Linux 4.4.145
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt73usb.c
blob7081e13b4fd67ebbaa7fa8af3f15a1d81fbc219e
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt73usb
21 Abstract: rt73usb device specific routines.
22 Supported chipsets: rt2571W & rt2671.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/usb.h>
33 #include "rt2x00.h"
34 #include "rt2x00usb.h"
35 #include "rt73usb.h"
38 * Allow hardware encryption to be disabled.
40 static bool modparam_nohwcrypt;
41 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
42 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00usb_register_read and rt2x00usb_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 * The _lock versions must be used if you already hold the csr_mutex
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
64 const unsigned int word, const u8 value)
66 u32 reg;
68 mutex_lock(&rt2x00dev->csr_mutex);
71 * Wait until the BBP becomes available, afterwards we
72 * can safely write the new data into the register.
74 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
75 reg = 0;
76 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
77 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
78 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
79 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
81 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
84 mutex_unlock(&rt2x00dev->csr_mutex);
87 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, u8 *value)
90 u32 reg;
92 mutex_lock(&rt2x00dev->csr_mutex);
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the read request into the register.
97 * After the data has been written, we wait until hardware
98 * returns the correct value, if at any time the register
99 * doesn't become available in time, reg will be 0xffffffff
100 * which means we return 0xff to the caller.
102 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
103 reg = 0;
104 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
105 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
106 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
108 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
110 WAIT_FOR_BBP(rt2x00dev, &reg);
113 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
115 mutex_unlock(&rt2x00dev->csr_mutex);
118 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
119 const unsigned int word, const u32 value)
121 u32 reg;
123 mutex_lock(&rt2x00dev->csr_mutex);
126 * Wait until the RF becomes available, afterwards we
127 * can safely write the new data into the register.
129 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
130 reg = 0;
131 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
133 * RF5225 and RF2527 contain 21 bits per RF register value,
134 * all others contain 20 bits.
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
137 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
138 rt2x00_rf(rt2x00dev, RF2527)));
139 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
142 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
146 mutex_unlock(&rt2x00dev->csr_mutex);
149 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
150 static const struct rt2x00debug rt73usb_rt2x00debug = {
151 .owner = THIS_MODULE,
152 .csr = {
153 .read = rt2x00usb_register_read,
154 .write = rt2x00usb_register_write,
155 .flags = RT2X00DEBUGFS_OFFSET,
156 .word_base = CSR_REG_BASE,
157 .word_size = sizeof(u32),
158 .word_count = CSR_REG_SIZE / sizeof(u32),
160 .eeprom = {
161 .read = rt2x00_eeprom_read,
162 .write = rt2x00_eeprom_write,
163 .word_base = EEPROM_BASE,
164 .word_size = sizeof(u16),
165 .word_count = EEPROM_SIZE / sizeof(u16),
167 .bbp = {
168 .read = rt73usb_bbp_read,
169 .write = rt73usb_bbp_write,
170 .word_base = BBP_BASE,
171 .word_size = sizeof(u8),
172 .word_count = BBP_SIZE / sizeof(u8),
174 .rf = {
175 .read = rt2x00_rf_read,
176 .write = rt73usb_rf_write,
177 .word_base = RF_BASE,
178 .word_size = sizeof(u32),
179 .word_count = RF_SIZE / sizeof(u32),
182 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
184 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
186 u32 reg;
188 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
189 return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
192 #ifdef CONFIG_RT2X00_LIB_LEDS
193 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
194 enum led_brightness brightness)
196 struct rt2x00_led *led =
197 container_of(led_cdev, struct rt2x00_led, led_dev);
198 unsigned int enabled = brightness != LED_OFF;
199 unsigned int a_mode =
200 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
201 unsigned int bg_mode =
202 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
204 if (led->type == LED_TYPE_RADIO) {
205 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
206 MCU_LEDCS_RADIO_STATUS, enabled);
208 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
209 0, led->rt2x00dev->led_mcu_reg,
210 REGISTER_TIMEOUT);
211 } else if (led->type == LED_TYPE_ASSOC) {
212 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
213 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
214 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215 MCU_LEDCS_LINK_A_STATUS, a_mode);
217 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218 0, led->rt2x00dev->led_mcu_reg,
219 REGISTER_TIMEOUT);
220 } else if (led->type == LED_TYPE_QUALITY) {
222 * The brightness is divided into 6 levels (0 - 5),
223 * this means we need to convert the brightness
224 * argument into the matching level within that range.
226 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227 brightness / (LED_FULL / 6),
228 led->rt2x00dev->led_mcu_reg,
229 REGISTER_TIMEOUT);
233 static int rt73usb_blink_set(struct led_classdev *led_cdev,
234 unsigned long *delay_on,
235 unsigned long *delay_off)
237 struct rt2x00_led *led =
238 container_of(led_cdev, struct rt2x00_led, led_dev);
239 u32 reg;
241 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
242 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
243 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
244 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
246 return 0;
249 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_led *led,
251 enum led_type type)
253 led->rt2x00dev = rt2x00dev;
254 led->type = type;
255 led->led_dev.brightness_set = rt73usb_brightness_set;
256 led->led_dev.blink_set = rt73usb_blink_set;
257 led->flags = LED_INITIALIZED;
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
262 * Configuration handlers.
264 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
265 struct rt2x00lib_crypto *crypto,
266 struct ieee80211_key_conf *key)
268 struct hw_key_entry key_entry;
269 struct rt2x00_field32 field;
270 u32 mask;
271 u32 reg;
273 if (crypto->cmd == SET_KEY) {
275 * rt2x00lib can't determine the correct free
276 * key_idx for shared keys. We have 1 register
277 * with key valid bits. The goal is simple, read
278 * the register, if that is full we have no slots
279 * left.
280 * Note that each BSS is allowed to have up to 4
281 * shared keys, so put a mask over the allowed
282 * entries.
284 mask = (0xf << crypto->bssidx);
286 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
287 reg &= mask;
289 if (reg && reg == mask)
290 return -ENOSPC;
292 key->hw_key_idx += reg ? ffz(reg) : 0;
295 * Upload key to hardware
297 memcpy(key_entry.key, crypto->key,
298 sizeof(key_entry.key));
299 memcpy(key_entry.tx_mic, crypto->tx_mic,
300 sizeof(key_entry.tx_mic));
301 memcpy(key_entry.rx_mic, crypto->rx_mic,
302 sizeof(key_entry.rx_mic));
304 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
305 rt2x00usb_register_multiwrite(rt2x00dev, reg,
306 &key_entry, sizeof(key_entry));
309 * The cipher types are stored over 2 registers.
310 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311 * bssidx 1 and 2 keys are stored in SEC_CSR5.
312 * Using the correct defines correctly will cause overhead,
313 * so just calculate the correct offset.
315 if (key->hw_key_idx < 8) {
316 field.bit_offset = (3 * key->hw_key_idx);
317 field.bit_mask = 0x7 << field.bit_offset;
319 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
320 rt2x00_set_field32(&reg, field, crypto->cipher);
321 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
322 } else {
323 field.bit_offset = (3 * (key->hw_key_idx - 8));
324 field.bit_mask = 0x7 << field.bit_offset;
326 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
327 rt2x00_set_field32(&reg, field, crypto->cipher);
328 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
332 * The driver does not support the IV/EIV generation
333 * in hardware. However it doesn't support the IV/EIV
334 * inside the ieee80211 frame either, but requires it
335 * to be provided separately for the descriptor.
336 * rt2x00lib will cut the IV/EIV data out of all frames
337 * given to us by mac80211, but we must tell mac80211
338 * to generate the IV/EIV data.
340 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
344 * SEC_CSR0 contains only single-bit fields to indicate
345 * a particular key is valid. Because using the FIELD32()
346 * defines directly will cause a lot of overhead we use
347 * a calculation to determine the correct bit directly.
349 mask = 1 << key->hw_key_idx;
351 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
352 if (crypto->cmd == SET_KEY)
353 reg |= mask;
354 else if (crypto->cmd == DISABLE_KEY)
355 reg &= ~mask;
356 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
358 return 0;
361 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
362 struct rt2x00lib_crypto *crypto,
363 struct ieee80211_key_conf *key)
365 struct hw_pairwise_ta_entry addr_entry;
366 struct hw_key_entry key_entry;
367 u32 mask;
368 u32 reg;
370 if (crypto->cmd == SET_KEY) {
372 * rt2x00lib can't determine the correct free
373 * key_idx for pairwise keys. We have 2 registers
374 * with key valid bits. The goal is simple, read
375 * the first register, if that is full move to
376 * the next register.
377 * When both registers are full, we drop the key,
378 * otherwise we use the first invalid entry.
380 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
381 if (reg && reg == ~0) {
382 key->hw_key_idx = 32;
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
384 if (reg && reg == ~0)
385 return -ENOSPC;
388 key->hw_key_idx += reg ? ffz(reg) : 0;
391 * Upload key to hardware
393 memcpy(key_entry.key, crypto->key,
394 sizeof(key_entry.key));
395 memcpy(key_entry.tx_mic, crypto->tx_mic,
396 sizeof(key_entry.tx_mic));
397 memcpy(key_entry.rx_mic, crypto->rx_mic,
398 sizeof(key_entry.rx_mic));
400 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
401 rt2x00usb_register_multiwrite(rt2x00dev, reg,
402 &key_entry, sizeof(key_entry));
405 * Send the address and cipher type to the hardware register.
407 memset(&addr_entry, 0, sizeof(addr_entry));
408 memcpy(&addr_entry, crypto->address, ETH_ALEN);
409 addr_entry.cipher = crypto->cipher;
411 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
412 rt2x00usb_register_multiwrite(rt2x00dev, reg,
413 &addr_entry, sizeof(addr_entry));
416 * Enable pairwise lookup table for given BSS idx,
417 * without this received frames will not be decrypted
418 * by the hardware.
420 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
421 reg |= (1 << crypto->bssidx);
422 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
425 * The driver does not support the IV/EIV generation
426 * in hardware. However it doesn't support the IV/EIV
427 * inside the ieee80211 frame either, but requires it
428 * to be provided separately for the descriptor.
429 * rt2x00lib will cut the IV/EIV data out of all frames
430 * given to us by mac80211, but we must tell mac80211
431 * to generate the IV/EIV data.
433 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
437 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438 * a particular key is valid. Because using the FIELD32()
439 * defines directly will cause a lot of overhead we use
440 * a calculation to determine the correct bit directly.
442 if (key->hw_key_idx < 32) {
443 mask = 1 << key->hw_key_idx;
445 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
446 if (crypto->cmd == SET_KEY)
447 reg |= mask;
448 else if (crypto->cmd == DISABLE_KEY)
449 reg &= ~mask;
450 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
451 } else {
452 mask = 1 << (key->hw_key_idx - 32);
454 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
455 if (crypto->cmd == SET_KEY)
456 reg |= mask;
457 else if (crypto->cmd == DISABLE_KEY)
458 reg &= ~mask;
459 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
462 return 0;
465 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
466 const unsigned int filter_flags)
468 u32 reg;
471 * Start configuration steps.
472 * Note that the version error will always be dropped
473 * and broadcast frames will always be accepted since
474 * there is no filter for it at this time.
476 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
477 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
478 !(filter_flags & FIF_FCSFAIL));
479 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
480 !(filter_flags & FIF_PLCPFAIL));
481 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
482 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
483 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, 1);
484 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
485 !rt2x00dev->intf_ap_count);
486 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
487 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
488 !(filter_flags & FIF_ALLMULTI));
489 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
490 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
491 !(filter_flags & FIF_CONTROL));
492 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
495 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
496 struct rt2x00_intf *intf,
497 struct rt2x00intf_conf *conf,
498 const unsigned int flags)
500 u32 reg;
502 if (flags & CONFIG_UPDATE_TYPE) {
504 * Enable synchronisation.
506 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
507 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
508 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
511 if (flags & CONFIG_UPDATE_MAC) {
512 reg = le32_to_cpu(conf->mac[1]);
513 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
514 conf->mac[1] = cpu_to_le32(reg);
516 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
517 conf->mac, sizeof(conf->mac));
520 if (flags & CONFIG_UPDATE_BSSID) {
521 reg = le32_to_cpu(conf->bssid[1]);
522 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
523 conf->bssid[1] = cpu_to_le32(reg);
525 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
526 conf->bssid, sizeof(conf->bssid));
530 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
531 struct rt2x00lib_erp *erp,
532 u32 changed)
534 u32 reg;
536 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
537 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
538 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
539 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
541 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
542 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
543 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
544 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
545 !!erp->short_preamble);
546 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
549 if (changed & BSS_CHANGED_BASIC_RATES)
550 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
551 erp->basic_rates);
553 if (changed & BSS_CHANGED_BEACON_INT) {
554 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
555 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
556 erp->beacon_int * 16);
557 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
560 if (changed & BSS_CHANGED_ERP_SLOT) {
561 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
562 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
563 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
565 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
566 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
567 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
568 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
569 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
573 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
574 struct antenna_setup *ant)
576 u8 r3;
577 u8 r4;
578 u8 r77;
579 u8 temp;
581 rt73usb_bbp_read(rt2x00dev, 3, &r3);
582 rt73usb_bbp_read(rt2x00dev, 4, &r4);
583 rt73usb_bbp_read(rt2x00dev, 77, &r77);
585 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
588 * Configure the RX antenna.
590 switch (ant->rx) {
591 case ANTENNA_HW_DIVERSITY:
592 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
593 temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
594 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
595 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
596 break;
597 case ANTENNA_A:
598 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
599 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
600 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
601 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
602 else
603 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
604 break;
605 case ANTENNA_B:
606 default:
607 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
608 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
609 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
610 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
611 else
612 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
613 break;
616 rt73usb_bbp_write(rt2x00dev, 77, r77);
617 rt73usb_bbp_write(rt2x00dev, 3, r3);
618 rt73usb_bbp_write(rt2x00dev, 4, r4);
621 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
622 struct antenna_setup *ant)
624 u8 r3;
625 u8 r4;
626 u8 r77;
628 rt73usb_bbp_read(rt2x00dev, 3, &r3);
629 rt73usb_bbp_read(rt2x00dev, 4, &r4);
630 rt73usb_bbp_read(rt2x00dev, 77, &r77);
632 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
633 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
634 !rt2x00_has_cap_frame_type(rt2x00dev));
637 * Configure the RX antenna.
639 switch (ant->rx) {
640 case ANTENNA_HW_DIVERSITY:
641 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
642 break;
643 case ANTENNA_A:
644 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
645 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
646 break;
647 case ANTENNA_B:
648 default:
649 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 break;
654 rt73usb_bbp_write(rt2x00dev, 77, r77);
655 rt73usb_bbp_write(rt2x00dev, 3, r3);
656 rt73usb_bbp_write(rt2x00dev, 4, r4);
659 struct antenna_sel {
660 u8 word;
662 * value[0] -> non-LNA
663 * value[1] -> LNA
665 u8 value[2];
668 static const struct antenna_sel antenna_sel_a[] = {
669 { 96, { 0x58, 0x78 } },
670 { 104, { 0x38, 0x48 } },
671 { 75, { 0xfe, 0x80 } },
672 { 86, { 0xfe, 0x80 } },
673 { 88, { 0xfe, 0x80 } },
674 { 35, { 0x60, 0x60 } },
675 { 97, { 0x58, 0x58 } },
676 { 98, { 0x58, 0x58 } },
679 static const struct antenna_sel antenna_sel_bg[] = {
680 { 96, { 0x48, 0x68 } },
681 { 104, { 0x2c, 0x3c } },
682 { 75, { 0xfe, 0x80 } },
683 { 86, { 0xfe, 0x80 } },
684 { 88, { 0xfe, 0x80 } },
685 { 35, { 0x50, 0x50 } },
686 { 97, { 0x48, 0x48 } },
687 { 98, { 0x48, 0x48 } },
690 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
691 struct antenna_setup *ant)
693 const struct antenna_sel *sel;
694 unsigned int lna;
695 unsigned int i;
696 u32 reg;
699 * We should never come here because rt2x00lib is supposed
700 * to catch this and send us the correct antenna explicitely.
702 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
703 ant->tx == ANTENNA_SW_DIVERSITY);
705 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
706 sel = antenna_sel_a;
707 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
708 } else {
709 sel = antenna_sel_bg;
710 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
713 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
714 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
716 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
718 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
719 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
720 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
721 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
723 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
725 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
726 rt73usb_config_antenna_5x(rt2x00dev, ant);
727 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
728 rt73usb_config_antenna_2x(rt2x00dev, ant);
731 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
732 struct rt2x00lib_conf *libconf)
734 u16 eeprom;
735 short lna_gain = 0;
737 if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
738 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
739 lna_gain += 14;
741 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
742 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
743 } else {
744 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
745 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
748 rt2x00dev->lna_gain = lna_gain;
751 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
752 struct rf_channel *rf, const int txpower)
754 u8 r3;
755 u8 r94;
756 u8 smart;
758 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
759 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
761 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
763 rt73usb_bbp_read(rt2x00dev, 3, &r3);
764 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
765 rt73usb_bbp_write(rt2x00dev, 3, r3);
767 r94 = 6;
768 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
769 r94 += txpower - MAX_TXPOWER;
770 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
771 r94 += txpower;
772 rt73usb_bbp_write(rt2x00dev, 94, r94);
774 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
775 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
776 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
777 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
779 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
780 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
781 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
782 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
784 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
785 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
786 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
787 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
789 udelay(10);
792 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
793 const int txpower)
795 struct rf_channel rf;
797 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
798 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
799 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
800 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
802 rt73usb_config_channel(rt2x00dev, &rf, txpower);
805 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
806 struct rt2x00lib_conf *libconf)
808 u32 reg;
810 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
811 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
812 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
813 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
814 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
815 libconf->conf->long_frame_max_tx_count);
816 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
817 libconf->conf->short_frame_max_tx_count);
818 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
821 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
822 struct rt2x00lib_conf *libconf)
824 enum dev_state state =
825 (libconf->conf->flags & IEEE80211_CONF_PS) ?
826 STATE_SLEEP : STATE_AWAKE;
827 u32 reg;
829 if (state == STATE_SLEEP) {
830 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
831 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
832 rt2x00dev->beacon_int - 10);
833 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
834 libconf->conf->listen_interval - 1);
835 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
837 /* We must first disable autowake before it can be enabled */
838 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
839 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
841 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
842 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
844 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
845 USB_MODE_SLEEP, REGISTER_TIMEOUT);
846 } else {
847 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
848 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
849 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
850 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
851 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
852 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
854 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
855 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
859 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
860 struct rt2x00lib_conf *libconf,
861 const unsigned int flags)
863 /* Always recalculate LNA gain before changing configuration */
864 rt73usb_config_lna_gain(rt2x00dev, libconf);
866 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
867 rt73usb_config_channel(rt2x00dev, &libconf->rf,
868 libconf->conf->power_level);
869 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
870 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
871 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
872 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
873 rt73usb_config_retry_limit(rt2x00dev, libconf);
874 if (flags & IEEE80211_CONF_CHANGE_PS)
875 rt73usb_config_ps(rt2x00dev, libconf);
879 * Link tuning
881 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
882 struct link_qual *qual)
884 u32 reg;
887 * Update FCS error count from register.
889 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
890 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
893 * Update False CCA count from register.
895 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
896 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
899 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
900 struct link_qual *qual, u8 vgc_level)
902 if (qual->vgc_level != vgc_level) {
903 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
904 qual->vgc_level = vgc_level;
905 qual->vgc_level_reg = vgc_level;
909 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
910 struct link_qual *qual)
912 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
915 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
916 struct link_qual *qual, const u32 count)
918 u8 up_bound;
919 u8 low_bound;
922 * Determine r17 bounds.
924 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
925 low_bound = 0x28;
926 up_bound = 0x48;
928 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
929 low_bound += 0x10;
930 up_bound += 0x10;
932 } else {
933 if (qual->rssi > -82) {
934 low_bound = 0x1c;
935 up_bound = 0x40;
936 } else if (qual->rssi > -84) {
937 low_bound = 0x1c;
938 up_bound = 0x20;
939 } else {
940 low_bound = 0x1c;
941 up_bound = 0x1c;
944 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
945 low_bound += 0x14;
946 up_bound += 0x10;
951 * If we are not associated, we should go straight to the
952 * dynamic CCA tuning.
954 if (!rt2x00dev->intf_associated)
955 goto dynamic_cca_tune;
958 * Special big-R17 for very short distance
960 if (qual->rssi > -35) {
961 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
962 return;
966 * Special big-R17 for short distance
968 if (qual->rssi >= -58) {
969 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
970 return;
974 * Special big-R17 for middle-short distance
976 if (qual->rssi >= -66) {
977 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
978 return;
982 * Special mid-R17 for middle distance
984 if (qual->rssi >= -74) {
985 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
986 return;
990 * Special case: Change up_bound based on the rssi.
991 * Lower up_bound when rssi is weaker then -74 dBm.
993 up_bound -= 2 * (-74 - qual->rssi);
994 if (low_bound > up_bound)
995 up_bound = low_bound;
997 if (qual->vgc_level > up_bound) {
998 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
999 return;
1002 dynamic_cca_tune:
1005 * r17 does not yet exceed upper limit, continue and base
1006 * the r17 tuning on the false CCA count.
1008 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1009 rt73usb_set_vgc(rt2x00dev, qual,
1010 min_t(u8, qual->vgc_level + 4, up_bound));
1011 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1012 rt73usb_set_vgc(rt2x00dev, qual,
1013 max_t(u8, qual->vgc_level - 4, low_bound));
1017 * Queue handlers.
1019 static void rt73usb_start_queue(struct data_queue *queue)
1021 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1022 u32 reg;
1024 switch (queue->qid) {
1025 case QID_RX:
1026 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1027 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1028 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1029 break;
1030 case QID_BEACON:
1031 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1032 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1033 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1034 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1035 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1036 break;
1037 default:
1038 break;
1042 static void rt73usb_stop_queue(struct data_queue *queue)
1044 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1045 u32 reg;
1047 switch (queue->qid) {
1048 case QID_RX:
1049 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1050 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1051 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1052 break;
1053 case QID_BEACON:
1054 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1055 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1056 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1057 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1058 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1059 break;
1060 default:
1061 break;
1066 * Firmware functions
1068 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1070 return FIRMWARE_RT2571;
1073 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1074 const u8 *data, const size_t len)
1076 u16 fw_crc;
1077 u16 crc;
1080 * Only support 2kb firmware files.
1082 if (len != 2048)
1083 return FW_BAD_LENGTH;
1086 * The last 2 bytes in the firmware array are the crc checksum itself,
1087 * this means that we should never pass those 2 bytes to the crc
1088 * algorithm.
1090 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1093 * Use the crc itu-t algorithm.
1095 crc = crc_itu_t(0, data, len - 2);
1096 crc = crc_itu_t_byte(crc, 0);
1097 crc = crc_itu_t_byte(crc, 0);
1099 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1102 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1103 const u8 *data, const size_t len)
1105 unsigned int i;
1106 int status;
1107 u32 reg;
1110 * Wait for stable hardware.
1112 for (i = 0; i < 100; i++) {
1113 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1114 if (reg)
1115 break;
1116 msleep(1);
1119 if (!reg) {
1120 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1121 return -EBUSY;
1125 * Write firmware to device.
1127 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1130 * Send firmware request to device to load firmware,
1131 * we need to specify a long timeout time.
1133 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1134 0, USB_MODE_FIRMWARE,
1135 REGISTER_TIMEOUT_FIRMWARE);
1136 if (status < 0) {
1137 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1138 return status;
1141 return 0;
1145 * Initialization functions.
1147 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1149 u32 reg;
1151 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1152 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1153 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1154 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1155 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1157 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1158 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1159 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1160 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1161 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1162 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1163 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1164 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1165 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1166 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1169 * CCK TXD BBP registers
1171 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1172 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1173 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1174 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1175 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1176 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1177 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1178 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1179 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1180 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1183 * OFDM TXD BBP registers
1185 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1186 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1187 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1188 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1189 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1190 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1191 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1192 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1194 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1195 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1196 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1197 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1198 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1199 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1201 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1202 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1203 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1204 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1205 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1206 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1208 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1209 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1210 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1211 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1212 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1213 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1214 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1215 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1217 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1219 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1220 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1221 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1223 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1225 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1226 return -EBUSY;
1228 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1231 * Invalidate all Shared Keys (SEC_CSR0),
1232 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1234 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1235 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1236 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1238 reg = 0x000023b0;
1239 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1240 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1241 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1243 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1244 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1245 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1247 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1248 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1249 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1252 * Clear all beacons
1253 * For the Beacon base registers we only need to clear
1254 * the first byte since that byte contains the VALID and OWNER
1255 * bits which (when set to 0) will invalidate the entire beacon.
1257 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1258 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1259 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1260 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1263 * We must clear the error counters.
1264 * These registers are cleared on read,
1265 * so we may pass a useless variable to store the value.
1267 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1268 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1269 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1272 * Reset MAC and BBP registers.
1274 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1275 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1276 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1277 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1279 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1280 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1281 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1282 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1284 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1285 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1286 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1288 return 0;
1291 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1293 unsigned int i;
1294 u8 value;
1296 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1297 rt73usb_bbp_read(rt2x00dev, 0, &value);
1298 if ((value != 0xff) && (value != 0x00))
1299 return 0;
1300 udelay(REGISTER_BUSY_DELAY);
1303 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1304 return -EACCES;
1307 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1309 unsigned int i;
1310 u16 eeprom;
1311 u8 reg_id;
1312 u8 value;
1314 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1315 return -EACCES;
1317 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1318 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1319 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1320 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1321 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1322 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1323 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1324 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1325 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1326 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1327 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1328 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1329 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1330 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1331 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1332 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1333 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1334 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1335 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1336 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1337 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1338 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1339 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1340 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1341 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1343 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1344 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1346 if (eeprom != 0xffff && eeprom != 0x0000) {
1347 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1348 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1349 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1353 return 0;
1357 * Device state switch handlers.
1359 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1362 * Initialize all registers.
1364 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1365 rt73usb_init_bbp(rt2x00dev)))
1366 return -EIO;
1368 return 0;
1371 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1373 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1376 * Disable synchronisation.
1378 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1380 rt2x00usb_disable_radio(rt2x00dev);
1383 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1385 u32 reg, reg2;
1386 unsigned int i;
1387 char put_to_sleep;
1389 put_to_sleep = (state != STATE_AWAKE);
1391 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1392 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1393 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1394 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1397 * Device is not guaranteed to be in the requested state yet.
1398 * We must wait until the register indicates that the
1399 * device has entered the correct state.
1401 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1402 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1403 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1404 if (state == !put_to_sleep)
1405 return 0;
1406 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1407 msleep(10);
1410 return -EBUSY;
1413 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1414 enum dev_state state)
1416 int retval = 0;
1418 switch (state) {
1419 case STATE_RADIO_ON:
1420 retval = rt73usb_enable_radio(rt2x00dev);
1421 break;
1422 case STATE_RADIO_OFF:
1423 rt73usb_disable_radio(rt2x00dev);
1424 break;
1425 case STATE_RADIO_IRQ_ON:
1426 case STATE_RADIO_IRQ_OFF:
1427 /* No support, but no error either */
1428 break;
1429 case STATE_DEEP_SLEEP:
1430 case STATE_SLEEP:
1431 case STATE_STANDBY:
1432 case STATE_AWAKE:
1433 retval = rt73usb_set_state(rt2x00dev, state);
1434 break;
1435 default:
1436 retval = -ENOTSUPP;
1437 break;
1440 if (unlikely(retval))
1441 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1442 state, retval);
1444 return retval;
1448 * TX descriptor initialization
1450 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1451 struct txentry_desc *txdesc)
1453 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1454 __le32 *txd = (__le32 *) entry->skb->data;
1455 u32 word;
1458 * Start writing the descriptor words.
1460 rt2x00_desc_read(txd, 0, &word);
1461 rt2x00_set_field32(&word, TXD_W0_BURST,
1462 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1463 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1464 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1465 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1466 rt2x00_set_field32(&word, TXD_W0_ACK,
1467 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1468 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1469 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1470 rt2x00_set_field32(&word, TXD_W0_OFDM,
1471 (txdesc->rate_mode == RATE_MODE_OFDM));
1472 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1473 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1474 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1475 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1476 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1477 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1478 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1479 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1480 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1481 rt2x00_set_field32(&word, TXD_W0_BURST2,
1482 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1483 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1484 rt2x00_desc_write(txd, 0, word);
1486 rt2x00_desc_read(txd, 1, &word);
1487 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1488 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1489 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1490 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1491 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1492 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1493 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1494 rt2x00_desc_write(txd, 1, word);
1496 rt2x00_desc_read(txd, 2, &word);
1497 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1498 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1499 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1500 txdesc->u.plcp.length_low);
1501 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1502 txdesc->u.plcp.length_high);
1503 rt2x00_desc_write(txd, 2, word);
1505 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1506 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1507 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1510 rt2x00_desc_read(txd, 5, &word);
1511 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1512 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1513 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1514 rt2x00_desc_write(txd, 5, word);
1517 * Register descriptor details in skb frame descriptor.
1519 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1520 skbdesc->desc = txd;
1521 skbdesc->desc_len = TXD_DESC_SIZE;
1525 * TX data initialization
1527 static void rt73usb_write_beacon(struct queue_entry *entry,
1528 struct txentry_desc *txdesc)
1530 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1531 unsigned int beacon_base;
1532 unsigned int padding_len;
1533 u32 orig_reg, reg;
1536 * Disable beaconing while we are reloading the beacon data,
1537 * otherwise we might be sending out invalid data.
1539 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1540 orig_reg = reg;
1541 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1542 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1545 * Add space for the descriptor in front of the skb.
1547 skb_push(entry->skb, TXD_DESC_SIZE);
1548 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1551 * Write the TX descriptor for the beacon.
1553 rt73usb_write_tx_desc(entry, txdesc);
1556 * Dump beacon to userspace through debugfs.
1558 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1561 * Write entire beacon with descriptor and padding to register.
1563 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1564 if (padding_len && skb_pad(entry->skb, padding_len)) {
1565 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1566 /* skb freed by skb_pad() on failure */
1567 entry->skb = NULL;
1568 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1569 return;
1572 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1573 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1574 entry->skb->len + padding_len);
1577 * Enable beaconing again.
1579 * For Wi-Fi faily generated beacons between participating stations.
1580 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1582 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1584 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1585 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1588 * Clean up the beacon skb.
1590 dev_kfree_skb(entry->skb);
1591 entry->skb = NULL;
1594 static void rt73usb_clear_beacon(struct queue_entry *entry)
1596 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1597 unsigned int beacon_base;
1598 u32 orig_reg, reg;
1601 * Disable beaconing while we are reloading the beacon data,
1602 * otherwise we might be sending out invalid data.
1604 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
1605 reg = orig_reg;
1606 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1607 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1610 * Clear beacon.
1612 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1613 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1616 * Restore beaconing state.
1618 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1621 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1623 int length;
1626 * The length _must_ be a multiple of 4,
1627 * but it must _not_ be a multiple of the USB packet size.
1629 length = roundup(entry->skb->len, 4);
1630 length += (4 * !(length % entry->queue->usb_maxpacket));
1632 return length;
1636 * RX control handlers
1638 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1640 u8 offset = rt2x00dev->lna_gain;
1641 u8 lna;
1643 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1644 switch (lna) {
1645 case 3:
1646 offset += 90;
1647 break;
1648 case 2:
1649 offset += 74;
1650 break;
1651 case 1:
1652 offset += 64;
1653 break;
1654 default:
1655 return 0;
1658 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1659 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1660 if (lna == 3 || lna == 2)
1661 offset += 10;
1662 } else {
1663 if (lna == 3)
1664 offset += 6;
1665 else if (lna == 2)
1666 offset += 8;
1670 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1673 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1674 struct rxdone_entry_desc *rxdesc)
1676 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1677 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1678 __le32 *rxd = (__le32 *)entry->skb->data;
1679 u32 word0;
1680 u32 word1;
1683 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1684 * frame data in rt2x00usb.
1686 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1687 rxd = (__le32 *)skbdesc->desc;
1690 * It is now safe to read the descriptor on all architectures.
1692 rt2x00_desc_read(rxd, 0, &word0);
1693 rt2x00_desc_read(rxd, 1, &word1);
1695 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1696 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1698 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1699 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1701 if (rxdesc->cipher != CIPHER_NONE) {
1702 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1703 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1704 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1706 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1707 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1710 * Hardware has stripped IV/EIV data from 802.11 frame during
1711 * decryption. It has provided the data separately but rt2x00lib
1712 * should decide if it should be reinserted.
1714 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1717 * The hardware has already checked the Michael Mic and has
1718 * stripped it from the frame. Signal this to mac80211.
1720 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1722 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1723 rxdesc->flags |= RX_FLAG_DECRYPTED;
1724 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1725 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1729 * Obtain the status about this packet.
1730 * When frame was received with an OFDM bitrate,
1731 * the signal is the PLCP value. If it was received with
1732 * a CCK bitrate the signal is the rate in 100kbit/s.
1734 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1735 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1736 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1738 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1739 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1740 else
1741 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1742 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1743 rxdesc->dev_flags |= RXDONE_MY_BSS;
1746 * Set skb pointers, and update frame information.
1748 skb_pull(entry->skb, entry->queue->desc_size);
1749 skb_trim(entry->skb, rxdesc->size);
1753 * Device probe functions.
1755 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1757 u16 word;
1758 u8 *mac;
1759 s8 value;
1761 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1764 * Start validation of the data that has been read.
1766 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1767 if (!is_valid_ether_addr(mac)) {
1768 eth_random_addr(mac);
1769 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1772 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1773 if (word == 0xffff) {
1774 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1775 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1776 ANTENNA_B);
1777 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1778 ANTENNA_B);
1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1780 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1781 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1783 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1784 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1787 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1788 if (word == 0xffff) {
1789 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1790 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1791 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1794 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1795 if (word == 0xffff) {
1796 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1797 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1798 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1799 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1800 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1804 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1805 LED_MODE_DEFAULT);
1806 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1807 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1810 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1811 if (word == 0xffff) {
1812 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1813 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1814 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1815 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1818 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1819 if (word == 0xffff) {
1820 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1821 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1822 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1823 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1824 } else {
1825 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1826 if (value < -10 || value > 10)
1827 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1828 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1829 if (value < -10 || value > 10)
1830 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1831 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1834 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1835 if (word == 0xffff) {
1836 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1837 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1838 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1839 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1840 } else {
1841 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1842 if (value < -10 || value > 10)
1843 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1844 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1845 if (value < -10 || value > 10)
1846 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1847 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1850 return 0;
1853 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1855 u32 reg;
1856 u16 value;
1857 u16 eeprom;
1860 * Read EEPROM word for configuration.
1862 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1865 * Identify RF chipset.
1867 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1868 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1869 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1870 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1872 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1873 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1874 return -ENODEV;
1877 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1878 !rt2x00_rf(rt2x00dev, RF2528) &&
1879 !rt2x00_rf(rt2x00dev, RF5225) &&
1880 !rt2x00_rf(rt2x00dev, RF2527)) {
1881 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1882 return -ENODEV;
1886 * Identify default antenna configuration.
1888 rt2x00dev->default_ant.tx =
1889 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1890 rt2x00dev->default_ant.rx =
1891 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1894 * Read the Frame type.
1896 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1897 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1900 * Detect if this device has an hardware controlled radio.
1902 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1903 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1906 * Read frequency offset.
1908 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1909 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1912 * Read external LNA informations.
1914 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1916 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1917 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1918 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1922 * Store led settings, for correct led behaviour.
1924 #ifdef CONFIG_RT2X00_LIB_LEDS
1925 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1927 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1928 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1929 if (value == LED_MODE_SIGNAL_STRENGTH)
1930 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1931 LED_TYPE_QUALITY);
1933 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1934 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1935 rt2x00_get_field16(eeprom,
1936 EEPROM_LED_POLARITY_GPIO_0));
1937 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1938 rt2x00_get_field16(eeprom,
1939 EEPROM_LED_POLARITY_GPIO_1));
1940 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1941 rt2x00_get_field16(eeprom,
1942 EEPROM_LED_POLARITY_GPIO_2));
1943 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1944 rt2x00_get_field16(eeprom,
1945 EEPROM_LED_POLARITY_GPIO_3));
1946 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1947 rt2x00_get_field16(eeprom,
1948 EEPROM_LED_POLARITY_GPIO_4));
1949 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1950 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1952 rt2x00_get_field16(eeprom,
1953 EEPROM_LED_POLARITY_RDY_G));
1954 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1955 rt2x00_get_field16(eeprom,
1956 EEPROM_LED_POLARITY_RDY_A));
1957 #endif /* CONFIG_RT2X00_LIB_LEDS */
1959 return 0;
1963 * RF value list for RF2528
1964 * Supports: 2.4 GHz
1966 static const struct rf_channel rf_vals_bg_2528[] = {
1967 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1968 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1969 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1970 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1971 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1972 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1973 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1974 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1975 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1976 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1977 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1978 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1979 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1980 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1984 * RF value list for RF5226
1985 * Supports: 2.4 GHz & 5.2 GHz
1987 static const struct rf_channel rf_vals_5226[] = {
1988 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1989 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1990 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1991 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1992 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1993 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1994 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1995 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1996 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1997 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1998 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1999 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2000 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2001 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2003 /* 802.11 UNI / HyperLan 2 */
2004 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2005 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2006 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2007 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2008 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2009 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2010 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2011 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2013 /* 802.11 HyperLan 2 */
2014 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2015 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2016 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2017 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2018 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2019 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2020 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2021 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2022 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2023 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2025 /* 802.11 UNII */
2026 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2027 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2028 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2029 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2030 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2031 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2033 /* MMAC(Japan)J52 ch 34,38,42,46 */
2034 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2035 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2036 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2037 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2041 * RF value list for RF5225 & RF2527
2042 * Supports: 2.4 GHz & 5.2 GHz
2044 static const struct rf_channel rf_vals_5225_2527[] = {
2045 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2046 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2047 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2048 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2049 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2050 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2051 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2052 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2053 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2054 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2055 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2056 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2057 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2058 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2060 /* 802.11 UNI / HyperLan 2 */
2061 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2062 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2063 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2064 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2065 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2066 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2067 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2068 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2070 /* 802.11 HyperLan 2 */
2071 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2072 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2073 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2074 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2075 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2076 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2077 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2078 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2079 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2080 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2082 /* 802.11 UNII */
2083 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2084 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2085 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2086 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2087 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2088 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2090 /* MMAC(Japan)J52 ch 34,38,42,46 */
2091 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2092 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2093 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2094 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2098 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2100 struct hw_mode_spec *spec = &rt2x00dev->spec;
2101 struct channel_info *info;
2102 char *tx_power;
2103 unsigned int i;
2106 * Initialize all hw fields.
2108 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2109 * capable of sending the buffered frames out after the DTIM
2110 * transmission using rt2x00lib_beacondone. This will send out
2111 * multicast and broadcast traffic immediately instead of buffering it
2112 * infinitly and thus dropping it after some time.
2114 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2115 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2116 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2118 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2119 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2120 rt2x00_eeprom_addr(rt2x00dev,
2121 EEPROM_MAC_ADDR_0));
2124 * Initialize hw_mode information.
2126 spec->supported_bands = SUPPORT_BAND_2GHZ;
2127 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2129 if (rt2x00_rf(rt2x00dev, RF2528)) {
2130 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2131 spec->channels = rf_vals_bg_2528;
2132 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2133 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2134 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2135 spec->channels = rf_vals_5226;
2136 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2137 spec->num_channels = 14;
2138 spec->channels = rf_vals_5225_2527;
2139 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2140 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2141 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2142 spec->channels = rf_vals_5225_2527;
2146 * Create channel information array
2148 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2149 if (!info)
2150 return -ENOMEM;
2152 spec->channels_info = info;
2154 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2155 for (i = 0; i < 14; i++) {
2156 info[i].max_power = MAX_TXPOWER;
2157 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2160 if (spec->num_channels > 14) {
2161 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2162 for (i = 14; i < spec->num_channels; i++) {
2163 info[i].max_power = MAX_TXPOWER;
2164 info[i].default_power1 =
2165 TXPOWER_FROM_DEV(tx_power[i - 14]);
2169 return 0;
2172 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2174 int retval;
2175 u32 reg;
2178 * Allocate eeprom data.
2180 retval = rt73usb_validate_eeprom(rt2x00dev);
2181 if (retval)
2182 return retval;
2184 retval = rt73usb_init_eeprom(rt2x00dev);
2185 if (retval)
2186 return retval;
2189 * Enable rfkill polling by setting GPIO direction of the
2190 * rfkill switch GPIO pin correctly.
2192 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
2193 rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2194 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2197 * Initialize hw specifications.
2199 retval = rt73usb_probe_hw_mode(rt2x00dev);
2200 if (retval)
2201 return retval;
2204 * This device has multiple filters for control frames,
2205 * but has no a separate filter for PS Poll frames.
2207 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2210 * This device requires firmware.
2212 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2213 if (!modparam_nohwcrypt)
2214 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2215 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2216 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2219 * Set the rssi offset.
2221 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2223 return 0;
2227 * IEEE80211 stack callback functions.
2229 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2230 struct ieee80211_vif *vif, u16 queue_idx,
2231 const struct ieee80211_tx_queue_params *params)
2233 struct rt2x00_dev *rt2x00dev = hw->priv;
2234 struct data_queue *queue;
2235 struct rt2x00_field32 field;
2236 int retval;
2237 u32 reg;
2238 u32 offset;
2241 * First pass the configuration through rt2x00lib, that will
2242 * update the queue settings and validate the input. After that
2243 * we are free to update the registers based on the value
2244 * in the queue parameter.
2246 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2247 if (retval)
2248 return retval;
2251 * We only need to perform additional register initialization
2252 * for WMM queues/
2254 if (queue_idx >= 4)
2255 return 0;
2257 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2259 /* Update WMM TXOP register */
2260 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2261 field.bit_offset = (queue_idx & 1) * 16;
2262 field.bit_mask = 0xffff << field.bit_offset;
2264 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2265 rt2x00_set_field32(&reg, field, queue->txop);
2266 rt2x00usb_register_write(rt2x00dev, offset, reg);
2268 /* Update WMM registers */
2269 field.bit_offset = queue_idx * 4;
2270 field.bit_mask = 0xf << field.bit_offset;
2272 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2273 rt2x00_set_field32(&reg, field, queue->aifs);
2274 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2276 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2277 rt2x00_set_field32(&reg, field, queue->cw_min);
2278 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2280 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2281 rt2x00_set_field32(&reg, field, queue->cw_max);
2282 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2284 return 0;
2287 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2289 struct rt2x00_dev *rt2x00dev = hw->priv;
2290 u64 tsf;
2291 u32 reg;
2293 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2294 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2295 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2296 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2298 return tsf;
2301 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2302 .tx = rt2x00mac_tx,
2303 .start = rt2x00mac_start,
2304 .stop = rt2x00mac_stop,
2305 .add_interface = rt2x00mac_add_interface,
2306 .remove_interface = rt2x00mac_remove_interface,
2307 .config = rt2x00mac_config,
2308 .configure_filter = rt2x00mac_configure_filter,
2309 .set_tim = rt2x00mac_set_tim,
2310 .set_key = rt2x00mac_set_key,
2311 .sw_scan_start = rt2x00mac_sw_scan_start,
2312 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2313 .get_stats = rt2x00mac_get_stats,
2314 .bss_info_changed = rt2x00mac_bss_info_changed,
2315 .conf_tx = rt73usb_conf_tx,
2316 .get_tsf = rt73usb_get_tsf,
2317 .rfkill_poll = rt2x00mac_rfkill_poll,
2318 .flush = rt2x00mac_flush,
2319 .set_antenna = rt2x00mac_set_antenna,
2320 .get_antenna = rt2x00mac_get_antenna,
2321 .get_ringparam = rt2x00mac_get_ringparam,
2322 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2325 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2326 .probe_hw = rt73usb_probe_hw,
2327 .get_firmware_name = rt73usb_get_firmware_name,
2328 .check_firmware = rt73usb_check_firmware,
2329 .load_firmware = rt73usb_load_firmware,
2330 .initialize = rt2x00usb_initialize,
2331 .uninitialize = rt2x00usb_uninitialize,
2332 .clear_entry = rt2x00usb_clear_entry,
2333 .set_device_state = rt73usb_set_device_state,
2334 .rfkill_poll = rt73usb_rfkill_poll,
2335 .link_stats = rt73usb_link_stats,
2336 .reset_tuner = rt73usb_reset_tuner,
2337 .link_tuner = rt73usb_link_tuner,
2338 .watchdog = rt2x00usb_watchdog,
2339 .start_queue = rt73usb_start_queue,
2340 .kick_queue = rt2x00usb_kick_queue,
2341 .stop_queue = rt73usb_stop_queue,
2342 .flush_queue = rt2x00usb_flush_queue,
2343 .write_tx_desc = rt73usb_write_tx_desc,
2344 .write_beacon = rt73usb_write_beacon,
2345 .clear_beacon = rt73usb_clear_beacon,
2346 .get_tx_data_len = rt73usb_get_tx_data_len,
2347 .fill_rxdone = rt73usb_fill_rxdone,
2348 .config_shared_key = rt73usb_config_shared_key,
2349 .config_pairwise_key = rt73usb_config_pairwise_key,
2350 .config_filter = rt73usb_config_filter,
2351 .config_intf = rt73usb_config_intf,
2352 .config_erp = rt73usb_config_erp,
2353 .config_ant = rt73usb_config_ant,
2354 .config = rt73usb_config,
2357 static void rt73usb_queue_init(struct data_queue *queue)
2359 switch (queue->qid) {
2360 case QID_RX:
2361 queue->limit = 32;
2362 queue->data_size = DATA_FRAME_SIZE;
2363 queue->desc_size = RXD_DESC_SIZE;
2364 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2365 break;
2367 case QID_AC_VO:
2368 case QID_AC_VI:
2369 case QID_AC_BE:
2370 case QID_AC_BK:
2371 queue->limit = 32;
2372 queue->data_size = DATA_FRAME_SIZE;
2373 queue->desc_size = TXD_DESC_SIZE;
2374 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2375 break;
2377 case QID_BEACON:
2378 queue->limit = 4;
2379 queue->data_size = MGMT_FRAME_SIZE;
2380 queue->desc_size = TXINFO_SIZE;
2381 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2382 break;
2384 case QID_ATIM:
2385 /* fallthrough */
2386 default:
2387 BUG();
2388 break;
2392 static const struct rt2x00_ops rt73usb_ops = {
2393 .name = KBUILD_MODNAME,
2394 .max_ap_intf = 4,
2395 .eeprom_size = EEPROM_SIZE,
2396 .rf_size = RF_SIZE,
2397 .tx_queues = NUM_TX_QUEUES,
2398 .queue_init = rt73usb_queue_init,
2399 .lib = &rt73usb_rt2x00_ops,
2400 .hw = &rt73usb_mac80211_ops,
2401 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2402 .debugfs = &rt73usb_rt2x00debug,
2403 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2407 * rt73usb module information.
2409 static struct usb_device_id rt73usb_device_table[] = {
2410 /* AboCom */
2411 { USB_DEVICE(0x07b8, 0xb21b) },
2412 { USB_DEVICE(0x07b8, 0xb21c) },
2413 { USB_DEVICE(0x07b8, 0xb21d) },
2414 { USB_DEVICE(0x07b8, 0xb21e) },
2415 { USB_DEVICE(0x07b8, 0xb21f) },
2416 /* AL */
2417 { USB_DEVICE(0x14b2, 0x3c10) },
2418 /* Amigo */
2419 { USB_DEVICE(0x148f, 0x9021) },
2420 { USB_DEVICE(0x0eb0, 0x9021) },
2421 /* AMIT */
2422 { USB_DEVICE(0x18c5, 0x0002) },
2423 /* Askey */
2424 { USB_DEVICE(0x1690, 0x0722) },
2425 /* ASUS */
2426 { USB_DEVICE(0x0b05, 0x1723) },
2427 { USB_DEVICE(0x0b05, 0x1724) },
2428 /* Belkin */
2429 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2430 { USB_DEVICE(0x050d, 0x705a) },
2431 { USB_DEVICE(0x050d, 0x905b) },
2432 { USB_DEVICE(0x050d, 0x905c) },
2433 /* Billionton */
2434 { USB_DEVICE(0x1631, 0xc019) },
2435 { USB_DEVICE(0x08dd, 0x0120) },
2436 /* Buffalo */
2437 { USB_DEVICE(0x0411, 0x00d8) },
2438 { USB_DEVICE(0x0411, 0x00d9) },
2439 { USB_DEVICE(0x0411, 0x00e6) },
2440 { USB_DEVICE(0x0411, 0x00f4) },
2441 { USB_DEVICE(0x0411, 0x0116) },
2442 { USB_DEVICE(0x0411, 0x0119) },
2443 { USB_DEVICE(0x0411, 0x0137) },
2444 /* CEIVA */
2445 { USB_DEVICE(0x178d, 0x02be) },
2446 /* CNet */
2447 { USB_DEVICE(0x1371, 0x9022) },
2448 { USB_DEVICE(0x1371, 0x9032) },
2449 /* Conceptronic */
2450 { USB_DEVICE(0x14b2, 0x3c22) },
2451 /* Corega */
2452 { USB_DEVICE(0x07aa, 0x002e) },
2453 /* D-Link */
2454 { USB_DEVICE(0x07d1, 0x3c03) },
2455 { USB_DEVICE(0x07d1, 0x3c04) },
2456 { USB_DEVICE(0x07d1, 0x3c06) },
2457 { USB_DEVICE(0x07d1, 0x3c07) },
2458 /* Edimax */
2459 { USB_DEVICE(0x7392, 0x7318) },
2460 { USB_DEVICE(0x7392, 0x7618) },
2461 /* EnGenius */
2462 { USB_DEVICE(0x1740, 0x3701) },
2463 /* Gemtek */
2464 { USB_DEVICE(0x15a9, 0x0004) },
2465 /* Gigabyte */
2466 { USB_DEVICE(0x1044, 0x8008) },
2467 { USB_DEVICE(0x1044, 0x800a) },
2468 /* Huawei-3Com */
2469 { USB_DEVICE(0x1472, 0x0009) },
2470 /* Hercules */
2471 { USB_DEVICE(0x06f8, 0xe002) },
2472 { USB_DEVICE(0x06f8, 0xe010) },
2473 { USB_DEVICE(0x06f8, 0xe020) },
2474 /* Linksys */
2475 { USB_DEVICE(0x13b1, 0x0020) },
2476 { USB_DEVICE(0x13b1, 0x0023) },
2477 { USB_DEVICE(0x13b1, 0x0028) },
2478 /* MSI */
2479 { USB_DEVICE(0x0db0, 0x4600) },
2480 { USB_DEVICE(0x0db0, 0x6877) },
2481 { USB_DEVICE(0x0db0, 0x6874) },
2482 { USB_DEVICE(0x0db0, 0xa861) },
2483 { USB_DEVICE(0x0db0, 0xa874) },
2484 /* Ovislink */
2485 { USB_DEVICE(0x1b75, 0x7318) },
2486 /* Ralink */
2487 { USB_DEVICE(0x04bb, 0x093d) },
2488 { USB_DEVICE(0x148f, 0x2573) },
2489 { USB_DEVICE(0x148f, 0x2671) },
2490 { USB_DEVICE(0x0812, 0x3101) },
2491 /* Qcom */
2492 { USB_DEVICE(0x18e8, 0x6196) },
2493 { USB_DEVICE(0x18e8, 0x6229) },
2494 { USB_DEVICE(0x18e8, 0x6238) },
2495 /* Samsung */
2496 { USB_DEVICE(0x04e8, 0x4471) },
2497 /* Senao */
2498 { USB_DEVICE(0x1740, 0x7100) },
2499 /* Sitecom */
2500 { USB_DEVICE(0x0df6, 0x0024) },
2501 { USB_DEVICE(0x0df6, 0x0027) },
2502 { USB_DEVICE(0x0df6, 0x002f) },
2503 { USB_DEVICE(0x0df6, 0x90ac) },
2504 { USB_DEVICE(0x0df6, 0x9712) },
2505 /* Surecom */
2506 { USB_DEVICE(0x0769, 0x31f3) },
2507 /* Tilgin */
2508 { USB_DEVICE(0x6933, 0x5001) },
2509 /* Philips */
2510 { USB_DEVICE(0x0471, 0x200a) },
2511 /* Planex */
2512 { USB_DEVICE(0x2019, 0xab01) },
2513 { USB_DEVICE(0x2019, 0xab50) },
2514 /* WideTell */
2515 { USB_DEVICE(0x7167, 0x3840) },
2516 /* Zcom */
2517 { USB_DEVICE(0x0cde, 0x001c) },
2518 /* ZyXEL */
2519 { USB_DEVICE(0x0586, 0x3415) },
2520 { 0, }
2523 MODULE_AUTHOR(DRV_PROJECT);
2524 MODULE_VERSION(DRV_VERSION);
2525 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2526 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2527 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2528 MODULE_FIRMWARE(FIRMWARE_RT2571);
2529 MODULE_LICENSE("GPL");
2531 static int rt73usb_probe(struct usb_interface *usb_intf,
2532 const struct usb_device_id *id)
2534 return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2537 static struct usb_driver rt73usb_driver = {
2538 .name = KBUILD_MODNAME,
2539 .id_table = rt73usb_device_table,
2540 .probe = rt73usb_probe,
2541 .disconnect = rt2x00usb_disconnect,
2542 .suspend = rt2x00usb_suspend,
2543 .resume = rt2x00usb_resume,
2544 .reset_resume = rt2x00usb_resume,
2545 .disable_hub_initiated_lpm = 1,
2548 module_usb_driver(rt73usb_driver);