Linux 4.4.145
[linux/fpc-iii.git] / drivers / net / wireless / zd1211rw / zd_rf_uw2453.c
blob61b9240273565814800da2ef707a71cdd64b6e1c
1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
23 #include "zd_rf.h"
24 #include "zd_usb.h"
25 #include "zd_chip.h"
27 /* This RF programming code is based upon the code found in v2.16.0.0 of the
28 * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs
29 * for this RF on their website, so we're able to understand more than
30 * usual as to what is going on. Thumbs up for Ubec for doing that. */
32 /* The 3-wire serial interface provides access to 8 write-only registers.
33 * The data format is a 4 bit register address followed by a 20 bit value. */
34 #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))
36 /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth
37 * fractional divide ratio) and 3 (VCO config).
39 * We configure the RF to produce an interrupt when the PLL is locked onto
40 * the configured frequency. During initialization, we run through a variety
41 * of different VCO configurations on channel 1 until we detect a PLL lock.
42 * When this happens, we remember which VCO configuration produced the lock
43 * and use it later. Actually, we use the configuration *after* the one that
44 * produced the lock, which seems odd, but it works.
46 * If we do not see a PLL lock on any standard VCO config, we fall back on an
47 * autocal configuration, which has a fixed (as opposed to per-channel) VCO
48 * config and different synth values from the standard set (divide ratio
49 * is still shared with the standard set). */
51 /* The per-channel synth values for all standard VCO configurations. These get
52 * written to register 1. */
53 static const u8 uw2453_std_synth[] = {
54 RF_CHANNEL( 1) = 0x47,
55 RF_CHANNEL( 2) = 0x47,
56 RF_CHANNEL( 3) = 0x67,
57 RF_CHANNEL( 4) = 0x67,
58 RF_CHANNEL( 5) = 0x67,
59 RF_CHANNEL( 6) = 0x67,
60 RF_CHANNEL( 7) = 0x57,
61 RF_CHANNEL( 8) = 0x57,
62 RF_CHANNEL( 9) = 0x57,
63 RF_CHANNEL(10) = 0x57,
64 RF_CHANNEL(11) = 0x77,
65 RF_CHANNEL(12) = 0x77,
66 RF_CHANNEL(13) = 0x77,
67 RF_CHANNEL(14) = 0x4f,
70 /* This table stores the synthesizer fractional divide ratio for *all* VCO
71 * configurations (both standard and autocal). These get written to register 2.
73 static const u16 uw2453_synth_divide[] = {
74 RF_CHANNEL( 1) = 0x999,
75 RF_CHANNEL( 2) = 0x99b,
76 RF_CHANNEL( 3) = 0x998,
77 RF_CHANNEL( 4) = 0x99a,
78 RF_CHANNEL( 5) = 0x999,
79 RF_CHANNEL( 6) = 0x99b,
80 RF_CHANNEL( 7) = 0x998,
81 RF_CHANNEL( 8) = 0x99a,
82 RF_CHANNEL( 9) = 0x999,
83 RF_CHANNEL(10) = 0x99b,
84 RF_CHANNEL(11) = 0x998,
85 RF_CHANNEL(12) = 0x99a,
86 RF_CHANNEL(13) = 0x999,
87 RF_CHANNEL(14) = 0xccc,
90 /* Here is the data for all the standard VCO configurations. We shrink our
91 * table a little by observing that both channels in a consecutive pair share
92 * the same value. We also observe that the high 4 bits ([0:3] in the specs)
93 * are all 'Reserved' and are always set to 0x4 - we chop them off in the data
94 * below. */
95 #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)
96 #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]
97 static const u16 uw2453_std_vco_cfg[][7] = {
98 { /* table 1 */
99 RF_CHANPAIR( 1, 2) = 0x664d,
100 RF_CHANPAIR( 3, 4) = 0x604d,
101 RF_CHANPAIR( 5, 6) = 0x6675,
102 RF_CHANPAIR( 7, 8) = 0x6475,
103 RF_CHANPAIR( 9, 10) = 0x6655,
104 RF_CHANPAIR(11, 12) = 0x6455,
105 RF_CHANPAIR(13, 14) = 0x6665,
107 { /* table 2 */
108 RF_CHANPAIR( 1, 2) = 0x666d,
109 RF_CHANPAIR( 3, 4) = 0x606d,
110 RF_CHANPAIR( 5, 6) = 0x664d,
111 RF_CHANPAIR( 7, 8) = 0x644d,
112 RF_CHANPAIR( 9, 10) = 0x6675,
113 RF_CHANPAIR(11, 12) = 0x6475,
114 RF_CHANPAIR(13, 14) = 0x6655,
116 { /* table 3 */
117 RF_CHANPAIR( 1, 2) = 0x665d,
118 RF_CHANPAIR( 3, 4) = 0x605d,
119 RF_CHANPAIR( 5, 6) = 0x666d,
120 RF_CHANPAIR( 7, 8) = 0x646d,
121 RF_CHANPAIR( 9, 10) = 0x664d,
122 RF_CHANPAIR(11, 12) = 0x644d,
123 RF_CHANPAIR(13, 14) = 0x6675,
125 { /* table 4 */
126 RF_CHANPAIR( 1, 2) = 0x667d,
127 RF_CHANPAIR( 3, 4) = 0x607d,
128 RF_CHANPAIR( 5, 6) = 0x665d,
129 RF_CHANPAIR( 7, 8) = 0x645d,
130 RF_CHANPAIR( 9, 10) = 0x666d,
131 RF_CHANPAIR(11, 12) = 0x646d,
132 RF_CHANPAIR(13, 14) = 0x664d,
134 { /* table 5 */
135 RF_CHANPAIR( 1, 2) = 0x6643,
136 RF_CHANPAIR( 3, 4) = 0x6043,
137 RF_CHANPAIR( 5, 6) = 0x667d,
138 RF_CHANPAIR( 7, 8) = 0x647d,
139 RF_CHANPAIR( 9, 10) = 0x665d,
140 RF_CHANPAIR(11, 12) = 0x645d,
141 RF_CHANPAIR(13, 14) = 0x666d,
143 { /* table 6 */
144 RF_CHANPAIR( 1, 2) = 0x6663,
145 RF_CHANPAIR( 3, 4) = 0x6063,
146 RF_CHANPAIR( 5, 6) = 0x6643,
147 RF_CHANPAIR( 7, 8) = 0x6443,
148 RF_CHANPAIR( 9, 10) = 0x667d,
149 RF_CHANPAIR(11, 12) = 0x647d,
150 RF_CHANPAIR(13, 14) = 0x665d,
152 { /* table 7 */
153 RF_CHANPAIR( 1, 2) = 0x6653,
154 RF_CHANPAIR( 3, 4) = 0x6053,
155 RF_CHANPAIR( 5, 6) = 0x6663,
156 RF_CHANPAIR( 7, 8) = 0x6463,
157 RF_CHANPAIR( 9, 10) = 0x6643,
158 RF_CHANPAIR(11, 12) = 0x6443,
159 RF_CHANPAIR(13, 14) = 0x667d,
161 { /* table 8 */
162 RF_CHANPAIR( 1, 2) = 0x6673,
163 RF_CHANPAIR( 3, 4) = 0x6073,
164 RF_CHANPAIR( 5, 6) = 0x6653,
165 RF_CHANPAIR( 7, 8) = 0x6453,
166 RF_CHANPAIR( 9, 10) = 0x6663,
167 RF_CHANPAIR(11, 12) = 0x6463,
168 RF_CHANPAIR(13, 14) = 0x6643,
170 { /* table 9 */
171 RF_CHANPAIR( 1, 2) = 0x664b,
172 RF_CHANPAIR( 3, 4) = 0x604b,
173 RF_CHANPAIR( 5, 6) = 0x6673,
174 RF_CHANPAIR( 7, 8) = 0x6473,
175 RF_CHANPAIR( 9, 10) = 0x6653,
176 RF_CHANPAIR(11, 12) = 0x6453,
177 RF_CHANPAIR(13, 14) = 0x6663,
179 { /* table 10 */
180 RF_CHANPAIR( 1, 2) = 0x666b,
181 RF_CHANPAIR( 3, 4) = 0x606b,
182 RF_CHANPAIR( 5, 6) = 0x664b,
183 RF_CHANPAIR( 7, 8) = 0x644b,
184 RF_CHANPAIR( 9, 10) = 0x6673,
185 RF_CHANPAIR(11, 12) = 0x6473,
186 RF_CHANPAIR(13, 14) = 0x6653,
188 { /* table 11 */
189 RF_CHANPAIR( 1, 2) = 0x665b,
190 RF_CHANPAIR( 3, 4) = 0x605b,
191 RF_CHANPAIR( 5, 6) = 0x666b,
192 RF_CHANPAIR( 7, 8) = 0x646b,
193 RF_CHANPAIR( 9, 10) = 0x664b,
194 RF_CHANPAIR(11, 12) = 0x644b,
195 RF_CHANPAIR(13, 14) = 0x6673,
200 /* The per-channel synth values for autocal. These get written to register 1. */
201 static const u16 uw2453_autocal_synth[] = {
202 RF_CHANNEL( 1) = 0x6847,
203 RF_CHANNEL( 2) = 0x6847,
204 RF_CHANNEL( 3) = 0x6867,
205 RF_CHANNEL( 4) = 0x6867,
206 RF_CHANNEL( 5) = 0x6867,
207 RF_CHANNEL( 6) = 0x6867,
208 RF_CHANNEL( 7) = 0x6857,
209 RF_CHANNEL( 8) = 0x6857,
210 RF_CHANNEL( 9) = 0x6857,
211 RF_CHANNEL(10) = 0x6857,
212 RF_CHANNEL(11) = 0x6877,
213 RF_CHANNEL(12) = 0x6877,
214 RF_CHANNEL(13) = 0x6877,
215 RF_CHANNEL(14) = 0x684f,
218 /* The VCO configuration for autocal (all channels) */
219 static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662;
221 /* TX gain settings. The array index corresponds to the TX power integration
222 * values found in the EEPROM. The values get written to register 7. */
223 static u32 uw2453_txgain[] = {
224 [0x00] = 0x0e313,
225 [0x01] = 0x0fb13,
226 [0x02] = 0x0e093,
227 [0x03] = 0x0f893,
228 [0x04] = 0x0ea93,
229 [0x05] = 0x1f093,
230 [0x06] = 0x1f493,
231 [0x07] = 0x1f693,
232 [0x08] = 0x1f393,
233 [0x09] = 0x1f35b,
234 [0x0a] = 0x1e6db,
235 [0x0b] = 0x1ff3f,
236 [0x0c] = 0x1ffff,
237 [0x0d] = 0x361d7,
238 [0x0e] = 0x37fbf,
239 [0x0f] = 0x3ff8b,
240 [0x10] = 0x3ff33,
241 [0x11] = 0x3fb3f,
242 [0x12] = 0x3ffff,
245 /* RF-specific structure */
246 struct uw2453_priv {
247 /* index into synth/VCO config tables where PLL lock was found
248 * -1 means autocal */
249 int config;
252 #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)
254 static int uw2453_synth_set_channel(struct zd_chip *chip, int channel,
255 bool autocal)
257 int r;
258 int idx = channel - 1;
259 u32 val;
261 if (autocal)
262 val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]);
263 else
264 val = UW2453_REGWRITE(1, uw2453_std_synth[idx]);
266 r = zd_rfwrite_locked(chip, val, RF_RV_BITS);
267 if (r)
268 return r;
270 return zd_rfwrite_locked(chip,
271 UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS);
274 static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value)
276 /* vendor driver always sets these upper bits even though the specs say
277 * they are reserved */
278 u32 val = 0x40000 | value;
279 return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS);
282 static int uw2453_init_mode(struct zd_chip *chip)
284 static const u32 rv[] = {
285 UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */
286 UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */
287 UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */
288 UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */
291 return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
294 static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel)
296 u8 int_value = chip->pwr_int_values[channel - 1];
298 if (int_value >= ARRAY_SIZE(uw2453_txgain)) {
299 dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for "
300 "int value %x on channel %d\n", int_value, channel);
301 return 0;
304 return zd_rfwrite_locked(chip,
305 UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS);
308 static int uw2453_init_hw(struct zd_rf *rf)
310 int i, r;
311 int found_config = -1;
312 u16 intr_status;
313 struct zd_chip *chip = zd_rf_to_chip(rf);
315 static const struct zd_ioreq16 ioreqs[] = {
316 { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 },
317 { ZD_CR17, 0x28 }, /* 6112 no change */
318 { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 },
319 { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 },
320 { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 },
321 { ZD_CR35, 0x43 }, /* 6112 3e->43 */
322 { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 },
323 { ZD_CR46, 0x92 }, /* 6112 96->92 */
324 { ZD_CR47, 0x1e },
325 { ZD_CR48, 0x04 }, /* 5602 Roger */
326 { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 },
327 { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 },
328 { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d },
329 { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 },
330 { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */
331 { ZD_CR102, 0x27 },
332 { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f
333 * 6221 1f->1c
335 { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */
336 { ZD_CR109, 0x13 },
337 { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */
338 { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 },
339 { ZD_CR114, 0x23 }, /* 6221 27->23 */
340 { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */
341 { ZD_CR116, 0x24 }, /* 6220 1c->24 */
342 { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */
343 { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */
344 { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */
345 { ZD_CR120, 0x4f },
346 { ZD_CR121, 0x1f }, /* 6220 4f->1f */
347 { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad },
348 { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 },
349 { ZD_CR128, 0x14 }, /* 6302 12->11 */
350 { ZD_CR129, 0x12 }, /* 6301 10->0f */
351 { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 },
352 { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff },
353 { ZD_CR253, 0xff },
356 static const u32 rv[] = {
357 UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */
358 UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */
359 UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */
360 UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */
362 /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins,
363 * RSSI circuit powered down, reduced RSSI range */
364 UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */
366 /* synthesizer configuration for channel 1 */
367 UW2453_REGWRITE(1, 0x47),
368 UW2453_REGWRITE(2, 0x999),
370 /* disable manual VCO band selection */
371 UW2453_REGWRITE(3, 0x7602),
373 /* enable manual VCO band selection, configure current level */
374 UW2453_REGWRITE(3, 0x46063),
377 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
378 if (r)
379 return r;
381 r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
382 if (r)
383 return r;
385 r = uw2453_init_mode(chip);
386 if (r)
387 return r;
389 /* Try all standard VCO configuration settings on channel 1 */
390 for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) {
391 /* Configure synthesizer for channel 1 */
392 r = uw2453_synth_set_channel(chip, 1, false);
393 if (r)
394 return r;
396 /* Write VCO config */
397 r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]);
398 if (r)
399 return r;
401 /* ack interrupt event */
402 r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG);
403 if (r)
404 return r;
406 /* check interrupt status */
407 r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG);
408 if (r)
409 return r;
411 if (!(intr_status & 0xf)) {
412 dev_dbg_f(zd_chip_dev(chip),
413 "PLL locked on configuration %d\n", i);
414 found_config = i;
415 break;
419 if (found_config == -1) {
420 /* autocal */
421 dev_dbg_f(zd_chip_dev(chip),
422 "PLL did not lock, using autocal\n");
424 r = uw2453_synth_set_channel(chip, 1, true);
425 if (r)
426 return r;
428 r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG);
429 if (r)
430 return r;
433 /* To match the vendor driver behaviour, we use the configuration after
434 * the one that produced a lock. */
435 UW2453_PRIV(rf)->config = found_config + 1;
437 return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
440 static int uw2453_set_channel(struct zd_rf *rf, u8 channel)
442 int r;
443 u16 vco_cfg;
444 int config = UW2453_PRIV(rf)->config;
445 bool autocal = (config == -1);
446 struct zd_chip *chip = zd_rf_to_chip(rf);
448 static const struct zd_ioreq16 ioreqs[] = {
449 { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 },
450 { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 },
453 r = uw2453_synth_set_channel(chip, channel, autocal);
454 if (r)
455 return r;
457 if (autocal)
458 vco_cfg = UW2453_AUTOCAL_VCO_CFG;
459 else
460 vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)];
462 r = uw2453_write_vco_cfg(chip, vco_cfg);
463 if (r)
464 return r;
466 r = uw2453_init_mode(chip);
467 if (r)
468 return r;
470 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
471 if (r)
472 return r;
474 r = uw2453_set_tx_gain_level(chip, channel);
475 if (r)
476 return r;
478 return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
481 static int uw2453_switch_radio_on(struct zd_rf *rf)
483 int r;
484 struct zd_chip *chip = zd_rf_to_chip(rf);
485 struct zd_ioreq16 ioreqs[] = {
486 { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f },
489 /* enter RXTX mode */
490 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS);
491 if (r)
492 return r;
494 if (zd_chip_is_zd1211b(chip))
495 ioreqs[1].value = 0x7f;
497 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
500 static int uw2453_switch_radio_off(struct zd_rf *rf)
502 int r;
503 struct zd_chip *chip = zd_rf_to_chip(rf);
504 static const struct zd_ioreq16 ioreqs[] = {
505 { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f },
508 /* enter IDLE mode */
509 /* FIXME: shouldn't we go to SLEEP? sent email to zydas */
510 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS);
511 if (r)
512 return r;
514 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
517 static void uw2453_clear(struct zd_rf *rf)
519 kfree(rf->priv);
522 int zd_rf_init_uw2453(struct zd_rf *rf)
524 rf->init_hw = uw2453_init_hw;
525 rf->set_channel = uw2453_set_channel;
526 rf->switch_radio_on = uw2453_switch_radio_on;
527 rf->switch_radio_off = uw2453_switch_radio_off;
528 rf->patch_6m_band_edge = zd_rf_generic_patch_6m;
529 rf->clear = uw2453_clear;
530 /* we have our own TX integration code */
531 rf->update_channel_int = 0;
533 rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL);
534 if (rf->priv == NULL)
535 return -ENOMEM;
537 return 0;