iwlwifi: mvm: fix version check for GEO_TX_POWER_LIMIT support
[linux/fpc-iii.git] / arch / x86 / boot / compressed / kaslr.c
blobd1e19f358b6ec5fbc5c682e02d2b36149b0aa43a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kaslr.c
5 * This contains the routines needed to generate a reasonable level of
6 * entropy to choose a randomized kernel base address offset in support
7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
8 * handles walking the physical memory maps (and tracking memory regions
9 * to avoid) in order to select a physical memory location that can
10 * contain the entire properly aligned running kernel image.
15 * isspace() in linux/ctype.h is expected by next_args() to filter
16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17 * since isdigit() is implemented in both of them. Hence disable it
18 * here.
20 #define BOOT_CTYPE_H
23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
25 * which is meaningless and will cause compiling error in some cases.
27 #define __DISABLE_EXPORTS
29 #include "misc.h"
30 #include "error.h"
31 #include "../string.h"
33 #include <generated/compile.h>
34 #include <linux/module.h>
35 #include <linux/uts.h>
36 #include <linux/utsname.h>
37 #include <linux/ctype.h>
38 #include <linux/efi.h>
39 #include <generated/utsrelease.h>
40 #include <asm/efi.h>
42 /* Macros used by the included decompressor code below. */
43 #define STATIC
44 #include <linux/decompress/mm.h>
46 #ifdef CONFIG_X86_5LEVEL
47 unsigned int __pgtable_l5_enabled;
48 unsigned int pgdir_shift __ro_after_init = 39;
49 unsigned int ptrs_per_p4d __ro_after_init = 1;
50 #endif
52 extern unsigned long get_cmd_line_ptr(void);
54 /* Used by PAGE_KERN* macros: */
55 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
57 /* Simplified build-specific string for starting entropy. */
58 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
59 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
61 static unsigned long rotate_xor(unsigned long hash, const void *area,
62 size_t size)
64 size_t i;
65 unsigned long *ptr = (unsigned long *)area;
67 for (i = 0; i < size / sizeof(hash); i++) {
68 /* Rotate by odd number of bits and XOR. */
69 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
70 hash ^= ptr[i];
73 return hash;
76 /* Attempt to create a simple but unpredictable starting entropy. */
77 static unsigned long get_boot_seed(void)
79 unsigned long hash = 0;
81 hash = rotate_xor(hash, build_str, sizeof(build_str));
82 hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
84 return hash;
87 #define KASLR_COMPRESSED_BOOT
88 #include "../../lib/kaslr.c"
90 struct mem_vector {
91 unsigned long long start;
92 unsigned long long size;
95 /* Only supporting at most 4 unusable memmap regions with kaslr */
96 #define MAX_MEMMAP_REGIONS 4
98 static bool memmap_too_large;
101 /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
102 static unsigned long long mem_limit = ULLONG_MAX;
105 enum mem_avoid_index {
106 MEM_AVOID_ZO_RANGE = 0,
107 MEM_AVOID_INITRD,
108 MEM_AVOID_CMDLINE,
109 MEM_AVOID_BOOTPARAMS,
110 MEM_AVOID_MEMMAP_BEGIN,
111 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
112 MEM_AVOID_MAX,
115 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
117 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
119 /* Item one is entirely before item two. */
120 if (one->start + one->size <= two->start)
121 return false;
122 /* Item one is entirely after item two. */
123 if (one->start >= two->start + two->size)
124 return false;
125 return true;
128 char *skip_spaces(const char *str)
130 while (isspace(*str))
131 ++str;
132 return (char *)str;
134 #include "../../../../lib/ctype.c"
135 #include "../../../../lib/cmdline.c"
137 static int
138 parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
140 char *oldp;
142 if (!p)
143 return -EINVAL;
145 /* We don't care about this option here */
146 if (!strncmp(p, "exactmap", 8))
147 return -EINVAL;
149 oldp = p;
150 *size = memparse(p, &p);
151 if (p == oldp)
152 return -EINVAL;
154 switch (*p) {
155 case '#':
156 case '$':
157 case '!':
158 *start = memparse(p + 1, &p);
159 return 0;
160 case '@':
161 /* memmap=nn@ss specifies usable region, should be skipped */
162 *size = 0;
163 /* Fall through */
164 default:
166 * If w/o offset, only size specified, memmap=nn[KMG] has the
167 * same behaviour as mem=nn[KMG]. It limits the max address
168 * system can use. Region above the limit should be avoided.
170 *start = 0;
171 return 0;
174 return -EINVAL;
177 static void mem_avoid_memmap(char *str)
179 static int i;
181 if (i >= MAX_MEMMAP_REGIONS)
182 return;
184 while (str && (i < MAX_MEMMAP_REGIONS)) {
185 int rc;
186 unsigned long long start, size;
187 char *k = strchr(str, ',');
189 if (k)
190 *k++ = 0;
192 rc = parse_memmap(str, &start, &size);
193 if (rc < 0)
194 break;
195 str = k;
197 if (start == 0) {
198 /* Store the specified memory limit if size > 0 */
199 if (size > 0)
200 mem_limit = size;
202 continue;
205 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
206 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
207 i++;
210 /* More than 4 memmaps, fail kaslr */
211 if ((i >= MAX_MEMMAP_REGIONS) && str)
212 memmap_too_large = true;
215 /* Store the number of 1GB huge pages which users specified: */
216 static unsigned long max_gb_huge_pages;
218 static void parse_gb_huge_pages(char *param, char *val)
220 static bool gbpage_sz;
221 char *p;
223 if (!strcmp(param, "hugepagesz")) {
224 p = val;
225 if (memparse(p, &p) != PUD_SIZE) {
226 gbpage_sz = false;
227 return;
230 if (gbpage_sz)
231 warn("Repeatedly set hugeTLB page size of 1G!\n");
232 gbpage_sz = true;
233 return;
236 if (!strcmp(param, "hugepages") && gbpage_sz) {
237 p = val;
238 max_gb_huge_pages = simple_strtoull(p, &p, 0);
239 return;
244 static int handle_mem_options(void)
246 char *args = (char *)get_cmd_line_ptr();
247 size_t len = strlen((char *)args);
248 char *tmp_cmdline;
249 char *param, *val;
250 u64 mem_size;
252 if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
253 !strstr(args, "hugepages"))
254 return 0;
256 tmp_cmdline = malloc(len + 1);
257 if (!tmp_cmdline)
258 error("Failed to allocate space for tmp_cmdline");
260 memcpy(tmp_cmdline, args, len);
261 tmp_cmdline[len] = 0;
262 args = tmp_cmdline;
264 /* Chew leading spaces */
265 args = skip_spaces(args);
267 while (*args) {
268 args = next_arg(args, &param, &val);
269 /* Stop at -- */
270 if (!val && strcmp(param, "--") == 0) {
271 warn("Only '--' specified in cmdline");
272 free(tmp_cmdline);
273 return -1;
276 if (!strcmp(param, "memmap")) {
277 mem_avoid_memmap(val);
278 } else if (strstr(param, "hugepages")) {
279 parse_gb_huge_pages(param, val);
280 } else if (!strcmp(param, "mem")) {
281 char *p = val;
283 if (!strcmp(p, "nopentium"))
284 continue;
285 mem_size = memparse(p, &p);
286 if (mem_size == 0) {
287 free(tmp_cmdline);
288 return -EINVAL;
290 mem_limit = mem_size;
294 free(tmp_cmdline);
295 return 0;
299 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
300 * The mem_avoid array is used to store the ranges that need to be avoided
301 * when KASLR searches for an appropriate random address. We must avoid any
302 * regions that are unsafe to overlap with during decompression, and other
303 * things like the initrd, cmdline and boot_params. This comment seeks to
304 * explain mem_avoid as clearly as possible since incorrect mem_avoid
305 * memory ranges lead to really hard to debug boot failures.
307 * The initrd, cmdline, and boot_params are trivial to identify for
308 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
309 * MEM_AVOID_BOOTPARAMS respectively below.
311 * What is not obvious how to avoid is the range of memory that is used
312 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
313 * the compressed kernel (ZO) and its run space, which is used to extract
314 * the uncompressed kernel (VO) and relocs.
316 * ZO's full run size sits against the end of the decompression buffer, so
317 * we can calculate where text, data, bss, etc of ZO are positioned more
318 * easily.
320 * For additional background, the decompression calculations can be found
321 * in header.S, and the memory diagram is based on the one found in misc.c.
323 * The following conditions are already enforced by the image layouts and
324 * associated code:
325 * - input + input_size >= output + output_size
326 * - kernel_total_size <= init_size
327 * - kernel_total_size <= output_size (see Note below)
328 * - output + init_size >= output + output_size
330 * (Note that kernel_total_size and output_size have no fundamental
331 * relationship, but output_size is passed to choose_random_location
332 * as a maximum of the two. The diagram is showing a case where
333 * kernel_total_size is larger than output_size, but this case is
334 * handled by bumping output_size.)
336 * The above conditions can be illustrated by a diagram:
338 * 0 output input input+input_size output+init_size
339 * | | | | |
340 * | | | | |
341 * |-----|--------|--------|--------------|-----------|--|-------------|
342 * | | |
343 * | | |
344 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
346 * [output, output+init_size) is the entire memory range used for
347 * extracting the compressed image.
349 * [output, output+kernel_total_size) is the range needed for the
350 * uncompressed kernel (VO) and its run size (bss, brk, etc).
352 * [output, output+output_size) is VO plus relocs (i.e. the entire
353 * uncompressed payload contained by ZO). This is the area of the buffer
354 * written to during decompression.
356 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
357 * range of the copied ZO and decompression code. (i.e. the range
358 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
360 * [input, input+input_size) is the original copied compressed image (ZO)
361 * (i.e. it does not include its run size). This range must be avoided
362 * because it contains the data used for decompression.
364 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
365 * range includes ZO's heap and stack, and must be avoided since it
366 * performs the decompression.
368 * Since the above two ranges need to be avoided and they are adjacent,
369 * they can be merged, resulting in: [input, output+init_size) which
370 * becomes the MEM_AVOID_ZO_RANGE below.
372 static void mem_avoid_init(unsigned long input, unsigned long input_size,
373 unsigned long output)
375 unsigned long init_size = boot_params->hdr.init_size;
376 u64 initrd_start, initrd_size;
377 u64 cmd_line, cmd_line_size;
378 char *ptr;
381 * Avoid the region that is unsafe to overlap during
382 * decompression.
384 mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
385 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
386 add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
387 mem_avoid[MEM_AVOID_ZO_RANGE].size);
389 /* Avoid initrd. */
390 initrd_start = (u64)boot_params->ext_ramdisk_image << 32;
391 initrd_start |= boot_params->hdr.ramdisk_image;
392 initrd_size = (u64)boot_params->ext_ramdisk_size << 32;
393 initrd_size |= boot_params->hdr.ramdisk_size;
394 mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
395 mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
396 /* No need to set mapping for initrd, it will be handled in VO. */
398 /* Avoid kernel command line. */
399 cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32;
400 cmd_line |= boot_params->hdr.cmd_line_ptr;
401 /* Calculate size of cmd_line. */
402 ptr = (char *)(unsigned long)cmd_line;
403 for (cmd_line_size = 0; ptr[cmd_line_size++];)
405 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
406 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
407 add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
408 mem_avoid[MEM_AVOID_CMDLINE].size);
410 /* Avoid boot parameters. */
411 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
412 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
413 add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
414 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
416 /* We don't need to set a mapping for setup_data. */
418 /* Mark the memmap regions we need to avoid */
419 handle_mem_options();
421 #ifdef CONFIG_X86_VERBOSE_BOOTUP
422 /* Make sure video RAM can be used. */
423 add_identity_map(0, PMD_SIZE);
424 #endif
428 * Does this memory vector overlap a known avoided area? If so, record the
429 * overlap region with the lowest address.
431 static bool mem_avoid_overlap(struct mem_vector *img,
432 struct mem_vector *overlap)
434 int i;
435 struct setup_data *ptr;
436 unsigned long earliest = img->start + img->size;
437 bool is_overlapping = false;
439 for (i = 0; i < MEM_AVOID_MAX; i++) {
440 if (mem_overlaps(img, &mem_avoid[i]) &&
441 mem_avoid[i].start < earliest) {
442 *overlap = mem_avoid[i];
443 earliest = overlap->start;
444 is_overlapping = true;
448 /* Avoid all entries in the setup_data linked list. */
449 ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
450 while (ptr) {
451 struct mem_vector avoid;
453 avoid.start = (unsigned long)ptr;
454 avoid.size = sizeof(*ptr) + ptr->len;
456 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
457 *overlap = avoid;
458 earliest = overlap->start;
459 is_overlapping = true;
462 ptr = (struct setup_data *)(unsigned long)ptr->next;
465 return is_overlapping;
468 struct slot_area {
469 unsigned long addr;
470 int num;
473 #define MAX_SLOT_AREA 100
475 static struct slot_area slot_areas[MAX_SLOT_AREA];
477 static unsigned long slot_max;
479 static unsigned long slot_area_index;
481 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
483 struct slot_area slot_area;
485 if (slot_area_index == MAX_SLOT_AREA)
486 return;
488 slot_area.addr = region->start;
489 slot_area.num = (region->size - image_size) /
490 CONFIG_PHYSICAL_ALIGN + 1;
492 if (slot_area.num > 0) {
493 slot_areas[slot_area_index++] = slot_area;
494 slot_max += slot_area.num;
499 * Skip as many 1GB huge pages as possible in the passed region
500 * according to the number which users specified:
502 static void
503 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
505 unsigned long addr, size = 0;
506 struct mem_vector tmp;
507 int i = 0;
509 if (!max_gb_huge_pages) {
510 store_slot_info(region, image_size);
511 return;
514 addr = ALIGN(region->start, PUD_SIZE);
515 /* Did we raise the address above the passed in memory entry? */
516 if (addr < region->start + region->size)
517 size = region->size - (addr - region->start);
519 /* Check how many 1GB huge pages can be filtered out: */
520 while (size > PUD_SIZE && max_gb_huge_pages) {
521 size -= PUD_SIZE;
522 max_gb_huge_pages--;
523 i++;
526 /* No good 1GB huge pages found: */
527 if (!i) {
528 store_slot_info(region, image_size);
529 return;
533 * Skip those 'i'*1GB good huge pages, and continue checking and
534 * processing the remaining head or tail part of the passed region
535 * if available.
538 if (addr >= region->start + image_size) {
539 tmp.start = region->start;
540 tmp.size = addr - region->start;
541 store_slot_info(&tmp, image_size);
544 size = region->size - (addr - region->start) - i * PUD_SIZE;
545 if (size >= image_size) {
546 tmp.start = addr + i * PUD_SIZE;
547 tmp.size = size;
548 store_slot_info(&tmp, image_size);
552 static unsigned long slots_fetch_random(void)
554 unsigned long slot;
555 int i;
557 /* Handle case of no slots stored. */
558 if (slot_max == 0)
559 return 0;
561 slot = kaslr_get_random_long("Physical") % slot_max;
563 for (i = 0; i < slot_area_index; i++) {
564 if (slot >= slot_areas[i].num) {
565 slot -= slot_areas[i].num;
566 continue;
568 return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
571 if (i == slot_area_index)
572 debug_putstr("slots_fetch_random() failed!?\n");
573 return 0;
576 static void process_mem_region(struct mem_vector *entry,
577 unsigned long minimum,
578 unsigned long image_size)
580 struct mem_vector region, overlap;
581 struct slot_area slot_area;
582 unsigned long start_orig, end;
583 struct mem_vector cur_entry;
585 /* On 32-bit, ignore entries entirely above our maximum. */
586 if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
587 return;
589 /* Ignore entries entirely below our minimum. */
590 if (entry->start + entry->size < minimum)
591 return;
593 /* Ignore entries above memory limit */
594 end = min(entry->size + entry->start, mem_limit);
595 if (entry->start >= end)
596 return;
597 cur_entry.start = entry->start;
598 cur_entry.size = end - entry->start;
600 region.start = cur_entry.start;
601 region.size = cur_entry.size;
603 /* Give up if slot area array is full. */
604 while (slot_area_index < MAX_SLOT_AREA) {
605 start_orig = region.start;
607 /* Potentially raise address to minimum location. */
608 if (region.start < minimum)
609 region.start = minimum;
611 /* Potentially raise address to meet alignment needs. */
612 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
614 /* Did we raise the address above the passed in memory entry? */
615 if (region.start > cur_entry.start + cur_entry.size)
616 return;
618 /* Reduce size by any delta from the original address. */
619 region.size -= region.start - start_orig;
621 /* On 32-bit, reduce region size to fit within max size. */
622 if (IS_ENABLED(CONFIG_X86_32) &&
623 region.start + region.size > KERNEL_IMAGE_SIZE)
624 region.size = KERNEL_IMAGE_SIZE - region.start;
626 /* Return if region can't contain decompressed kernel */
627 if (region.size < image_size)
628 return;
630 /* If nothing overlaps, store the region and return. */
631 if (!mem_avoid_overlap(&region, &overlap)) {
632 process_gb_huge_pages(&region, image_size);
633 return;
636 /* Store beginning of region if holds at least image_size. */
637 if (overlap.start > region.start + image_size) {
638 struct mem_vector beginning;
640 beginning.start = region.start;
641 beginning.size = overlap.start - region.start;
642 process_gb_huge_pages(&beginning, image_size);
645 /* Return if overlap extends to or past end of region. */
646 if (overlap.start + overlap.size >= region.start + region.size)
647 return;
649 /* Clip off the overlapping region and start over. */
650 region.size -= overlap.start - region.start + overlap.size;
651 region.start = overlap.start + overlap.size;
655 #ifdef CONFIG_EFI
657 * Returns true if mirror region found (and must have been processed
658 * for slots adding)
660 static bool
661 process_efi_entries(unsigned long minimum, unsigned long image_size)
663 struct efi_info *e = &boot_params->efi_info;
664 bool efi_mirror_found = false;
665 struct mem_vector region;
666 efi_memory_desc_t *md;
667 unsigned long pmap;
668 char *signature;
669 u32 nr_desc;
670 int i;
672 signature = (char *)&e->efi_loader_signature;
673 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
674 strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
675 return false;
677 #ifdef CONFIG_X86_32
678 /* Can't handle data above 4GB at this time */
679 if (e->efi_memmap_hi) {
680 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
681 return false;
683 pmap = e->efi_memmap;
684 #else
685 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
686 #endif
688 nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
689 for (i = 0; i < nr_desc; i++) {
690 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
691 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
692 efi_mirror_found = true;
693 break;
697 for (i = 0; i < nr_desc; i++) {
698 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
701 * Here we are more conservative in picking free memory than
702 * the EFI spec allows:
704 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
705 * free memory and thus available to place the kernel image into,
706 * but in practice there's firmware where using that memory leads
707 * to crashes.
709 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
711 if (md->type != EFI_CONVENTIONAL_MEMORY)
712 continue;
714 if (efi_mirror_found &&
715 !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
716 continue;
718 region.start = md->phys_addr;
719 region.size = md->num_pages << EFI_PAGE_SHIFT;
720 process_mem_region(&region, minimum, image_size);
721 if (slot_area_index == MAX_SLOT_AREA) {
722 debug_putstr("Aborted EFI scan (slot_areas full)!\n");
723 break;
726 return true;
728 #else
729 static inline bool
730 process_efi_entries(unsigned long minimum, unsigned long image_size)
732 return false;
734 #endif
736 static void process_e820_entries(unsigned long minimum,
737 unsigned long image_size)
739 int i;
740 struct mem_vector region;
741 struct boot_e820_entry *entry;
743 /* Verify potential e820 positions, appending to slots list. */
744 for (i = 0; i < boot_params->e820_entries; i++) {
745 entry = &boot_params->e820_table[i];
746 /* Skip non-RAM entries. */
747 if (entry->type != E820_TYPE_RAM)
748 continue;
749 region.start = entry->addr;
750 region.size = entry->size;
751 process_mem_region(&region, minimum, image_size);
752 if (slot_area_index == MAX_SLOT_AREA) {
753 debug_putstr("Aborted e820 scan (slot_areas full)!\n");
754 break;
759 static unsigned long find_random_phys_addr(unsigned long minimum,
760 unsigned long image_size)
762 /* Check if we had too many memmaps. */
763 if (memmap_too_large) {
764 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
765 return 0;
768 /* Make sure minimum is aligned. */
769 minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
771 if (process_efi_entries(minimum, image_size))
772 return slots_fetch_random();
774 process_e820_entries(minimum, image_size);
775 return slots_fetch_random();
778 static unsigned long find_random_virt_addr(unsigned long minimum,
779 unsigned long image_size)
781 unsigned long slots, random_addr;
783 /* Make sure minimum is aligned. */
784 minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
785 /* Align image_size for easy slot calculations. */
786 image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
789 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
790 * that can hold image_size within the range of minimum to
791 * KERNEL_IMAGE_SIZE?
793 slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
794 CONFIG_PHYSICAL_ALIGN + 1;
796 random_addr = kaslr_get_random_long("Virtual") % slots;
798 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
802 * Since this function examines addresses much more numerically,
803 * it takes the input and output pointers as 'unsigned long'.
805 void choose_random_location(unsigned long input,
806 unsigned long input_size,
807 unsigned long *output,
808 unsigned long output_size,
809 unsigned long *virt_addr)
811 unsigned long random_addr, min_addr;
813 if (cmdline_find_option_bool("nokaslr")) {
814 warn("KASLR disabled: 'nokaslr' on cmdline.");
815 return;
818 #ifdef CONFIG_X86_5LEVEL
819 if (__read_cr4() & X86_CR4_LA57) {
820 __pgtable_l5_enabled = 1;
821 pgdir_shift = 48;
822 ptrs_per_p4d = 512;
824 #endif
826 boot_params->hdr.loadflags |= KASLR_FLAG;
828 /* Prepare to add new identity pagetables on demand. */
829 initialize_identity_maps();
831 /* Record the various known unsafe memory ranges. */
832 mem_avoid_init(input, input_size, *output);
835 * Low end of the randomization range should be the
836 * smaller of 512M or the initial kernel image
837 * location:
839 min_addr = min(*output, 512UL << 20);
841 /* Walk available memory entries to find a random address. */
842 random_addr = find_random_phys_addr(min_addr, output_size);
843 if (!random_addr) {
844 warn("Physical KASLR disabled: no suitable memory region!");
845 } else {
846 /* Update the new physical address location. */
847 if (*output != random_addr) {
848 add_identity_map(random_addr, output_size);
849 *output = random_addr;
853 * This loads the identity mapping page table.
854 * This should only be done if a new physical address
855 * is found for the kernel, otherwise we should keep
856 * the old page table to make it be like the "nokaslr"
857 * case.
859 finalize_identity_maps();
863 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
864 if (IS_ENABLED(CONFIG_X86_64))
865 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
866 *virt_addr = random_addr;