1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
10 #include <trace/events/tlb.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
17 extern atomic64_t last_mm_ctx_id
;
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct
*prev
,
21 struct mm_struct
*next
)
24 #endif /* !CONFIG_PARAVIRT */
26 #ifdef CONFIG_PERF_EVENTS
28 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key
);
30 static inline void load_mm_cr4(struct mm_struct
*mm
)
32 if (static_branch_unlikely(&rdpmc_always_available_key
) ||
33 atomic_read(&mm
->context
.perf_rdpmc_allowed
))
34 cr4_set_bits(X86_CR4_PCE
);
36 cr4_clear_bits(X86_CR4_PCE
);
39 static inline void load_mm_cr4(struct mm_struct
*mm
) {}
42 #ifdef CONFIG_MODIFY_LDT_SYSCALL
44 * ldt_structs can be allocated, used, and freed, but they are never
45 * modified while live.
49 * Xen requires page-aligned LDTs with special permissions. This is
50 * needed to prevent us from installing evil descriptors such as
51 * call gates. On native, we could merge the ldt_struct and LDT
52 * allocations, but it's not worth trying to optimize.
54 struct desc_struct
*entries
;
55 unsigned int nr_entries
;
58 * If PTI is in use, then the entries array is not mapped while we're
59 * in user mode. The whole array will be aliased at the addressed
60 * given by ldt_slot_va(slot). We use two slots so that we can allocate
61 * and map, and enable a new LDT without invalidating the mapping
62 * of an older, still-in-use LDT.
64 * slot will be -1 if this LDT doesn't have an alias mapping.
69 /* This is a multiple of PAGE_SIZE. */
70 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
72 static inline void *ldt_slot_va(int slot
)
74 return (void *)(LDT_BASE_ADDR
+ LDT_SLOT_STRIDE
* slot
);
78 * Used for LDT copy/destruction.
80 static inline void init_new_context_ldt(struct mm_struct
*mm
)
82 mm
->context
.ldt
= NULL
;
83 init_rwsem(&mm
->context
.ldt_usr_sem
);
85 int ldt_dup_context(struct mm_struct
*oldmm
, struct mm_struct
*mm
);
86 void destroy_context_ldt(struct mm_struct
*mm
);
87 void ldt_arch_exit_mmap(struct mm_struct
*mm
);
88 #else /* CONFIG_MODIFY_LDT_SYSCALL */
89 static inline void init_new_context_ldt(struct mm_struct
*mm
) { }
90 static inline int ldt_dup_context(struct mm_struct
*oldmm
,
95 static inline void destroy_context_ldt(struct mm_struct
*mm
) { }
96 static inline void ldt_arch_exit_mmap(struct mm_struct
*mm
) { }
99 static inline void load_mm_ldt(struct mm_struct
*mm
)
101 #ifdef CONFIG_MODIFY_LDT_SYSCALL
102 struct ldt_struct
*ldt
;
104 /* READ_ONCE synchronizes with smp_store_release */
105 ldt
= READ_ONCE(mm
->context
.ldt
);
108 * Any change to mm->context.ldt is followed by an IPI to all
109 * CPUs with the mm active. The LDT will not be freed until
110 * after the IPI is handled by all such CPUs. This means that,
111 * if the ldt_struct changes before we return, the values we see
112 * will be safe, and the new values will be loaded before we run
115 * NB: don't try to convert this to use RCU without extreme care.
116 * We would still need IRQs off, because we don't want to change
117 * the local LDT after an IPI loaded a newer value than the one
122 if (static_cpu_has(X86_FEATURE_PTI
)) {
123 if (WARN_ON_ONCE((unsigned long)ldt
->slot
> 1)) {
125 * Whoops -- either the new LDT isn't mapped
126 * (if slot == -1) or is mapped into a bogus
127 * slot (if slot > 1).
134 * If page table isolation is enabled, ldt->entries
135 * will not be mapped in the userspace pagetables.
136 * Tell the CPU to access the LDT through the alias
137 * at ldt_slot_va(ldt->slot).
139 set_ldt(ldt_slot_va(ldt
->slot
), ldt
->nr_entries
);
141 set_ldt(ldt
->entries
, ldt
->nr_entries
);
151 static inline void switch_ldt(struct mm_struct
*prev
, struct mm_struct
*next
)
153 #ifdef CONFIG_MODIFY_LDT_SYSCALL
155 * Load the LDT if either the old or new mm had an LDT.
157 * An mm will never go from having an LDT to not having an LDT. Two
158 * mms never share an LDT, so we don't gain anything by checking to
159 * see whether the LDT changed. There's also no guarantee that
160 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
161 * then prev->context.ldt will also be non-NULL.
163 * If we really cared, we could optimize the case where prev == next
164 * and we're exiting lazy mode. Most of the time, if this happens,
165 * we don't actually need to reload LDTR, but modify_ldt() is mostly
166 * used by legacy code and emulators where we don't need this level of
169 * This uses | instead of || because it generates better code.
171 if (unlikely((unsigned long)prev
->context
.ldt
|
172 (unsigned long)next
->context
.ldt
))
176 DEBUG_LOCKS_WARN_ON(preemptible());
179 void enter_lazy_tlb(struct mm_struct
*mm
, struct task_struct
*tsk
);
182 * Init a new mm. Used on mm copies, like at fork()
183 * and on mm's that are brand-new, like at execve().
185 static inline int init_new_context(struct task_struct
*tsk
,
186 struct mm_struct
*mm
)
188 mutex_init(&mm
->context
.lock
);
190 mm
->context
.ctx_id
= atomic64_inc_return(&last_mm_ctx_id
);
191 atomic64_set(&mm
->context
.tlb_gen
, 0);
193 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
194 if (cpu_feature_enabled(X86_FEATURE_OSPKE
)) {
195 /* pkey 0 is the default and allocated implicitly */
196 mm
->context
.pkey_allocation_map
= 0x1;
197 /* -1 means unallocated or invalid */
198 mm
->context
.execute_only_pkey
= -1;
201 init_new_context_ldt(mm
);
204 static inline void destroy_context(struct mm_struct
*mm
)
206 destroy_context_ldt(mm
);
209 extern void switch_mm(struct mm_struct
*prev
, struct mm_struct
*next
,
210 struct task_struct
*tsk
);
212 extern void switch_mm_irqs_off(struct mm_struct
*prev
, struct mm_struct
*next
,
213 struct task_struct
*tsk
);
214 #define switch_mm_irqs_off switch_mm_irqs_off
216 #define activate_mm(prev, next) \
218 paravirt_activate_mm((prev), (next)); \
219 switch_mm((prev), (next), NULL); \
223 #define deactivate_mm(tsk, mm) \
228 #define deactivate_mm(tsk, mm) \
231 loadsegment(fs, 0); \
235 static inline void arch_dup_pkeys(struct mm_struct
*oldmm
,
236 struct mm_struct
*mm
)
238 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
239 if (!cpu_feature_enabled(X86_FEATURE_OSPKE
))
242 /* Duplicate the oldmm pkey state in mm: */
243 mm
->context
.pkey_allocation_map
= oldmm
->context
.pkey_allocation_map
;
244 mm
->context
.execute_only_pkey
= oldmm
->context
.execute_only_pkey
;
248 static inline int arch_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
250 arch_dup_pkeys(oldmm
, mm
);
251 paravirt_arch_dup_mmap(oldmm
, mm
);
252 return ldt_dup_context(oldmm
, mm
);
255 static inline void arch_exit_mmap(struct mm_struct
*mm
)
257 paravirt_arch_exit_mmap(mm
);
258 ldt_arch_exit_mmap(mm
);
262 static inline bool is_64bit_mm(struct mm_struct
*mm
)
264 return !IS_ENABLED(CONFIG_IA32_EMULATION
) ||
265 !(mm
->context
.ia32_compat
== TIF_IA32
);
268 static inline bool is_64bit_mm(struct mm_struct
*mm
)
274 static inline void arch_bprm_mm_init(struct mm_struct
*mm
,
275 struct vm_area_struct
*vma
)
280 static inline void arch_unmap(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
281 unsigned long start
, unsigned long end
)
284 * mpx_notify_unmap() goes and reads a rarely-hot
285 * cacheline in the mm_struct. That can be expensive
286 * enough to be seen in profiles.
288 * The mpx_notify_unmap() call and its contents have been
289 * observed to affect munmap() performance on hardware
290 * where MPX is not present.
292 * The unlikely() optimizes for the fast case: no MPX
293 * in the CPU, or no MPX use in the process. Even if
294 * we get this wrong (in the unlikely event that MPX
295 * is widely enabled on some system) the overhead of
296 * MPX itself (reading bounds tables) is expected to
297 * overwhelm the overhead of getting this unlikely()
298 * consistently wrong.
300 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX
)))
301 mpx_notify_unmap(mm
, vma
, start
, end
);
305 * We only want to enforce protection keys on the current process
306 * because we effectively have no access to PKRU for other
307 * processes or any way to tell *which * PKRU in a threaded
308 * process we could use.
310 * So do not enforce things if the VMA is not from the current
311 * mm, or if we are in a kernel thread.
313 static inline bool vma_is_foreign(struct vm_area_struct
*vma
)
318 * Should PKRU be enforced on the access to this VMA? If
319 * the VMA is from another process, then PKRU has no
320 * relevance and should not be enforced.
322 if (current
->mm
!= vma
->vm_mm
)
328 static inline bool arch_vma_access_permitted(struct vm_area_struct
*vma
,
329 bool write
, bool execute
, bool foreign
)
331 /* pkeys never affect instruction fetches */
334 /* allow access if the VMA is not one from this process */
335 if (foreign
|| vma_is_foreign(vma
))
337 return __pkru_allows_pkey(vma_pkey(vma
), write
);
341 * This can be used from process context to figure out what the value of
342 * CR3 is without needing to do a (slow) __read_cr3().
344 * It's intended to be used for code like KVM that sneakily changes CR3
345 * and needs to restore it. It needs to be used very carefully.
347 static inline unsigned long __get_current_cr3_fast(void)
349 unsigned long cr3
= build_cr3(this_cpu_read(cpu_tlbstate
.loaded_mm
)->pgd
,
350 this_cpu_read(cpu_tlbstate
.loaded_mm_asid
));
352 /* For now, be very restrictive about when this can be called. */
353 VM_WARN_ON(in_nmi() || preemptible());
355 VM_BUG_ON(cr3
!= __read_cr3());
359 #endif /* _ASM_X86_MMU_CONTEXT_H */