2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/bios.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/io_apic.h>
29 * Addressing Terminology
31 * M - The low M bits of a physical address represent the offset
32 * into the blade local memory. RAM memory on a blade is physically
33 * contiguous (although various IO spaces may punch holes in
36 * N - Number of bits in the node portion of a socket physical
39 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
40 * routers always have low bit of 1, C/MBricks have low bit
41 * equal to 0. Most addressing macros that target UV hub chips
42 * right shift the NASID by 1 to exclude the always-zero bit.
43 * NASIDs contain up to 15 bits.
45 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
49 * of the nasid for socket usage.
51 * GPA - (global physical address) a socket physical address converted
52 * so that it can be used by the GRU as a global address. Socket
53 * physical addresses 1) need additional NASID (node) bits added
54 * to the high end of the address, and 2) unaliased if the
55 * partition does not have a physical address 0. In addition, on
56 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59 * NumaLink Global Physical Address Format:
60 * +--------------------------------+---------------------+
61 * |00..000| GNODE | NodeOffset |
62 * +--------------------------------+---------------------+
63 * |<-------53 - M bits --->|<--------M bits ----->
65 * M - number of node offset bits (35 .. 40)
68 * Memory/UV-HUB Processor Socket Address Format:
69 * +----------------+---------------+---------------------+
70 * |00..000000000000| PNODE | NodeOffset |
71 * +----------------+---------------+---------------------+
72 * <--- N bits --->|<--------M bits ----->
74 * M - number of node offset bits (35 .. 40)
75 * N - number of PNODE bits (0 .. 10)
77 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78 * The actual values are configuration dependent and are set at
79 * boot time. M & N values are set by the hardware/BIOS at boot.
83 * NOTE!!!!!! This is the current format of the APICID. However, code
84 * should assume that this will change in the future. Use functions
85 * in this file for all APICID bit manipulations and conversion.
89 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
90 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
91 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
95 * l = socket number on board
98 * s = bits that are in the SOCKET_ID CSR
100 * Note: Processor may support fewer bits in the APICID register. The ACPI
101 * tables hold all 16 bits. Software needs to be aware of this.
103 * Unless otherwise specified, all references to APICID refer to
104 * the FULL value contained in ACPI tables, not the subset in the
105 * processor APICID register.
109 * Maximum number of bricks in all partitions and in all coherency domains.
110 * This is the total number of bricks accessible in the numalink fabric. It
111 * includes all C & M bricks. Routers are NOT included.
113 * This value is also the value of the maximum number of non-router NASIDs
114 * in the numalink fabric.
116 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
118 #define UV_MAX_NUMALINK_BLADES 16384
121 * Maximum number of C/Mbricks within a software SSI (hardware may support
124 #define UV_MAX_SSI_BLADES 256
127 * The largest possible NASID of a C or M brick (+ 2)
129 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
131 /* System Controller Interface Reg info */
133 struct timer_list timer
;
134 unsigned long offset
;
136 unsigned long idle_on
;
137 unsigned long idle_off
;
139 unsigned char enabled
;
142 /* GAM (globally addressed memory) range table */
143 struct uv_gam_range_s
{
144 u32 limit
; /* PA bits 56:26 (GAM_RANGE_SHFT) */
145 u16 nasid
; /* node's global physical address */
146 s8 base
; /* entry index of node's base addr */
151 * The following defines attributes of the HUB chip. These attributes are
152 * frequently referenced and are kept in a common per hub struct.
153 * After setup, the struct is read only, so it should be readily
154 * available in the L3 cache on the cpu socket for the node.
156 struct uv_hub_info_s
{
157 unsigned long global_mmr_base
;
158 unsigned long global_mmr_shift
;
159 unsigned long gpa_mask
;
160 unsigned short *socket_to_node
;
161 unsigned short *socket_to_pnode
;
162 unsigned short *pnode_to_socket
;
163 struct uv_gam_range_s
*gr_table
;
164 unsigned short min_socket
;
165 unsigned short min_pnode
;
168 unsigned char gr_table_len
;
169 unsigned char hub_revision
;
170 unsigned char apic_pnode_shift
;
171 unsigned char gpa_shift
;
172 unsigned char m_shift
;
173 unsigned char n_lshift
;
174 unsigned int gnode_extra
;
175 unsigned long gnode_upper
;
176 unsigned long lowmem_remap_top
;
177 unsigned long lowmem_remap_base
;
178 unsigned long global_gru_base
;
179 unsigned long global_gru_shift
;
180 unsigned short pnode
;
181 unsigned short pnode_mask
;
182 unsigned short coherency_domain_number
;
183 unsigned short numa_blade_id
;
184 unsigned short nr_possible_cpus
;
185 unsigned short nr_online_cpus
;
189 /* CPU specific info with a pointer to the hub common info struct */
190 struct uv_cpu_info_s
{
192 unsigned char blade_cpu_id
;
193 struct uv_scir_s scir
;
195 DECLARE_PER_CPU(struct uv_cpu_info_s
, __uv_cpu_info
);
197 #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
198 #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
200 #define uv_scir_info (&uv_cpu_info->scir)
201 #define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
203 /* Node specific hub common info struct */
204 extern void **__uv_hub_info_list
;
205 static inline struct uv_hub_info_s
*uv_hub_info_list(int node
)
207 return (struct uv_hub_info_s
*)__uv_hub_info_list
[node
];
210 static inline struct uv_hub_info_s
*_uv_hub_info(void)
212 return (struct uv_hub_info_s
*)uv_cpu_info
->p_uv_hub_info
;
214 #define uv_hub_info _uv_hub_info()
216 static inline struct uv_hub_info_s
*uv_cpu_hub_info(int cpu
)
218 return (struct uv_hub_info_s
*)uv_cpu_info_per(cpu
)->p_uv_hub_info
;
221 #define UV_HUB_INFO_VERSION 0x7150
222 extern int uv_hub_info_version(void);
223 static inline int uv_hub_info_check(int version
)
225 if (uv_hub_info_version() == version
)
228 pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 uv_hub_info_version(), version
);
231 BUG(); /* Catastrophic - cannot continue on unknown UV system */
233 #define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
236 * HUB revision ranges for each UV HUB architecture.
237 * This is a software convention - NOT the hardware revision numbers in
240 #define UV1_HUB_REVISION_BASE 1
241 #define UV2_HUB_REVISION_BASE 3
242 #define UV3_HUB_REVISION_BASE 5
243 #define UV4_HUB_REVISION_BASE 7
244 #define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */
246 #ifdef UV1_HUB_IS_SUPPORTED
247 static inline int is_uv1_hub(void)
249 return uv_hub_info
->hub_revision
< UV2_HUB_REVISION_BASE
;
252 static inline int is_uv1_hub(void)
258 #ifdef UV2_HUB_IS_SUPPORTED
259 static inline int is_uv2_hub(void)
261 return ((uv_hub_info
->hub_revision
>= UV2_HUB_REVISION_BASE
) &&
262 (uv_hub_info
->hub_revision
< UV3_HUB_REVISION_BASE
));
265 static inline int is_uv2_hub(void)
271 #ifdef UV3_HUB_IS_SUPPORTED
272 static inline int is_uv3_hub(void)
274 return ((uv_hub_info
->hub_revision
>= UV3_HUB_REVISION_BASE
) &&
275 (uv_hub_info
->hub_revision
< UV4_HUB_REVISION_BASE
));
278 static inline int is_uv3_hub(void)
284 /* First test "is UV4A", then "is UV4" */
285 #ifdef UV4A_HUB_IS_SUPPORTED
286 static inline int is_uv4a_hub(void)
288 return (uv_hub_info
->hub_revision
>= UV4A_HUB_REVISION_BASE
);
291 static inline int is_uv4a_hub(void)
297 #ifdef UV4_HUB_IS_SUPPORTED
298 static inline int is_uv4_hub(void)
300 return uv_hub_info
->hub_revision
>= UV4_HUB_REVISION_BASE
;
303 static inline int is_uv4_hub(void)
309 static inline int is_uvx_hub(void)
311 if (uv_hub_info
->hub_revision
>= UV2_HUB_REVISION_BASE
)
312 return uv_hub_info
->hub_revision
;
317 static inline int is_uv_hub(void)
319 #ifdef UV1_HUB_IS_SUPPORTED
320 return uv_hub_info
->hub_revision
;
327 struct uvh_apicid_s
{
328 unsigned long local_apic_mask
: 24;
329 unsigned long local_apic_shift
: 5;
330 unsigned long unused1
: 3;
331 unsigned long pnode_mask
: 24;
332 unsigned long pnode_shift
: 5;
333 unsigned long unused2
: 3;
338 * Local & Global MMR space macros.
339 * Note: macros are intended to be used ONLY by inline functions
340 * in this file - not by other kernel code.
341 * n - NASID (full 15-bit global nasid)
342 * g - GNODE (full 15-bit global nasid, right shifted 1)
343 * p - PNODE (local part of nsids, right shifted 1)
345 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
346 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
347 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
349 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
350 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
351 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
352 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
354 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
355 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
356 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
357 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
359 #define UV3_LOCAL_MMR_BASE 0xfa000000UL
360 #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
361 #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
362 #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
364 #define UV4_LOCAL_MMR_BASE 0xfa000000UL
365 #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
366 #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
367 #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
369 #define UV_LOCAL_MMR_BASE ( \
370 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
371 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
372 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
373 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
375 #define UV_GLOBAL_MMR32_BASE ( \
376 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
377 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
378 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
379 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
381 #define UV_LOCAL_MMR_SIZE ( \
382 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
383 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
384 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
385 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
387 #define UV_GLOBAL_MMR32_SIZE ( \
388 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
389 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
390 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
391 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
393 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
395 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
397 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
398 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
399 #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
401 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
403 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
404 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
406 #define UVH_APICID 0x002D0E00L
407 #define UV_APIC_PNODE_SHIFT 6
409 #define UV_APICID_HIBIT_MASK 0xffff0000
411 /* Local Bus from cpu's perspective */
412 #define LOCAL_BUS_BASE 0x1c00000
413 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
416 * System Controller Interface Reg
418 * Note there are NO leds on a UV system. This register is only
419 * used by the system controller to monitor system-wide operation.
420 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
421 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
424 * The window is located at top of ACPI MMR space
426 #define SCIR_WINDOW_COUNT 64
427 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
431 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
432 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
433 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
435 /* Loop through all installed blades */
436 #define for_each_possible_blade(bid) \
437 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
440 * Macros for converting between kernel virtual addresses, socket local physical
441 * addresses, and UV global physical addresses.
442 * Note: use the standard __pa() & __va() macros for converting
443 * between socket virtual and socket physical addresses.
446 /* global bits offset - number of local address bits in gpa for this UV arch */
447 static inline unsigned int uv_gpa_shift(void)
449 return uv_hub_info
->gpa_shift
;
451 #define _uv_gpa_shift
453 /* Find node that has the address range that contains global address */
454 static inline struct uv_gam_range_s
*uv_gam_range(unsigned long pa
)
456 struct uv_gam_range_s
*gr
= uv_hub_info
->gr_table
;
457 unsigned long pal
= (pa
& uv_hub_info
->gpa_mask
) >> UV_GAM_RANGE_SHFT
;
458 int i
, num
= uv_hub_info
->gr_table_len
;
461 for (i
= 0; i
< num
; i
++, gr
++) {
466 pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa
, gr
);
470 /* Return base address of node that contains global address */
471 static inline unsigned long uv_gam_range_base(unsigned long pa
)
473 struct uv_gam_range_s
*gr
= uv_gam_range(pa
);
479 return uv_hub_info
->gr_table
[base
].limit
;
482 /* socket phys RAM --> UV global NASID (UV4+) */
483 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr
)
485 return uv_gam_range(paddr
)->nasid
;
487 #define _uv_soc_phys_ram_to_nasid
489 /* socket virtual --> UV global NASID (UV4+) */
490 static inline unsigned long uv_gpa_nasid(void *v
)
492 return uv_soc_phys_ram_to_nasid(__pa(v
));
495 /* socket phys RAM --> UV global physical address */
496 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
498 unsigned int m_val
= uv_hub_info
->m_val
;
500 if (paddr
< uv_hub_info
->lowmem_remap_top
)
501 paddr
|= uv_hub_info
->lowmem_remap_base
;
504 paddr
|= uv_hub_info
->gnode_upper
;
505 paddr
= ((paddr
<< uv_hub_info
->m_shift
)
506 >> uv_hub_info
->m_shift
) |
507 ((paddr
>> uv_hub_info
->m_val
)
508 << uv_hub_info
->n_lshift
);
510 paddr
|= uv_soc_phys_ram_to_nasid(paddr
)
511 << uv_hub_info
->gpa_shift
;
516 /* socket virtual --> UV global physical address */
517 static inline unsigned long uv_gpa(void *v
)
519 return uv_soc_phys_ram_to_gpa(__pa(v
));
522 /* Top two bits indicate the requested address is in MMR space. */
524 uv_gpa_in_mmr_space(unsigned long gpa
)
526 return (gpa
>> 62) == 0x3UL
;
529 /* UV global physical address --> socket phys RAM */
530 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa
)
533 unsigned long remap_base
= uv_hub_info
->lowmem_remap_base
;
534 unsigned long remap_top
= uv_hub_info
->lowmem_remap_top
;
535 unsigned int m_val
= uv_hub_info
->m_val
;
538 gpa
= ((gpa
<< uv_hub_info
->m_shift
) >> uv_hub_info
->m_shift
) |
539 ((gpa
>> uv_hub_info
->n_lshift
) << uv_hub_info
->m_val
);
541 paddr
= gpa
& uv_hub_info
->gpa_mask
;
542 if (paddr
>= remap_base
&& paddr
< remap_base
+ remap_top
)
548 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa
)
550 unsigned int n_lshift
= uv_hub_info
->n_lshift
;
553 return gpa
>> n_lshift
;
555 return uv_gam_range(gpa
)->nasid
>> 1;
559 static inline int uv_gpa_to_pnode(unsigned long gpa
)
561 return uv_gpa_to_gnode(gpa
) & uv_hub_info
->pnode_mask
;
564 /* gpa -> node offset */
565 static inline unsigned long uv_gpa_to_offset(unsigned long gpa
)
567 unsigned int m_shift
= uv_hub_info
->m_shift
;
570 return (gpa
<< m_shift
) >> m_shift
;
572 return (gpa
& uv_hub_info
->gpa_mask
) - uv_gam_range_base(gpa
);
575 /* Convert socket to node */
576 static inline int _uv_socket_to_node(int socket
, unsigned short *s2nid
)
578 return s2nid
? s2nid
[socket
- uv_hub_info
->min_socket
] : socket
;
581 static inline int uv_socket_to_node(int socket
)
583 return _uv_socket_to_node(socket
, uv_hub_info
->socket_to_node
);
586 /* pnode, offset --> socket virtual */
587 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
589 unsigned int m_val
= uv_hub_info
->m_val
;
591 unsigned short sockid
, node
, *p2s
;
594 return __va(((unsigned long)pnode
<< m_val
) | offset
);
596 p2s
= uv_hub_info
->pnode_to_socket
;
597 sockid
= p2s
? p2s
[pnode
- uv_hub_info
->min_pnode
] : pnode
;
598 node
= uv_socket_to_node(sockid
);
600 /* limit address of previous socket is our base, except node 0 is 0 */
602 return __va((unsigned long)offset
);
604 base
= (unsigned long)(uv_hub_info
->gr_table
[node
- 1].limit
);
605 return __va(base
<< UV_GAM_RANGE_SHFT
| offset
);
608 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
609 static inline int uv_apicid_to_pnode(int apicid
)
611 int pnode
= apicid
>> uv_hub_info
->apic_pnode_shift
;
612 unsigned short *s2pn
= uv_hub_info
->socket_to_pnode
;
614 return s2pn
? s2pn
[pnode
- uv_hub_info
->min_socket
] : pnode
;
617 /* Convert an apicid to the socket number on the blade */
618 static inline int uv_apicid_to_socket(int apicid
)
621 return (apicid
>> (uv_hub_info
->apic_pnode_shift
- 1)) & 1;
627 * Access global MMRs using the low memory MMR32 space. This region supports
628 * faster MMR access but not all MMRs are accessible in this space.
630 static inline unsigned long *uv_global_mmr32_address(int pnode
, unsigned long offset
)
632 return __va(UV_GLOBAL_MMR32_BASE
|
633 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
636 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
, unsigned long val
)
638 writeq(val
, uv_global_mmr32_address(pnode
, offset
));
641 static inline unsigned long uv_read_global_mmr32(int pnode
, unsigned long offset
)
643 return readq(uv_global_mmr32_address(pnode
, offset
));
647 * Access Global MMR space using the MMR space located at the top of physical
650 static inline volatile void __iomem
*uv_global_mmr64_address(int pnode
, unsigned long offset
)
652 return __va(UV_GLOBAL_MMR64_BASE
|
653 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
656 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
, unsigned long val
)
658 writeq(val
, uv_global_mmr64_address(pnode
, offset
));
661 static inline unsigned long uv_read_global_mmr64(int pnode
, unsigned long offset
)
663 return readq(uv_global_mmr64_address(pnode
, offset
));
666 static inline void uv_write_global_mmr8(int pnode
, unsigned long offset
, unsigned char val
)
668 writeb(val
, uv_global_mmr64_address(pnode
, offset
));
671 static inline unsigned char uv_read_global_mmr8(int pnode
, unsigned long offset
)
673 return readb(uv_global_mmr64_address(pnode
, offset
));
677 * Access hub local MMRs. Faster than using global space but only local MMRs
680 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
682 return __va(UV_LOCAL_MMR_BASE
| offset
);
685 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
687 return readq(uv_local_mmr_address(offset
));
690 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
692 writeq(val
, uv_local_mmr_address(offset
));
695 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
697 return readb(uv_local_mmr_address(offset
));
700 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
702 writeb(val
, uv_local_mmr_address(offset
));
705 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
706 static inline int uv_blade_processor_id(void)
708 return uv_cpu_info
->blade_cpu_id
;
711 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
712 static inline int uv_cpu_blade_processor_id(int cpu
)
714 return uv_cpu_info_per(cpu
)->blade_cpu_id
;
716 #define _uv_cpu_blade_processor_id 1 /* indicate function available */
718 /* Blade number to Node number (UV1..UV4 is 1:1) */
719 static inline int uv_blade_to_node(int blade
)
724 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
725 static inline int uv_numa_blade_id(void)
727 return uv_hub_info
->numa_blade_id
;
731 * Convert linux node number to the UV blade number.
732 * .. Currently for UV1 thru UV4 the node and the blade are identical.
733 * .. If this changes then you MUST check references to this function!
735 static inline int uv_node_to_blade_id(int nid
)
740 /* Convert a cpu number to the the UV blade number */
741 static inline int uv_cpu_to_blade_id(int cpu
)
743 return uv_node_to_blade_id(cpu_to_node(cpu
));
746 /* Convert a blade id to the PNODE of the blade */
747 static inline int uv_blade_to_pnode(int bid
)
749 return uv_hub_info_list(uv_blade_to_node(bid
))->pnode
;
752 /* Nid of memory node on blade. -1 if no blade-local memory */
753 static inline int uv_blade_to_memory_nid(int bid
)
755 return uv_hub_info_list(uv_blade_to_node(bid
))->memory_nid
;
758 /* Determine the number of possible cpus on a blade */
759 static inline int uv_blade_nr_possible_cpus(int bid
)
761 return uv_hub_info_list(uv_blade_to_node(bid
))->nr_possible_cpus
;
764 /* Determine the number of online cpus on a blade */
765 static inline int uv_blade_nr_online_cpus(int bid
)
767 return uv_hub_info_list(uv_blade_to_node(bid
))->nr_online_cpus
;
770 /* Convert a cpu id to the PNODE of the blade containing the cpu */
771 static inline int uv_cpu_to_pnode(int cpu
)
773 return uv_cpu_hub_info(cpu
)->pnode
;
776 /* Convert a linux node number to the PNODE of the blade */
777 static inline int uv_node_to_pnode(int nid
)
779 return uv_hub_info_list(nid
)->pnode
;
782 /* Maximum possible number of blades */
783 extern short uv_possible_blades
;
784 static inline int uv_num_possible_blades(void)
786 return uv_possible_blades
;
789 /* Per Hub NMI support */
790 extern void uv_nmi_setup(void);
791 extern void uv_nmi_setup_hubless(void);
793 /* BIOS/Kernel flags exchange MMR */
794 #define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5
795 #define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS
796 #define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2
798 /* TSC sync valid, set by BIOS */
799 #define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR
800 #define UVH_TSC_SYNC_SHIFT 10
801 #define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */
802 #define UVH_TSC_SYNC_MASK 3 /* 0011 */
803 #define UVH_TSC_SYNC_VALID 3 /* 0011 */
804 #define UVH_TSC_SYNC_INVALID 2 /* 0010 */
806 /* BMC sets a bit this MMR non-zero before sending an NMI */
807 #define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR
808 #define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS
809 #define UVH_NMI_MMR_SHIFT 63
810 #define UVH_NMI_MMR_TYPE "SCRATCH5"
812 /* Newer SMM NMI handler, not present in all systems */
813 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
814 #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
815 #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
816 #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
818 /* Non-zero indicates newer SMM NMI handler present */
819 #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
821 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
822 #define UVH_NMI_MMRX_REQ UVH_BIOS_KERNEL_MMR_ALIAS_2
823 #define UVH_NMI_MMRX_REQ_SHIFT 62
825 struct uv_hub_nmi_s
{
826 raw_spinlock_t nmi_lock
;
827 atomic_t in_nmi
; /* flag this node in UV NMI IRQ */
828 atomic_t cpu_owner
; /* last locker of this struct */
829 atomic_t read_mmr_count
; /* count of MMR reads */
830 atomic_t nmi_count
; /* count of true UV NMIs */
831 unsigned long nmi_value
; /* last value read from NMI MMR */
832 bool hub_present
; /* false means UV hubless system */
833 bool pch_owner
; /* indicates this hub owns PCH */
836 struct uv_cpu_nmi_s
{
837 struct uv_hub_nmi_s
*hub
;
844 DECLARE_PER_CPU(struct uv_cpu_nmi_s
, uv_cpu_nmi
);
846 #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
847 #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
848 #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
850 /* uv_cpu_nmi_states */
851 #define UV_NMI_STATE_OUT 0
852 #define UV_NMI_STATE_IN 1
853 #define UV_NMI_STATE_DUMP 2
854 #define UV_NMI_STATE_DUMP_DONE 3
856 /* Update SCIR state */
857 static inline void uv_set_scir_bits(unsigned char value
)
859 if (uv_scir_info
->state
!= value
) {
860 uv_scir_info
->state
= value
;
861 uv_write_local_mmr8(uv_scir_info
->offset
, value
);
865 static inline unsigned long uv_scir_offset(int apicid
)
867 return SCIR_LOCAL_MMR_BASE
| (apicid
& 0x3f);
870 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
872 if (uv_cpu_scir_info(cpu
)->state
!= value
) {
873 uv_write_global_mmr8(uv_cpu_to_pnode(cpu
),
874 uv_cpu_scir_info(cpu
)->offset
, value
);
875 uv_cpu_scir_info(cpu
)->state
= value
;
879 extern unsigned int uv_apicid_hibits
;
880 static unsigned long uv_hub_ipi_value(int apicid
, int vector
, int mode
)
882 apicid
|= uv_apicid_hibits
;
883 return (1UL << UVH_IPI_INT_SEND_SHFT
) |
884 ((apicid
) << UVH_IPI_INT_APIC_ID_SHFT
) |
885 (mode
<< UVH_IPI_INT_DELIVERY_MODE_SHFT
) |
886 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
889 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
892 unsigned long dmode
= dest_Fixed
;
894 if (vector
== NMI_VECTOR
)
897 val
= uv_hub_ipi_value(apicid
, vector
, dmode
);
898 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
902 * Get the minimum revision number of the hub chips within the partition.
903 * (See UVx_HUB_REVISION_BASE above for specific values.)
905 static inline int uv_get_min_hub_revision_id(void)
907 return uv_hub_info
->hub_revision
;
910 #endif /* CONFIG_X86_64 */
911 #endif /* _ASM_X86_UV_UV_HUB_H */