_itu_t_byte(crc
, 0);
1285 crc
= crc_itu_t_byte(crc
, 0);
1287 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1290 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1291 const u8
*data
, const size_t len
)
1297 * Wait for stable hardware.
1299 for (i
= 0; i
< 100; i
++) {
1300 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1307 rt2x00_err(rt2x00dev
, "Unstable hardware\n");
1312 * Prepare MCU and mailbox for firmware loading.
1315 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1316 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1317 rt2x00mmio_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1318 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
1319 rt2x00mmio_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
1322 * Write firmware to device.
1325 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1326 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
1327 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1329 rt2x00mmio_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
1332 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
1333 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1335 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
1336 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1338 for (i
= 0; i
< 100; i
++) {
1339 rt2x00mmio_register_read(rt2x00dev
, MCU_CNTL_CSR
, ®
);
1340 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
1346 rt2x00_err(rt2x00dev
, "MCU Control register not ready\n");
1351 * Hardware needs another millisecond before it is ready.
1356 * Reset MAC and BBP registers.
1359 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1360 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1361 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1363 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1364 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1365 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1366 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1368 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1369 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1370 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1376 * Initialization functions.
1378 static bool rt61pci_get_entry_state(struct queue_entry
*entry
)
1380 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1383 if (entry
->queue
->qid
== QID_RX
) {
1384 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1386 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
1388 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1390 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1391 rt2x00_get_field32(word
, TXD_W0_VALID
));
1395 static void rt61pci_clear_entry(struct queue_entry
*entry
)
1397 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1398 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1401 if (entry
->queue
->qid
== QID_RX
) {
1402 rt2x00_desc_read(entry_priv
->desc
, 5, &word
);
1403 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1405 rt2x00_desc_write(entry_priv
->desc
, 5, word
);
1407 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1408 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1409 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1411 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1412 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1413 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1414 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1418 static int rt61pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
1420 struct queue_entry_priv_mmio
*entry_priv
;
1424 * Initialize registers.
1426 rt2x00mmio_register_read(rt2x00dev
, TX_RING_CSR0
, ®
);
1427 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1428 rt2x00dev
->tx
[0].limit
);
1429 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1430 rt2x00dev
->tx
[1].limit
);
1431 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1432 rt2x00dev
->tx
[2].limit
);
1433 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1434 rt2x00dev
->tx
[3].limit
);
1435 rt2x00mmio_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1437 rt2x00mmio_register_read(rt2x00dev
, TX_RING_CSR1
, ®
);
1438 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1439 rt2x00dev
->tx
[0].desc_size
/ 4);
1440 rt2x00mmio_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1442 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
1443 rt2x00mmio_register_read(rt2x00dev
, AC0_BASE_CSR
, ®
);
1444 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1445 entry_priv
->desc_dma
);
1446 rt2x00mmio_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1448 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
1449 rt2x00mmio_register_read(rt2x00dev
, AC1_BASE_CSR
, ®
);
1450 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1451 entry_priv
->desc_dma
);
1452 rt2x00mmio_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1454 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
1455 rt2x00mmio_register_read(rt2x00dev
, AC2_BASE_CSR
, ®
);
1456 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1457 entry_priv
->desc_dma
);
1458 rt2x00mmio_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1460 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
1461 rt2x00mmio_register_read(rt2x00dev
, AC3_BASE_CSR
, ®
);
1462 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1463 entry_priv
->desc_dma
);
1464 rt2x00mmio_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1466 rt2x00mmio_register_read(rt2x00dev
, RX_RING_CSR
, ®
);
1467 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
, rt2x00dev
->rx
->limit
);
1468 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1469 rt2x00dev
->rx
->desc_size
/ 4);
1470 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1471 rt2x00mmio_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1473 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
1474 rt2x00mmio_register_read(rt2x00dev
, RX_BASE_CSR
, ®
);
1475 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1476 entry_priv
->desc_dma
);
1477 rt2x00mmio_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1479 rt2x00mmio_register_read(rt2x00dev
, TX_DMA_DST_CSR
, ®
);
1480 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1481 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1482 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1483 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1484 rt2x00mmio_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1486 rt2x00mmio_register_read(rt2x00dev
, LOAD_TX_RING_CSR
, ®
);
1487 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1488 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1489 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1490 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1491 rt2x00mmio_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1493 rt2x00mmio_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1494 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1495 rt2x00mmio_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1500 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1504 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1505 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1506 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1507 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1508 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1510 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1511 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1512 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1513 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1514 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1515 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1516 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1517 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1518 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1519 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1522 * CCK TXD BBP registers
1524 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1525 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1526 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1527 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1528 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1529 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1530 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1531 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1532 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1533 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1536 * OFDM TXD BBP registers
1538 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1539 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1540 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1541 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1542 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1543 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1544 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1545 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1547 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1548 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1549 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1550 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1551 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1552 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1554 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1555 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1556 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1557 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1558 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1559 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1561 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1562 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1563 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1564 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1565 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1566 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1567 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1568 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1570 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1572 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1574 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1575 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1576 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1578 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1580 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1583 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1586 * Invalidate all Shared Keys (SEC_CSR0),
1587 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1589 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1590 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1591 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1593 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1594 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1595 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1596 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1598 rt2x00mmio_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1600 rt2x00mmio_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1602 rt2x00mmio_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1606 * For the Beacon base registers we only need to clear
1607 * the first byte since that byte contains the VALID and OWNER
1608 * bits which (when set to 0) will invalidate the entire beacon.
1610 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1611 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1612 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1613 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1616 * We must clear the error counters.
1617 * These registers are cleared on read,
1618 * so we may pass a useless variable to store the value.
1620 rt2x00mmio_register_read(rt2x00dev
, STA_CSR0
, ®
);
1621 rt2x00mmio_register_read(rt2x00dev
, STA_CSR1
, ®
);
1622 rt2x00mmio_register_read(rt2x00dev
, STA_CSR2
, ®
);
1625 * Reset MAC and BBP registers.
1627 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1628 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1629 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1630 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1632 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1633 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1634 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1635 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1637 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1638 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1639 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1644 static int rt61pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1649 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1650 rt61pci_bbp_read(rt2x00dev
, 0, &value
);
1651 if ((value
!= 0xff) && (value
!= 0x00))
1653 udelay(REGISTER_BUSY_DELAY
);
1656 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1660 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1667 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev
)))
1670 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1671 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1672 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1673 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1674 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1675 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1676 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1677 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1678 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1679 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1680 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1681 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1682 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1683 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1684 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1685 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1686 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1687 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1688 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1689 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1690 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1691 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1692 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1693 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1695 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1696 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1698 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1699 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1700 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1701 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1709 * Device state switch handlers.
1711 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1712 enum dev_state state
)
1714 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1716 unsigned long flags
;
1719 * When interrupts are being enabled, the interrupt registers
1720 * should clear the register to assure a clean state.
1722 if (state
== STATE_RADIO_IRQ_ON
) {
1723 rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1724 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1726 rt2x00mmio_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®
);
1727 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1731 * Only toggle the interrupts bits we are going to use.
1732 * Non-checked interrupt bits are disabled by default.
1734 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1736 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1737 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1738 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1739 rt2x00_set_field32(®
, INT_MASK_CSR_BEACON_DONE
, mask
);
1740 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1741 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1742 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1744 rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
1745 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1746 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1747 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1748 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1749 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1750 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1751 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1752 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1753 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_TWAKEUP
, mask
);
1754 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1756 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1758 if (state
== STATE_RADIO_IRQ_OFF
) {
1760 * Ensure that all tasklets are finished.
1762 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1763 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1764 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1765 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1769 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1774 * Initialize all registers.
1776 if (unlikely(rt61pci_init_queues(rt2x00dev
) ||
1777 rt61pci_init_registers(rt2x00dev
) ||
1778 rt61pci_init_bbp(rt2x00dev
)))
1784 rt2x00mmio_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1785 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1786 rt2x00mmio_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1791 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1796 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1799 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1805 put_to_sleep
= (state
!= STATE_AWAKE
);
1807 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1808 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1809 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1810 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1813 * Device is not guaranteed to be in the requested state yet.
1814 * We must wait until the register indicates that the
1815 * device has entered the correct state.
1817 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1818 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR12
, ®2
);
1819 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1820 if (state
== !put_to_sleep
)
1822 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1829 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1830 enum dev_state state
)
1835 case STATE_RADIO_ON
:
1836 retval
= rt61pci_enable_radio(rt2x00dev
);
1838 case STATE_RADIO_OFF
:
1839 rt61pci_disable_radio(rt2x00dev
);
1841 case STATE_RADIO_IRQ_ON
:
1842 case STATE_RADIO_IRQ_OFF
:
1843 rt61pci_toggle_irq(rt2x00dev
, state
);
1845 case STATE_DEEP_SLEEP
:
1849 retval
= rt61pci_set_state(rt2x00dev
, state
);
1856 if (unlikely(retval
))
1857 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1864 * TX descriptor initialization
1866 static void rt61pci_write_tx_desc(struct queue_entry
*entry
,
1867 struct txentry_desc
*txdesc
)
1869 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1870 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1871 __le32
*txd
= entry_priv
->desc
;
1875 * Start writing the descriptor words.
1877 rt2x00_desc_read(txd
, 1, &word
);
1878 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1879 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1880 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1881 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1882 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1883 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1884 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1885 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1886 rt2x00_desc_write(txd
, 1, word
);
1888 rt2x00_desc_read(txd
, 2, &word
);
1889 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1890 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1891 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1892 txdesc
->u
.plcp
.length_low
);
1893 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1894 txdesc
->u
.plcp
.length_high
);
1895 rt2x00_desc_write(txd
, 2, word
);
1897 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1898 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1899 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1902 rt2x00_desc_read(txd
, 5, &word
);
1903 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, entry
->queue
->qid
);
1904 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
,
1905 skbdesc
->entry
->entry_idx
);
1906 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1907 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1908 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1909 rt2x00_desc_write(txd
, 5, word
);
1911 if (entry
->queue
->qid
!= QID_BEACON
) {
1912 rt2x00_desc_read(txd
, 6, &word
);
1913 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1915 rt2x00_desc_write(txd
, 6, word
);
1917 rt2x00_desc_read(txd
, 11, &word
);
1918 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
,
1920 rt2x00_desc_write(txd
, 11, word
);
1924 * Writing TXD word 0 must the last to prevent a race condition with
1925 * the device, whereby the device may take hold of the TXD before we
1926 * finished updating it.
1928 rt2x00_desc_read(txd
, 0, &word
);
1929 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1930 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1931 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1932 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1933 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1934 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1935 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1936 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1937 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1938 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1939 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1940 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1941 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1942 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1943 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1944 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1945 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1946 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1947 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1948 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1949 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1950 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1951 rt2x00_desc_write(txd
, 0, word
);
1954 * Register descriptor details in skb frame descriptor.
1956 skbdesc
->desc
= txd
;
1957 skbdesc
->desc_len
= (entry
->queue
->qid
== QID_BEACON
) ? TXINFO_SIZE
:
1962 * TX data initialization
1964 static void rt61pci_write_beacon(struct queue_entry
*entry
,
1965 struct txentry_desc
*txdesc
)
1967 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1968 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1969 unsigned int beacon_base
;
1970 unsigned int padding_len
;
1974 * Disable beaconing while we are reloading the beacon data,
1975 * otherwise we might be sending out invalid data.
1977 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1979 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1980 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1983 * Write the TX descriptor for the beacon.
1985 rt61pci_write_tx_desc(entry
, txdesc
);
1988 * Dump beacon to userspace through debugfs.
1990 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
1993 * Write entire beacon with descriptor and padding to register.
1995 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
1996 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
1997 rt2x00_err(rt2x00dev
, "Failure padding beacon, aborting\n");
1998 /* skb freed by skb_pad() on failure */
2000 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
2004 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
2005 rt2x00mmio_register_multiwrite(rt2x00dev
, beacon_base
,
2006 entry_priv
->desc
, TXINFO_SIZE
);
2007 rt2x00mmio_register_multiwrite(rt2x00dev
, beacon_base
+ TXINFO_SIZE
,
2009 entry
->skb
->len
+ padding_len
);
2012 * Enable beaconing again.
2014 * For Wi-Fi faily generated beacons between participating
2015 * stations. Set TBTT phase adaptive adjustment step to 8us.
2017 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
2019 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
2020 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2023 * Clean up beacon skb.
2025 dev_kfree_skb_any(entry
->skb
);
2029 static void rt61pci_clear_beacon(struct queue_entry
*entry
)
2031 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2035 * Disable beaconing while we are reloading the beacon data,
2036 * otherwise we might be sending out invalid data.
2038 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
, &orig_reg
);
2040 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
2041 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2046 rt2x00mmio_register_write(rt2x00dev
,
2047 HW_BEACON_OFFSET(entry
->entry_idx
), 0);
2050 * Restore global beaconing state.
2052 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
2056 * RX control handlers
2058 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
2060 u8 offset
= rt2x00dev
->lna_gain
;
2063 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
2078 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
2079 if (lna
== 3 || lna
== 2)
2083 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
2086 static void rt61pci_fill_rxdone(struct queue_entry
*entry
,
2087 struct rxdone_entry_desc
*rxdesc
)
2089 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2090 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
2094 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
2095 rt2x00_desc_read(entry_priv
->desc
, 1, &word1
);
2097 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
2098 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
2100 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
2101 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
2103 if (rxdesc
->cipher
!= CIPHER_NONE
) {
2104 _rt2x00_desc_read(entry_priv
->desc
, 2, &rxdesc
->iv
[0]);
2105 _rt2x00_desc_read(entry_priv
->desc
, 3, &rxdesc
->iv
[1]);
2106 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
2108 _rt2x00_desc_read(entry_priv
->desc
, 4, &rxdesc
->icv
);
2109 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
2112 * Hardware has stripped IV/EIV data from 802.11 frame during
2113 * decryption. It has provided the data separately but rt2x00lib
2114 * should decide if it should be reinserted.
2116 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
2119 * The hardware has already checked the Michael Mic and has
2120 * stripped it from the frame. Signal this to mac80211.
2122 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
2124 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
2125 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
2126 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
2127 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
2131 * Obtain the status about this packet.
2132 * When frame was received with an OFDM bitrate,
2133 * the signal is the PLCP value. If it was received with
2134 * a CCK bitrate the signal is the rate in 100kbit/s.
2136 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
2137 rxdesc
->rssi
= rt61pci_agc_to_rssi(rt2x00dev
, word1
);
2138 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
2140 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
2141 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
2143 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
2144 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
2145 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
2149 * Interrupt functions.
2151 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
2153 struct data_queue
*queue
;
2154 struct queue_entry
*entry
;
2155 struct queue_entry
*entry_done
;
2156 struct queue_entry_priv_mmio
*entry_priv
;
2157 struct txdone_entry_desc txdesc
;
2165 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2166 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2167 * flag is not set anymore.
2169 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2170 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2171 * tx ring size for now.
2173 for (i
= 0; i
< rt2x00dev
->tx
->limit
; i
++) {
2174 rt2x00mmio_register_read(rt2x00dev
, STA_CSR4
, ®
);
2175 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
2179 * Skip this entry when it contains an invalid
2180 * queue identication number.
2182 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
2183 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, type
);
2184 if (unlikely(!queue
))
2188 * Skip this entry when it contains an invalid
2191 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
2192 if (unlikely(index
>= queue
->limit
))
2195 entry
= &queue
->entries
[index
];
2196 entry_priv
= entry
->priv_data
;
2197 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
2199 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
2200 !rt2x00_get_field32(word
, TXD_W0_VALID
))
2203 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2204 while (entry
!= entry_done
) {
2206 * Just report any entries we missed as failed.
2208 rt2x00_warn(rt2x00dev
, "TX status report missed for entry %d\n",
2209 entry_done
->entry_idx
);
2211 rt2x00lib_txdone_noinfo(entry_done
, TXDONE_UNKNOWN
);
2212 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2216 * Obtain the status about this packet.
2219 switch (rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
)) {
2220 case 0: /* Success, maybe with retry */
2221 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
2223 case 6: /* Failure, excessive retries */
2224 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
2225 /* Don't break, this is a failed frame! */
2226 default: /* Failure */
2227 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
2229 txdesc
.retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
2232 * the frame was retried at least once
2233 * -> hw used fallback rates
2236 __set_bit(TXDONE_FALLBACK
, &txdesc
.flags
);
2238 rt2x00lib_txdone(entry
, &txdesc
);
2242 static void rt61pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
2244 struct rt2x00lib_conf libconf
= { .conf
= &rt2x00dev
->hw
->conf
};
2246 rt61pci_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
2249 static inline void rt61pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
2250 struct rt2x00_field32 irq_field
)
2255 * Enable a single interrupt. The interrupt mask register
2256 * access needs locking.
2258 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2260 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
2261 rt2x00_set_field32(®
, irq_field
, 0);
2262 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2264 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2267 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev
*rt2x00dev
,
2268 struct rt2x00_field32 irq_field
)
2273 * Enable a single MCU interrupt. The interrupt mask register
2274 * access needs locking.
2276 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2278 rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
2279 rt2x00_set_field32(®
, irq_field
, 0);
2280 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2282 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2285 static void rt61pci_txstatus_tasklet(unsigned long data
)
2287 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2288 rt61pci_txdone(rt2x00dev
);
2289 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2290 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TXDONE
);
2293 static void rt61pci_tbtt_tasklet(unsigned long data
)
2295 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2296 rt2x00lib_beacondone(rt2x00dev
);
2297 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2298 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_BEACON_DONE
);
2301 static void rt61pci_rxdone_tasklet(unsigned long data
)
2303 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2304 if (rt2x00mmio_rxdone(rt2x00dev
))
2305 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2306 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2307 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RXDONE
);
2310 static void rt61pci_autowake_tasklet(unsigned long data
)
2312 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2313 rt61pci_wakeup(rt2x00dev
);
2314 rt2x00mmio_register_write(rt2x00dev
,
2315 M2H_CMD_DONE_CSR
, 0xffffffff);
2316 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2317 rt61pci_enable_mcu_interrupt(rt2x00dev
, MCU_INT_MASK_CSR_TWAKEUP
);
2320 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
2322 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
2323 u32 reg_mcu
, mask_mcu
;
2327 * Get the interrupt sources & saved to local variable.
2328 * Write register value back to clear pending interrupts.
2330 rt2x00mmio_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®_mcu
);
2331 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
2333 rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
2334 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
2336 if (!reg
&& !reg_mcu
)
2339 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2343 * Schedule tasklets for interrupt handling.
2345 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
2346 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2348 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
2349 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
2351 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_BEACON_DONE
))
2352 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
2354 if (rt2x00_get_field32(reg_mcu
, MCU_INT_SOURCE_CSR_TWAKEUP
))
2355 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
2358 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2359 * for interrupts and interrupt masks we can just use the value of
2360 * INT_SOURCE_CSR to create the interrupt mask.
2366 * Disable all interrupts for which a tasklet was scheduled right now,
2367 * the tasklet will reenable the appropriate interrupts.
2369 spin_lock(&rt2x00dev
->irqmask_lock
);
2371 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
2373 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2375 rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
2377 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2379 spin_unlock(&rt2x00dev
->irqmask_lock
);
2385 * Device probe functions.
2387 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
2389 struct eeprom_93cx6 eeprom
;
2395 rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
2397 eeprom
.data
= rt2x00dev
;
2398 eeprom
.register_read
= rt61pci_eepromregister_read
;
2399 eeprom
.register_write
= rt61pci_eepromregister_write
;
2400 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
2401 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
2402 eeprom
.reg_data_in
= 0;
2403 eeprom
.reg_data_out
= 0;
2404 eeprom
.reg_data_clock
= 0;
2405 eeprom
.reg_chip_select
= 0;
2407 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
2408 EEPROM_SIZE
/ sizeof(u16
));
2411 * Start validation of the data that has been read.
2413 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
2414 if (!is_valid_ether_addr(mac
)) {
2415 eth_random_addr(mac
);
2416 rt2x00_eeprom_dbg(rt2x00dev
, "MAC: %pM\n", mac
);
2419 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
2420 if (word
== 0xffff) {
2421 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
2422 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
2424 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
2426 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
2427 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
2428 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
2429 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
2430 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
2431 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
2434 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
2435 if (word
== 0xffff) {
2436 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
2437 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
2438 rt2x00_set_field16(&word
, EEPROM_NIC_RX_FIXED
, 0);
2439 rt2x00_set_field16(&word
, EEPROM_NIC_TX_FIXED
, 0);
2440 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
2441 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
2442 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
2443 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
2444 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
2447 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
2448 if (word
== 0xffff) {
2449 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
2451 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
2452 rt2x00_eeprom_dbg(rt2x00dev
, "Led: 0x%04x\n", word
);
2455 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
2456 if (word
== 0xffff) {
2457 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
2458 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
2459 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2460 rt2x00_eeprom_dbg(rt2x00dev
, "Freq: 0x%04x\n", word
);
2463 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
2464 if (word
== 0xffff) {
2465 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2466 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2467 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2468 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
2470 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
2471 if (value
< -10 || value
> 10)
2472 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2473 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
2474 if (value
< -10 || value
> 10)
2475 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2476 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2479 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
2480 if (word
== 0xffff) {
2481 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2482 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2483 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2484 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
2486 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
2487 if (value
< -10 || value
> 10)
2488 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2489 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
2490 if (value
< -10 || value
> 10)
2491 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2492 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2498 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
2505 * Read EEPROM word for configuration.
2507 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
2510 * Identify RF chipset.
2512 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
2513 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR0
, ®
);
2514 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
2515 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
2517 if (!rt2x00_rf(rt2x00dev
, RF5225
) &&
2518 !rt2x00_rf(rt2x00dev
, RF5325
) &&
2519 !rt2x00_rf(rt2x00dev
, RF2527
) &&
2520 !rt2x00_rf(rt2x00dev
, RF2529
)) {
2521 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
2526 * Determine number of antennas.
2528 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
2529 __set_bit(CAPABILITY_DOUBLE_ANTENNA
, &rt2x00dev
->cap_flags
);
2532 * Identify default antenna configuration.
2534 rt2x00dev
->default_ant
.tx
=
2535 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
2536 rt2x00dev
->default_ant
.rx
=
2537 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
2540 * Read the Frame type.
2542 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2543 __set_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
);
2546 * Detect if this device has a hardware controlled radio.
2548 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2549 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
2552 * Read frequency offset and RF programming sequence.
2554 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
2555 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2556 __set_bit(CAPABILITY_RF_SEQUENCE
, &rt2x00dev
->cap_flags
);
2558 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2561 * Read external LNA informations.
2563 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
2565 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2566 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
2567 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2568 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
2571 * When working with a RF2529 chip without double antenna,
2572 * the antenna settings should be gathered from the NIC
2575 if (rt2x00_rf(rt2x00dev
, RF2529
) &&
2576 !rt2x00_has_cap_double_antenna(rt2x00dev
)) {
2577 rt2x00dev
->default_ant
.rx
=
2578 ANTENNA_A
+ rt2x00_get_field16(eeprom
, EEPROM_NIC_RX_FIXED
);
2579 rt2x00dev
->default_ant
.tx
=
2580 ANTENNA_B
- rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_FIXED
);
2582 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2583 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2584 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2585 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2589 * Store led settings, for correct led behaviour.
2590 * If the eeprom value is invalid,
2591 * switch to default led mode.
2593 #ifdef CONFIG_RT2X00_LIB_LEDS
2594 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
2595 value
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2597 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
2598 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
2599 if (value
== LED_MODE_SIGNAL_STRENGTH
)
2600 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
2603 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
2604 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2605 rt2x00_get_field16(eeprom
,
2606 EEPROM_LED_POLARITY_GPIO_0
));
2607 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2608 rt2x00_get_field16(eeprom
,
2609 EEPROM_LED_POLARITY_GPIO_1
));
2610 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2611 rt2x00_get_field16(eeprom
,
2612 EEPROM_LED_POLARITY_GPIO_2
));
2613 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2614 rt2x00_get_field16(eeprom
,
2615 EEPROM_LED_POLARITY_GPIO_3
));
2616 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2617 rt2x00_get_field16(eeprom
,
2618 EEPROM_LED_POLARITY_GPIO_4
));
2619 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
2620 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2621 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2622 rt2x00_get_field16(eeprom
,
2623 EEPROM_LED_POLARITY_RDY_G
));
2624 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
2625 rt2x00_get_field16(eeprom
,
2626 EEPROM_LED_POLARITY_RDY_A
));
2627 #endif /* CONFIG_RT2X00_LIB_LEDS */
2633 * RF value list for RF5225 & RF5325
2634 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2636 static const struct rf_channel rf_vals_noseq
[] = {
2637 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2638 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2639 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2640 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2641 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2642 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2643 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2644 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2645 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2646 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2647 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2648 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2649 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2650 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2652 /* 802.11 UNI / HyperLan 2 */
2653 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2654 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2655 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2656 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2657 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2658 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2659 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2660 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2662 /* 802.11 HyperLan 2 */
2663 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2664 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2665 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2666 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2667 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2668 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2669 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2670 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2671 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2672 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2676 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2677 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2678 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2679 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2680 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2682 /* MMAC(Japan)J52 ch 34,38,42,46 */
2683 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2684 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2685 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2686 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2690 * RF value list for RF5225 & RF5325
2691 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2693 static const struct rf_channel rf_vals_seq
[] = {
2694 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2695 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2696 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2697 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2698 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2699 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2700 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2701 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2702 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2703 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2704 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2705 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2706 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2707 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2709 /* 802.11 UNI / HyperLan 2 */
2710 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2711 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2712 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2713 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2714 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2715 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2716 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2717 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2719 /* 802.11 HyperLan 2 */
2720 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2721 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2722 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2723 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2724 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2725 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2726 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2727 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2728 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2729 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2733 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2734 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2735 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2736 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2737 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2739 /* MMAC(Japan)J52 ch 34,38,42,46 */
2740 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2741 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2742 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2743 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2746 static int rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2748 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2749 struct channel_info
*info
;
2754 * Disable powersaving as default.
2756 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
2759 * Initialize all hw fields.
2761 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
2762 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
2763 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
2764 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
2766 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2767 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2768 rt2x00_eeprom_addr(rt2x00dev
,
2769 EEPROM_MAC_ADDR_0
));
2772 * As rt61 has a global fallback table we cannot specify
2773 * more then one tx rate per frame but since the hw will
2774 * try several rates (based on the fallback table) we should
2775 * initialize max_report_rates to the maximum number of rates
2776 * we are going to try. Otherwise mac80211 will truncate our
2777 * reported tx rates and the rc algortihm will end up with
2780 rt2x00dev
->hw
->max_rates
= 1;
2781 rt2x00dev
->hw
->max_report_rates
= 7;
2782 rt2x00dev
->hw
->max_rate_tries
= 1;
2785 * Initialize hw_mode information.
2787 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2788 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2790 if (!rt2x00_has_cap_rf_sequence(rt2x00dev
)) {
2791 spec
->num_channels
= 14;
2792 spec
->channels
= rf_vals_noseq
;
2794 spec
->num_channels
= 14;
2795 spec
->channels
= rf_vals_seq
;
2798 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
)) {
2799 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2800 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2804 * Create channel information array
2806 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2810 spec
->channels_info
= info
;
2812 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2813 for (i
= 0; i
< 14; i
++) {
2814 info
[i
].max_power
= MAX_TXPOWER
;
2815 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2818 if (spec
->num_channels
> 14) {
2819 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2820 for (i
= 14; i
< spec
->num_channels
; i
++) {
2821 info
[i
].max_power
= MAX_TXPOWER
;
2822 info
[i
].default_power1
=
2823 TXPOWER_FROM_DEV(tx_power
[i
- 14]);
2830 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2836 * Disable power saving.
2838 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000007);
2841 * Allocate eeprom data.
2843 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2847 retval
= rt61pci_init_eeprom(rt2x00dev
);
2852 * Enable rfkill polling by setting GPIO direction of the
2853 * rfkill switch GPIO pin correctly.
2855 rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
, ®
);
2856 rt2x00_set_field32(®
, MAC_CSR13_DIR5
, 1);
2857 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, reg
);
2860 * Initialize hw specifications.
2862 retval
= rt61pci_probe_hw_mode(rt2x00dev
);
2867 * This device has multiple filters for control frames,
2868 * but has no a separate filter for PS Poll frames.
2870 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
2873 * This device requires firmware and DMA mapped skbs.
2875 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
2876 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
2877 if (!modparam_nohwcrypt
)
2878 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
2879 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
2882 * Set the rssi offset.
2884 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2890 * IEEE80211 stack callback functions.
2892 static int rt61pci_conf_tx(struct ieee80211_hw
*hw
,
2893 struct ieee80211_vif
*vif
, u16 queue_idx
,
2894 const struct ieee80211_tx_queue_params
*params
)
2896 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2897 struct data_queue
*queue
;
2898 struct rt2x00_field32 field
;
2904 * First pass the configuration through rt2x00lib, that will
2905 * update the queue settings and validate the input. After that
2906 * we are free to update the registers based on the value
2907 * in the queue parameter.
2909 retval
= rt2x00mac_conf_tx(hw
, vif
, queue_idx
, params
);
2914 * We only need to perform additional register initialization
2920 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2922 /* Update WMM TXOP register */
2923 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2924 field
.bit_offset
= (queue_idx
& 1) * 16;
2925 field
.bit_mask
= 0xffff << field
.bit_offset
;
2927 rt2x00mmio_register_read(rt2x00dev
, offset
, ®
);
2928 rt2x00_set_field32(®
, field
, queue
->txop
);
2929 rt2x00mmio_register_write(rt2x00dev
, offset
, reg
);
2931 /* Update WMM registers */
2932 field
.bit_offset
= queue_idx
* 4;
2933 field
.bit_mask
= 0xf << field
.bit_offset
;
2935 rt2x00mmio_register_read(rt2x00dev
, AIFSN_CSR
, ®
);
2936 rt2x00_set_field32(®
, field
, queue
->aifs
);
2937 rt2x00mmio_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2939 rt2x00mmio_register_read(rt2x00dev
, CWMIN_CSR
, ®
);
2940 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2941 rt2x00mmio_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2943 rt2x00mmio_register_read(rt2x00dev
, CWMAX_CSR
, ®
);
2944 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2945 rt2x00mmio_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2950 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
2952 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2956 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2957 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2958 rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2959 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2964 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2966 .start
= rt2x00mac_start
,
2967 .stop
= rt2x00mac_stop
,
2968 .add_interface
= rt2x00mac_add_interface
,
2969 .remove_interface
= rt2x00mac_remove_interface
,
2970 .config
= rt2x00mac_config
,
2971 .configure_filter
= rt2x00mac_configure_filter
,
2972 .set_key
= rt2x00mac_set_key
,
2973 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2974 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2975 .get_stats
= rt2x00mac_get_stats
,
2976 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2977 .conf_tx
= rt61pci_conf_tx
,
2978 .get_tsf
= rt61pci_get_tsf
,
2979 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2980 .flush
= rt2x00mac_flush
,
2981 .set_antenna
= rt2x00mac_set_antenna
,
2982 .get_antenna
= rt2x00mac_get_antenna
,
2983 .get_ringparam
= rt2x00mac_get_ringparam
,
2984 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2987 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2988 .irq_handler
= rt61pci_interrupt
,
2989 .txstatus_tasklet
= rt61pci_txstatus_tasklet
,
2990 .tbtt_tasklet
= rt61pci_tbtt_tasklet
,
2991 .rxdone_tasklet
= rt61pci_rxdone_tasklet
,
2992 .autowake_tasklet
= rt61pci_autowake_tasklet
,
2993 .probe_hw
= rt61pci_probe_hw
,
2994 .get_firmware_name
= rt61pci_get_firmware_name
,
2995 .check_firmware
= rt61pci_check_firmware
,
2996 .load_firmware
= rt61pci_load_firmware
,
2997 .initialize
= rt2x00mmio_initialize
,
2998 .uninitialize
= rt2x00mmio_uninitialize
,
2999 .get_entry_state
= rt61pci_get_entry_state
,
3000 .clear_entry
= rt61pci_clear_entry
,
3001 .set_device_state
= rt61pci_set_device_state
,
3002 .rfkill_poll
= rt61pci_rfkill_poll
,
3003 .link_stats
= rt61pci_link_stats
,
3004 .reset_tuner
= rt61pci_reset_tuner
,
3005 .link_tuner
= rt61pci_link_tuner
,
3006 .start_queue
= rt61pci_start_queue
,
3007 .kick_queue
= rt61pci_kick_queue
,
3008 .stop_queue
= rt61pci_stop_queue
,
3009 .flush_queue
= rt2x00mmio_flush_queue
,
3010 .write_tx_desc
= rt61pci_write_tx_desc
,
3011 .write_beacon
= rt61pci_write_beacon
,
3012 .clear_beacon
= rt61pci_clear_beacon
,
3013 .fill_rxdone
= rt61pci_fill_rxdone
,
3014 .config_shared_key
= rt61pci_config_shared_key
,
3015 .config_pairwise_key
= rt61pci_config_pairwise_key
,
3016 .config_filter
= rt61pci_config_filter
,
3017 .config_intf
= rt61pci_config_intf
,
3018 .config_erp
= rt61pci_config_erp
,
3019 .config_ant
= rt61pci_config_ant
,
3020 .config
= rt61pci_config
,
3023 static void rt61pci_queue_init(struct data_queue
*queue
)
3025 switch (queue
->qid
) {
3028 queue
->data_size
= DATA_FRAME_SIZE
;
3029 queue
->desc_size
= RXD_DESC_SIZE
;
3030 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
3038 queue
->data_size
= DATA_FRAME_SIZE
;
3039 queue
->desc_size
= TXD_DESC_SIZE
;
3040 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
3045 queue
->data_size
= 0; /* No DMA required for beacons */
3046 queue
->desc_size
= TXINFO_SIZE
;
3047 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
3058 static const struct rt2x00_ops rt61pci_ops
= {
3059 .name
= KBUILD_MODNAME
,
3061 .eeprom_size
= EEPROM_SIZE
,
3063 .tx_queues
= NUM_TX_QUEUES
,
3064 .queue_init
= rt61pci_queue_init
,
3065 .lib
= &rt61pci_rt2x00_ops
,
3066 .hw
= &rt61pci_mac80211_ops
,
3067 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3068 .debugfs
= &rt61pci_rt2x00debug
,
3069 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3073 * RT61pci module information.
3075 static const struct pci_device_id rt61pci_device_table
[] = {
3077 { PCI_DEVICE(0x1814, 0x0301) },
3079 { PCI_DEVICE(0x1814, 0x0302) },
3081 { PCI_DEVICE(0x1814, 0x0401) },
3085 MODULE_AUTHOR(DRV_PROJECT
);
3086 MODULE_VERSION(DRV_VERSION
);
3087 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3088 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3089 "PCI & PCMCIA chipset based cards");
3090 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
3091 MODULE_FIRMWARE(FIRMWARE_RT2561
);
3092 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
3093 MODULE_FIRMWARE(FIRMWARE_RT2661
);
3094 MODULE_LICENSE("GPL");
3096 static int rt61pci_probe(struct pci_dev
*pci_dev
,
3097 const struct pci_device_id
*id
)
3099 return rt2x00pci_probe(pci_dev
, &rt61pci_ops
);
3102 static struct pci_driver rt61pci_driver
= {
3103 .name
= KBUILD_MODNAME
,
3104 .id_table
= rt61pci_device_table
,
3105 .probe
= rt61pci_probe
,
3106 .remove
= rt2x00pci_remove
,
3107 .suspend
= rt2x00pci_suspend
,
3108 .resume
= rt2x00pci_resume
,
3111 module_pci_driver(rt61pci_driver
);