2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/smt.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/trace_events.h>
34 #include <linux/slab.h>
35 #include <linux/tboot.h>
36 #include <linux/hrtimer.h>
37 #include <linux/frame.h>
38 #include <linux/nospec.h>
39 #include "kvm_cache_regs.h"
47 #include <asm/virtext.h>
49 #include <asm/fpu/internal.h>
50 #include <asm/perf_event.h>
51 #include <asm/debugreg.h>
52 #include <asm/kexec.h>
54 #include <asm/irq_remapping.h>
55 #include <asm/mmu_context.h>
56 #include <asm/spec-ctrl.h>
57 #include <asm/mshyperv.h>
61 #include "vmx_evmcs.h"
63 #define __ex(x) __kvm_handle_fault_on_reboot(x)
64 #define __ex_clear(x, reg) \
65 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
70 static const struct x86_cpu_id vmx_cpu_id
[] = {
71 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
74 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
76 static bool __read_mostly enable_vpid
= 1;
77 module_param_named(vpid
, enable_vpid
, bool, 0444);
79 static bool __read_mostly enable_vnmi
= 1;
80 module_param_named(vnmi
, enable_vnmi
, bool, S_IRUGO
);
82 static bool __read_mostly flexpriority_enabled
= 1;
83 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
85 static bool __read_mostly enable_ept
= 1;
86 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
88 static bool __read_mostly enable_unrestricted_guest
= 1;
89 module_param_named(unrestricted_guest
,
90 enable_unrestricted_guest
, bool, S_IRUGO
);
92 static bool __read_mostly enable_ept_ad_bits
= 1;
93 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
95 static bool __read_mostly emulate_invalid_guest_state
= true;
96 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
98 static bool __read_mostly fasteoi
= 1;
99 module_param(fasteoi
, bool, S_IRUGO
);
101 static bool __read_mostly enable_apicv
= 1;
102 module_param(enable_apicv
, bool, S_IRUGO
);
104 static bool __read_mostly enable_shadow_vmcs
= 1;
105 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
107 * If nested=1, nested virtualization is supported, i.e., guests may use
108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109 * use VMX instructions.
111 static bool __read_mostly nested
= 0;
112 module_param(nested
, bool, S_IRUGO
);
114 static u64 __read_mostly host_xss
;
116 static bool __read_mostly enable_pml
= 1;
117 module_param_named(pml
, enable_pml
, bool, S_IRUGO
);
121 #define MSR_TYPE_RW 3
123 #define MSR_BITMAP_MODE_X2APIC 1
124 #define MSR_BITMAP_MODE_X2APIC_APICV 2
126 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
128 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
129 static int __read_mostly cpu_preemption_timer_multi
;
130 static bool __read_mostly enable_preemption_timer
= 1;
132 module_param_named(preemption_timer
, enable_preemption_timer
, bool, S_IRUGO
);
135 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON \
138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
139 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140 #define KVM_CR4_GUEST_OWNED_BITS \
141 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
142 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
144 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
145 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
146 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
148 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
150 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
153 * Hyper-V requires all of these, so mark them as supported even though
154 * they are just treated the same as all-context.
156 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
157 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
158 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
159 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
160 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
163 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
164 * ple_gap: upper bound on the amount of time between two successive
165 * executions of PAUSE in a loop. Also indicate if ple enabled.
166 * According to test, this time is usually smaller than 128 cycles.
167 * ple_window: upper bound on the amount of time a guest is allowed to execute
168 * in a PAUSE loop. Tests indicate that most spinlocks are held for
169 * less than 2^12 cycles
170 * Time is measured based on a counter that runs at the same rate as the TSC,
171 * refer SDM volume 3b section 21.6.13 & 22.1.3.
173 static unsigned int ple_gap
= KVM_DEFAULT_PLE_GAP
;
174 module_param(ple_gap
, uint
, 0444);
176 static unsigned int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
177 module_param(ple_window
, uint
, 0444);
179 /* Default doubles per-vcpu window every exit. */
180 static unsigned int ple_window_grow
= KVM_DEFAULT_PLE_WINDOW_GROW
;
181 module_param(ple_window_grow
, uint
, 0444);
183 /* Default resets per-vcpu window every exit to ple_window. */
184 static unsigned int ple_window_shrink
= KVM_DEFAULT_PLE_WINDOW_SHRINK
;
185 module_param(ple_window_shrink
, uint
, 0444);
187 /* Default is to compute the maximum so we can never overflow. */
188 static unsigned int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
189 module_param(ple_window_max
, uint
, 0444);
191 extern const ulong vmx_return
;
193 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush
);
194 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond
);
195 static DEFINE_MUTEX(vmx_l1d_flush_mutex
);
197 /* Storage for pre module init parameter parsing */
198 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param
= VMENTER_L1D_FLUSH_AUTO
;
200 static const struct {
203 } vmentry_l1d_param
[] = {
204 [VMENTER_L1D_FLUSH_AUTO
] = {"auto", true},
205 [VMENTER_L1D_FLUSH_NEVER
] = {"never", true},
206 [VMENTER_L1D_FLUSH_COND
] = {"cond", true},
207 [VMENTER_L1D_FLUSH_ALWAYS
] = {"always", true},
208 [VMENTER_L1D_FLUSH_EPT_DISABLED
] = {"EPT disabled", false},
209 [VMENTER_L1D_FLUSH_NOT_REQUIRED
] = {"not required", false},
212 #define L1D_CACHE_ORDER 4
213 static void *vmx_l1d_flush_pages
;
215 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf
)
221 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_EPT_DISABLED
;
225 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES
)) {
228 rdmsrl(MSR_IA32_ARCH_CAPABILITIES
, msr
);
229 if (msr
& ARCH_CAP_SKIP_VMENTRY_L1DFLUSH
) {
230 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_NOT_REQUIRED
;
235 /* If set to auto use the default l1tf mitigation method */
236 if (l1tf
== VMENTER_L1D_FLUSH_AUTO
) {
237 switch (l1tf_mitigation
) {
238 case L1TF_MITIGATION_OFF
:
239 l1tf
= VMENTER_L1D_FLUSH_NEVER
;
241 case L1TF_MITIGATION_FLUSH_NOWARN
:
242 case L1TF_MITIGATION_FLUSH
:
243 case L1TF_MITIGATION_FLUSH_NOSMT
:
244 l1tf
= VMENTER_L1D_FLUSH_COND
;
246 case L1TF_MITIGATION_FULL
:
247 case L1TF_MITIGATION_FULL_FORCE
:
248 l1tf
= VMENTER_L1D_FLUSH_ALWAYS
;
251 } else if (l1tf_mitigation
== L1TF_MITIGATION_FULL_FORCE
) {
252 l1tf
= VMENTER_L1D_FLUSH_ALWAYS
;
255 if (l1tf
!= VMENTER_L1D_FLUSH_NEVER
&& !vmx_l1d_flush_pages
&&
256 !boot_cpu_has(X86_FEATURE_FLUSH_L1D
)) {
257 page
= alloc_pages(GFP_KERNEL
, L1D_CACHE_ORDER
);
260 vmx_l1d_flush_pages
= page_address(page
);
263 * Initialize each page with a different pattern in
264 * order to protect against KSM in the nested
265 * virtualization case.
267 for (i
= 0; i
< 1u << L1D_CACHE_ORDER
; ++i
) {
268 memset(vmx_l1d_flush_pages
+ i
* PAGE_SIZE
, i
+ 1,
273 l1tf_vmx_mitigation
= l1tf
;
275 if (l1tf
!= VMENTER_L1D_FLUSH_NEVER
)
276 static_branch_enable(&vmx_l1d_should_flush
);
278 static_branch_disable(&vmx_l1d_should_flush
);
280 if (l1tf
== VMENTER_L1D_FLUSH_COND
)
281 static_branch_enable(&vmx_l1d_flush_cond
);
283 static_branch_disable(&vmx_l1d_flush_cond
);
287 static int vmentry_l1d_flush_parse(const char *s
)
292 for (i
= 0; i
< ARRAY_SIZE(vmentry_l1d_param
); i
++) {
293 if (vmentry_l1d_param
[i
].for_parse
&&
294 sysfs_streq(s
, vmentry_l1d_param
[i
].option
))
301 static int vmentry_l1d_flush_set(const char *s
, const struct kernel_param
*kp
)
305 l1tf
= vmentry_l1d_flush_parse(s
);
309 if (!boot_cpu_has(X86_BUG_L1TF
))
313 * Has vmx_init() run already? If not then this is the pre init
314 * parameter parsing. In that case just store the value and let
315 * vmx_init() do the proper setup after enable_ept has been
318 if (l1tf_vmx_mitigation
== VMENTER_L1D_FLUSH_AUTO
) {
319 vmentry_l1d_flush_param
= l1tf
;
323 mutex_lock(&vmx_l1d_flush_mutex
);
324 ret
= vmx_setup_l1d_flush(l1tf
);
325 mutex_unlock(&vmx_l1d_flush_mutex
);
329 static int vmentry_l1d_flush_get(char *s
, const struct kernel_param
*kp
)
331 if (WARN_ON_ONCE(l1tf_vmx_mitigation
>= ARRAY_SIZE(vmentry_l1d_param
)))
332 return sprintf(s
, "???\n");
334 return sprintf(s
, "%s\n", vmentry_l1d_param
[l1tf_vmx_mitigation
].option
);
337 static const struct kernel_param_ops vmentry_l1d_flush_ops
= {
338 .set
= vmentry_l1d_flush_set
,
339 .get
= vmentry_l1d_flush_get
,
341 module_param_cb(vmentry_l1d_flush
, &vmentry_l1d_flush_ops
, NULL
, 0644);
343 enum ept_pointers_status
{
344 EPT_POINTERS_CHECK
= 0,
345 EPT_POINTERS_MATCH
= 1,
346 EPT_POINTERS_MISMATCH
= 2
352 unsigned int tss_addr
;
353 bool ept_identity_pagetable_done
;
354 gpa_t ept_identity_map_addr
;
356 enum ept_pointers_status ept_pointers_match
;
357 spinlock_t ept_pointer_lock
;
360 #define NR_AUTOLOAD_MSRS 8
374 * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
375 * and whose values change infrequently, but are not constant. I.e. this is
376 * used as a write-through cache of the corresponding VMCS fields.
378 struct vmcs_host_state
{
379 unsigned long cr3
; /* May not match real cr3 */
380 unsigned long cr4
; /* May not match real cr4 */
381 unsigned long gs_base
;
382 unsigned long fs_base
;
384 u16 fs_sel
, gs_sel
, ldt_sel
;
391 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
392 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
393 * loaded on this CPU (so we can clear them if the CPU goes down).
397 struct vmcs
*shadow_vmcs
;
400 bool nmi_known_unmasked
;
402 /* Support for vnmi-less CPUs */
403 int soft_vnmi_blocked
;
405 s64 vnmi_blocked_time
;
406 unsigned long *msr_bitmap
;
407 struct list_head loaded_vmcss_on_cpu_link
;
408 struct vmcs_host_state host_state
;
411 struct shared_msr_entry
{
418 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
419 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
420 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
421 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
422 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
423 * More than one of these structures may exist, if L1 runs multiple L2 guests.
424 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
425 * underlying hardware which will be used to run L2.
426 * This structure is packed to ensure that its layout is identical across
427 * machines (necessary for live migration).
429 * IMPORTANT: Changing the layout of existing fields in this structure
430 * will break save/restore compatibility with older kvm releases. When
431 * adding new fields, either use space in the reserved padding* arrays
432 * or add the new fields to the end of the structure.
434 typedef u64 natural_width
;
435 struct __packed vmcs12
{
436 /* According to the Intel spec, a VMCS region must start with the
437 * following two fields. Then follow implementation-specific data.
442 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
443 u32 padding
[7]; /* room for future expansion */
448 u64 vm_exit_msr_store_addr
;
449 u64 vm_exit_msr_load_addr
;
450 u64 vm_entry_msr_load_addr
;
452 u64 virtual_apic_page_addr
;
453 u64 apic_access_addr
;
454 u64 posted_intr_desc_addr
;
456 u64 eoi_exit_bitmap0
;
457 u64 eoi_exit_bitmap1
;
458 u64 eoi_exit_bitmap2
;
459 u64 eoi_exit_bitmap3
;
461 u64 guest_physical_address
;
462 u64 vmcs_link_pointer
;
463 u64 guest_ia32_debugctl
;
466 u64 guest_ia32_perf_global_ctrl
;
474 u64 host_ia32_perf_global_ctrl
;
477 u64 vm_function_control
;
478 u64 eptp_list_address
;
480 u64 padding64
[3]; /* room for future expansion */
482 * To allow migration of L1 (complete with its L2 guests) between
483 * machines of different natural widths (32 or 64 bit), we cannot have
484 * unsigned long fields with no explict size. We use u64 (aliased
485 * natural_width) instead. Luckily, x86 is little-endian.
487 natural_width cr0_guest_host_mask
;
488 natural_width cr4_guest_host_mask
;
489 natural_width cr0_read_shadow
;
490 natural_width cr4_read_shadow
;
491 natural_width cr3_target_value0
;
492 natural_width cr3_target_value1
;
493 natural_width cr3_target_value2
;
494 natural_width cr3_target_value3
;
495 natural_width exit_qualification
;
496 natural_width guest_linear_address
;
497 natural_width guest_cr0
;
498 natural_width guest_cr3
;
499 natural_width guest_cr4
;
500 natural_width guest_es_base
;
501 natural_width guest_cs_base
;
502 natural_width guest_ss_base
;
503 natural_width guest_ds_base
;
504 natural_width guest_fs_base
;
505 natural_width guest_gs_base
;
506 natural_width guest_ldtr_base
;
507 natural_width guest_tr_base
;
508 natural_width guest_gdtr_base
;
509 natural_width guest_idtr_base
;
510 natural_width guest_dr7
;
511 natural_width guest_rsp
;
512 natural_width guest_rip
;
513 natural_width guest_rflags
;
514 natural_width guest_pending_dbg_exceptions
;
515 natural_width guest_sysenter_esp
;
516 natural_width guest_sysenter_eip
;
517 natural_width host_cr0
;
518 natural_width host_cr3
;
519 natural_width host_cr4
;
520 natural_width host_fs_base
;
521 natural_width host_gs_base
;
522 natural_width host_tr_base
;
523 natural_width host_gdtr_base
;
524 natural_width host_idtr_base
;
525 natural_width host_ia32_sysenter_esp
;
526 natural_width host_ia32_sysenter_eip
;
527 natural_width host_rsp
;
528 natural_width host_rip
;
529 natural_width paddingl
[8]; /* room for future expansion */
530 u32 pin_based_vm_exec_control
;
531 u32 cpu_based_vm_exec_control
;
532 u32 exception_bitmap
;
533 u32 page_fault_error_code_mask
;
534 u32 page_fault_error_code_match
;
535 u32 cr3_target_count
;
536 u32 vm_exit_controls
;
537 u32 vm_exit_msr_store_count
;
538 u32 vm_exit_msr_load_count
;
539 u32 vm_entry_controls
;
540 u32 vm_entry_msr_load_count
;
541 u32 vm_entry_intr_info_field
;
542 u32 vm_entry_exception_error_code
;
543 u32 vm_entry_instruction_len
;
545 u32 secondary_vm_exec_control
;
546 u32 vm_instruction_error
;
548 u32 vm_exit_intr_info
;
549 u32 vm_exit_intr_error_code
;
550 u32 idt_vectoring_info_field
;
551 u32 idt_vectoring_error_code
;
552 u32 vm_exit_instruction_len
;
553 u32 vmx_instruction_info
;
560 u32 guest_ldtr_limit
;
562 u32 guest_gdtr_limit
;
563 u32 guest_idtr_limit
;
564 u32 guest_es_ar_bytes
;
565 u32 guest_cs_ar_bytes
;
566 u32 guest_ss_ar_bytes
;
567 u32 guest_ds_ar_bytes
;
568 u32 guest_fs_ar_bytes
;
569 u32 guest_gs_ar_bytes
;
570 u32 guest_ldtr_ar_bytes
;
571 u32 guest_tr_ar_bytes
;
572 u32 guest_interruptibility_info
;
573 u32 guest_activity_state
;
574 u32 guest_sysenter_cs
;
575 u32 host_ia32_sysenter_cs
;
576 u32 vmx_preemption_timer_value
;
577 u32 padding32
[7]; /* room for future expansion */
578 u16 virtual_processor_id
;
580 u16 guest_es_selector
;
581 u16 guest_cs_selector
;
582 u16 guest_ss_selector
;
583 u16 guest_ds_selector
;
584 u16 guest_fs_selector
;
585 u16 guest_gs_selector
;
586 u16 guest_ldtr_selector
;
587 u16 guest_tr_selector
;
588 u16 guest_intr_status
;
589 u16 host_es_selector
;
590 u16 host_cs_selector
;
591 u16 host_ss_selector
;
592 u16 host_ds_selector
;
593 u16 host_fs_selector
;
594 u16 host_gs_selector
;
595 u16 host_tr_selector
;
600 * For save/restore compatibility, the vmcs12 field offsets must not change.
602 #define CHECK_OFFSET(field, loc) \
603 BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \
604 "Offset of " #field " in struct vmcs12 has changed.")
606 static inline void vmx_check_vmcs12_offsets(void) {
607 CHECK_OFFSET(hdr
, 0);
608 CHECK_OFFSET(abort
, 4);
609 CHECK_OFFSET(launch_state
, 8);
610 CHECK_OFFSET(io_bitmap_a
, 40);
611 CHECK_OFFSET(io_bitmap_b
, 48);
612 CHECK_OFFSET(msr_bitmap
, 56);
613 CHECK_OFFSET(vm_exit_msr_store_addr
, 64);
614 CHECK_OFFSET(vm_exit_msr_load_addr
, 72);
615 CHECK_OFFSET(vm_entry_msr_load_addr
, 80);
616 CHECK_OFFSET(tsc_offset
, 88);
617 CHECK_OFFSET(virtual_apic_page_addr
, 96);
618 CHECK_OFFSET(apic_access_addr
, 104);
619 CHECK_OFFSET(posted_intr_desc_addr
, 112);
620 CHECK_OFFSET(ept_pointer
, 120);
621 CHECK_OFFSET(eoi_exit_bitmap0
, 128);
622 CHECK_OFFSET(eoi_exit_bitmap1
, 136);
623 CHECK_OFFSET(eoi_exit_bitmap2
, 144);
624 CHECK_OFFSET(eoi_exit_bitmap3
, 152);
625 CHECK_OFFSET(xss_exit_bitmap
, 160);
626 CHECK_OFFSET(guest_physical_address
, 168);
627 CHECK_OFFSET(vmcs_link_pointer
, 176);
628 CHECK_OFFSET(guest_ia32_debugctl
, 184);
629 CHECK_OFFSET(guest_ia32_pat
, 192);
630 CHECK_OFFSET(guest_ia32_efer
, 200);
631 CHECK_OFFSET(guest_ia32_perf_global_ctrl
, 208);
632 CHECK_OFFSET(guest_pdptr0
, 216);
633 CHECK_OFFSET(guest_pdptr1
, 224);
634 CHECK_OFFSET(guest_pdptr2
, 232);
635 CHECK_OFFSET(guest_pdptr3
, 240);
636 CHECK_OFFSET(guest_bndcfgs
, 248);
637 CHECK_OFFSET(host_ia32_pat
, 256);
638 CHECK_OFFSET(host_ia32_efer
, 264);
639 CHECK_OFFSET(host_ia32_perf_global_ctrl
, 272);
640 CHECK_OFFSET(vmread_bitmap
, 280);
641 CHECK_OFFSET(vmwrite_bitmap
, 288);
642 CHECK_OFFSET(vm_function_control
, 296);
643 CHECK_OFFSET(eptp_list_address
, 304);
644 CHECK_OFFSET(pml_address
, 312);
645 CHECK_OFFSET(cr0_guest_host_mask
, 344);
646 CHECK_OFFSET(cr4_guest_host_mask
, 352);
647 CHECK_OFFSET(cr0_read_shadow
, 360);
648 CHECK_OFFSET(cr4_read_shadow
, 368);
649 CHECK_OFFSET(cr3_target_value0
, 376);
650 CHECK_OFFSET(cr3_target_value1
, 384);
651 CHECK_OFFSET(cr3_target_value2
, 392);
652 CHECK_OFFSET(cr3_target_value3
, 400);
653 CHECK_OFFSET(exit_qualification
, 408);
654 CHECK_OFFSET(guest_linear_address
, 416);
655 CHECK_OFFSET(guest_cr0
, 424);
656 CHECK_OFFSET(guest_cr3
, 432);
657 CHECK_OFFSET(guest_cr4
, 440);
658 CHECK_OFFSET(guest_es_base
, 448);
659 CHECK_OFFSET(guest_cs_base
, 456);
660 CHECK_OFFSET(guest_ss_base
, 464);
661 CHECK_OFFSET(guest_ds_base
, 472);
662 CHECK_OFFSET(guest_fs_base
, 480);
663 CHECK_OFFSET(guest_gs_base
, 488);
664 CHECK_OFFSET(guest_ldtr_base
, 496);
665 CHECK_OFFSET(guest_tr_base
, 504);
666 CHECK_OFFSET(guest_gdtr_base
, 512);
667 CHECK_OFFSET(guest_idtr_base
, 520);
668 CHECK_OFFSET(guest_dr7
, 528);
669 CHECK_OFFSET(guest_rsp
, 536);
670 CHECK_OFFSET(guest_rip
, 544);
671 CHECK_OFFSET(guest_rflags
, 552);
672 CHECK_OFFSET(guest_pending_dbg_exceptions
, 560);
673 CHECK_OFFSET(guest_sysenter_esp
, 568);
674 CHECK_OFFSET(guest_sysenter_eip
, 576);
675 CHECK_OFFSET(host_cr0
, 584);
676 CHECK_OFFSET(host_cr3
, 592);
677 CHECK_OFFSET(host_cr4
, 600);
678 CHECK_OFFSET(host_fs_base
, 608);
679 CHECK_OFFSET(host_gs_base
, 616);
680 CHECK_OFFSET(host_tr_base
, 624);
681 CHECK_OFFSET(host_gdtr_base
, 632);
682 CHECK_OFFSET(host_idtr_base
, 640);
683 CHECK_OFFSET(host_ia32_sysenter_esp
, 648);
684 CHECK_OFFSET(host_ia32_sysenter_eip
, 656);
685 CHECK_OFFSET(host_rsp
, 664);
686 CHECK_OFFSET(host_rip
, 672);
687 CHECK_OFFSET(pin_based_vm_exec_control
, 744);
688 CHECK_OFFSET(cpu_based_vm_exec_control
, 748);
689 CHECK_OFFSET(exception_bitmap
, 752);
690 CHECK_OFFSET(page_fault_error_code_mask
, 756);
691 CHECK_OFFSET(page_fault_error_code_match
, 760);
692 CHECK_OFFSET(cr3_target_count
, 764);
693 CHECK_OFFSET(vm_exit_controls
, 768);
694 CHECK_OFFSET(vm_exit_msr_store_count
, 772);
695 CHECK_OFFSET(vm_exit_msr_load_count
, 776);
696 CHECK_OFFSET(vm_entry_controls
, 780);
697 CHECK_OFFSET(vm_entry_msr_load_count
, 784);
698 CHECK_OFFSET(vm_entry_intr_info_field
, 788);
699 CHECK_OFFSET(vm_entry_exception_error_code
, 792);
700 CHECK_OFFSET(vm_entry_instruction_len
, 796);
701 CHECK_OFFSET(tpr_threshold
, 800);
702 CHECK_OFFSET(secondary_vm_exec_control
, 804);
703 CHECK_OFFSET(vm_instruction_error
, 808);
704 CHECK_OFFSET(vm_exit_reason
, 812);
705 CHECK_OFFSET(vm_exit_intr_info
, 816);
706 CHECK_OFFSET(vm_exit_intr_error_code
, 820);
707 CHECK_OFFSET(idt_vectoring_info_field
, 824);
708 CHECK_OFFSET(idt_vectoring_error_code
, 828);
709 CHECK_OFFSET(vm_exit_instruction_len
, 832);
710 CHECK_OFFSET(vmx_instruction_info
, 836);
711 CHECK_OFFSET(guest_es_limit
, 840);
712 CHECK_OFFSET(guest_cs_limit
, 844);
713 CHECK_OFFSET(guest_ss_limit
, 848);
714 CHECK_OFFSET(guest_ds_limit
, 852);
715 CHECK_OFFSET(guest_fs_limit
, 856);
716 CHECK_OFFSET(guest_gs_limit
, 860);
717 CHECK_OFFSET(guest_ldtr_limit
, 864);
718 CHECK_OFFSET(guest_tr_limit
, 868);
719 CHECK_OFFSET(guest_gdtr_limit
, 872);
720 CHECK_OFFSET(guest_idtr_limit
, 876);
721 CHECK_OFFSET(guest_es_ar_bytes
, 880);
722 CHECK_OFFSET(guest_cs_ar_bytes
, 884);
723 CHECK_OFFSET(guest_ss_ar_bytes
, 888);
724 CHECK_OFFSET(guest_ds_ar_bytes
, 892);
725 CHECK_OFFSET(guest_fs_ar_bytes
, 896);
726 CHECK_OFFSET(guest_gs_ar_bytes
, 900);
727 CHECK_OFFSET(guest_ldtr_ar_bytes
, 904);
728 CHECK_OFFSET(guest_tr_ar_bytes
, 908);
729 CHECK_OFFSET(guest_interruptibility_info
, 912);
730 CHECK_OFFSET(guest_activity_state
, 916);
731 CHECK_OFFSET(guest_sysenter_cs
, 920);
732 CHECK_OFFSET(host_ia32_sysenter_cs
, 924);
733 CHECK_OFFSET(vmx_preemption_timer_value
, 928);
734 CHECK_OFFSET(virtual_processor_id
, 960);
735 CHECK_OFFSET(posted_intr_nv
, 962);
736 CHECK_OFFSET(guest_es_selector
, 964);
737 CHECK_OFFSET(guest_cs_selector
, 966);
738 CHECK_OFFSET(guest_ss_selector
, 968);
739 CHECK_OFFSET(guest_ds_selector
, 970);
740 CHECK_OFFSET(guest_fs_selector
, 972);
741 CHECK_OFFSET(guest_gs_selector
, 974);
742 CHECK_OFFSET(guest_ldtr_selector
, 976);
743 CHECK_OFFSET(guest_tr_selector
, 978);
744 CHECK_OFFSET(guest_intr_status
, 980);
745 CHECK_OFFSET(host_es_selector
, 982);
746 CHECK_OFFSET(host_cs_selector
, 984);
747 CHECK_OFFSET(host_ss_selector
, 986);
748 CHECK_OFFSET(host_ds_selector
, 988);
749 CHECK_OFFSET(host_fs_selector
, 990);
750 CHECK_OFFSET(host_gs_selector
, 992);
751 CHECK_OFFSET(host_tr_selector
, 994);
752 CHECK_OFFSET(guest_pml_index
, 996);
756 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
757 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
758 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
760 * IMPORTANT: Changing this value will break save/restore compatibility with
761 * older kvm releases.
763 #define VMCS12_REVISION 0x11e57ed0
766 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
767 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
768 * current implementation, 4K are reserved to avoid future complications.
770 #define VMCS12_SIZE 0x1000
773 * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
774 * supported VMCS12 field encoding.
776 #define VMCS12_MAX_FIELD_INDEX 0x17
778 struct nested_vmx_msrs
{
780 * We only store the "true" versions of the VMX capability MSRs. We
781 * generate the "non-true" versions by setting the must-be-1 bits
782 * according to the SDM.
784 u32 procbased_ctls_low
;
785 u32 procbased_ctls_high
;
786 u32 secondary_ctls_low
;
787 u32 secondary_ctls_high
;
788 u32 pinbased_ctls_low
;
789 u32 pinbased_ctls_high
;
808 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
809 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
812 /* Has the level1 guest done vmxon? */
817 /* The guest-physical address of the current VMCS L1 keeps for L2 */
820 * Cache of the guest's VMCS, existing outside of guest memory.
821 * Loaded from guest memory during VMPTRLD. Flushed to guest
822 * memory during VMCLEAR and VMPTRLD.
824 struct vmcs12
*cached_vmcs12
;
826 * Cache of the guest's shadow VMCS, existing outside of guest
827 * memory. Loaded from guest memory during VM entry. Flushed
828 * to guest memory during VM exit.
830 struct vmcs12
*cached_shadow_vmcs12
;
832 * Indicates if the shadow vmcs must be updated with the
833 * data hold by vmcs12
835 bool sync_shadow_vmcs
;
838 bool change_vmcs01_virtual_apic_mode
;
840 /* L2 must run next, and mustn't decide to exit to L1. */
841 bool nested_run_pending
;
843 struct loaded_vmcs vmcs02
;
846 * Guest pages referred to in the vmcs02 with host-physical
847 * pointers, so we must keep them pinned while L2 runs.
849 struct page
*apic_access_page
;
850 struct page
*virtual_apic_page
;
851 struct page
*pi_desc_page
;
852 struct pi_desc
*pi_desc
;
856 struct hrtimer preemption_timer
;
857 bool preemption_timer_expired
;
859 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
861 u64 vmcs01_guest_bndcfgs
;
866 struct nested_vmx_msrs msrs
;
868 /* SMM related state */
870 /* in VMX operation on SMM entry? */
872 /* in guest mode on SMM entry? */
877 #define POSTED_INTR_ON 0
878 #define POSTED_INTR_SN 1
880 /* Posted-Interrupt Descriptor */
882 u32 pir
[8]; /* Posted interrupt requested */
885 /* bit 256 - Outstanding Notification */
887 /* bit 257 - Suppress Notification */
889 /* bit 271:258 - Reserved */
891 /* bit 279:272 - Notification Vector */
893 /* bit 287:280 - Reserved */
895 /* bit 319:288 - Notification Destination */
903 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
905 return test_and_set_bit(POSTED_INTR_ON
,
906 (unsigned long *)&pi_desc
->control
);
909 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
911 return test_and_clear_bit(POSTED_INTR_ON
,
912 (unsigned long *)&pi_desc
->control
);
915 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
917 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
920 static inline void pi_clear_sn(struct pi_desc
*pi_desc
)
922 return clear_bit(POSTED_INTR_SN
,
923 (unsigned long *)&pi_desc
->control
);
926 static inline void pi_set_sn(struct pi_desc
*pi_desc
)
928 return set_bit(POSTED_INTR_SN
,
929 (unsigned long *)&pi_desc
->control
);
932 static inline void pi_clear_on(struct pi_desc
*pi_desc
)
934 clear_bit(POSTED_INTR_ON
,
935 (unsigned long *)&pi_desc
->control
);
938 static inline int pi_test_on(struct pi_desc
*pi_desc
)
940 return test_bit(POSTED_INTR_ON
,
941 (unsigned long *)&pi_desc
->control
);
944 static inline int pi_test_sn(struct pi_desc
*pi_desc
)
946 return test_bit(POSTED_INTR_SN
,
947 (unsigned long *)&pi_desc
->control
);
952 struct vmx_msr_entry val
[NR_AUTOLOAD_MSRS
];
956 struct kvm_vcpu vcpu
;
957 unsigned long host_rsp
;
961 u32 idt_vectoring_info
;
963 struct shared_msr_entry
*guest_msrs
;
966 bool guest_msrs_dirty
;
967 unsigned long host_idt_base
;
969 u64 msr_host_kernel_gs_base
;
970 u64 msr_guest_kernel_gs_base
;
975 u32 vm_entry_controls_shadow
;
976 u32 vm_exit_controls_shadow
;
977 u32 secondary_exec_control
;
980 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
981 * non-nested (L1) guest, it always points to vmcs01. For a nested
982 * guest (L2), it points to a different VMCS. loaded_cpu_state points
983 * to the VMCS whose state is loaded into the CPU registers that only
984 * need to be switched when transitioning to/from the kernel; a NULL
985 * value indicates that host state is loaded.
987 struct loaded_vmcs vmcs01
;
988 struct loaded_vmcs
*loaded_vmcs
;
989 struct loaded_vmcs
*loaded_cpu_state
;
990 bool __launched
; /* temporary, used in vmx_vcpu_run */
991 struct msr_autoload
{
992 struct vmx_msrs guest
;
993 struct vmx_msrs host
;
999 struct kvm_segment segs
[8];
1002 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
1003 struct kvm_save_segment
{
1011 bool emulation_required
;
1015 /* Posted interrupt descriptor */
1016 struct pi_desc pi_desc
;
1018 /* Support for a guest hypervisor (nested VMX) */
1019 struct nested_vmx nested
;
1021 /* Dynamic PLE window. */
1023 bool ple_window_dirty
;
1025 bool req_immediate_exit
;
1027 /* Support for PML */
1028 #define PML_ENTITY_NUM 512
1029 struct page
*pml_pg
;
1031 /* apic deadline value in host tsc */
1032 u64 hv_deadline_tsc
;
1034 u64 current_tsc_ratio
;
1038 unsigned long host_debugctlmsr
;
1041 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
1042 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
1043 * in msr_ia32_feature_control_valid_bits.
1045 u64 msr_ia32_feature_control
;
1046 u64 msr_ia32_feature_control_valid_bits
;
1050 enum segment_cache_field
{
1053 SEG_FIELD_LIMIT
= 2,
1059 static inline struct kvm_vmx
*to_kvm_vmx(struct kvm
*kvm
)
1061 return container_of(kvm
, struct kvm_vmx
, kvm
);
1064 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
1066 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
1069 static struct pi_desc
*vcpu_to_pi_desc(struct kvm_vcpu
*vcpu
)
1071 return &(to_vmx(vcpu
)->pi_desc
);
1074 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
1075 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
1076 #define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
1077 #define FIELD64(number, name) \
1078 FIELD(number, name), \
1079 [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
1082 static u16 shadow_read_only_fields
[] = {
1083 #define SHADOW_FIELD_RO(x) x,
1084 #include "vmx_shadow_fields.h"
1086 static int max_shadow_read_only_fields
=
1087 ARRAY_SIZE(shadow_read_only_fields
);
1089 static u16 shadow_read_write_fields
[] = {
1090 #define SHADOW_FIELD_RW(x) x,
1091 #include "vmx_shadow_fields.h"
1093 static int max_shadow_read_write_fields
=
1094 ARRAY_SIZE(shadow_read_write_fields
);
1096 static const unsigned short vmcs_field_to_offset_table
[] = {
1097 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
1098 FIELD(POSTED_INTR_NV
, posted_intr_nv
),
1099 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
1100 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
1101 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
1102 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
1103 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
1104 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
1105 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
1106 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
1107 FIELD(GUEST_INTR_STATUS
, guest_intr_status
),
1108 FIELD(GUEST_PML_INDEX
, guest_pml_index
),
1109 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
1110 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
1111 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
1112 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
1113 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
1114 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
1115 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
1116 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
1117 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
1118 FIELD64(MSR_BITMAP
, msr_bitmap
),
1119 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
1120 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
1121 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
1122 FIELD64(PML_ADDRESS
, pml_address
),
1123 FIELD64(TSC_OFFSET
, tsc_offset
),
1124 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
1125 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
1126 FIELD64(POSTED_INTR_DESC_ADDR
, posted_intr_desc_addr
),
1127 FIELD64(VM_FUNCTION_CONTROL
, vm_function_control
),
1128 FIELD64(EPT_POINTER
, ept_pointer
),
1129 FIELD64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap0
),
1130 FIELD64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap1
),
1131 FIELD64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap2
),
1132 FIELD64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap3
),
1133 FIELD64(EPTP_LIST_ADDRESS
, eptp_list_address
),
1134 FIELD64(VMREAD_BITMAP
, vmread_bitmap
),
1135 FIELD64(VMWRITE_BITMAP
, vmwrite_bitmap
),
1136 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
1137 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
1138 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
1139 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
1140 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
1141 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
1142 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
1143 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
1144 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
1145 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
1146 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
1147 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
1148 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
1149 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
1150 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
1151 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
1152 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
1153 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
1154 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
1155 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
1156 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
1157 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
1158 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
1159 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
1160 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
1161 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
1162 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
1163 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
1164 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
1165 FIELD(TPR_THRESHOLD
, tpr_threshold
),
1166 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
1167 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
1168 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
1169 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
1170 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
1171 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
1172 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
1173 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
1174 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
1175 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
1176 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
1177 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
1178 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
1179 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
1180 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
1181 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
1182 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
1183 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
1184 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
1185 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
1186 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
1187 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
1188 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
1189 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
1190 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
1191 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
1192 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
1193 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
1194 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
1195 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
1196 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
1197 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
1198 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
1199 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
1200 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
1201 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
1202 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
1203 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
1204 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
1205 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
1206 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
1207 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
1208 FIELD(GUEST_CR0
, guest_cr0
),
1209 FIELD(GUEST_CR3
, guest_cr3
),
1210 FIELD(GUEST_CR4
, guest_cr4
),
1211 FIELD(GUEST_ES_BASE
, guest_es_base
),
1212 FIELD(GUEST_CS_BASE
, guest_cs_base
),
1213 FIELD(GUEST_SS_BASE
, guest_ss_base
),
1214 FIELD(GUEST_DS_BASE
, guest_ds_base
),
1215 FIELD(GUEST_FS_BASE
, guest_fs_base
),
1216 FIELD(GUEST_GS_BASE
, guest_gs_base
),
1217 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
1218 FIELD(GUEST_TR_BASE
, guest_tr_base
),
1219 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
1220 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
1221 FIELD(GUEST_DR7
, guest_dr7
),
1222 FIELD(GUEST_RSP
, guest_rsp
),
1223 FIELD(GUEST_RIP
, guest_rip
),
1224 FIELD(GUEST_RFLAGS
, guest_rflags
),
1225 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
1226 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
1227 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
1228 FIELD(HOST_CR0
, host_cr0
),
1229 FIELD(HOST_CR3
, host_cr3
),
1230 FIELD(HOST_CR4
, host_cr4
),
1231 FIELD(HOST_FS_BASE
, host_fs_base
),
1232 FIELD(HOST_GS_BASE
, host_gs_base
),
1233 FIELD(HOST_TR_BASE
, host_tr_base
),
1234 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
1235 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
1236 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
1237 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
1238 FIELD(HOST_RSP
, host_rsp
),
1239 FIELD(HOST_RIP
, host_rip
),
1242 static inline short vmcs_field_to_offset(unsigned long field
)
1244 const size_t size
= ARRAY_SIZE(vmcs_field_to_offset_table
);
1245 unsigned short offset
;
1251 index
= ROL16(field
, 6);
1255 index
= array_index_nospec(index
, size
);
1256 offset
= vmcs_field_to_offset_table
[index
];
1262 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
1264 return to_vmx(vcpu
)->nested
.cached_vmcs12
;
1267 static inline struct vmcs12
*get_shadow_vmcs12(struct kvm_vcpu
*vcpu
)
1269 return to_vmx(vcpu
)->nested
.cached_shadow_vmcs12
;
1272 static bool nested_ept_ad_enabled(struct kvm_vcpu
*vcpu
);
1273 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
1274 static u64
construct_eptp(struct kvm_vcpu
*vcpu
, unsigned long root_hpa
);
1275 static bool vmx_xsaves_supported(void);
1276 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1277 struct kvm_segment
*var
, int seg
);
1278 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1279 struct kvm_segment
*var
, int seg
);
1280 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
1281 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
1282 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
1283 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
);
1284 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
);
1285 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
1287 static void vmx_update_msr_bitmap(struct kvm_vcpu
*vcpu
);
1288 static __always_inline
void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
1291 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
1292 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
1294 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
1295 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
1297 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
1300 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
1301 * can find which vCPU should be waken up.
1303 static DEFINE_PER_CPU(struct list_head
, blocked_vcpu_on_cpu
);
1304 static DEFINE_PER_CPU(spinlock_t
, blocked_vcpu_on_cpu_lock
);
1312 static unsigned long *vmx_bitmap
[VMX_BITMAP_NR
];
1314 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
1315 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
1317 static bool cpu_has_load_ia32_efer
;
1318 static bool cpu_has_load_perf_global_ctrl
;
1320 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
1321 static DEFINE_SPINLOCK(vmx_vpid_lock
);
1323 static struct vmcs_config
{
1328 u32 pin_based_exec_ctrl
;
1329 u32 cpu_based_exec_ctrl
;
1330 u32 cpu_based_2nd_exec_ctrl
;
1333 struct nested_vmx_msrs nested
;
1336 static struct vmx_capability
{
1341 #define VMX_SEGMENT_FIELD(seg) \
1342 [VCPU_SREG_##seg] = { \
1343 .selector = GUEST_##seg##_SELECTOR, \
1344 .base = GUEST_##seg##_BASE, \
1345 .limit = GUEST_##seg##_LIMIT, \
1346 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1349 static const struct kvm_vmx_segment_field
{
1354 } kvm_vmx_segment_fields
[] = {
1355 VMX_SEGMENT_FIELD(CS
),
1356 VMX_SEGMENT_FIELD(DS
),
1357 VMX_SEGMENT_FIELD(ES
),
1358 VMX_SEGMENT_FIELD(FS
),
1359 VMX_SEGMENT_FIELD(GS
),
1360 VMX_SEGMENT_FIELD(SS
),
1361 VMX_SEGMENT_FIELD(TR
),
1362 VMX_SEGMENT_FIELD(LDTR
),
1365 static u64 host_efer
;
1367 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
1370 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1371 * away by decrementing the array size.
1373 static const u32 vmx_msr_index
[] = {
1374 #ifdef CONFIG_X86_64
1375 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
1377 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
1380 DEFINE_STATIC_KEY_FALSE(enable_evmcs
);
1382 #define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
1384 #define KVM_EVMCS_VERSION 1
1386 #if IS_ENABLED(CONFIG_HYPERV)
1387 static bool __read_mostly enlightened_vmcs
= true;
1388 module_param(enlightened_vmcs
, bool, 0444);
1390 static inline void evmcs_write64(unsigned long field
, u64 value
)
1393 int offset
= get_evmcs_offset(field
, &clean_field
);
1398 *(u64
*)((char *)current_evmcs
+ offset
) = value
;
1400 current_evmcs
->hv_clean_fields
&= ~clean_field
;
1403 static inline void evmcs_write32(unsigned long field
, u32 value
)
1406 int offset
= get_evmcs_offset(field
, &clean_field
);
1411 *(u32
*)((char *)current_evmcs
+ offset
) = value
;
1412 current_evmcs
->hv_clean_fields
&= ~clean_field
;
1415 static inline void evmcs_write16(unsigned long field
, u16 value
)
1418 int offset
= get_evmcs_offset(field
, &clean_field
);
1423 *(u16
*)((char *)current_evmcs
+ offset
) = value
;
1424 current_evmcs
->hv_clean_fields
&= ~clean_field
;
1427 static inline u64
evmcs_read64(unsigned long field
)
1429 int offset
= get_evmcs_offset(field
, NULL
);
1434 return *(u64
*)((char *)current_evmcs
+ offset
);
1437 static inline u32
evmcs_read32(unsigned long field
)
1439 int offset
= get_evmcs_offset(field
, NULL
);
1444 return *(u32
*)((char *)current_evmcs
+ offset
);
1447 static inline u16
evmcs_read16(unsigned long field
)
1449 int offset
= get_evmcs_offset(field
, NULL
);
1454 return *(u16
*)((char *)current_evmcs
+ offset
);
1457 static inline void evmcs_touch_msr_bitmap(void)
1459 if (unlikely(!current_evmcs
))
1462 if (current_evmcs
->hv_enlightenments_control
.msr_bitmap
)
1463 current_evmcs
->hv_clean_fields
&=
1464 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP
;
1467 static void evmcs_load(u64 phys_addr
)
1469 struct hv_vp_assist_page
*vp_ap
=
1470 hv_get_vp_assist_page(smp_processor_id());
1472 vp_ap
->current_nested_vmcs
= phys_addr
;
1473 vp_ap
->enlighten_vmentry
= 1;
1476 static void evmcs_sanitize_exec_ctrls(struct vmcs_config
*vmcs_conf
)
1479 * Enlightened VMCSv1 doesn't support these:
1481 * POSTED_INTR_NV = 0x00000002,
1482 * GUEST_INTR_STATUS = 0x00000810,
1483 * APIC_ACCESS_ADDR = 0x00002014,
1484 * POSTED_INTR_DESC_ADDR = 0x00002016,
1485 * EOI_EXIT_BITMAP0 = 0x0000201c,
1486 * EOI_EXIT_BITMAP1 = 0x0000201e,
1487 * EOI_EXIT_BITMAP2 = 0x00002020,
1488 * EOI_EXIT_BITMAP3 = 0x00002022,
1490 vmcs_conf
->pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
1491 vmcs_conf
->cpu_based_2nd_exec_ctrl
&=
1492 ~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1493 vmcs_conf
->cpu_based_2nd_exec_ctrl
&=
1494 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1495 vmcs_conf
->cpu_based_2nd_exec_ctrl
&=
1496 ~SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1499 * GUEST_PML_INDEX = 0x00000812,
1500 * PML_ADDRESS = 0x0000200e,
1502 vmcs_conf
->cpu_based_2nd_exec_ctrl
&= ~SECONDARY_EXEC_ENABLE_PML
;
1504 /* VM_FUNCTION_CONTROL = 0x00002018, */
1505 vmcs_conf
->cpu_based_2nd_exec_ctrl
&= ~SECONDARY_EXEC_ENABLE_VMFUNC
;
1508 * EPTP_LIST_ADDRESS = 0x00002024,
1509 * VMREAD_BITMAP = 0x00002026,
1510 * VMWRITE_BITMAP = 0x00002028,
1512 vmcs_conf
->cpu_based_2nd_exec_ctrl
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
1515 * TSC_MULTIPLIER = 0x00002032,
1517 vmcs_conf
->cpu_based_2nd_exec_ctrl
&= ~SECONDARY_EXEC_TSC_SCALING
;
1520 * PLE_GAP = 0x00004020,
1521 * PLE_WINDOW = 0x00004022,
1523 vmcs_conf
->cpu_based_2nd_exec_ctrl
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1526 * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E,
1528 vmcs_conf
->pin_based_exec_ctrl
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
1531 * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
1532 * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
1534 vmcs_conf
->vmexit_ctrl
&= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
;
1535 vmcs_conf
->vmentry_ctrl
&= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
;
1538 * Currently unsupported in KVM:
1539 * GUEST_IA32_RTIT_CTL = 0x00002814,
1543 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
1544 static void check_ept_pointer_match(struct kvm
*kvm
)
1546 struct kvm_vcpu
*vcpu
;
1547 u64 tmp_eptp
= INVALID_PAGE
;
1550 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1551 if (!VALID_PAGE(tmp_eptp
)) {
1552 tmp_eptp
= to_vmx(vcpu
)->ept_pointer
;
1553 } else if (tmp_eptp
!= to_vmx(vcpu
)->ept_pointer
) {
1554 to_kvm_vmx(kvm
)->ept_pointers_match
1555 = EPT_POINTERS_MISMATCH
;
1560 to_kvm_vmx(kvm
)->ept_pointers_match
= EPT_POINTERS_MATCH
;
1563 static int vmx_hv_remote_flush_tlb(struct kvm
*kvm
)
1567 spin_lock(&to_kvm_vmx(kvm
)->ept_pointer_lock
);
1569 if (to_kvm_vmx(kvm
)->ept_pointers_match
== EPT_POINTERS_CHECK
)
1570 check_ept_pointer_match(kvm
);
1572 if (to_kvm_vmx(kvm
)->ept_pointers_match
!= EPT_POINTERS_MATCH
) {
1578 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
1579 * base of EPT PML4 table, strip off EPT configuration information.
1581 ret
= hyperv_flush_guest_mapping(
1582 to_vmx(kvm_get_vcpu(kvm
, 0))->ept_pointer
& PAGE_MASK
);
1585 spin_unlock(&to_kvm_vmx(kvm
)->ept_pointer_lock
);
1588 #else /* !IS_ENABLED(CONFIG_HYPERV) */
1589 static inline void evmcs_write64(unsigned long field
, u64 value
) {}
1590 static inline void evmcs_write32(unsigned long field
, u32 value
) {}
1591 static inline void evmcs_write16(unsigned long field
, u16 value
) {}
1592 static inline u64
evmcs_read64(unsigned long field
) { return 0; }
1593 static inline u32
evmcs_read32(unsigned long field
) { return 0; }
1594 static inline u16
evmcs_read16(unsigned long field
) { return 0; }
1595 static inline void evmcs_load(u64 phys_addr
) {}
1596 static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config
*vmcs_conf
) {}
1597 static inline void evmcs_touch_msr_bitmap(void) {}
1598 #endif /* IS_ENABLED(CONFIG_HYPERV) */
1600 static inline bool is_exception_n(u32 intr_info
, u8 vector
)
1602 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1603 INTR_INFO_VALID_MASK
)) ==
1604 (INTR_TYPE_HARD_EXCEPTION
| vector
| INTR_INFO_VALID_MASK
);
1607 static inline bool is_debug(u32 intr_info
)
1609 return is_exception_n(intr_info
, DB_VECTOR
);
1612 static inline bool is_breakpoint(u32 intr_info
)
1614 return is_exception_n(intr_info
, BP_VECTOR
);
1617 static inline bool is_page_fault(u32 intr_info
)
1619 return is_exception_n(intr_info
, PF_VECTOR
);
1622 static inline bool is_no_device(u32 intr_info
)
1624 return is_exception_n(intr_info
, NM_VECTOR
);
1627 static inline bool is_invalid_opcode(u32 intr_info
)
1629 return is_exception_n(intr_info
, UD_VECTOR
);
1632 static inline bool is_gp_fault(u32 intr_info
)
1634 return is_exception_n(intr_info
, GP_VECTOR
);
1637 static inline bool is_external_interrupt(u32 intr_info
)
1639 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1640 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1643 static inline bool is_machine_check(u32 intr_info
)
1645 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1646 INTR_INFO_VALID_MASK
)) ==
1647 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
1650 /* Undocumented: icebp/int1 */
1651 static inline bool is_icebp(u32 intr_info
)
1653 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1654 == (INTR_TYPE_PRIV_SW_EXCEPTION
| INTR_INFO_VALID_MASK
);
1657 static inline bool cpu_has_vmx_msr_bitmap(void)
1659 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
1662 static inline bool cpu_has_vmx_tpr_shadow(void)
1664 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
1667 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu
*vcpu
)
1669 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu
);
1672 static inline bool cpu_has_secondary_exec_ctrls(void)
1674 return vmcs_config
.cpu_based_exec_ctrl
&
1675 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1678 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1680 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1681 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1684 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1686 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1687 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
1690 static inline bool cpu_has_vmx_apic_register_virt(void)
1692 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1693 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1696 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1698 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1699 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1702 static inline bool cpu_has_vmx_encls_vmexit(void)
1704 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1705 SECONDARY_EXEC_ENCLS_EXITING
;
1709 * Comment's format: document - errata name - stepping - processor name.
1711 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1713 static u32 vmx_preemption_cpu_tfms
[] = {
1714 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1716 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1717 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1718 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1720 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1722 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1723 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1725 * 320767.pdf - AAP86 - B1 -
1726 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1729 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1731 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1733 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1735 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1736 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1737 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1741 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1743 u32 eax
= cpuid_eax(0x00000001), i
;
1745 /* Clear the reserved bits */
1746 eax
&= ~(0x3U
<< 14 | 0xfU
<< 28);
1747 for (i
= 0; i
< ARRAY_SIZE(vmx_preemption_cpu_tfms
); i
++)
1748 if (eax
== vmx_preemption_cpu_tfms
[i
])
1754 static inline bool cpu_has_vmx_preemption_timer(void)
1756 return vmcs_config
.pin_based_exec_ctrl
&
1757 PIN_BASED_VMX_PREEMPTION_TIMER
;
1760 static inline bool cpu_has_vmx_posted_intr(void)
1762 return IS_ENABLED(CONFIG_X86_LOCAL_APIC
) &&
1763 vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
1766 static inline bool cpu_has_vmx_apicv(void)
1768 return cpu_has_vmx_apic_register_virt() &&
1769 cpu_has_vmx_virtual_intr_delivery() &&
1770 cpu_has_vmx_posted_intr();
1773 static inline bool cpu_has_vmx_flexpriority(void)
1775 return cpu_has_vmx_tpr_shadow() &&
1776 cpu_has_vmx_virtualize_apic_accesses();
1779 static inline bool cpu_has_vmx_ept_execute_only(void)
1781 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
1784 static inline bool cpu_has_vmx_ept_2m_page(void)
1786 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
1789 static inline bool cpu_has_vmx_ept_1g_page(void)
1791 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
1794 static inline bool cpu_has_vmx_ept_4levels(void)
1796 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
1799 static inline bool cpu_has_vmx_ept_mt_wb(void)
1801 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
1804 static inline bool cpu_has_vmx_ept_5levels(void)
1806 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_5_BIT
;
1809 static inline bool cpu_has_vmx_ept_ad_bits(void)
1811 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
1814 static inline bool cpu_has_vmx_invept_context(void)
1816 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
1819 static inline bool cpu_has_vmx_invept_global(void)
1821 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1824 static inline bool cpu_has_vmx_invvpid_individual_addr(void)
1826 return vmx_capability
.vpid
& VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT
;
1829 static inline bool cpu_has_vmx_invvpid_single(void)
1831 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1834 static inline bool cpu_has_vmx_invvpid_global(void)
1836 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1839 static inline bool cpu_has_vmx_invvpid(void)
1841 return vmx_capability
.vpid
& VMX_VPID_INVVPID_BIT
;
1844 static inline bool cpu_has_vmx_ept(void)
1846 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1847 SECONDARY_EXEC_ENABLE_EPT
;
1850 static inline bool cpu_has_vmx_unrestricted_guest(void)
1852 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1853 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1856 static inline bool cpu_has_vmx_ple(void)
1858 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1859 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1862 static inline bool cpu_has_vmx_basic_inout(void)
1864 return (((u64
)vmcs_config
.basic_cap
<< 32) & VMX_BASIC_INOUT
);
1867 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
1869 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
1872 static inline bool cpu_has_vmx_vpid(void)
1874 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1875 SECONDARY_EXEC_ENABLE_VPID
;
1878 static inline bool cpu_has_vmx_rdtscp(void)
1880 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1881 SECONDARY_EXEC_RDTSCP
;
1884 static inline bool cpu_has_vmx_invpcid(void)
1886 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1887 SECONDARY_EXEC_ENABLE_INVPCID
;
1890 static inline bool cpu_has_virtual_nmis(void)
1892 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1895 static inline bool cpu_has_vmx_wbinvd_exit(void)
1897 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1898 SECONDARY_EXEC_WBINVD_EXITING
;
1901 static inline bool cpu_has_vmx_shadow_vmcs(void)
1904 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1905 /* check if the cpu supports writing r/o exit information fields */
1906 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1909 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1910 SECONDARY_EXEC_SHADOW_VMCS
;
1913 static inline bool cpu_has_vmx_pml(void)
1915 return vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_ENABLE_PML
;
1918 static inline bool cpu_has_vmx_tsc_scaling(void)
1920 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1921 SECONDARY_EXEC_TSC_SCALING
;
1924 static inline bool cpu_has_vmx_vmfunc(void)
1926 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1927 SECONDARY_EXEC_ENABLE_VMFUNC
;
1930 static bool vmx_umip_emulated(void)
1932 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1933 SECONDARY_EXEC_DESC
;
1936 static inline bool report_flexpriority(void)
1938 return flexpriority_enabled
;
1941 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu
*vcpu
)
1943 return vmx_misc_cr3_count(to_vmx(vcpu
)->nested
.msrs
.misc_low
);
1947 * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
1948 * to modify any valid field of the VMCS, or are the VM-exit
1949 * information fields read-only?
1951 static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu
*vcpu
)
1953 return to_vmx(vcpu
)->nested
.msrs
.misc_low
&
1954 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
;
1957 static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu
*vcpu
)
1959 return to_vmx(vcpu
)->nested
.msrs
.misc_low
& VMX_MISC_ZERO_LEN_INS
;
1962 static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu
*vcpu
)
1964 return to_vmx(vcpu
)->nested
.msrs
.procbased_ctls_high
&
1965 CPU_BASED_MONITOR_TRAP_FLAG
;
1968 static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu
*vcpu
)
1970 return to_vmx(vcpu
)->nested
.msrs
.secondary_ctls_high
&
1971 SECONDARY_EXEC_SHADOW_VMCS
;
1974 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1976 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1979 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1981 return (vmcs12
->cpu_based_vm_exec_control
&
1982 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1983 (vmcs12
->secondary_vm_exec_control
& bit
);
1986 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1988 return vmcs12
->pin_based_vm_exec_control
&
1989 PIN_BASED_VMX_PREEMPTION_TIMER
;
1992 static inline bool nested_cpu_has_nmi_exiting(struct vmcs12
*vmcs12
)
1994 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_NMI_EXITING
;
1997 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1999 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
2002 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
2004 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
2007 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
2009 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
2012 static inline bool nested_cpu_has_pml(struct vmcs12
*vmcs12
)
2014 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_PML
);
2017 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12
*vmcs12
)
2019 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
2022 static inline bool nested_cpu_has_vpid(struct vmcs12
*vmcs12
)
2024 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VPID
);
2027 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12
*vmcs12
)
2029 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_APIC_REGISTER_VIRT
);
2032 static inline bool nested_cpu_has_vid(struct vmcs12
*vmcs12
)
2034 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
2037 static inline bool nested_cpu_has_posted_intr(struct vmcs12
*vmcs12
)
2039 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_POSTED_INTR
;
2042 static inline bool nested_cpu_has_vmfunc(struct vmcs12
*vmcs12
)
2044 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VMFUNC
);
2047 static inline bool nested_cpu_has_eptp_switching(struct vmcs12
*vmcs12
)
2049 return nested_cpu_has_vmfunc(vmcs12
) &&
2050 (vmcs12
->vm_function_control
&
2051 VMX_VMFUNC_EPTP_SWITCHING
);
2054 static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12
*vmcs12
)
2056 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_SHADOW_VMCS
);
2059 static inline bool is_nmi(u32 intr_info
)
2061 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
2062 == (INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
);
2065 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
2067 unsigned long exit_qualification
);
2068 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
2069 struct vmcs12
*vmcs12
,
2070 u32 reason
, unsigned long qualification
);
2072 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
2076 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
2077 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
2082 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
2088 } operand
= { vpid
, 0, gva
};
2091 asm volatile (__ex(ASM_VMX_INVVPID
) CC_SET(na
)
2092 : CC_OUT(na
) (error
) : "a"(&operand
), "c"(ext
)
2097 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
2101 } operand
= {eptp
, gpa
};
2104 asm volatile (__ex(ASM_VMX_INVEPT
) CC_SET(na
)
2105 : CC_OUT(na
) (error
) : "a" (&operand
), "c" (ext
)
2110 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
2114 i
= __find_msr_index(vmx
, msr
);
2116 return &vmx
->guest_msrs
[i
];
2120 static void vmcs_clear(struct vmcs
*vmcs
)
2122 u64 phys_addr
= __pa(vmcs
);
2125 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) CC_SET(na
)
2126 : CC_OUT(na
) (error
) : "a"(&phys_addr
), "m"(phys_addr
)
2128 if (unlikely(error
))
2129 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
2133 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
2135 vmcs_clear(loaded_vmcs
->vmcs
);
2136 if (loaded_vmcs
->shadow_vmcs
&& loaded_vmcs
->launched
)
2137 vmcs_clear(loaded_vmcs
->shadow_vmcs
);
2138 loaded_vmcs
->cpu
= -1;
2139 loaded_vmcs
->launched
= 0;
2142 static void vmcs_load(struct vmcs
*vmcs
)
2144 u64 phys_addr
= __pa(vmcs
);
2147 if (static_branch_unlikely(&enable_evmcs
))
2148 return evmcs_load(phys_addr
);
2150 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) CC_SET(na
)
2151 : CC_OUT(na
) (error
) : "a"(&phys_addr
), "m"(phys_addr
)
2153 if (unlikely(error
))
2154 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
2158 #ifdef CONFIG_KEXEC_CORE
2160 * This bitmap is used to indicate whether the vmclear
2161 * operation is enabled on all cpus. All disabled by
2164 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
2166 static inline void crash_enable_local_vmclear(int cpu
)
2168 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
2171 static inline void crash_disable_local_vmclear(int cpu
)
2173 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
2176 static inline int crash_local_vmclear_enabled(int cpu
)
2178 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
2181 static void crash_vmclear_local_loaded_vmcss(void)
2183 int cpu
= raw_smp_processor_id();
2184 struct loaded_vmcs
*v
;
2186 if (!crash_local_vmclear_enabled(cpu
))
2189 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2190 loaded_vmcss_on_cpu_link
)
2191 vmcs_clear(v
->vmcs
);
2194 static inline void crash_enable_local_vmclear(int cpu
) { }
2195 static inline void crash_disable_local_vmclear(int cpu
) { }
2196 #endif /* CONFIG_KEXEC_CORE */
2198 static void __loaded_vmcs_clear(void *arg
)
2200 struct loaded_vmcs
*loaded_vmcs
= arg
;
2201 int cpu
= raw_smp_processor_id();
2203 if (loaded_vmcs
->cpu
!= cpu
)
2204 return; /* vcpu migration can race with cpu offline */
2205 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
2206 per_cpu(current_vmcs
, cpu
) = NULL
;
2207 crash_disable_local_vmclear(cpu
);
2208 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
2211 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
2212 * is before setting loaded_vmcs->vcpu to -1 which is done in
2213 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
2214 * then adds the vmcs into percpu list before it is deleted.
2218 loaded_vmcs_init(loaded_vmcs
);
2219 crash_enable_local_vmclear(cpu
);
2222 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
2224 int cpu
= loaded_vmcs
->cpu
;
2227 smp_call_function_single(cpu
,
2228 __loaded_vmcs_clear
, loaded_vmcs
, 1);
2231 static inline bool vpid_sync_vcpu_addr(int vpid
, gva_t addr
)
2236 if (cpu_has_vmx_invvpid_individual_addr()) {
2237 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR
, vpid
, addr
);
2244 static inline void vpid_sync_vcpu_single(int vpid
)
2249 if (cpu_has_vmx_invvpid_single())
2250 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vpid
, 0);
2253 static inline void vpid_sync_vcpu_global(void)
2255 if (cpu_has_vmx_invvpid_global())
2256 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
2259 static inline void vpid_sync_context(int vpid
)
2261 if (cpu_has_vmx_invvpid_single())
2262 vpid_sync_vcpu_single(vpid
);
2264 vpid_sync_vcpu_global();
2267 static inline void ept_sync_global(void)
2269 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
2272 static inline void ept_sync_context(u64 eptp
)
2274 if (cpu_has_vmx_invept_context())
2275 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
2280 static __always_inline
void vmcs_check16(unsigned long field
)
2282 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
2283 "16-bit accessor invalid for 64-bit field");
2284 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
2285 "16-bit accessor invalid for 64-bit high field");
2286 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
2287 "16-bit accessor invalid for 32-bit high field");
2288 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
2289 "16-bit accessor invalid for natural width field");
2292 static __always_inline
void vmcs_check32(unsigned long field
)
2294 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
2295 "32-bit accessor invalid for 16-bit field");
2296 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
2297 "32-bit accessor invalid for natural width field");
2300 static __always_inline
void vmcs_check64(unsigned long field
)
2302 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
2303 "64-bit accessor invalid for 16-bit field");
2304 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
2305 "64-bit accessor invalid for 64-bit high field");
2306 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
2307 "64-bit accessor invalid for 32-bit field");
2308 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
2309 "64-bit accessor invalid for natural width field");
2312 static __always_inline
void vmcs_checkl(unsigned long field
)
2314 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
2315 "Natural width accessor invalid for 16-bit field");
2316 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
2317 "Natural width accessor invalid for 64-bit field");
2318 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
2319 "Natural width accessor invalid for 64-bit high field");
2320 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
2321 "Natural width accessor invalid for 32-bit field");
2324 static __always_inline
unsigned long __vmcs_readl(unsigned long field
)
2326 unsigned long value
;
2328 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
2329 : "=a"(value
) : "d"(field
) : "cc");
2333 static __always_inline u16
vmcs_read16(unsigned long field
)
2335 vmcs_check16(field
);
2336 if (static_branch_unlikely(&enable_evmcs
))
2337 return evmcs_read16(field
);
2338 return __vmcs_readl(field
);
2341 static __always_inline u32
vmcs_read32(unsigned long field
)
2343 vmcs_check32(field
);
2344 if (static_branch_unlikely(&enable_evmcs
))
2345 return evmcs_read32(field
);
2346 return __vmcs_readl(field
);
2349 static __always_inline u64
vmcs_read64(unsigned long field
)
2351 vmcs_check64(field
);
2352 if (static_branch_unlikely(&enable_evmcs
))
2353 return evmcs_read64(field
);
2354 #ifdef CONFIG_X86_64
2355 return __vmcs_readl(field
);
2357 return __vmcs_readl(field
) | ((u64
)__vmcs_readl(field
+1) << 32);
2361 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
2364 if (static_branch_unlikely(&enable_evmcs
))
2365 return evmcs_read64(field
);
2366 return __vmcs_readl(field
);
2369 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
2371 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
2372 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
2376 static __always_inline
void __vmcs_writel(unsigned long field
, unsigned long value
)
2380 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) CC_SET(na
)
2381 : CC_OUT(na
) (error
) : "a"(value
), "d"(field
));
2382 if (unlikely(error
))
2383 vmwrite_error(field
, value
);
2386 static __always_inline
void vmcs_write16(unsigned long field
, u16 value
)
2388 vmcs_check16(field
);
2389 if (static_branch_unlikely(&enable_evmcs
))
2390 return evmcs_write16(field
, value
);
2392 __vmcs_writel(field
, value
);
2395 static __always_inline
void vmcs_write32(unsigned long field
, u32 value
)
2397 vmcs_check32(field
);
2398 if (static_branch_unlikely(&enable_evmcs
))
2399 return evmcs_write32(field
, value
);
2401 __vmcs_writel(field
, value
);
2404 static __always_inline
void vmcs_write64(unsigned long field
, u64 value
)
2406 vmcs_check64(field
);
2407 if (static_branch_unlikely(&enable_evmcs
))
2408 return evmcs_write64(field
, value
);
2410 __vmcs_writel(field
, value
);
2411 #ifndef CONFIG_X86_64
2413 __vmcs_writel(field
+1, value
>> 32);
2417 static __always_inline
void vmcs_writel(unsigned long field
, unsigned long value
)
2420 if (static_branch_unlikely(&enable_evmcs
))
2421 return evmcs_write64(field
, value
);
2423 __vmcs_writel(field
, value
);
2426 static __always_inline
void vmcs_clear_bits(unsigned long field
, u32 mask
)
2428 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
2429 "vmcs_clear_bits does not support 64-bit fields");
2430 if (static_branch_unlikely(&enable_evmcs
))
2431 return evmcs_write32(field
, evmcs_read32(field
) & ~mask
);
2433 __vmcs_writel(field
, __vmcs_readl(field
) & ~mask
);
2436 static __always_inline
void vmcs_set_bits(unsigned long field
, u32 mask
)
2438 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
2439 "vmcs_set_bits does not support 64-bit fields");
2440 if (static_branch_unlikely(&enable_evmcs
))
2441 return evmcs_write32(field
, evmcs_read32(field
) | mask
);
2443 __vmcs_writel(field
, __vmcs_readl(field
) | mask
);
2446 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx
*vmx
)
2448 vmx
->vm_entry_controls_shadow
= vmcs_read32(VM_ENTRY_CONTROLS
);
2451 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
2453 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
2454 vmx
->vm_entry_controls_shadow
= val
;
2457 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
2459 if (vmx
->vm_entry_controls_shadow
!= val
)
2460 vm_entry_controls_init(vmx
, val
);
2463 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
2465 return vmx
->vm_entry_controls_shadow
;
2469 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
2471 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
2474 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
2476 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
2479 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx
*vmx
)
2481 vmx
->vm_exit_controls_shadow
= vmcs_read32(VM_EXIT_CONTROLS
);
2484 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
2486 vmcs_write32(VM_EXIT_CONTROLS
, val
);
2487 vmx
->vm_exit_controls_shadow
= val
;
2490 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
2492 if (vmx
->vm_exit_controls_shadow
!= val
)
2493 vm_exit_controls_init(vmx
, val
);
2496 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
2498 return vmx
->vm_exit_controls_shadow
;
2502 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
2504 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
2507 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
2509 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
2512 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
2514 vmx
->segment_cache
.bitmask
= 0;
2517 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
2521 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
2523 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
2524 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
2525 vmx
->segment_cache
.bitmask
= 0;
2527 ret
= vmx
->segment_cache
.bitmask
& mask
;
2528 vmx
->segment_cache
.bitmask
|= mask
;
2532 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
2534 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
2536 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
2537 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
2541 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
2543 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
2545 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
2546 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
2550 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
2552 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
2554 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
2555 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
2559 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
2561 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
2563 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
2564 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
2568 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
2572 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
2573 (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
2575 * Guest access to VMware backdoor ports could legitimately
2576 * trigger #GP because of TSS I/O permission bitmap.
2577 * We intercept those #GP and allow access to them anyway
2580 if (enable_vmware_backdoor
)
2581 eb
|= (1u << GP_VECTOR
);
2582 if ((vcpu
->guest_debug
&
2583 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
2584 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
2585 eb
|= 1u << BP_VECTOR
;
2586 if (to_vmx(vcpu
)->rmode
.vm86_active
)
2589 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
2591 /* When we are running a nested L2 guest and L1 specified for it a
2592 * certain exception bitmap, we must trap the same exceptions and pass
2593 * them to L1. When running L2, we will only handle the exceptions
2594 * specified above if L1 did not want them.
2596 if (is_guest_mode(vcpu
))
2597 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
2599 vmcs_write32(EXCEPTION_BITMAP
, eb
);
2603 * Check if MSR is intercepted for currently loaded MSR bitmap.
2605 static bool msr_write_intercepted(struct kvm_vcpu
*vcpu
, u32 msr
)
2607 unsigned long *msr_bitmap
;
2608 int f
= sizeof(unsigned long);
2610 if (!cpu_has_vmx_msr_bitmap())
2613 msr_bitmap
= to_vmx(vcpu
)->loaded_vmcs
->msr_bitmap
;
2615 if (msr
<= 0x1fff) {
2616 return !!test_bit(msr
, msr_bitmap
+ 0x800 / f
);
2617 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2619 return !!test_bit(msr
, msr_bitmap
+ 0xc00 / f
);
2626 * Check if MSR is intercepted for L01 MSR bitmap.
2628 static bool msr_write_intercepted_l01(struct kvm_vcpu
*vcpu
, u32 msr
)
2630 unsigned long *msr_bitmap
;
2631 int f
= sizeof(unsigned long);
2633 if (!cpu_has_vmx_msr_bitmap())
2636 msr_bitmap
= to_vmx(vcpu
)->vmcs01
.msr_bitmap
;
2638 if (msr
<= 0x1fff) {
2639 return !!test_bit(msr
, msr_bitmap
+ 0x800 / f
);
2640 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2642 return !!test_bit(msr
, msr_bitmap
+ 0xc00 / f
);
2648 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
2649 unsigned long entry
, unsigned long exit
)
2651 vm_entry_controls_clearbit(vmx
, entry
);
2652 vm_exit_controls_clearbit(vmx
, exit
);
2655 static int find_msr(struct vmx_msrs
*m
, unsigned int msr
)
2659 for (i
= 0; i
< m
->nr
; ++i
) {
2660 if (m
->val
[i
].index
== msr
)
2666 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
2669 struct msr_autoload
*m
= &vmx
->msr_autoload
;
2673 if (cpu_has_load_ia32_efer
) {
2674 clear_atomic_switch_msr_special(vmx
,
2675 VM_ENTRY_LOAD_IA32_EFER
,
2676 VM_EXIT_LOAD_IA32_EFER
);
2680 case MSR_CORE_PERF_GLOBAL_CTRL
:
2681 if (cpu_has_load_perf_global_ctrl
) {
2682 clear_atomic_switch_msr_special(vmx
,
2683 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
2684 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
2689 i
= find_msr(&m
->guest
, msr
);
2693 m
->guest
.val
[i
] = m
->guest
.val
[m
->guest
.nr
];
2694 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->guest
.nr
);
2697 i
= find_msr(&m
->host
, msr
);
2702 m
->host
.val
[i
] = m
->host
.val
[m
->host
.nr
];
2703 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->host
.nr
);
2706 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
2707 unsigned long entry
, unsigned long exit
,
2708 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
2709 u64 guest_val
, u64 host_val
)
2711 vmcs_write64(guest_val_vmcs
, guest_val
);
2712 vmcs_write64(host_val_vmcs
, host_val
);
2713 vm_entry_controls_setbit(vmx
, entry
);
2714 vm_exit_controls_setbit(vmx
, exit
);
2717 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
2718 u64 guest_val
, u64 host_val
, bool entry_only
)
2721 struct msr_autoload
*m
= &vmx
->msr_autoload
;
2725 if (cpu_has_load_ia32_efer
) {
2726 add_atomic_switch_msr_special(vmx
,
2727 VM_ENTRY_LOAD_IA32_EFER
,
2728 VM_EXIT_LOAD_IA32_EFER
,
2731 guest_val
, host_val
);
2735 case MSR_CORE_PERF_GLOBAL_CTRL
:
2736 if (cpu_has_load_perf_global_ctrl
) {
2737 add_atomic_switch_msr_special(vmx
,
2738 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
2739 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
2740 GUEST_IA32_PERF_GLOBAL_CTRL
,
2741 HOST_IA32_PERF_GLOBAL_CTRL
,
2742 guest_val
, host_val
);
2746 case MSR_IA32_PEBS_ENABLE
:
2747 /* PEBS needs a quiescent period after being disabled (to write
2748 * a record). Disabling PEBS through VMX MSR swapping doesn't
2749 * provide that period, so a CPU could write host's record into
2752 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
2755 i
= find_msr(&m
->guest
, msr
);
2757 j
= find_msr(&m
->host
, msr
);
2759 if ((i
< 0 && m
->guest
.nr
== NR_AUTOLOAD_MSRS
) ||
2760 (j
< 0 && m
->host
.nr
== NR_AUTOLOAD_MSRS
)) {
2761 printk_once(KERN_WARNING
"Not enough msr switch entries. "
2762 "Can't add msr %x\n", msr
);
2767 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->guest
.nr
);
2769 m
->guest
.val
[i
].index
= msr
;
2770 m
->guest
.val
[i
].value
= guest_val
;
2777 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->host
.nr
);
2779 m
->host
.val
[j
].index
= msr
;
2780 m
->host
.val
[j
].value
= host_val
;
2783 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
2785 u64 guest_efer
= vmx
->vcpu
.arch
.efer
;
2786 u64 ignore_bits
= 0;
2790 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2791 * host CPUID is more efficient than testing guest CPUID
2792 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2794 if (boot_cpu_has(X86_FEATURE_SMEP
))
2795 guest_efer
|= EFER_NX
;
2796 else if (!(guest_efer
& EFER_NX
))
2797 ignore_bits
|= EFER_NX
;
2801 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2803 ignore_bits
|= EFER_SCE
;
2804 #ifdef CONFIG_X86_64
2805 ignore_bits
|= EFER_LMA
| EFER_LME
;
2806 /* SCE is meaningful only in long mode on Intel */
2807 if (guest_efer
& EFER_LMA
)
2808 ignore_bits
&= ~(u64
)EFER_SCE
;
2811 clear_atomic_switch_msr(vmx
, MSR_EFER
);
2814 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2815 * On CPUs that support "load IA32_EFER", always switch EFER
2816 * atomically, since it's faster than switching it manually.
2818 if (cpu_has_load_ia32_efer
||
2819 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
2820 if (!(guest_efer
& EFER_LMA
))
2821 guest_efer
&= ~EFER_LME
;
2822 if (guest_efer
!= host_efer
)
2823 add_atomic_switch_msr(vmx
, MSR_EFER
,
2824 guest_efer
, host_efer
, false);
2827 guest_efer
&= ~ignore_bits
;
2828 guest_efer
|= host_efer
& ignore_bits
;
2830 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
2831 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
2837 #ifdef CONFIG_X86_32
2839 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2840 * VMCS rather than the segment table. KVM uses this helper to figure
2841 * out the current bases to poke them into the VMCS before entry.
2843 static unsigned long segment_base(u16 selector
)
2845 struct desc_struct
*table
;
2848 if (!(selector
& ~SEGMENT_RPL_MASK
))
2851 table
= get_current_gdt_ro();
2853 if ((selector
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2854 u16 ldt_selector
= kvm_read_ldt();
2856 if (!(ldt_selector
& ~SEGMENT_RPL_MASK
))
2859 table
= (struct desc_struct
*)segment_base(ldt_selector
);
2861 v
= get_desc_base(&table
[selector
>> 3]);
2866 static void vmx_prepare_switch_to_guest(struct kvm_vcpu
*vcpu
)
2868 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2869 struct vmcs_host_state
*host_state
;
2870 #ifdef CONFIG_X86_64
2871 int cpu
= raw_smp_processor_id();
2873 unsigned long fs_base
, gs_base
;
2877 vmx
->req_immediate_exit
= false;
2880 * Note that guest MSRs to be saved/restored can also be changed
2881 * when guest state is loaded. This happens when guest transitions
2882 * to/from long-mode by setting MSR_EFER.LMA.
2884 if (!vmx
->loaded_cpu_state
|| vmx
->guest_msrs_dirty
) {
2885 vmx
->guest_msrs_dirty
= false;
2886 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
2887 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
2888 vmx
->guest_msrs
[i
].data
,
2889 vmx
->guest_msrs
[i
].mask
);
2893 if (vmx
->loaded_cpu_state
)
2896 vmx
->loaded_cpu_state
= vmx
->loaded_vmcs
;
2897 host_state
= &vmx
->loaded_cpu_state
->host_state
;
2900 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2901 * allow segment selectors with cpl > 0 or ti == 1.
2903 host_state
->ldt_sel
= kvm_read_ldt();
2905 #ifdef CONFIG_X86_64
2906 savesegment(ds
, host_state
->ds_sel
);
2907 savesegment(es
, host_state
->es_sel
);
2909 gs_base
= cpu_kernelmode_gs_base(cpu
);
2910 if (likely(is_64bit_mm(current
->mm
))) {
2911 save_fsgs_for_kvm();
2912 fs_sel
= current
->thread
.fsindex
;
2913 gs_sel
= current
->thread
.gsindex
;
2914 fs_base
= current
->thread
.fsbase
;
2915 vmx
->msr_host_kernel_gs_base
= current
->thread
.gsbase
;
2917 savesegment(fs
, fs_sel
);
2918 savesegment(gs
, gs_sel
);
2919 fs_base
= read_msr(MSR_FS_BASE
);
2920 vmx
->msr_host_kernel_gs_base
= read_msr(MSR_KERNEL_GS_BASE
);
2923 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2925 savesegment(fs
, fs_sel
);
2926 savesegment(gs
, gs_sel
);
2927 fs_base
= segment_base(fs_sel
);
2928 gs_base
= segment_base(gs_sel
);
2931 if (unlikely(fs_sel
!= host_state
->fs_sel
)) {
2933 vmcs_write16(HOST_FS_SELECTOR
, fs_sel
);
2935 vmcs_write16(HOST_FS_SELECTOR
, 0);
2936 host_state
->fs_sel
= fs_sel
;
2938 if (unlikely(gs_sel
!= host_state
->gs_sel
)) {
2940 vmcs_write16(HOST_GS_SELECTOR
, gs_sel
);
2942 vmcs_write16(HOST_GS_SELECTOR
, 0);
2943 host_state
->gs_sel
= gs_sel
;
2945 if (unlikely(fs_base
!= host_state
->fs_base
)) {
2946 vmcs_writel(HOST_FS_BASE
, fs_base
);
2947 host_state
->fs_base
= fs_base
;
2949 if (unlikely(gs_base
!= host_state
->gs_base
)) {
2950 vmcs_writel(HOST_GS_BASE
, gs_base
);
2951 host_state
->gs_base
= gs_base
;
2955 static void vmx_prepare_switch_to_host(struct vcpu_vmx
*vmx
)
2957 struct vmcs_host_state
*host_state
;
2959 if (!vmx
->loaded_cpu_state
)
2962 WARN_ON_ONCE(vmx
->loaded_cpu_state
!= vmx
->loaded_vmcs
);
2963 host_state
= &vmx
->loaded_cpu_state
->host_state
;
2965 ++vmx
->vcpu
.stat
.host_state_reload
;
2966 vmx
->loaded_cpu_state
= NULL
;
2968 #ifdef CONFIG_X86_64
2969 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2971 if (host_state
->ldt_sel
|| (host_state
->gs_sel
& 7)) {
2972 kvm_load_ldt(host_state
->ldt_sel
);
2973 #ifdef CONFIG_X86_64
2974 load_gs_index(host_state
->gs_sel
);
2976 loadsegment(gs
, host_state
->gs_sel
);
2979 if (host_state
->fs_sel
& 7)
2980 loadsegment(fs
, host_state
->fs_sel
);
2981 #ifdef CONFIG_X86_64
2982 if (unlikely(host_state
->ds_sel
| host_state
->es_sel
)) {
2983 loadsegment(ds
, host_state
->ds_sel
);
2984 loadsegment(es
, host_state
->es_sel
);
2987 invalidate_tss_limit();
2988 #ifdef CONFIG_X86_64
2989 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2991 load_fixmap_gdt(raw_smp_processor_id());
2994 #ifdef CONFIG_X86_64
2995 static u64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx
*vmx
)
2998 if (vmx
->loaded_cpu_state
)
2999 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
3001 return vmx
->msr_guest_kernel_gs_base
;
3004 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx
*vmx
, u64 data
)
3007 if (vmx
->loaded_cpu_state
)
3008 wrmsrl(MSR_KERNEL_GS_BASE
, data
);
3010 vmx
->msr_guest_kernel_gs_base
= data
;
3014 static void vmx_vcpu_pi_load(struct kvm_vcpu
*vcpu
, int cpu
)
3016 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
3017 struct pi_desc old
, new;
3021 * In case of hot-plug or hot-unplug, we may have to undo
3022 * vmx_vcpu_pi_put even if there is no assigned device. And we
3023 * always keep PI.NDST up to date for simplicity: it makes the
3024 * code easier, and CPU migration is not a fast path.
3026 if (!pi_test_sn(pi_desc
) && vcpu
->cpu
== cpu
)
3030 * First handle the simple case where no cmpxchg is necessary; just
3031 * allow posting non-urgent interrupts.
3033 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
3034 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
3035 * expects the VCPU to be on the blocked_vcpu_list that matches
3038 if (pi_desc
->nv
== POSTED_INTR_WAKEUP_VECTOR
||
3040 pi_clear_sn(pi_desc
);
3044 /* The full case. */
3046 old
.control
= new.control
= pi_desc
->control
;
3048 dest
= cpu_physical_id(cpu
);
3050 if (x2apic_enabled())
3053 new.ndst
= (dest
<< 8) & 0xFF00;
3056 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
3057 new.control
) != old
.control
);
3060 static void decache_tsc_multiplier(struct vcpu_vmx
*vmx
)
3062 vmx
->current_tsc_ratio
= vmx
->vcpu
.arch
.tsc_scaling_ratio
;
3063 vmcs_write64(TSC_MULTIPLIER
, vmx
->current_tsc_ratio
);
3067 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
3068 * vcpu mutex is already taken.
3070 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
3072 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3073 bool already_loaded
= vmx
->loaded_vmcs
->cpu
== cpu
;
3075 if (!already_loaded
) {
3076 loaded_vmcs_clear(vmx
->loaded_vmcs
);
3077 local_irq_disable();
3078 crash_disable_local_vmclear(cpu
);
3081 * Read loaded_vmcs->cpu should be before fetching
3082 * loaded_vmcs->loaded_vmcss_on_cpu_link.
3083 * See the comments in __loaded_vmcs_clear().
3087 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
3088 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
3089 crash_enable_local_vmclear(cpu
);
3093 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
3094 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
3095 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
3096 indirect_branch_prediction_barrier();
3099 if (!already_loaded
) {
3100 void *gdt
= get_current_gdt_ro();
3101 unsigned long sysenter_esp
;
3103 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
3106 * Linux uses per-cpu TSS and GDT, so set these when switching
3107 * processors. See 22.2.4.
3109 vmcs_writel(HOST_TR_BASE
,
3110 (unsigned long)&get_cpu_entry_area(cpu
)->tss
.x86_tss
);
3111 vmcs_writel(HOST_GDTR_BASE
, (unsigned long)gdt
); /* 22.2.4 */
3114 * VM exits change the host TR limit to 0x67 after a VM
3115 * exit. This is okay, since 0x67 covers everything except
3116 * the IO bitmap and have have code to handle the IO bitmap
3117 * being lost after a VM exit.
3119 BUILD_BUG_ON(IO_BITMAP_OFFSET
- 1 != 0x67);
3121 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
3122 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
3124 vmx
->loaded_vmcs
->cpu
= cpu
;
3127 /* Setup TSC multiplier */
3128 if (kvm_has_tsc_control
&&
3129 vmx
->current_tsc_ratio
!= vcpu
->arch
.tsc_scaling_ratio
)
3130 decache_tsc_multiplier(vmx
);
3132 vmx_vcpu_pi_load(vcpu
, cpu
);
3133 vmx
->host_pkru
= read_pkru();
3134 vmx
->host_debugctlmsr
= get_debugctlmsr();
3137 static void vmx_vcpu_pi_put(struct kvm_vcpu
*vcpu
)
3139 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
3141 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
3142 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
3143 !kvm_vcpu_apicv_active(vcpu
))
3146 /* Set SN when the vCPU is preempted */
3147 if (vcpu
->preempted
)
3151 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
3153 vmx_vcpu_pi_put(vcpu
);
3155 vmx_prepare_switch_to_host(to_vmx(vcpu
));
3158 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3160 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3163 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
3166 * Return the cr0 value that a nested guest would read. This is a combination
3167 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
3168 * its hypervisor (cr0_read_shadow).
3170 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
3172 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
3173 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
3175 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
3177 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
3178 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
3181 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
3183 unsigned long rflags
, save_rflags
;
3185 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
3186 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
3187 rflags
= vmcs_readl(GUEST_RFLAGS
);
3188 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3189 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3190 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
3191 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3193 to_vmx(vcpu
)->rflags
= rflags
;
3195 return to_vmx(vcpu
)->rflags
;
3198 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
3200 unsigned long old_rflags
= vmx_get_rflags(vcpu
);
3202 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
3203 to_vmx(vcpu
)->rflags
= rflags
;
3204 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3205 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
3206 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3208 vmcs_writel(GUEST_RFLAGS
, rflags
);
3210 if ((old_rflags
^ to_vmx(vcpu
)->rflags
) & X86_EFLAGS_VM
)
3211 to_vmx(vcpu
)->emulation_required
= emulation_required(vcpu
);
3214 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
3216 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
3219 if (interruptibility
& GUEST_INTR_STATE_STI
)
3220 ret
|= KVM_X86_SHADOW_INT_STI
;
3221 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
3222 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
3227 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
3229 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
3230 u32 interruptibility
= interruptibility_old
;
3232 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
3234 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
3235 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
3236 else if (mask
& KVM_X86_SHADOW_INT_STI
)
3237 interruptibility
|= GUEST_INTR_STATE_STI
;
3239 if ((interruptibility
!= interruptibility_old
))
3240 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
3243 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
3247 rip
= kvm_rip_read(vcpu
);
3248 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3249 kvm_rip_write(vcpu
, rip
);
3251 /* skipping an emulated instruction also counts */
3252 vmx_set_interrupt_shadow(vcpu
, 0);
3255 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu
*vcpu
,
3256 unsigned long exit_qual
)
3258 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3259 unsigned int nr
= vcpu
->arch
.exception
.nr
;
3260 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
3262 if (vcpu
->arch
.exception
.has_error_code
) {
3263 vmcs12
->vm_exit_intr_error_code
= vcpu
->arch
.exception
.error_code
;
3264 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
3267 if (kvm_exception_is_soft(nr
))
3268 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
3270 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
3272 if (!(vmcs12
->idt_vectoring_info_field
& VECTORING_INFO_VALID_MASK
) &&
3273 vmx_get_nmi_mask(vcpu
))
3274 intr_info
|= INTR_INFO_UNBLOCK_NMI
;
3276 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
, intr_info
, exit_qual
);
3280 * KVM wants to inject page-faults which it got to the guest. This function
3281 * checks whether in a nested guest, we need to inject them to L1 or L2.
3283 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned long *exit_qual
)
3285 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3286 unsigned int nr
= vcpu
->arch
.exception
.nr
;
3288 if (nr
== PF_VECTOR
) {
3289 if (vcpu
->arch
.exception
.nested_apf
) {
3290 *exit_qual
= vcpu
->arch
.apf
.nested_apf_token
;
3294 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
3295 * The fix is to add the ancillary datum (CR2 or DR6) to structs
3296 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
3297 * can be written only when inject_pending_event runs. This should be
3298 * conditional on a new capability---if the capability is disabled,
3299 * kvm_multiple_exception would write the ancillary information to
3300 * CR2 or DR6, for backwards ABI-compatibility.
3302 if (nested_vmx_is_page_fault_vmexit(vmcs12
,
3303 vcpu
->arch
.exception
.error_code
)) {
3304 *exit_qual
= vcpu
->arch
.cr2
;
3308 if (vmcs12
->exception_bitmap
& (1u << nr
)) {
3309 if (nr
== DB_VECTOR
) {
3310 *exit_qual
= vcpu
->arch
.dr6
;
3311 *exit_qual
&= ~(DR6_FIXED_1
| DR6_BT
);
3312 *exit_qual
^= DR6_RTM
;
3323 static void vmx_clear_hlt(struct kvm_vcpu
*vcpu
)
3326 * Ensure that we clear the HLT state in the VMCS. We don't need to
3327 * explicitly skip the instruction because if the HLT state is set,
3328 * then the instruction is already executing and RIP has already been
3331 if (kvm_hlt_in_guest(vcpu
->kvm
) &&
3332 vmcs_read32(GUEST_ACTIVITY_STATE
) == GUEST_ACTIVITY_HLT
)
3333 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
3336 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
)
3338 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3339 unsigned nr
= vcpu
->arch
.exception
.nr
;
3340 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3341 u32 error_code
= vcpu
->arch
.exception
.error_code
;
3342 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
3344 if (has_error_code
) {
3345 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
3346 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
3349 if (vmx
->rmode
.vm86_active
) {
3351 if (kvm_exception_is_soft(nr
))
3352 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
3353 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
3354 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3358 WARN_ON_ONCE(vmx
->emulation_required
);
3360 if (kvm_exception_is_soft(nr
)) {
3361 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
3362 vmx
->vcpu
.arch
.event_exit_inst_len
);
3363 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
3365 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
3367 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
3369 vmx_clear_hlt(vcpu
);
3372 static bool vmx_rdtscp_supported(void)
3374 return cpu_has_vmx_rdtscp();
3377 static bool vmx_invpcid_supported(void)
3379 return cpu_has_vmx_invpcid();
3383 * Swap MSR entry in host/guest MSR entry array.
3385 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
3387 struct shared_msr_entry tmp
;
3389 tmp
= vmx
->guest_msrs
[to
];
3390 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
3391 vmx
->guest_msrs
[from
] = tmp
;
3395 * Set up the vmcs to automatically save and restore system
3396 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
3397 * mode, as fiddling with msrs is very expensive.
3399 static void setup_msrs(struct vcpu_vmx
*vmx
)
3401 int save_nmsrs
, index
;
3404 #ifdef CONFIG_X86_64
3405 if (is_long_mode(&vmx
->vcpu
)) {
3406 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
3408 move_msr_up(vmx
, index
, save_nmsrs
++);
3409 index
= __find_msr_index(vmx
, MSR_LSTAR
);
3411 move_msr_up(vmx
, index
, save_nmsrs
++);
3412 index
= __find_msr_index(vmx
, MSR_CSTAR
);
3414 move_msr_up(vmx
, index
, save_nmsrs
++);
3415 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
3416 if (index
>= 0 && guest_cpuid_has(&vmx
->vcpu
, X86_FEATURE_RDTSCP
))
3417 move_msr_up(vmx
, index
, save_nmsrs
++);
3419 * MSR_STAR is only needed on long mode guests, and only
3420 * if efer.sce is enabled.
3422 index
= __find_msr_index(vmx
, MSR_STAR
);
3423 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
3424 move_msr_up(vmx
, index
, save_nmsrs
++);
3427 index
= __find_msr_index(vmx
, MSR_EFER
);
3428 if (index
>= 0 && update_transition_efer(vmx
, index
))
3429 move_msr_up(vmx
, index
, save_nmsrs
++);
3431 vmx
->save_nmsrs
= save_nmsrs
;
3432 vmx
->guest_msrs_dirty
= true;
3434 if (cpu_has_vmx_msr_bitmap())
3435 vmx_update_msr_bitmap(&vmx
->vcpu
);
3438 static u64
vmx_read_l1_tsc_offset(struct kvm_vcpu
*vcpu
)
3440 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3442 if (is_guest_mode(vcpu
) &&
3443 (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
))
3444 return vcpu
->arch
.tsc_offset
- vmcs12
->tsc_offset
;
3446 return vcpu
->arch
.tsc_offset
;
3449 static u64
vmx_write_l1_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
3451 u64 active_offset
= offset
;
3452 if (is_guest_mode(vcpu
)) {
3454 * We're here if L1 chose not to trap WRMSR to TSC. According
3455 * to the spec, this should set L1's TSC; The offset that L1
3456 * set for L2 remains unchanged, and still needs to be added
3457 * to the newly set TSC to get L2's TSC.
3459 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3460 if (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
))
3461 active_offset
+= vmcs12
->tsc_offset
;
3463 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
3464 vmcs_read64(TSC_OFFSET
), offset
);
3467 vmcs_write64(TSC_OFFSET
, active_offset
);
3468 return active_offset
;
3472 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
3473 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
3474 * all guests if the "nested" module option is off, and can also be disabled
3475 * for a single guest by disabling its VMX cpuid bit.
3477 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
3479 return nested
&& guest_cpuid_has(vcpu
, X86_FEATURE_VMX
);
3483 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
3484 * returned for the various VMX controls MSRs when nested VMX is enabled.
3485 * The same values should also be used to verify that vmcs12 control fields are
3486 * valid during nested entry from L1 to L2.
3487 * Each of these control msrs has a low and high 32-bit half: A low bit is on
3488 * if the corresponding bit in the (32-bit) control field *must* be on, and a
3489 * bit in the high half is on if the corresponding bit in the control field
3490 * may be on. See also vmx_control_verify().
3492 static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs
*msrs
, bool apicv
)
3495 memset(msrs
, 0, sizeof(*msrs
));
3500 * Note that as a general rule, the high half of the MSRs (bits in
3501 * the control fields which may be 1) should be initialized by the
3502 * intersection of the underlying hardware's MSR (i.e., features which
3503 * can be supported) and the list of features we want to expose -
3504 * because they are known to be properly supported in our code.
3505 * Also, usually, the low half of the MSRs (bits which must be 1) can
3506 * be set to 0, meaning that L1 may turn off any of these bits. The
3507 * reason is that if one of these bits is necessary, it will appear
3508 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
3509 * fields of vmcs01 and vmcs02, will turn these bits off - and
3510 * nested_vmx_exit_reflected() will not pass related exits to L1.
3511 * These rules have exceptions below.
3514 /* pin-based controls */
3515 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
3516 msrs
->pinbased_ctls_low
,
3517 msrs
->pinbased_ctls_high
);
3518 msrs
->pinbased_ctls_low
|=
3519 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3520 msrs
->pinbased_ctls_high
&=
3521 PIN_BASED_EXT_INTR_MASK
|
3522 PIN_BASED_NMI_EXITING
|
3523 PIN_BASED_VIRTUAL_NMIS
|
3524 (apicv
? PIN_BASED_POSTED_INTR
: 0);
3525 msrs
->pinbased_ctls_high
|=
3526 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
3527 PIN_BASED_VMX_PREEMPTION_TIMER
;
3530 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
3531 msrs
->exit_ctls_low
,
3532 msrs
->exit_ctls_high
);
3533 msrs
->exit_ctls_low
=
3534 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
3536 msrs
->exit_ctls_high
&=
3537 #ifdef CONFIG_X86_64
3538 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
3540 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
3541 msrs
->exit_ctls_high
|=
3542 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
3543 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
3544 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
3546 /* We support free control of debug control saving. */
3547 msrs
->exit_ctls_low
&= ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
3549 /* entry controls */
3550 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
3551 msrs
->entry_ctls_low
,
3552 msrs
->entry_ctls_high
);
3553 msrs
->entry_ctls_low
=
3554 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
3555 msrs
->entry_ctls_high
&=
3556 #ifdef CONFIG_X86_64
3557 VM_ENTRY_IA32E_MODE
|
3559 VM_ENTRY_LOAD_IA32_PAT
;
3560 msrs
->entry_ctls_high
|=
3561 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
);
3563 /* We support free control of debug control loading. */
3564 msrs
->entry_ctls_low
&= ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
3566 /* cpu-based controls */
3567 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
3568 msrs
->procbased_ctls_low
,
3569 msrs
->procbased_ctls_high
);
3570 msrs
->procbased_ctls_low
=
3571 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3572 msrs
->procbased_ctls_high
&=
3573 CPU_BASED_VIRTUAL_INTR_PENDING
|
3574 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
3575 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
3576 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
3577 CPU_BASED_CR3_STORE_EXITING
|
3578 #ifdef CONFIG_X86_64
3579 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
3581 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
3582 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
3583 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
3584 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
3585 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
3587 * We can allow some features even when not supported by the
3588 * hardware. For example, L1 can specify an MSR bitmap - and we
3589 * can use it to avoid exits to L1 - even when L0 runs L2
3590 * without MSR bitmaps.
3592 msrs
->procbased_ctls_high
|=
3593 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
3594 CPU_BASED_USE_MSR_BITMAPS
;
3596 /* We support free control of CR3 access interception. */
3597 msrs
->procbased_ctls_low
&=
3598 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
3601 * secondary cpu-based controls. Do not include those that
3602 * depend on CPUID bits, they are added later by vmx_cpuid_update.
3604 if (msrs
->procbased_ctls_high
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
)
3605 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
3606 msrs
->secondary_ctls_low
,
3607 msrs
->secondary_ctls_high
);
3609 msrs
->secondary_ctls_low
= 0;
3610 msrs
->secondary_ctls_high
&=
3611 SECONDARY_EXEC_DESC
|
3612 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3613 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3614 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
3615 SECONDARY_EXEC_WBINVD_EXITING
;
3618 * We can emulate "VMCS shadowing," even if the hardware
3619 * doesn't support it.
3621 msrs
->secondary_ctls_high
|=
3622 SECONDARY_EXEC_SHADOW_VMCS
;
3625 /* nested EPT: emulate EPT also to L1 */
3626 msrs
->secondary_ctls_high
|=
3627 SECONDARY_EXEC_ENABLE_EPT
;
3628 msrs
->ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
3629 VMX_EPTP_WB_BIT
| VMX_EPT_INVEPT_BIT
;
3630 if (cpu_has_vmx_ept_execute_only())
3632 VMX_EPT_EXECUTE_ONLY_BIT
;
3633 msrs
->ept_caps
&= vmx_capability
.ept
;
3634 msrs
->ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
|
3635 VMX_EPT_EXTENT_CONTEXT_BIT
| VMX_EPT_2MB_PAGE_BIT
|
3636 VMX_EPT_1GB_PAGE_BIT
;
3637 if (enable_ept_ad_bits
) {
3638 msrs
->secondary_ctls_high
|=
3639 SECONDARY_EXEC_ENABLE_PML
;
3640 msrs
->ept_caps
|= VMX_EPT_AD_BIT
;
3644 if (cpu_has_vmx_vmfunc()) {
3645 msrs
->secondary_ctls_high
|=
3646 SECONDARY_EXEC_ENABLE_VMFUNC
;
3648 * Advertise EPTP switching unconditionally
3649 * since we emulate it
3652 msrs
->vmfunc_controls
=
3653 VMX_VMFUNC_EPTP_SWITCHING
;
3657 * Old versions of KVM use the single-context version without
3658 * checking for support, so declare that it is supported even
3659 * though it is treated as global context. The alternative is
3660 * not failing the single-context invvpid, and it is worse.
3663 msrs
->secondary_ctls_high
|=
3664 SECONDARY_EXEC_ENABLE_VPID
;
3665 msrs
->vpid_caps
= VMX_VPID_INVVPID_BIT
|
3666 VMX_VPID_EXTENT_SUPPORTED_MASK
;
3669 if (enable_unrestricted_guest
)
3670 msrs
->secondary_ctls_high
|=
3671 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
3673 if (flexpriority_enabled
)
3674 msrs
->secondary_ctls_high
|=
3675 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
3677 /* miscellaneous data */
3678 rdmsr(MSR_IA32_VMX_MISC
,
3681 msrs
->misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
3683 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
|
3684 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
3685 VMX_MISC_ACTIVITY_HLT
;
3686 msrs
->misc_high
= 0;
3689 * This MSR reports some information about VMX support. We
3690 * should return information about the VMX we emulate for the
3691 * guest, and the VMCS structure we give it - not about the
3692 * VMX support of the underlying hardware.
3696 VMX_BASIC_TRUE_CTLS
|
3697 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
3698 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
3700 if (cpu_has_vmx_basic_inout())
3701 msrs
->basic
|= VMX_BASIC_INOUT
;
3704 * These MSRs specify bits which the guest must keep fixed on
3705 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3706 * We picked the standard core2 setting.
3708 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3709 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
3710 msrs
->cr0_fixed0
= VMXON_CR0_ALWAYSON
;
3711 msrs
->cr4_fixed0
= VMXON_CR4_ALWAYSON
;
3713 /* These MSRs specify bits which the guest must keep fixed off. */
3714 rdmsrl(MSR_IA32_VMX_CR0_FIXED1
, msrs
->cr0_fixed1
);
3715 rdmsrl(MSR_IA32_VMX_CR4_FIXED1
, msrs
->cr4_fixed1
);
3717 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
3718 msrs
->vmcs_enum
= VMCS12_MAX_FIELD_INDEX
<< 1;
3722 * if fixed0[i] == 1: val[i] must be 1
3723 * if fixed1[i] == 0: val[i] must be 0
3725 static inline bool fixed_bits_valid(u64 val
, u64 fixed0
, u64 fixed1
)
3727 return ((val
& fixed1
) | fixed0
) == val
;
3730 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
3732 return fixed_bits_valid(control
, low
, high
);
3735 static inline u64
vmx_control_msr(u32 low
, u32 high
)
3737 return low
| ((u64
)high
<< 32);
3740 static bool is_bitwise_subset(u64 superset
, u64 subset
, u64 mask
)
3745 return (superset
| subset
) == superset
;
3748 static int vmx_restore_vmx_basic(struct vcpu_vmx
*vmx
, u64 data
)
3750 const u64 feature_and_reserved
=
3751 /* feature (except bit 48; see below) */
3752 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3754 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
3755 u64 vmx_basic
= vmx
->nested
.msrs
.basic
;
3757 if (!is_bitwise_subset(vmx_basic
, data
, feature_and_reserved
))
3761 * KVM does not emulate a version of VMX that constrains physical
3762 * addresses of VMX structures (e.g. VMCS) to 32-bits.
3764 if (data
& BIT_ULL(48))
3767 if (vmx_basic_vmcs_revision_id(vmx_basic
) !=
3768 vmx_basic_vmcs_revision_id(data
))
3771 if (vmx_basic_vmcs_size(vmx_basic
) > vmx_basic_vmcs_size(data
))
3774 vmx
->nested
.msrs
.basic
= data
;
3779 vmx_restore_control_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
3784 switch (msr_index
) {
3785 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3786 lowp
= &vmx
->nested
.msrs
.pinbased_ctls_low
;
3787 highp
= &vmx
->nested
.msrs
.pinbased_ctls_high
;
3789 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3790 lowp
= &vmx
->nested
.msrs
.procbased_ctls_low
;
3791 highp
= &vmx
->nested
.msrs
.procbased_ctls_high
;
3793 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3794 lowp
= &vmx
->nested
.msrs
.exit_ctls_low
;
3795 highp
= &vmx
->nested
.msrs
.exit_ctls_high
;
3797 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
3798 lowp
= &vmx
->nested
.msrs
.entry_ctls_low
;
3799 highp
= &vmx
->nested
.msrs
.entry_ctls_high
;
3801 case MSR_IA32_VMX_PROCBASED_CTLS2
:
3802 lowp
= &vmx
->nested
.msrs
.secondary_ctls_low
;
3803 highp
= &vmx
->nested
.msrs
.secondary_ctls_high
;
3809 supported
= vmx_control_msr(*lowp
, *highp
);
3811 /* Check must-be-1 bits are still 1. */
3812 if (!is_bitwise_subset(data
, supported
, GENMASK_ULL(31, 0)))
3815 /* Check must-be-0 bits are still 0. */
3816 if (!is_bitwise_subset(supported
, data
, GENMASK_ULL(63, 32)))
3820 *highp
= data
>> 32;
3824 static int vmx_restore_vmx_misc(struct vcpu_vmx
*vmx
, u64 data
)
3826 const u64 feature_and_reserved_bits
=
3828 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3829 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3831 GENMASK_ULL(13, 9) | BIT_ULL(31);
3834 vmx_misc
= vmx_control_msr(vmx
->nested
.msrs
.misc_low
,
3835 vmx
->nested
.msrs
.misc_high
);
3837 if (!is_bitwise_subset(vmx_misc
, data
, feature_and_reserved_bits
))
3840 if ((vmx
->nested
.msrs
.pinbased_ctls_high
&
3841 PIN_BASED_VMX_PREEMPTION_TIMER
) &&
3842 vmx_misc_preemption_timer_rate(data
) !=
3843 vmx_misc_preemption_timer_rate(vmx_misc
))
3846 if (vmx_misc_cr3_count(data
) > vmx_misc_cr3_count(vmx_misc
))
3849 if (vmx_misc_max_msr(data
) > vmx_misc_max_msr(vmx_misc
))
3852 if (vmx_misc_mseg_revid(data
) != vmx_misc_mseg_revid(vmx_misc
))
3855 vmx
->nested
.msrs
.misc_low
= data
;
3856 vmx
->nested
.msrs
.misc_high
= data
>> 32;
3859 * If L1 has read-only VM-exit information fields, use the
3860 * less permissive vmx_vmwrite_bitmap to specify write
3861 * permissions for the shadow VMCS.
3863 if (enable_shadow_vmcs
&& !nested_cpu_has_vmwrite_any_field(&vmx
->vcpu
))
3864 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
3869 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx
*vmx
, u64 data
)
3871 u64 vmx_ept_vpid_cap
;
3873 vmx_ept_vpid_cap
= vmx_control_msr(vmx
->nested
.msrs
.ept_caps
,
3874 vmx
->nested
.msrs
.vpid_caps
);
3876 /* Every bit is either reserved or a feature bit. */
3877 if (!is_bitwise_subset(vmx_ept_vpid_cap
, data
, -1ULL))
3880 vmx
->nested
.msrs
.ept_caps
= data
;
3881 vmx
->nested
.msrs
.vpid_caps
= data
>> 32;
3885 static int vmx_restore_fixed0_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
3889 switch (msr_index
) {
3890 case MSR_IA32_VMX_CR0_FIXED0
:
3891 msr
= &vmx
->nested
.msrs
.cr0_fixed0
;
3893 case MSR_IA32_VMX_CR4_FIXED0
:
3894 msr
= &vmx
->nested
.msrs
.cr4_fixed0
;
3901 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3902 * must be 1 in the restored value.
3904 if (!is_bitwise_subset(data
, *msr
, -1ULL))
3912 * Called when userspace is restoring VMX MSRs.
3914 * Returns 0 on success, non-0 otherwise.
3916 static int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
3918 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3921 * Don't allow changes to the VMX capability MSRs while the vCPU
3922 * is in VMX operation.
3924 if (vmx
->nested
.vmxon
)
3927 switch (msr_index
) {
3928 case MSR_IA32_VMX_BASIC
:
3929 return vmx_restore_vmx_basic(vmx
, data
);
3930 case MSR_IA32_VMX_PINBASED_CTLS
:
3931 case MSR_IA32_VMX_PROCBASED_CTLS
:
3932 case MSR_IA32_VMX_EXIT_CTLS
:
3933 case MSR_IA32_VMX_ENTRY_CTLS
:
3935 * The "non-true" VMX capability MSRs are generated from the
3936 * "true" MSRs, so we do not support restoring them directly.
3938 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3939 * should restore the "true" MSRs with the must-be-1 bits
3940 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3941 * DEFAULT SETTINGS".
3944 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3945 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3946 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3947 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
3948 case MSR_IA32_VMX_PROCBASED_CTLS2
:
3949 return vmx_restore_control_msr(vmx
, msr_index
, data
);
3950 case MSR_IA32_VMX_MISC
:
3951 return vmx_restore_vmx_misc(vmx
, data
);
3952 case MSR_IA32_VMX_CR0_FIXED0
:
3953 case MSR_IA32_VMX_CR4_FIXED0
:
3954 return vmx_restore_fixed0_msr(vmx
, msr_index
, data
);
3955 case MSR_IA32_VMX_CR0_FIXED1
:
3956 case MSR_IA32_VMX_CR4_FIXED1
:
3958 * These MSRs are generated based on the vCPU's CPUID, so we
3959 * do not support restoring them directly.
3962 case MSR_IA32_VMX_EPT_VPID_CAP
:
3963 return vmx_restore_vmx_ept_vpid_cap(vmx
, data
);
3964 case MSR_IA32_VMX_VMCS_ENUM
:
3965 vmx
->nested
.msrs
.vmcs_enum
= data
;
3969 * The rest of the VMX capability MSRs do not support restore.
3975 /* Returns 0 on success, non-0 otherwise. */
3976 static int vmx_get_vmx_msr(struct nested_vmx_msrs
*msrs
, u32 msr_index
, u64
*pdata
)
3978 switch (msr_index
) {
3979 case MSR_IA32_VMX_BASIC
:
3980 *pdata
= msrs
->basic
;
3982 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3983 case MSR_IA32_VMX_PINBASED_CTLS
:
3984 *pdata
= vmx_control_msr(
3985 msrs
->pinbased_ctls_low
,
3986 msrs
->pinbased_ctls_high
);
3987 if (msr_index
== MSR_IA32_VMX_PINBASED_CTLS
)
3988 *pdata
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3990 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3991 case MSR_IA32_VMX_PROCBASED_CTLS
:
3992 *pdata
= vmx_control_msr(
3993 msrs
->procbased_ctls_low
,
3994 msrs
->procbased_ctls_high
);
3995 if (msr_index
== MSR_IA32_VMX_PROCBASED_CTLS
)
3996 *pdata
|= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3998 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3999 case MSR_IA32_VMX_EXIT_CTLS
:
4000 *pdata
= vmx_control_msr(
4001 msrs
->exit_ctls_low
,
4002 msrs
->exit_ctls_high
);
4003 if (msr_index
== MSR_IA32_VMX_EXIT_CTLS
)
4004 *pdata
|= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
4006 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
4007 case MSR_IA32_VMX_ENTRY_CTLS
:
4008 *pdata
= vmx_control_msr(
4009 msrs
->entry_ctls_low
,
4010 msrs
->entry_ctls_high
);
4011 if (msr_index
== MSR_IA32_VMX_ENTRY_CTLS
)
4012 *pdata
|= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
4014 case MSR_IA32_VMX_MISC
:
4015 *pdata
= vmx_control_msr(
4019 case MSR_IA32_VMX_CR0_FIXED0
:
4020 *pdata
= msrs
->cr0_fixed0
;
4022 case MSR_IA32_VMX_CR0_FIXED1
:
4023 *pdata
= msrs
->cr0_fixed1
;
4025 case MSR_IA32_VMX_CR4_FIXED0
:
4026 *pdata
= msrs
->cr4_fixed0
;
4028 case MSR_IA32_VMX_CR4_FIXED1
:
4029 *pdata
= msrs
->cr4_fixed1
;
4031 case MSR_IA32_VMX_VMCS_ENUM
:
4032 *pdata
= msrs
->vmcs_enum
;
4034 case MSR_IA32_VMX_PROCBASED_CTLS2
:
4035 *pdata
= vmx_control_msr(
4036 msrs
->secondary_ctls_low
,
4037 msrs
->secondary_ctls_high
);
4039 case MSR_IA32_VMX_EPT_VPID_CAP
:
4040 *pdata
= msrs
->ept_caps
|
4041 ((u64
)msrs
->vpid_caps
<< 32);
4043 case MSR_IA32_VMX_VMFUNC
:
4044 *pdata
= msrs
->vmfunc_controls
;
4053 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu
*vcpu
,
4056 uint64_t valid_bits
= to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
;
4058 return !(val
& ~valid_bits
);
4061 static int vmx_get_msr_feature(struct kvm_msr_entry
*msr
)
4063 switch (msr
->index
) {
4064 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
4067 return vmx_get_vmx_msr(&vmcs_config
.nested
, msr
->index
, &msr
->data
);
4076 * Reads an msr value (of 'msr_index') into 'pdata'.
4077 * Returns 0 on success, non-0 otherwise.
4078 * Assumes vcpu_load() was already called.
4080 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
4082 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4083 struct shared_msr_entry
*msr
;
4085 switch (msr_info
->index
) {
4086 #ifdef CONFIG_X86_64
4088 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
4091 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
4093 case MSR_KERNEL_GS_BASE
:
4094 msr_info
->data
= vmx_read_guest_kernel_gs_base(vmx
);
4098 return kvm_get_msr_common(vcpu
, msr_info
);
4099 case MSR_IA32_SPEC_CTRL
:
4100 if (!msr_info
->host_initiated
&&
4101 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
4104 msr_info
->data
= to_vmx(vcpu
)->spec_ctrl
;
4106 case MSR_IA32_SYSENTER_CS
:
4107 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
4109 case MSR_IA32_SYSENTER_EIP
:
4110 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
4112 case MSR_IA32_SYSENTER_ESP
:
4113 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
4115 case MSR_IA32_BNDCFGS
:
4116 if (!kvm_mpx_supported() ||
4117 (!msr_info
->host_initiated
&&
4118 !guest_cpuid_has(vcpu
, X86_FEATURE_MPX
)))
4120 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
4122 case MSR_IA32_MCG_EXT_CTL
:
4123 if (!msr_info
->host_initiated
&&
4124 !(vmx
->msr_ia32_feature_control
&
4125 FEATURE_CONTROL_LMCE
))
4127 msr_info
->data
= vcpu
->arch
.mcg_ext_ctl
;
4129 case MSR_IA32_FEATURE_CONTROL
:
4130 msr_info
->data
= vmx
->msr_ia32_feature_control
;
4132 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
4133 if (!nested_vmx_allowed(vcpu
))
4135 return vmx_get_vmx_msr(&vmx
->nested
.msrs
, msr_info
->index
,
4138 if (!vmx_xsaves_supported())
4140 msr_info
->data
= vcpu
->arch
.ia32_xss
;
4143 if (!msr_info
->host_initiated
&&
4144 !guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
))
4146 /* Otherwise falls through */
4148 msr
= find_msr_entry(vmx
, msr_info
->index
);
4150 msr_info
->data
= msr
->data
;
4153 return kvm_get_msr_common(vcpu
, msr_info
);
4159 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
4162 * Writes msr value into into the appropriate "register".
4163 * Returns 0 on success, non-0 otherwise.
4164 * Assumes vcpu_load() was already called.
4166 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
4168 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4169 struct shared_msr_entry
*msr
;
4171 u32 msr_index
= msr_info
->index
;
4172 u64 data
= msr_info
->data
;
4174 switch (msr_index
) {
4176 ret
= kvm_set_msr_common(vcpu
, msr_info
);
4178 #ifdef CONFIG_X86_64
4180 vmx_segment_cache_clear(vmx
);
4181 vmcs_writel(GUEST_FS_BASE
, data
);
4184 vmx_segment_cache_clear(vmx
);
4185 vmcs_writel(GUEST_GS_BASE
, data
);
4187 case MSR_KERNEL_GS_BASE
:
4188 vmx_write_guest_kernel_gs_base(vmx
, data
);
4191 case MSR_IA32_SYSENTER_CS
:
4192 vmcs_write32(GUEST_SYSENTER_CS
, data
);
4194 case MSR_IA32_SYSENTER_EIP
:
4195 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
4197 case MSR_IA32_SYSENTER_ESP
:
4198 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
4200 case MSR_IA32_BNDCFGS
:
4201 if (!kvm_mpx_supported() ||
4202 (!msr_info
->host_initiated
&&
4203 !guest_cpuid_has(vcpu
, X86_FEATURE_MPX
)))
4205 if (is_noncanonical_address(data
& PAGE_MASK
, vcpu
) ||
4206 (data
& MSR_IA32_BNDCFGS_RSVD
))
4208 vmcs_write64(GUEST_BNDCFGS
, data
);
4210 case MSR_IA32_SPEC_CTRL
:
4211 if (!msr_info
->host_initiated
&&
4212 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
4215 /* The STIBP bit doesn't fault even if it's not advertised */
4216 if (data
& ~(SPEC_CTRL_IBRS
| SPEC_CTRL_STIBP
| SPEC_CTRL_SSBD
))
4219 vmx
->spec_ctrl
= data
;
4226 * When it's written (to non-zero) for the first time, pass
4230 * The handling of the MSR bitmap for L2 guests is done in
4231 * nested_vmx_merge_msr_bitmap. We should not touch the
4232 * vmcs02.msr_bitmap here since it gets completely overwritten
4233 * in the merging. We update the vmcs01 here for L1 as well
4234 * since it will end up touching the MSR anyway now.
4236 vmx_disable_intercept_for_msr(vmx
->vmcs01
.msr_bitmap
,
4240 case MSR_IA32_PRED_CMD
:
4241 if (!msr_info
->host_initiated
&&
4242 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
4245 if (data
& ~PRED_CMD_IBPB
)
4251 wrmsrl(MSR_IA32_PRED_CMD
, PRED_CMD_IBPB
);
4255 * When it's written (to non-zero) for the first time, pass
4259 * The handling of the MSR bitmap for L2 guests is done in
4260 * nested_vmx_merge_msr_bitmap. We should not touch the
4261 * vmcs02.msr_bitmap here since it gets completely overwritten
4264 vmx_disable_intercept_for_msr(vmx
->vmcs01
.msr_bitmap
, MSR_IA32_PRED_CMD
,
4267 case MSR_IA32_CR_PAT
:
4268 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
4269 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
4271 vmcs_write64(GUEST_IA32_PAT
, data
);
4272 vcpu
->arch
.pat
= data
;
4275 ret
= kvm_set_msr_common(vcpu
, msr_info
);
4277 case MSR_IA32_TSC_ADJUST
:
4278 ret
= kvm_set_msr_common(vcpu
, msr_info
);
4280 case MSR_IA32_MCG_EXT_CTL
:
4281 if ((!msr_info
->host_initiated
&&
4282 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
4283 FEATURE_CONTROL_LMCE
)) ||
4284 (data
& ~MCG_EXT_CTL_LMCE_EN
))
4286 vcpu
->arch
.mcg_ext_ctl
= data
;
4288 case MSR_IA32_FEATURE_CONTROL
:
4289 if (!vmx_feature_control_msr_valid(vcpu
, data
) ||
4290 (to_vmx(vcpu
)->msr_ia32_feature_control
&
4291 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
4293 vmx
->msr_ia32_feature_control
= data
;
4294 if (msr_info
->host_initiated
&& data
== 0)
4295 vmx_leave_nested(vcpu
);
4297 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
4298 if (!msr_info
->host_initiated
)
4299 return 1; /* they are read-only */
4300 if (!nested_vmx_allowed(vcpu
))
4302 return vmx_set_vmx_msr(vcpu
, msr_index
, data
);
4304 if (!vmx_xsaves_supported())
4307 * The only supported bit as of Skylake is bit 8, but
4308 * it is not supported on KVM.
4312 vcpu
->arch
.ia32_xss
= data
;
4313 if (vcpu
->arch
.ia32_xss
!= host_xss
)
4314 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
4315 vcpu
->arch
.ia32_xss
, host_xss
, false);
4317 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
4320 if (!msr_info
->host_initiated
&&
4321 !guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
))
4323 /* Check reserved bit, higher 32 bits should be zero */
4324 if ((data
>> 32) != 0)
4326 /* Otherwise falls through */
4328 msr
= find_msr_entry(vmx
, msr_index
);
4330 u64 old_msr_data
= msr
->data
;
4332 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
4334 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
4338 msr
->data
= old_msr_data
;
4342 ret
= kvm_set_msr_common(vcpu
, msr_info
);
4348 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
4350 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
4353 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
4356 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
4358 case VCPU_EXREG_PDPTR
:
4360 ept_save_pdptrs(vcpu
);
4367 static __init
int cpu_has_kvm_support(void)
4369 return cpu_has_vmx();
4372 static __init
int vmx_disabled_by_bios(void)
4376 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
4377 if (msr
& FEATURE_CONTROL_LOCKED
) {
4378 /* launched w/ TXT and VMX disabled */
4379 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
4382 /* launched w/o TXT and VMX only enabled w/ TXT */
4383 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
4384 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
4385 && !tboot_enabled()) {
4386 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
4387 "activate TXT before enabling KVM\n");
4390 /* launched w/o TXT and VMX disabled */
4391 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
4392 && !tboot_enabled())
4399 static void kvm_cpu_vmxon(u64 addr
)
4401 cr4_set_bits(X86_CR4_VMXE
);
4402 intel_pt_handle_vmx(1);
4404 asm volatile (ASM_VMX_VMXON_RAX
4405 : : "a"(&addr
), "m"(addr
)
4409 static int hardware_enable(void)
4411 int cpu
= raw_smp_processor_id();
4412 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
4415 if (cr4_read_shadow() & X86_CR4_VMXE
)
4419 * This can happen if we hot-added a CPU but failed to allocate
4420 * VP assist page for it.
4422 if (static_branch_unlikely(&enable_evmcs
) &&
4423 !hv_get_vp_assist_page(cpu
))
4426 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
4427 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu
, cpu
));
4428 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
4431 * Now we can enable the vmclear operation in kdump
4432 * since the loaded_vmcss_on_cpu list on this cpu
4433 * has been initialized.
4435 * Though the cpu is not in VMX operation now, there
4436 * is no problem to enable the vmclear operation
4437 * for the loaded_vmcss_on_cpu list is empty!
4439 crash_enable_local_vmclear(cpu
);
4441 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
4443 test_bits
= FEATURE_CONTROL_LOCKED
;
4444 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
4445 if (tboot_enabled())
4446 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
4448 if ((old
& test_bits
) != test_bits
) {
4449 /* enable and lock */
4450 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
4452 kvm_cpu_vmxon(phys_addr
);
4459 static void vmclear_local_loaded_vmcss(void)
4461 int cpu
= raw_smp_processor_id();
4462 struct loaded_vmcs
*v
, *n
;
4464 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
4465 loaded_vmcss_on_cpu_link
)
4466 __loaded_vmcs_clear(v
);
4470 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
4473 static void kvm_cpu_vmxoff(void)
4475 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
4477 intel_pt_handle_vmx(0);
4478 cr4_clear_bits(X86_CR4_VMXE
);
4481 static void hardware_disable(void)
4483 vmclear_local_loaded_vmcss();
4487 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
4488 u32 msr
, u32
*result
)
4490 u32 vmx_msr_low
, vmx_msr_high
;
4491 u32 ctl
= ctl_min
| ctl_opt
;
4493 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
4495 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
4496 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
4498 /* Ensure minimum (required) set of control bits are supported. */
4506 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
4508 u32 vmx_msr_low
, vmx_msr_high
;
4510 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
4511 return vmx_msr_high
& ctl
;
4514 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
4516 u32 vmx_msr_low
, vmx_msr_high
;
4517 u32 min
, opt
, min2
, opt2
;
4518 u32 _pin_based_exec_control
= 0;
4519 u32 _cpu_based_exec_control
= 0;
4520 u32 _cpu_based_2nd_exec_control
= 0;
4521 u32 _vmexit_control
= 0;
4522 u32 _vmentry_control
= 0;
4524 memset(vmcs_conf
, 0, sizeof(*vmcs_conf
));
4525 min
= CPU_BASED_HLT_EXITING
|
4526 #ifdef CONFIG_X86_64
4527 CPU_BASED_CR8_LOAD_EXITING
|
4528 CPU_BASED_CR8_STORE_EXITING
|
4530 CPU_BASED_CR3_LOAD_EXITING
|
4531 CPU_BASED_CR3_STORE_EXITING
|
4532 CPU_BASED_UNCOND_IO_EXITING
|
4533 CPU_BASED_MOV_DR_EXITING
|
4534 CPU_BASED_USE_TSC_OFFSETING
|
4535 CPU_BASED_MWAIT_EXITING
|
4536 CPU_BASED_MONITOR_EXITING
|
4537 CPU_BASED_INVLPG_EXITING
|
4538 CPU_BASED_RDPMC_EXITING
;
4540 opt
= CPU_BASED_TPR_SHADOW
|
4541 CPU_BASED_USE_MSR_BITMAPS
|
4542 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
4543 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
4544 &_cpu_based_exec_control
) < 0)
4546 #ifdef CONFIG_X86_64
4547 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
4548 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
4549 ~CPU_BASED_CR8_STORE_EXITING
;
4551 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
4553 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
4554 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
4555 SECONDARY_EXEC_WBINVD_EXITING
|
4556 SECONDARY_EXEC_ENABLE_VPID
|
4557 SECONDARY_EXEC_ENABLE_EPT
|
4558 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
4559 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
4560 SECONDARY_EXEC_DESC
|
4561 SECONDARY_EXEC_RDTSCP
|
4562 SECONDARY_EXEC_ENABLE_INVPCID
|
4563 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4564 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
4565 SECONDARY_EXEC_SHADOW_VMCS
|
4566 SECONDARY_EXEC_XSAVES
|
4567 SECONDARY_EXEC_RDSEED_EXITING
|
4568 SECONDARY_EXEC_RDRAND_EXITING
|
4569 SECONDARY_EXEC_ENABLE_PML
|
4570 SECONDARY_EXEC_TSC_SCALING
|
4571 SECONDARY_EXEC_ENABLE_VMFUNC
|
4572 SECONDARY_EXEC_ENCLS_EXITING
;
4573 if (adjust_vmx_controls(min2
, opt2
,
4574 MSR_IA32_VMX_PROCBASED_CTLS2
,
4575 &_cpu_based_2nd_exec_control
) < 0)
4578 #ifndef CONFIG_X86_64
4579 if (!(_cpu_based_2nd_exec_control
&
4580 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
4581 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4584 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
4585 _cpu_based_2nd_exec_control
&= ~(
4586 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4587 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
4588 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4590 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP
,
4591 &vmx_capability
.ept
, &vmx_capability
.vpid
);
4593 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
4594 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
4596 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
4597 CPU_BASED_CR3_STORE_EXITING
|
4598 CPU_BASED_INVLPG_EXITING
);
4599 } else if (vmx_capability
.ept
) {
4600 vmx_capability
.ept
= 0;
4601 pr_warn_once("EPT CAP should not exist if not support "
4602 "1-setting enable EPT VM-execution control\n");
4604 if (!(_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_VPID
) &&
4605 vmx_capability
.vpid
) {
4606 vmx_capability
.vpid
= 0;
4607 pr_warn_once("VPID CAP should not exist if not support "
4608 "1-setting enable VPID VM-execution control\n");
4611 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
| VM_EXIT_ACK_INTR_ON_EXIT
;
4612 #ifdef CONFIG_X86_64
4613 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
4615 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
4616 VM_EXIT_CLEAR_BNDCFGS
;
4617 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
4618 &_vmexit_control
) < 0)
4621 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
4622 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
|
4623 PIN_BASED_VMX_PREEMPTION_TIMER
;
4624 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
4625 &_pin_based_exec_control
) < 0)
4628 if (cpu_has_broken_vmx_preemption_timer())
4629 _pin_based_exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
4630 if (!(_cpu_based_2nd_exec_control
&
4631 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
))
4632 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
4634 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
4635 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
4636 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
4637 &_vmentry_control
) < 0)
4640 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
4642 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4643 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
4646 #ifdef CONFIG_X86_64
4647 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4648 if (vmx_msr_high
& (1u<<16))
4652 /* Require Write-Back (WB) memory type for VMCS accesses. */
4653 if (((vmx_msr_high
>> 18) & 15) != 6)
4656 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
4657 vmcs_conf
->order
= get_order(vmcs_conf
->size
);
4658 vmcs_conf
->basic_cap
= vmx_msr_high
& ~0x1fff;
4660 vmcs_conf
->revision_id
= vmx_msr_low
;
4662 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
4663 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
4664 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
4665 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
4666 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
4668 if (static_branch_unlikely(&enable_evmcs
))
4669 evmcs_sanitize_exec_ctrls(vmcs_conf
);
4671 cpu_has_load_ia32_efer
=
4672 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
4673 VM_ENTRY_LOAD_IA32_EFER
)
4674 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
4675 VM_EXIT_LOAD_IA32_EFER
);
4677 cpu_has_load_perf_global_ctrl
=
4678 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
4679 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
4680 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
4681 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
4684 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
4685 * but due to errata below it can't be used. Workaround is to use
4686 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4688 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4693 * BC86,AAY89,BD102 (model 44)
4697 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
4698 switch (boot_cpu_data
.x86_model
) {
4704 cpu_has_load_perf_global_ctrl
= false;
4705 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4706 "does not work properly. Using workaround\n");
4713 if (boot_cpu_has(X86_FEATURE_XSAVES
))
4714 rdmsrl(MSR_IA32_XSS
, host_xss
);
4719 static struct vmcs
*alloc_vmcs_cpu(bool shadow
, int cpu
)
4721 int node
= cpu_to_node(cpu
);
4725 pages
= __alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
4728 vmcs
= page_address(pages
);
4729 memset(vmcs
, 0, vmcs_config
.size
);
4731 /* KVM supports Enlightened VMCS v1 only */
4732 if (static_branch_unlikely(&enable_evmcs
))
4733 vmcs
->hdr
.revision_id
= KVM_EVMCS_VERSION
;
4735 vmcs
->hdr
.revision_id
= vmcs_config
.revision_id
;
4738 vmcs
->hdr
.shadow_vmcs
= 1;
4742 static void free_vmcs(struct vmcs
*vmcs
)
4744 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
4748 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4750 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
4752 if (!loaded_vmcs
->vmcs
)
4754 loaded_vmcs_clear(loaded_vmcs
);
4755 free_vmcs(loaded_vmcs
->vmcs
);
4756 loaded_vmcs
->vmcs
= NULL
;
4757 if (loaded_vmcs
->msr_bitmap
)
4758 free_page((unsigned long)loaded_vmcs
->msr_bitmap
);
4759 WARN_ON(loaded_vmcs
->shadow_vmcs
!= NULL
);
4762 static struct vmcs
*alloc_vmcs(bool shadow
)
4764 return alloc_vmcs_cpu(shadow
, raw_smp_processor_id());
4767 static int alloc_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
4769 loaded_vmcs
->vmcs
= alloc_vmcs(false);
4770 if (!loaded_vmcs
->vmcs
)
4773 loaded_vmcs
->shadow_vmcs
= NULL
;
4774 loaded_vmcs_init(loaded_vmcs
);
4776 if (cpu_has_vmx_msr_bitmap()) {
4777 loaded_vmcs
->msr_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4778 if (!loaded_vmcs
->msr_bitmap
)
4780 memset(loaded_vmcs
->msr_bitmap
, 0xff, PAGE_SIZE
);
4782 if (IS_ENABLED(CONFIG_HYPERV
) &&
4783 static_branch_unlikely(&enable_evmcs
) &&
4784 (ms_hyperv
.nested_features
& HV_X64_NESTED_MSR_BITMAP
)) {
4785 struct hv_enlightened_vmcs
*evmcs
=
4786 (struct hv_enlightened_vmcs
*)loaded_vmcs
->vmcs
;
4788 evmcs
->hv_enlightenments_control
.msr_bitmap
= 1;
4792 memset(&loaded_vmcs
->host_state
, 0, sizeof(struct vmcs_host_state
));
4797 free_loaded_vmcs(loaded_vmcs
);
4801 static void free_kvm_area(void)
4805 for_each_possible_cpu(cpu
) {
4806 free_vmcs(per_cpu(vmxarea
, cpu
));
4807 per_cpu(vmxarea
, cpu
) = NULL
;
4811 enum vmcs_field_width
{
4812 VMCS_FIELD_WIDTH_U16
= 0,
4813 VMCS_FIELD_WIDTH_U64
= 1,
4814 VMCS_FIELD_WIDTH_U32
= 2,
4815 VMCS_FIELD_WIDTH_NATURAL_WIDTH
= 3
4818 static inline int vmcs_field_width(unsigned long field
)
4820 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
4821 return VMCS_FIELD_WIDTH_U32
;
4822 return (field
>> 13) & 0x3 ;
4825 static inline int vmcs_field_readonly(unsigned long field
)
4827 return (((field
>> 10) & 0x3) == 1);
4830 static void init_vmcs_shadow_fields(void)
4834 for (i
= j
= 0; i
< max_shadow_read_only_fields
; i
++) {
4835 u16 field
= shadow_read_only_fields
[i
];
4836 if (vmcs_field_width(field
) == VMCS_FIELD_WIDTH_U64
&&
4837 (i
+ 1 == max_shadow_read_only_fields
||
4838 shadow_read_only_fields
[i
+ 1] != field
+ 1))
4839 pr_err("Missing field from shadow_read_only_field %x\n",
4842 clear_bit(field
, vmx_vmread_bitmap
);
4843 #ifdef CONFIG_X86_64
4848 shadow_read_only_fields
[j
] = field
;
4851 max_shadow_read_only_fields
= j
;
4853 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
4854 u16 field
= shadow_read_write_fields
[i
];
4855 if (vmcs_field_width(field
) == VMCS_FIELD_WIDTH_U64
&&
4856 (i
+ 1 == max_shadow_read_write_fields
||
4857 shadow_read_write_fields
[i
+ 1] != field
+ 1))
4858 pr_err("Missing field from shadow_read_write_field %x\n",
4862 * PML and the preemption timer can be emulated, but the
4863 * processor cannot vmwrite to fields that don't exist
4867 case GUEST_PML_INDEX
:
4868 if (!cpu_has_vmx_pml())
4871 case VMX_PREEMPTION_TIMER_VALUE
:
4872 if (!cpu_has_vmx_preemption_timer())
4875 case GUEST_INTR_STATUS
:
4876 if (!cpu_has_vmx_apicv())
4883 clear_bit(field
, vmx_vmwrite_bitmap
);
4884 clear_bit(field
, vmx_vmread_bitmap
);
4885 #ifdef CONFIG_X86_64
4890 shadow_read_write_fields
[j
] = field
;
4893 max_shadow_read_write_fields
= j
;
4896 static __init
int alloc_kvm_area(void)
4900 for_each_possible_cpu(cpu
) {
4903 vmcs
= alloc_vmcs_cpu(false, cpu
);
4910 * When eVMCS is enabled, alloc_vmcs_cpu() sets
4911 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
4912 * revision_id reported by MSR_IA32_VMX_BASIC.
4914 * However, even though not explictly documented by
4915 * TLFS, VMXArea passed as VMXON argument should
4916 * still be marked with revision_id reported by
4919 if (static_branch_unlikely(&enable_evmcs
))
4920 vmcs
->hdr
.revision_id
= vmcs_config
.revision_id
;
4922 per_cpu(vmxarea
, cpu
) = vmcs
;
4927 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
4928 struct kvm_segment
*save
)
4930 if (!emulate_invalid_guest_state
) {
4932 * CS and SS RPL should be equal during guest entry according
4933 * to VMX spec, but in reality it is not always so. Since vcpu
4934 * is in the middle of the transition from real mode to
4935 * protected mode it is safe to assume that RPL 0 is a good
4938 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
4939 save
->selector
&= ~SEGMENT_RPL_MASK
;
4940 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
4943 vmx_set_segment(vcpu
, save
, seg
);
4946 static void enter_pmode(struct kvm_vcpu
*vcpu
)
4948 unsigned long flags
;
4949 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4952 * Update real mode segment cache. It may be not up-to-date if sement
4953 * register was written while vcpu was in a guest mode.
4955 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
4956 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
4957 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
4958 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
4959 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
4960 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
4962 vmx
->rmode
.vm86_active
= 0;
4964 vmx_segment_cache_clear(vmx
);
4966 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
4968 flags
= vmcs_readl(GUEST_RFLAGS
);
4969 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
4970 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
4971 vmcs_writel(GUEST_RFLAGS
, flags
);
4973 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
4974 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
4976 update_exception_bitmap(vcpu
);
4978 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
4979 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
4980 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
4981 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
4982 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
4983 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
4986 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
4988 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4989 struct kvm_segment var
= *save
;
4992 if (seg
== VCPU_SREG_CS
)
4995 if (!emulate_invalid_guest_state
) {
4996 var
.selector
= var
.base
>> 4;
4997 var
.base
= var
.base
& 0xffff0;
5007 if (save
->base
& 0xf)
5008 printk_once(KERN_WARNING
"kvm: segment base is not "
5009 "paragraph aligned when entering "
5010 "protected mode (seg=%d)", seg
);
5013 vmcs_write16(sf
->selector
, var
.selector
);
5014 vmcs_writel(sf
->base
, var
.base
);
5015 vmcs_write32(sf
->limit
, var
.limit
);
5016 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
5019 static void enter_rmode(struct kvm_vcpu
*vcpu
)
5021 unsigned long flags
;
5022 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5023 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(vcpu
->kvm
);
5025 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
5026 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
5027 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
5028 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
5029 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
5030 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
5031 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
5033 vmx
->rmode
.vm86_active
= 1;
5036 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
5037 * vcpu. Warn the user that an update is overdue.
5039 if (!kvm_vmx
->tss_addr
)
5040 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
5041 "called before entering vcpu\n");
5043 vmx_segment_cache_clear(vmx
);
5045 vmcs_writel(GUEST_TR_BASE
, kvm_vmx
->tss_addr
);
5046 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
5047 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
5049 flags
= vmcs_readl(GUEST_RFLAGS
);
5050 vmx
->rmode
.save_rflags
= flags
;
5052 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
5054 vmcs_writel(GUEST_RFLAGS
, flags
);
5055 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
5056 update_exception_bitmap(vcpu
);
5058 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
5059 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
5060 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
5061 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
5062 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
5063 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
5065 kvm_mmu_reset_context(vcpu
);
5068 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
5070 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5071 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
5076 vcpu
->arch
.efer
= efer
;
5077 if (efer
& EFER_LMA
) {
5078 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
5081 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
5083 msr
->data
= efer
& ~EFER_LME
;
5088 #ifdef CONFIG_X86_64
5090 static void enter_lmode(struct kvm_vcpu
*vcpu
)
5094 vmx_segment_cache_clear(to_vmx(vcpu
));
5096 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
5097 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
5098 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
5100 vmcs_write32(GUEST_TR_AR_BYTES
,
5101 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
5102 | VMX_AR_TYPE_BUSY_64_TSS
);
5104 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
5107 static void exit_lmode(struct kvm_vcpu
*vcpu
)
5109 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
5110 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
5115 static inline void __vmx_flush_tlb(struct kvm_vcpu
*vcpu
, int vpid
,
5116 bool invalidate_gpa
)
5118 if (enable_ept
&& (invalidate_gpa
|| !enable_vpid
)) {
5119 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
5121 ept_sync_context(construct_eptp(vcpu
, vcpu
->arch
.mmu
.root_hpa
));
5123 vpid_sync_context(vpid
);
5127 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
5129 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->vpid
, invalidate_gpa
);
5132 static void vmx_flush_tlb_gva(struct kvm_vcpu
*vcpu
, gva_t addr
)
5134 int vpid
= to_vmx(vcpu
)->vpid
;
5136 if (!vpid_sync_vcpu_addr(vpid
, addr
))
5137 vpid_sync_context(vpid
);
5140 * If VPIDs are not supported or enabled, then the above is a no-op.
5141 * But we don't really need a TLB flush in that case anyway, because
5142 * each VM entry/exit includes an implicit flush when VPID is 0.
5146 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
5148 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
5150 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
5151 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
5154 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
5156 if (enable_unrestricted_guest
|| (enable_ept
&& is_paging(vcpu
)))
5157 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
5158 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
5161 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
5163 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
5165 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
5166 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
5169 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
5171 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
5173 if (!test_bit(VCPU_EXREG_PDPTR
,
5174 (unsigned long *)&vcpu
->arch
.regs_dirty
))
5177 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
5178 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
5179 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
5180 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
5181 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
5185 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
5187 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
5189 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
5190 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
5191 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
5192 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
5193 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
5196 __set_bit(VCPU_EXREG_PDPTR
,
5197 (unsigned long *)&vcpu
->arch
.regs_avail
);
5198 __set_bit(VCPU_EXREG_PDPTR
,
5199 (unsigned long *)&vcpu
->arch
.regs_dirty
);
5202 static bool nested_guest_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
5204 u64 fixed0
= to_vmx(vcpu
)->nested
.msrs
.cr0_fixed0
;
5205 u64 fixed1
= to_vmx(vcpu
)->nested
.msrs
.cr0_fixed1
;
5206 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5208 if (to_vmx(vcpu
)->nested
.msrs
.secondary_ctls_high
&
5209 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
5210 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
5211 fixed0
&= ~(X86_CR0_PE
| X86_CR0_PG
);
5213 return fixed_bits_valid(val
, fixed0
, fixed1
);
5216 static bool nested_host_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
5218 u64 fixed0
= to_vmx(vcpu
)->nested
.msrs
.cr0_fixed0
;
5219 u64 fixed1
= to_vmx(vcpu
)->nested
.msrs
.cr0_fixed1
;
5221 return fixed_bits_valid(val
, fixed0
, fixed1
);
5224 static bool nested_cr4_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
5226 u64 fixed0
= to_vmx(vcpu
)->nested
.msrs
.cr4_fixed0
;
5227 u64 fixed1
= to_vmx(vcpu
)->nested
.msrs
.cr4_fixed1
;
5229 return fixed_bits_valid(val
, fixed0
, fixed1
);
5232 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
5233 #define nested_guest_cr4_valid nested_cr4_valid
5234 #define nested_host_cr4_valid nested_cr4_valid
5236 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
5238 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
5240 struct kvm_vcpu
*vcpu
)
5242 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
5243 vmx_decache_cr3(vcpu
);
5244 if (!(cr0
& X86_CR0_PG
)) {
5245 /* From paging/starting to nonpaging */
5246 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
5247 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
5248 (CPU_BASED_CR3_LOAD_EXITING
|
5249 CPU_BASED_CR3_STORE_EXITING
));
5250 vcpu
->arch
.cr0
= cr0
;
5251 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
5252 } else if (!is_paging(vcpu
)) {
5253 /* From nonpaging to paging */
5254 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
5255 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
5256 ~(CPU_BASED_CR3_LOAD_EXITING
|
5257 CPU_BASED_CR3_STORE_EXITING
));
5258 vcpu
->arch
.cr0
= cr0
;
5259 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
5262 if (!(cr0
& X86_CR0_WP
))
5263 *hw_cr0
&= ~X86_CR0_WP
;
5266 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
5268 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5269 unsigned long hw_cr0
;
5271 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
5272 if (enable_unrestricted_guest
)
5273 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
5275 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
5277 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
5280 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
5284 #ifdef CONFIG_X86_64
5285 if (vcpu
->arch
.efer
& EFER_LME
) {
5286 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
5288 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
5293 if (enable_ept
&& !enable_unrestricted_guest
)
5294 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
5296 vmcs_writel(CR0_READ_SHADOW
, cr0
);
5297 vmcs_writel(GUEST_CR0
, hw_cr0
);
5298 vcpu
->arch
.cr0
= cr0
;
5300 /* depends on vcpu->arch.cr0 to be set to a new value */
5301 vmx
->emulation_required
= emulation_required(vcpu
);
5304 static int get_ept_level(struct kvm_vcpu
*vcpu
)
5306 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu
) > 48))
5311 static u64
construct_eptp(struct kvm_vcpu
*vcpu
, unsigned long root_hpa
)
5313 u64 eptp
= VMX_EPTP_MT_WB
;
5315 eptp
|= (get_ept_level(vcpu
) == 5) ? VMX_EPTP_PWL_5
: VMX_EPTP_PWL_4
;
5317 if (enable_ept_ad_bits
&&
5318 (!is_guest_mode(vcpu
) || nested_ept_ad_enabled(vcpu
)))
5319 eptp
|= VMX_EPTP_AD_ENABLE_BIT
;
5320 eptp
|= (root_hpa
& PAGE_MASK
);
5325 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
5327 struct kvm
*kvm
= vcpu
->kvm
;
5328 unsigned long guest_cr3
;
5333 eptp
= construct_eptp(vcpu
, cr3
);
5334 vmcs_write64(EPT_POINTER
, eptp
);
5336 if (kvm_x86_ops
->tlb_remote_flush
) {
5337 spin_lock(&to_kvm_vmx(kvm
)->ept_pointer_lock
);
5338 to_vmx(vcpu
)->ept_pointer
= eptp
;
5339 to_kvm_vmx(kvm
)->ept_pointers_match
5340 = EPT_POINTERS_CHECK
;
5341 spin_unlock(&to_kvm_vmx(kvm
)->ept_pointer_lock
);
5344 if (enable_unrestricted_guest
|| is_paging(vcpu
) ||
5345 is_guest_mode(vcpu
))
5346 guest_cr3
= kvm_read_cr3(vcpu
);
5348 guest_cr3
= to_kvm_vmx(kvm
)->ept_identity_map_addr
;
5349 ept_load_pdptrs(vcpu
);
5352 vmcs_writel(GUEST_CR3
, guest_cr3
);
5355 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
5358 * Pass through host's Machine Check Enable value to hw_cr4, which
5359 * is in force while we are in guest mode. Do not let guests control
5360 * this bit, even if host CR4.MCE == 0.
5362 unsigned long hw_cr4
;
5364 hw_cr4
= (cr4_read_shadow() & X86_CR4_MCE
) | (cr4
& ~X86_CR4_MCE
);
5365 if (enable_unrestricted_guest
)
5366 hw_cr4
|= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST
;
5367 else if (to_vmx(vcpu
)->rmode
.vm86_active
)
5368 hw_cr4
|= KVM_RMODE_VM_CR4_ALWAYS_ON
;
5370 hw_cr4
|= KVM_PMODE_VM_CR4_ALWAYS_ON
;
5372 if (!boot_cpu_has(X86_FEATURE_UMIP
) && vmx_umip_emulated()) {
5373 if (cr4
& X86_CR4_UMIP
) {
5374 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
5375 SECONDARY_EXEC_DESC
);
5376 hw_cr4
&= ~X86_CR4_UMIP
;
5377 } else if (!is_guest_mode(vcpu
) ||
5378 !nested_cpu_has2(get_vmcs12(vcpu
), SECONDARY_EXEC_DESC
))
5379 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
5380 SECONDARY_EXEC_DESC
);
5383 if (cr4
& X86_CR4_VMXE
) {
5385 * To use VMXON (and later other VMX instructions), a guest
5386 * must first be able to turn on cr4.VMXE (see handle_vmon()).
5387 * So basically the check on whether to allow nested VMX
5388 * is here. We operate under the default treatment of SMM,
5389 * so VMX cannot be enabled under SMM.
5391 if (!nested_vmx_allowed(vcpu
) || is_smm(vcpu
))
5395 if (to_vmx(vcpu
)->nested
.vmxon
&& !nested_cr4_valid(vcpu
, cr4
))
5398 vcpu
->arch
.cr4
= cr4
;
5400 if (!enable_unrestricted_guest
) {
5402 if (!is_paging(vcpu
)) {
5403 hw_cr4
&= ~X86_CR4_PAE
;
5404 hw_cr4
|= X86_CR4_PSE
;
5405 } else if (!(cr4
& X86_CR4_PAE
)) {
5406 hw_cr4
&= ~X86_CR4_PAE
;
5411 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
5412 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
5413 * to be manually disabled when guest switches to non-paging
5416 * If !enable_unrestricted_guest, the CPU is always running
5417 * with CR0.PG=1 and CR4 needs to be modified.
5418 * If enable_unrestricted_guest, the CPU automatically
5419 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
5421 if (!is_paging(vcpu
))
5422 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
);
5425 vmcs_writel(CR4_READ_SHADOW
, cr4
);
5426 vmcs_writel(GUEST_CR4
, hw_cr4
);
5430 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
5431 struct kvm_segment
*var
, int seg
)
5433 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5436 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
5437 *var
= vmx
->rmode
.segs
[seg
];
5438 if (seg
== VCPU_SREG_TR
5439 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
5441 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
5442 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
5445 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
5446 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
5447 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
5448 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
5449 var
->unusable
= (ar
>> 16) & 1;
5450 var
->type
= ar
& 15;
5451 var
->s
= (ar
>> 4) & 1;
5452 var
->dpl
= (ar
>> 5) & 3;
5454 * Some userspaces do not preserve unusable property. Since usable
5455 * segment has to be present according to VMX spec we can use present
5456 * property to amend userspace bug by making unusable segment always
5457 * nonpresent. vmx_segment_access_rights() already marks nonpresent
5458 * segment as unusable.
5460 var
->present
= !var
->unusable
;
5461 var
->avl
= (ar
>> 12) & 1;
5462 var
->l
= (ar
>> 13) & 1;
5463 var
->db
= (ar
>> 14) & 1;
5464 var
->g
= (ar
>> 15) & 1;
5467 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
5469 struct kvm_segment s
;
5471 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
5472 vmx_get_segment(vcpu
, &s
, seg
);
5475 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
5478 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
5480 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5482 if (unlikely(vmx
->rmode
.vm86_active
))
5485 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
5486 return VMX_AR_DPL(ar
);
5490 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
5494 if (var
->unusable
|| !var
->present
)
5497 ar
= var
->type
& 15;
5498 ar
|= (var
->s
& 1) << 4;
5499 ar
|= (var
->dpl
& 3) << 5;
5500 ar
|= (var
->present
& 1) << 7;
5501 ar
|= (var
->avl
& 1) << 12;
5502 ar
|= (var
->l
& 1) << 13;
5503 ar
|= (var
->db
& 1) << 14;
5504 ar
|= (var
->g
& 1) << 15;
5510 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
5511 struct kvm_segment
*var
, int seg
)
5513 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5514 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
5516 vmx_segment_cache_clear(vmx
);
5518 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
5519 vmx
->rmode
.segs
[seg
] = *var
;
5520 if (seg
== VCPU_SREG_TR
)
5521 vmcs_write16(sf
->selector
, var
->selector
);
5523 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
5527 vmcs_writel(sf
->base
, var
->base
);
5528 vmcs_write32(sf
->limit
, var
->limit
);
5529 vmcs_write16(sf
->selector
, var
->selector
);
5532 * Fix the "Accessed" bit in AR field of segment registers for older
5534 * IA32 arch specifies that at the time of processor reset the
5535 * "Accessed" bit in the AR field of segment registers is 1. And qemu
5536 * is setting it to 0 in the userland code. This causes invalid guest
5537 * state vmexit when "unrestricted guest" mode is turned on.
5538 * Fix for this setup issue in cpu_reset is being pushed in the qemu
5539 * tree. Newer qemu binaries with that qemu fix would not need this
5542 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
5543 var
->type
|= 0x1; /* Accessed */
5545 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
5548 vmx
->emulation_required
= emulation_required(vcpu
);
5551 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5553 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
5555 *db
= (ar
>> 14) & 1;
5556 *l
= (ar
>> 13) & 1;
5559 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
5561 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
5562 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
5565 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
5567 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
5568 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
5571 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
5573 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
5574 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
5577 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
5579 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
5580 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
5583 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
5585 struct kvm_segment var
;
5588 vmx_get_segment(vcpu
, &var
, seg
);
5590 if (seg
== VCPU_SREG_CS
)
5592 ar
= vmx_segment_access_rights(&var
);
5594 if (var
.base
!= (var
.selector
<< 4))
5596 if (var
.limit
!= 0xffff)
5604 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
5606 struct kvm_segment cs
;
5607 unsigned int cs_rpl
;
5609 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5610 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
5614 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
5618 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
5619 if (cs
.dpl
> cs_rpl
)
5622 if (cs
.dpl
!= cs_rpl
)
5628 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
5632 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
5634 struct kvm_segment ss
;
5635 unsigned int ss_rpl
;
5637 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
5638 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
5642 if (ss
.type
!= 3 && ss
.type
!= 7)
5646 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
5654 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
5656 struct kvm_segment var
;
5659 vmx_get_segment(vcpu
, &var
, seg
);
5660 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
5668 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
5669 if (var
.dpl
< rpl
) /* DPL < RPL */
5673 /* TODO: Add other members to kvm_segment_field to allow checking for other access
5679 static bool tr_valid(struct kvm_vcpu
*vcpu
)
5681 struct kvm_segment tr
;
5683 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
5687 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
5689 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
5697 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
5699 struct kvm_segment ldtr
;
5701 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
5705 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
5715 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
5717 struct kvm_segment cs
, ss
;
5719 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5720 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
5722 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
5723 (ss
.selector
& SEGMENT_RPL_MASK
));
5727 * Check if guest state is valid. Returns true if valid, false if
5729 * We assume that registers are always usable
5731 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
5733 if (enable_unrestricted_guest
)
5736 /* real mode guest state checks */
5737 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
5738 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
5740 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
5742 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
5744 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
5746 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
5748 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
5751 /* protected mode guest state checks */
5752 if (!cs_ss_rpl_check(vcpu
))
5754 if (!code_segment_valid(vcpu
))
5756 if (!stack_segment_valid(vcpu
))
5758 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
5760 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
5762 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
5764 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
5766 if (!tr_valid(vcpu
))
5768 if (!ldtr_valid(vcpu
))
5772 * - Add checks on RIP
5773 * - Add checks on RFLAGS
5779 static bool page_address_valid(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
5781 return PAGE_ALIGNED(gpa
) && !(gpa
>> cpuid_maxphyaddr(vcpu
));
5784 static int init_rmode_tss(struct kvm
*kvm
)
5790 idx
= srcu_read_lock(&kvm
->srcu
);
5791 fn
= to_kvm_vmx(kvm
)->tss_addr
>> PAGE_SHIFT
;
5792 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
5795 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
5796 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
5797 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
5800 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
5803 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
5807 r
= kvm_write_guest_page(kvm
, fn
, &data
,
5808 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
5811 srcu_read_unlock(&kvm
->srcu
, idx
);
5815 static int init_rmode_identity_map(struct kvm
*kvm
)
5817 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(kvm
);
5819 kvm_pfn_t identity_map_pfn
;
5822 /* Protect kvm_vmx->ept_identity_pagetable_done. */
5823 mutex_lock(&kvm
->slots_lock
);
5825 if (likely(kvm_vmx
->ept_identity_pagetable_done
))
5828 if (!kvm_vmx
->ept_identity_map_addr
)
5829 kvm_vmx
->ept_identity_map_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
5830 identity_map_pfn
= kvm_vmx
->ept_identity_map_addr
>> PAGE_SHIFT
;
5832 r
= __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
5833 kvm_vmx
->ept_identity_map_addr
, PAGE_SIZE
);
5837 idx
= srcu_read_lock(&kvm
->srcu
);
5838 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
5841 /* Set up identity-mapping pagetable for EPT in real mode */
5842 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
5843 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
5844 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
5845 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
5846 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
5850 kvm_vmx
->ept_identity_pagetable_done
= true;
5853 srcu_read_unlock(&kvm
->srcu
, idx
);
5856 mutex_unlock(&kvm
->slots_lock
);
5860 static void seg_setup(int seg
)
5862 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
5865 vmcs_write16(sf
->selector
, 0);
5866 vmcs_writel(sf
->base
, 0);
5867 vmcs_write32(sf
->limit
, 0xffff);
5869 if (seg
== VCPU_SREG_CS
)
5870 ar
|= 0x08; /* code segment */
5872 vmcs_write32(sf
->ar_bytes
, ar
);
5875 static int alloc_apic_access_page(struct kvm
*kvm
)
5880 mutex_lock(&kvm
->slots_lock
);
5881 if (kvm
->arch
.apic_access_page_done
)
5883 r
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
5884 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
5888 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
5889 if (is_error_page(page
)) {
5895 * Do not pin the page in memory, so that memory hot-unplug
5896 * is able to migrate it.
5899 kvm
->arch
.apic_access_page_done
= true;
5901 mutex_unlock(&kvm
->slots_lock
);
5905 static int allocate_vpid(void)
5911 spin_lock(&vmx_vpid_lock
);
5912 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
5913 if (vpid
< VMX_NR_VPIDS
)
5914 __set_bit(vpid
, vmx_vpid_bitmap
);
5917 spin_unlock(&vmx_vpid_lock
);
5921 static void free_vpid(int vpid
)
5923 if (!enable_vpid
|| vpid
== 0)
5925 spin_lock(&vmx_vpid_lock
);
5926 __clear_bit(vpid
, vmx_vpid_bitmap
);
5927 spin_unlock(&vmx_vpid_lock
);
5930 static __always_inline
void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
5933 int f
= sizeof(unsigned long);
5935 if (!cpu_has_vmx_msr_bitmap())
5938 if (static_branch_unlikely(&enable_evmcs
))
5939 evmcs_touch_msr_bitmap();
5942 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5943 * have the write-low and read-high bitmap offsets the wrong way round.
5944 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5946 if (msr
<= 0x1fff) {
5947 if (type
& MSR_TYPE_R
)
5949 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
5951 if (type
& MSR_TYPE_W
)
5953 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
5955 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
5957 if (type
& MSR_TYPE_R
)
5959 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
5961 if (type
& MSR_TYPE_W
)
5963 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
5968 static __always_inline
void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
5971 int f
= sizeof(unsigned long);
5973 if (!cpu_has_vmx_msr_bitmap())
5976 if (static_branch_unlikely(&enable_evmcs
))
5977 evmcs_touch_msr_bitmap();
5980 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5981 * have the write-low and read-high bitmap offsets the wrong way round.
5982 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5984 if (msr
<= 0x1fff) {
5985 if (type
& MSR_TYPE_R
)
5987 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
5989 if (type
& MSR_TYPE_W
)
5991 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
5993 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
5995 if (type
& MSR_TYPE_R
)
5997 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
5999 if (type
& MSR_TYPE_W
)
6001 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
6006 static __always_inline
void vmx_set_intercept_for_msr(unsigned long *msr_bitmap
,
6007 u32 msr
, int type
, bool value
)
6010 vmx_enable_intercept_for_msr(msr_bitmap
, msr
, type
);
6012 vmx_disable_intercept_for_msr(msr_bitmap
, msr
, type
);
6016 * If a msr is allowed by L0, we should check whether it is allowed by L1.
6017 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
6019 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1
,
6020 unsigned long *msr_bitmap_nested
,
6023 int f
= sizeof(unsigned long);
6026 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
6027 * have the write-low and read-high bitmap offsets the wrong way round.
6028 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
6030 if (msr
<= 0x1fff) {
6031 if (type
& MSR_TYPE_R
&&
6032 !test_bit(msr
, msr_bitmap_l1
+ 0x000 / f
))
6034 __clear_bit(msr
, msr_bitmap_nested
+ 0x000 / f
);
6036 if (type
& MSR_TYPE_W
&&
6037 !test_bit(msr
, msr_bitmap_l1
+ 0x800 / f
))
6039 __clear_bit(msr
, msr_bitmap_nested
+ 0x800 / f
);
6041 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
6043 if (type
& MSR_TYPE_R
&&
6044 !test_bit(msr
, msr_bitmap_l1
+ 0x400 / f
))
6046 __clear_bit(msr
, msr_bitmap_nested
+ 0x400 / f
);
6048 if (type
& MSR_TYPE_W
&&
6049 !test_bit(msr
, msr_bitmap_l1
+ 0xc00 / f
))
6051 __clear_bit(msr
, msr_bitmap_nested
+ 0xc00 / f
);
6056 static u8
vmx_msr_bitmap_mode(struct kvm_vcpu
*vcpu
)
6060 if (cpu_has_secondary_exec_ctrls() &&
6061 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL
) &
6062 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
)) {
6063 mode
|= MSR_BITMAP_MODE_X2APIC
;
6064 if (enable_apicv
&& kvm_vcpu_apicv_active(vcpu
))
6065 mode
|= MSR_BITMAP_MODE_X2APIC_APICV
;
6071 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
6073 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap
,
6078 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
6079 unsigned word
= msr
/ BITS_PER_LONG
;
6080 msr_bitmap
[word
] = (mode
& MSR_BITMAP_MODE_X2APIC_APICV
) ? 0 : ~0;
6081 msr_bitmap
[word
+ (0x800 / sizeof(long))] = ~0;
6084 if (mode
& MSR_BITMAP_MODE_X2APIC
) {
6086 * TPR reads and writes can be virtualized even if virtual interrupt
6087 * delivery is not in use.
6089 vmx_disable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_TASKPRI
), MSR_TYPE_RW
);
6090 if (mode
& MSR_BITMAP_MODE_X2APIC_APICV
) {
6091 vmx_enable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_TMCCT
), MSR_TYPE_R
);
6092 vmx_disable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_EOI
), MSR_TYPE_W
);
6093 vmx_disable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_SELF_IPI
), MSR_TYPE_W
);
6098 static void vmx_update_msr_bitmap(struct kvm_vcpu
*vcpu
)
6100 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6101 unsigned long *msr_bitmap
= vmx
->vmcs01
.msr_bitmap
;
6102 u8 mode
= vmx_msr_bitmap_mode(vcpu
);
6103 u8 changed
= mode
^ vmx
->msr_bitmap_mode
;
6108 if (changed
& (MSR_BITMAP_MODE_X2APIC
| MSR_BITMAP_MODE_X2APIC_APICV
))
6109 vmx_update_msr_bitmap_x2apic(msr_bitmap
, mode
);
6111 vmx
->msr_bitmap_mode
= mode
;
6114 static bool vmx_get_enable_apicv(struct kvm_vcpu
*vcpu
)
6116 return enable_apicv
;
6119 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu
*vcpu
)
6121 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6125 * Don't need to mark the APIC access page dirty; it is never
6126 * written to by the CPU during APIC virtualization.
6129 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
6130 gfn
= vmcs12
->virtual_apic_page_addr
>> PAGE_SHIFT
;
6131 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
6134 if (nested_cpu_has_posted_intr(vmcs12
)) {
6135 gfn
= vmcs12
->posted_intr_desc_addr
>> PAGE_SHIFT
;
6136 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
6141 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
6143 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6148 if (!vmx
->nested
.pi_desc
|| !vmx
->nested
.pi_pending
)
6151 vmx
->nested
.pi_pending
= false;
6152 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
6155 max_irr
= find_last_bit((unsigned long *)vmx
->nested
.pi_desc
->pir
, 256);
6156 if (max_irr
!= 256) {
6157 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
6158 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
,
6159 vapic_page
, &max_irr
);
6160 kunmap(vmx
->nested
.virtual_apic_page
);
6162 status
= vmcs_read16(GUEST_INTR_STATUS
);
6163 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
6165 status
|= (u8
)max_irr
;
6166 vmcs_write16(GUEST_INTR_STATUS
, status
);
6170 nested_mark_vmcs12_pages_dirty(vcpu
);
6173 static u8
vmx_get_rvi(void)
6175 return vmcs_read16(GUEST_INTR_STATUS
) & 0xff;
6178 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu
*vcpu
)
6180 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6185 if (WARN_ON_ONCE(!is_guest_mode(vcpu
)) ||
6186 !nested_cpu_has_vid(get_vmcs12(vcpu
)) ||
6187 WARN_ON_ONCE(!vmx
->nested
.virtual_apic_page
))
6190 rvi
= vmx_get_rvi();
6192 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
6193 vppr
= *((u32
*)(vapic_page
+ APIC_PROCPRI
));
6194 kunmap(vmx
->nested
.virtual_apic_page
);
6196 return ((rvi
& 0xf0) > (vppr
& 0xf0));
6199 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
,
6203 int pi_vec
= nested
? POSTED_INTR_NESTED_VECTOR
: POSTED_INTR_VECTOR
;
6205 if (vcpu
->mode
== IN_GUEST_MODE
) {
6207 * The vector of interrupt to be delivered to vcpu had
6208 * been set in PIR before this function.
6210 * Following cases will be reached in this block, and
6211 * we always send a notification event in all cases as
6214 * Case 1: vcpu keeps in non-root mode. Sending a
6215 * notification event posts the interrupt to vcpu.
6217 * Case 2: vcpu exits to root mode and is still
6218 * runnable. PIR will be synced to vIRR before the
6219 * next vcpu entry. Sending a notification event in
6220 * this case has no effect, as vcpu is not in root
6223 * Case 3: vcpu exits to root mode and is blocked.
6224 * vcpu_block() has already synced PIR to vIRR and
6225 * never blocks vcpu if vIRR is not cleared. Therefore,
6226 * a blocked vcpu here does not wait for any requested
6227 * interrupts in PIR, and sending a notification event
6228 * which has no effect is safe here.
6231 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
), pi_vec
);
6238 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
6241 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6243 if (is_guest_mode(vcpu
) &&
6244 vector
== vmx
->nested
.posted_intr_nv
) {
6246 * If a posted intr is not recognized by hardware,
6247 * we will accomplish it in the next vmentry.
6249 vmx
->nested
.pi_pending
= true;
6250 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6251 /* the PIR and ON have been set by L1. */
6252 if (!kvm_vcpu_trigger_posted_interrupt(vcpu
, true))
6253 kvm_vcpu_kick(vcpu
);
6259 * Send interrupt to vcpu via posted interrupt way.
6260 * 1. If target vcpu is running(non-root mode), send posted interrupt
6261 * notification to vcpu and hardware will sync PIR to vIRR atomically.
6262 * 2. If target vcpu isn't running(root mode), kick it to pick up the
6263 * interrupt from PIR in next vmentry.
6265 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
6267 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6270 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
6274 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
6277 /* If a previous notification has sent the IPI, nothing to do. */
6278 if (pi_test_and_set_on(&vmx
->pi_desc
))
6281 if (!kvm_vcpu_trigger_posted_interrupt(vcpu
, false))
6282 kvm_vcpu_kick(vcpu
);
6286 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
6287 * will not change in the lifetime of the guest.
6288 * Note that host-state that does change is set elsewhere. E.g., host-state
6289 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
6291 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
6296 unsigned long cr0
, cr3
, cr4
;
6299 WARN_ON(cr0
& X86_CR0_TS
);
6300 vmcs_writel(HOST_CR0
, cr0
); /* 22.2.3 */
6303 * Save the most likely value for this task's CR3 in the VMCS.
6304 * We can't use __get_current_cr3_fast() because we're not atomic.
6307 vmcs_writel(HOST_CR3
, cr3
); /* 22.2.3 FIXME: shadow tables */
6308 vmx
->loaded_vmcs
->host_state
.cr3
= cr3
;
6310 /* Save the most likely value for this task's CR4 in the VMCS. */
6311 cr4
= cr4_read_shadow();
6312 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
6313 vmx
->loaded_vmcs
->host_state
.cr4
= cr4
;
6315 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
6316 #ifdef CONFIG_X86_64
6318 * Load null selectors, so we can avoid reloading them in
6319 * vmx_prepare_switch_to_host(), in case userspace uses
6320 * the null selectors too (the expected case).
6322 vmcs_write16(HOST_DS_SELECTOR
, 0);
6323 vmcs_write16(HOST_ES_SELECTOR
, 0);
6325 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
6326 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
6328 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
6329 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
6332 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
6333 vmx
->host_idt_base
= dt
.address
;
6335 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
6337 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
6338 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
6339 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
6340 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
6342 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
6343 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
6344 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
6348 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
6350 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
6352 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
6353 if (is_guest_mode(&vmx
->vcpu
))
6354 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
6355 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
6356 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
6359 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
6361 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
6363 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
6364 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
6367 pin_based_exec_ctrl
&= ~PIN_BASED_VIRTUAL_NMIS
;
6369 /* Enable the preemption timer dynamically */
6370 pin_based_exec_ctrl
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
6371 return pin_based_exec_ctrl
;
6374 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
6376 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6378 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
6379 if (cpu_has_secondary_exec_ctrls()) {
6380 if (kvm_vcpu_apicv_active(vcpu
))
6381 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
6382 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
6383 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
6385 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
6386 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
6387 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
6390 if (cpu_has_vmx_msr_bitmap())
6391 vmx_update_msr_bitmap(vcpu
);
6394 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
6396 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
6398 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
6399 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
6401 if (!cpu_need_tpr_shadow(&vmx
->vcpu
)) {
6402 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
6403 #ifdef CONFIG_X86_64
6404 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
6405 CPU_BASED_CR8_LOAD_EXITING
;
6409 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
6410 CPU_BASED_CR3_LOAD_EXITING
|
6411 CPU_BASED_INVLPG_EXITING
;
6412 if (kvm_mwait_in_guest(vmx
->vcpu
.kvm
))
6413 exec_control
&= ~(CPU_BASED_MWAIT_EXITING
|
6414 CPU_BASED_MONITOR_EXITING
);
6415 if (kvm_hlt_in_guest(vmx
->vcpu
.kvm
))
6416 exec_control
&= ~CPU_BASED_HLT_EXITING
;
6417 return exec_control
;
6420 static bool vmx_rdrand_supported(void)
6422 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
6423 SECONDARY_EXEC_RDRAND_EXITING
;
6426 static bool vmx_rdseed_supported(void)
6428 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
6429 SECONDARY_EXEC_RDSEED_EXITING
;
6432 static void vmx_compute_secondary_exec_control(struct vcpu_vmx
*vmx
)
6434 struct kvm_vcpu
*vcpu
= &vmx
->vcpu
;
6436 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
6438 if (!cpu_need_virtualize_apic_accesses(vcpu
))
6439 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6441 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
6443 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
6444 enable_unrestricted_guest
= 0;
6446 if (!enable_unrestricted_guest
)
6447 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
6448 if (kvm_pause_in_guest(vmx
->vcpu
.kvm
))
6449 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
6450 if (!kvm_vcpu_apicv_active(vcpu
))
6451 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
6452 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
6453 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
6455 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
6456 * in vmx_set_cr4. */
6457 exec_control
&= ~SECONDARY_EXEC_DESC
;
6459 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
6461 We can NOT enable shadow_vmcs here because we don't have yet
6464 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
6467 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
6469 if (vmx_xsaves_supported()) {
6470 /* Exposing XSAVES only when XSAVE is exposed */
6471 bool xsaves_enabled
=
6472 guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
6473 guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
);
6475 if (!xsaves_enabled
)
6476 exec_control
&= ~SECONDARY_EXEC_XSAVES
;
6480 vmx
->nested
.msrs
.secondary_ctls_high
|=
6481 SECONDARY_EXEC_XSAVES
;
6483 vmx
->nested
.msrs
.secondary_ctls_high
&=
6484 ~SECONDARY_EXEC_XSAVES
;
6488 if (vmx_rdtscp_supported()) {
6489 bool rdtscp_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
);
6490 if (!rdtscp_enabled
)
6491 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
6495 vmx
->nested
.msrs
.secondary_ctls_high
|=
6496 SECONDARY_EXEC_RDTSCP
;
6498 vmx
->nested
.msrs
.secondary_ctls_high
&=
6499 ~SECONDARY_EXEC_RDTSCP
;
6503 if (vmx_invpcid_supported()) {
6504 /* Exposing INVPCID only when PCID is exposed */
6505 bool invpcid_enabled
=
6506 guest_cpuid_has(vcpu
, X86_FEATURE_INVPCID
) &&
6507 guest_cpuid_has(vcpu
, X86_FEATURE_PCID
);
6509 if (!invpcid_enabled
) {
6510 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
6511 guest_cpuid_clear(vcpu
, X86_FEATURE_INVPCID
);
6515 if (invpcid_enabled
)
6516 vmx
->nested
.msrs
.secondary_ctls_high
|=
6517 SECONDARY_EXEC_ENABLE_INVPCID
;
6519 vmx
->nested
.msrs
.secondary_ctls_high
&=
6520 ~SECONDARY_EXEC_ENABLE_INVPCID
;
6524 if (vmx_rdrand_supported()) {
6525 bool rdrand_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RDRAND
);
6527 exec_control
&= ~SECONDARY_EXEC_RDRAND_EXITING
;
6531 vmx
->nested
.msrs
.secondary_ctls_high
|=
6532 SECONDARY_EXEC_RDRAND_EXITING
;
6534 vmx
->nested
.msrs
.secondary_ctls_high
&=
6535 ~SECONDARY_EXEC_RDRAND_EXITING
;
6539 if (vmx_rdseed_supported()) {
6540 bool rdseed_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RDSEED
);
6542 exec_control
&= ~SECONDARY_EXEC_RDSEED_EXITING
;
6546 vmx
->nested
.msrs
.secondary_ctls_high
|=
6547 SECONDARY_EXEC_RDSEED_EXITING
;
6549 vmx
->nested
.msrs
.secondary_ctls_high
&=
6550 ~SECONDARY_EXEC_RDSEED_EXITING
;
6554 vmx
->secondary_exec_control
= exec_control
;
6557 static void ept_set_mmio_spte_mask(void)
6560 * EPT Misconfigurations can be generated if the value of bits 2:0
6561 * of an EPT paging-structure entry is 110b (write/execute).
6563 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK
,
6564 VMX_EPT_MISCONFIG_WX_VALUE
);
6567 #define VMX_XSS_EXIT_BITMAP 0
6569 * Sets up the vmcs for emulated real mode.
6571 static void vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
6575 if (enable_shadow_vmcs
) {
6577 * At vCPU creation, "VMWRITE to any supported field
6578 * in the VMCS" is supported, so use the more
6579 * permissive vmx_vmread_bitmap to specify both read
6580 * and write permissions for the shadow VMCS.
6582 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
6583 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmread_bitmap
));
6585 if (cpu_has_vmx_msr_bitmap())
6586 vmcs_write64(MSR_BITMAP
, __pa(vmx
->vmcs01
.msr_bitmap
));
6588 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
6591 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
6592 vmx
->hv_deadline_tsc
= -1;
6594 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
6596 if (cpu_has_secondary_exec_ctrls()) {
6597 vmx_compute_secondary_exec_control(vmx
);
6598 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
6599 vmx
->secondary_exec_control
);
6602 if (kvm_vcpu_apicv_active(&vmx
->vcpu
)) {
6603 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
6604 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
6605 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
6606 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
6608 vmcs_write16(GUEST_INTR_STATUS
, 0);
6610 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
6611 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
6614 if (!kvm_pause_in_guest(vmx
->vcpu
.kvm
)) {
6615 vmcs_write32(PLE_GAP
, ple_gap
);
6616 vmx
->ple_window
= ple_window
;
6617 vmx
->ple_window_dirty
= true;
6620 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
6621 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
6622 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
6624 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
6625 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
6626 vmx_set_constant_host_state(vmx
);
6627 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
6628 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
6630 if (cpu_has_vmx_vmfunc())
6631 vmcs_write64(VM_FUNCTION_CONTROL
, 0);
6633 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
6634 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
6635 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
.val
));
6636 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
6637 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
.val
));
6639 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
6640 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
6642 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
6643 u32 index
= vmx_msr_index
[i
];
6644 u32 data_low
, data_high
;
6647 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
6649 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
6651 vmx
->guest_msrs
[j
].index
= i
;
6652 vmx
->guest_msrs
[j
].data
= 0;
6653 vmx
->guest_msrs
[j
].mask
= -1ull;
6657 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
6659 /* 22.2.1, 20.8.1 */
6660 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
6662 vmx
->vcpu
.arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
6663 vmcs_writel(CR0_GUEST_HOST_MASK
, ~X86_CR0_TS
);
6665 set_cr4_guest_host_mask(vmx
);
6667 if (vmx_xsaves_supported())
6668 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
6671 ASSERT(vmx
->pml_pg
);
6672 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
6673 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
6676 if (cpu_has_vmx_encls_vmexit())
6677 vmcs_write64(ENCLS_EXITING_BITMAP
, -1ull);
6680 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
6682 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6683 struct msr_data apic_base_msr
;
6686 vmx
->rmode
.vm86_active
= 0;
6689 vcpu
->arch
.microcode_version
= 0x100000000ULL
;
6690 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
6691 kvm_set_cr8(vcpu
, 0);
6694 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
|
6695 MSR_IA32_APICBASE_ENABLE
;
6696 if (kvm_vcpu_is_reset_bsp(vcpu
))
6697 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
6698 apic_base_msr
.host_initiated
= true;
6699 kvm_set_apic_base(vcpu
, &apic_base_msr
);
6702 vmx_segment_cache_clear(vmx
);
6704 seg_setup(VCPU_SREG_CS
);
6705 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
6706 vmcs_writel(GUEST_CS_BASE
, 0xffff0000ul
);
6708 seg_setup(VCPU_SREG_DS
);
6709 seg_setup(VCPU_SREG_ES
);
6710 seg_setup(VCPU_SREG_FS
);
6711 seg_setup(VCPU_SREG_GS
);
6712 seg_setup(VCPU_SREG_SS
);
6714 vmcs_write16(GUEST_TR_SELECTOR
, 0);
6715 vmcs_writel(GUEST_TR_BASE
, 0);
6716 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
6717 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
6719 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
6720 vmcs_writel(GUEST_LDTR_BASE
, 0);
6721 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
6722 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
6725 vmcs_write32(GUEST_SYSENTER_CS
, 0);
6726 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
6727 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
6728 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
6731 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6732 kvm_rip_write(vcpu
, 0xfff0);
6734 vmcs_writel(GUEST_GDTR_BASE
, 0);
6735 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
6737 vmcs_writel(GUEST_IDTR_BASE
, 0);
6738 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
6740 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
6741 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
6742 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
6743 if (kvm_mpx_supported())
6744 vmcs_write64(GUEST_BNDCFGS
, 0);
6748 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
6750 if (cpu_has_vmx_tpr_shadow() && !init_event
) {
6751 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
6752 if (cpu_need_tpr_shadow(vcpu
))
6753 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
6754 __pa(vcpu
->arch
.apic
->regs
));
6755 vmcs_write32(TPR_THRESHOLD
, 0);
6758 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
6761 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
6763 cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
6764 vmx
->vcpu
.arch
.cr0
= cr0
;
6765 vmx_set_cr0(vcpu
, cr0
); /* enter rmode */
6766 vmx_set_cr4(vcpu
, 0);
6767 vmx_set_efer(vcpu
, 0);
6769 update_exception_bitmap(vcpu
);
6771 vpid_sync_context(vmx
->vpid
);
6773 vmx_clear_hlt(vcpu
);
6777 * In nested virtualization, check if L1 asked to exit on external interrupts.
6778 * For most existing hypervisors, this will always return true.
6780 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
6782 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
6783 PIN_BASED_EXT_INTR_MASK
;
6787 * In nested virtualization, check if L1 has set
6788 * VM_EXIT_ACK_INTR_ON_EXIT
6790 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
6792 return get_vmcs12(vcpu
)->vm_exit_controls
&
6793 VM_EXIT_ACK_INTR_ON_EXIT
;
6796 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
6798 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu
));
6801 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
6803 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
6804 CPU_BASED_VIRTUAL_INTR_PENDING
);
6807 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
6810 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
6811 enable_irq_window(vcpu
);
6815 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
6816 CPU_BASED_VIRTUAL_NMI_PENDING
);
6819 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
6821 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6823 int irq
= vcpu
->arch
.interrupt
.nr
;
6825 trace_kvm_inj_virq(irq
);
6827 ++vcpu
->stat
.irq_injections
;
6828 if (vmx
->rmode
.vm86_active
) {
6830 if (vcpu
->arch
.interrupt
.soft
)
6831 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
6832 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
6833 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6836 intr
= irq
| INTR_INFO_VALID_MASK
;
6837 if (vcpu
->arch
.interrupt
.soft
) {
6838 intr
|= INTR_TYPE_SOFT_INTR
;
6839 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
6840 vmx
->vcpu
.arch
.event_exit_inst_len
);
6842 intr
|= INTR_TYPE_EXT_INTR
;
6843 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
6845 vmx_clear_hlt(vcpu
);
6848 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
6850 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6854 * Tracking the NMI-blocked state in software is built upon
6855 * finding the next open IRQ window. This, in turn, depends on
6856 * well-behaving guests: They have to keep IRQs disabled at
6857 * least as long as the NMI handler runs. Otherwise we may
6858 * cause NMI nesting, maybe breaking the guest. But as this is
6859 * highly unlikely, we can live with the residual risk.
6861 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 1;
6862 vmx
->loaded_vmcs
->vnmi_blocked_time
= 0;
6865 ++vcpu
->stat
.nmi_injections
;
6866 vmx
->loaded_vmcs
->nmi_known_unmasked
= false;
6868 if (vmx
->rmode
.vm86_active
) {
6869 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
6870 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6874 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
6875 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
6877 vmx_clear_hlt(vcpu
);
6880 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
6882 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6886 return vmx
->loaded_vmcs
->soft_vnmi_blocked
;
6887 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
6889 masked
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
6890 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
6894 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
6896 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6899 if (vmx
->loaded_vmcs
->soft_vnmi_blocked
!= masked
) {
6900 vmx
->loaded_vmcs
->soft_vnmi_blocked
= masked
;
6901 vmx
->loaded_vmcs
->vnmi_blocked_time
= 0;
6904 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
6906 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
6907 GUEST_INTR_STATE_NMI
);
6909 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
6910 GUEST_INTR_STATE_NMI
);
6914 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
6916 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
6920 to_vmx(vcpu
)->loaded_vmcs
->soft_vnmi_blocked
)
6923 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
6924 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
6925 | GUEST_INTR_STATE_NMI
));
6928 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6930 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
6931 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
6932 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
6933 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
6936 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
6940 if (enable_unrestricted_guest
)
6943 ret
= x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
6947 to_kvm_vmx(kvm
)->tss_addr
= addr
;
6948 return init_rmode_tss(kvm
);
6951 static int vmx_set_identity_map_addr(struct kvm
*kvm
, u64 ident_addr
)
6953 to_kvm_vmx(kvm
)->ept_identity_map_addr
= ident_addr
;
6957 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
6962 * Update instruction length as we may reinject the exception
6963 * from user space while in guest debugging mode.
6965 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
6966 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
6967 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
6971 if (vcpu
->guest_debug
&
6972 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
6989 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
6990 int vec
, u32 err_code
)
6993 * Instruction with address size override prefix opcode 0x67
6994 * Cause the #SS fault with 0 error code in VM86 mode.
6996 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
6997 if (kvm_emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
6998 if (vcpu
->arch
.halt_request
) {
6999 vcpu
->arch
.halt_request
= 0;
7000 return kvm_vcpu_halt(vcpu
);
7008 * Forward all other exceptions that are valid in real mode.
7009 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
7010 * the required debugging infrastructure rework.
7012 kvm_queue_exception(vcpu
, vec
);
7017 * Trigger machine check on the host. We assume all the MSRs are already set up
7018 * by the CPU and that we still run on the same CPU as the MCE occurred on.
7019 * We pass a fake environment to the machine check handler because we want
7020 * the guest to be always treated like user space, no matter what context
7021 * it used internally.
7023 static void kvm_machine_check(void)
7025 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
7026 struct pt_regs regs
= {
7027 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
7028 .flags
= X86_EFLAGS_IF
,
7031 do_machine_check(®s
, 0);
7035 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
7037 /* already handled by vcpu_run */
7041 static int handle_exception(struct kvm_vcpu
*vcpu
)
7043 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7044 struct kvm_run
*kvm_run
= vcpu
->run
;
7045 u32 intr_info
, ex_no
, error_code
;
7046 unsigned long cr2
, rip
, dr6
;
7048 enum emulation_result er
;
7050 vect_info
= vmx
->idt_vectoring_info
;
7051 intr_info
= vmx
->exit_intr_info
;
7053 if (is_machine_check(intr_info
))
7054 return handle_machine_check(vcpu
);
7056 if (is_nmi(intr_info
))
7057 return 1; /* already handled by vmx_vcpu_run() */
7059 if (is_invalid_opcode(intr_info
))
7060 return handle_ud(vcpu
);
7063 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
7064 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
7066 if (!vmx
->rmode
.vm86_active
&& is_gp_fault(intr_info
)) {
7067 WARN_ON_ONCE(!enable_vmware_backdoor
);
7068 er
= kvm_emulate_instruction(vcpu
,
7069 EMULTYPE_VMWARE
| EMULTYPE_NO_UD_ON_FAIL
);
7070 if (er
== EMULATE_USER_EXIT
)
7072 else if (er
!= EMULATE_DONE
)
7073 kvm_queue_exception_e(vcpu
, GP_VECTOR
, error_code
);
7078 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
7079 * MMIO, it is better to report an internal error.
7080 * See the comments in vmx_handle_exit.
7082 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
7083 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
7084 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
7085 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
7086 vcpu
->run
->internal
.ndata
= 3;
7087 vcpu
->run
->internal
.data
[0] = vect_info
;
7088 vcpu
->run
->internal
.data
[1] = intr_info
;
7089 vcpu
->run
->internal
.data
[2] = error_code
;
7093 if (is_page_fault(intr_info
)) {
7094 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
7095 /* EPT won't cause page fault directly */
7096 WARN_ON_ONCE(!vcpu
->arch
.apf
.host_apf_reason
&& enable_ept
);
7097 return kvm_handle_page_fault(vcpu
, error_code
, cr2
, NULL
, 0);
7100 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
7102 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
7103 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
7107 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
7110 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
7111 if (!(vcpu
->guest_debug
&
7112 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
7113 vcpu
->arch
.dr6
&= ~15;
7114 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
7115 if (is_icebp(intr_info
))
7116 skip_emulated_instruction(vcpu
);
7118 kvm_queue_exception(vcpu
, DB_VECTOR
);
7121 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
7122 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
7126 * Update instruction length as we may reinject #BP from
7127 * user space while in guest debugging mode. Reading it for
7128 * #DB as well causes no harm, it is not used in that case.
7130 vmx
->vcpu
.arch
.event_exit_inst_len
=
7131 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
7132 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
7133 rip
= kvm_rip_read(vcpu
);
7134 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
7135 kvm_run
->debug
.arch
.exception
= ex_no
;
7138 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
7139 kvm_run
->ex
.exception
= ex_no
;
7140 kvm_run
->ex
.error_code
= error_code
;
7146 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
7148 ++vcpu
->stat
.irq_exits
;
7152 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
7154 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
7155 vcpu
->mmio_needed
= 0;
7159 static int handle_io(struct kvm_vcpu
*vcpu
)
7161 unsigned long exit_qualification
;
7162 int size
, in
, string
;
7165 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7166 string
= (exit_qualification
& 16) != 0;
7168 ++vcpu
->stat
.io_exits
;
7171 return kvm_emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
7173 port
= exit_qualification
>> 16;
7174 size
= (exit_qualification
& 7) + 1;
7175 in
= (exit_qualification
& 8) != 0;
7177 return kvm_fast_pio(vcpu
, size
, port
, in
);
7181 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
7184 * Patch in the VMCALL instruction:
7186 hypercall
[0] = 0x0f;
7187 hypercall
[1] = 0x01;
7188 hypercall
[2] = 0xc1;
7191 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
7192 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
7194 if (is_guest_mode(vcpu
)) {
7195 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7196 unsigned long orig_val
= val
;
7199 * We get here when L2 changed cr0 in a way that did not change
7200 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
7201 * but did change L0 shadowed bits. So we first calculate the
7202 * effective cr0 value that L1 would like to write into the
7203 * hardware. It consists of the L2-owned bits from the new
7204 * value combined with the L1-owned bits from L1's guest_cr0.
7206 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
7207 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
7209 if (!nested_guest_cr0_valid(vcpu
, val
))
7212 if (kvm_set_cr0(vcpu
, val
))
7214 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
7217 if (to_vmx(vcpu
)->nested
.vmxon
&&
7218 !nested_host_cr0_valid(vcpu
, val
))
7221 return kvm_set_cr0(vcpu
, val
);
7225 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
7227 if (is_guest_mode(vcpu
)) {
7228 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7229 unsigned long orig_val
= val
;
7231 /* analogously to handle_set_cr0 */
7232 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
7233 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
7234 if (kvm_set_cr4(vcpu
, val
))
7236 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
7239 return kvm_set_cr4(vcpu
, val
);
7242 static int handle_desc(struct kvm_vcpu
*vcpu
)
7244 WARN_ON(!(vcpu
->arch
.cr4
& X86_CR4_UMIP
));
7245 return kvm_emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
7248 static int handle_cr(struct kvm_vcpu
*vcpu
)
7250 unsigned long exit_qualification
, val
;
7256 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7257 cr
= exit_qualification
& 15;
7258 reg
= (exit_qualification
>> 8) & 15;
7259 switch ((exit_qualification
>> 4) & 3) {
7260 case 0: /* mov to cr */
7261 val
= kvm_register_readl(vcpu
, reg
);
7262 trace_kvm_cr_write(cr
, val
);
7265 err
= handle_set_cr0(vcpu
, val
);
7266 return kvm_complete_insn_gp(vcpu
, err
);
7268 WARN_ON_ONCE(enable_unrestricted_guest
);
7269 err
= kvm_set_cr3(vcpu
, val
);
7270 return kvm_complete_insn_gp(vcpu
, err
);
7272 err
= handle_set_cr4(vcpu
, val
);
7273 return kvm_complete_insn_gp(vcpu
, err
);
7275 u8 cr8_prev
= kvm_get_cr8(vcpu
);
7277 err
= kvm_set_cr8(vcpu
, cr8
);
7278 ret
= kvm_complete_insn_gp(vcpu
, err
);
7279 if (lapic_in_kernel(vcpu
))
7281 if (cr8_prev
<= cr8
)
7284 * TODO: we might be squashing a
7285 * KVM_GUESTDBG_SINGLESTEP-triggered
7286 * KVM_EXIT_DEBUG here.
7288 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
7294 WARN_ONCE(1, "Guest should always own CR0.TS");
7295 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
7296 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
7297 return kvm_skip_emulated_instruction(vcpu
);
7298 case 1: /*mov from cr*/
7301 WARN_ON_ONCE(enable_unrestricted_guest
);
7302 val
= kvm_read_cr3(vcpu
);
7303 kvm_register_write(vcpu
, reg
, val
);
7304 trace_kvm_cr_read(cr
, val
);
7305 return kvm_skip_emulated_instruction(vcpu
);
7307 val
= kvm_get_cr8(vcpu
);
7308 kvm_register_write(vcpu
, reg
, val
);
7309 trace_kvm_cr_read(cr
, val
);
7310 return kvm_skip_emulated_instruction(vcpu
);
7314 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
7315 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
7316 kvm_lmsw(vcpu
, val
);
7318 return kvm_skip_emulated_instruction(vcpu
);
7322 vcpu
->run
->exit_reason
= 0;
7323 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
7324 (int)(exit_qualification
>> 4) & 3, cr
);
7328 static int handle_dr(struct kvm_vcpu
*vcpu
)
7330 unsigned long exit_qualification
;
7333 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7334 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
7336 /* First, if DR does not exist, trigger UD */
7337 if (!kvm_require_dr(vcpu
, dr
))
7340 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
7341 if (!kvm_require_cpl(vcpu
, 0))
7343 dr7
= vmcs_readl(GUEST_DR7
);
7346 * As the vm-exit takes precedence over the debug trap, we
7347 * need to emulate the latter, either for the host or the
7348 * guest debugging itself.
7350 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7351 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
7352 vcpu
->run
->debug
.arch
.dr7
= dr7
;
7353 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
7354 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
7355 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
7358 vcpu
->arch
.dr6
&= ~15;
7359 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
7360 kvm_queue_exception(vcpu
, DB_VECTOR
);
7365 if (vcpu
->guest_debug
== 0) {
7366 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
7367 CPU_BASED_MOV_DR_EXITING
);
7370 * No more DR vmexits; force a reload of the debug registers
7371 * and reenter on this instruction. The next vmexit will
7372 * retrieve the full state of the debug registers.
7374 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
7378 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
7379 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
7382 if (kvm_get_dr(vcpu
, dr
, &val
))
7384 kvm_register_write(vcpu
, reg
, val
);
7386 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
7389 return kvm_skip_emulated_instruction(vcpu
);
7392 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
7394 return vcpu
->arch
.dr6
;
7397 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
7401 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
7403 get_debugreg(vcpu
->arch
.db
[0], 0);
7404 get_debugreg(vcpu
->arch
.db
[1], 1);
7405 get_debugreg(vcpu
->arch
.db
[2], 2);
7406 get_debugreg(vcpu
->arch
.db
[3], 3);
7407 get_debugreg(vcpu
->arch
.dr6
, 6);
7408 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
7410 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
7411 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
, CPU_BASED_MOV_DR_EXITING
);
7414 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
7416 vmcs_writel(GUEST_DR7
, val
);
7419 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
7421 return kvm_emulate_cpuid(vcpu
);
7424 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
7426 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7427 struct msr_data msr_info
;
7429 msr_info
.index
= ecx
;
7430 msr_info
.host_initiated
= false;
7431 if (vmx_get_msr(vcpu
, &msr_info
)) {
7432 trace_kvm_msr_read_ex(ecx
);
7433 kvm_inject_gp(vcpu
, 0);
7437 trace_kvm_msr_read(ecx
, msr_info
.data
);
7439 /* FIXME: handling of bits 32:63 of rax, rdx */
7440 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = msr_info
.data
& -1u;
7441 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (msr_info
.data
>> 32) & -1u;
7442 return kvm_skip_emulated_instruction(vcpu
);
7445 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
7447 struct msr_data msr
;
7448 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7449 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
7450 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
7454 msr
.host_initiated
= false;
7455 if (kvm_set_msr(vcpu
, &msr
) != 0) {
7456 trace_kvm_msr_write_ex(ecx
, data
);
7457 kvm_inject_gp(vcpu
, 0);
7461 trace_kvm_msr_write(ecx
, data
);
7462 return kvm_skip_emulated_instruction(vcpu
);
7465 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
7467 kvm_apic_update_ppr(vcpu
);
7471 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
7473 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
7474 CPU_BASED_VIRTUAL_INTR_PENDING
);
7476 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7478 ++vcpu
->stat
.irq_window_exits
;
7482 static int handle_halt(struct kvm_vcpu
*vcpu
)
7484 return kvm_emulate_halt(vcpu
);
7487 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
7489 return kvm_emulate_hypercall(vcpu
);
7492 static int handle_invd(struct kvm_vcpu
*vcpu
)
7494 return kvm_emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
7497 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
7499 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7501 kvm_mmu_invlpg(vcpu
, exit_qualification
);
7502 return kvm_skip_emulated_instruction(vcpu
);
7505 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
7509 err
= kvm_rdpmc(vcpu
);
7510 return kvm_complete_insn_gp(vcpu
, err
);
7513 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
7515 return kvm_emulate_wbinvd(vcpu
);
7518 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
7520 u64 new_bv
= kvm_read_edx_eax(vcpu
);
7521 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7523 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
7524 return kvm_skip_emulated_instruction(vcpu
);
7528 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
7530 kvm_skip_emulated_instruction(vcpu
);
7531 WARN(1, "this should never happen\n");
7535 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
7537 kvm_skip_emulated_instruction(vcpu
);
7538 WARN(1, "this should never happen\n");
7542 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
7544 if (likely(fasteoi
)) {
7545 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7546 int access_type
, offset
;
7548 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
7549 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
7551 * Sane guest uses MOV to write EOI, with written value
7552 * not cared. So make a short-circuit here by avoiding
7553 * heavy instruction emulation.
7555 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
7556 (offset
== APIC_EOI
)) {
7557 kvm_lapic_set_eoi(vcpu
);
7558 return kvm_skip_emulated_instruction(vcpu
);
7561 return kvm_emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
7564 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
7566 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7567 int vector
= exit_qualification
& 0xff;
7569 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
7570 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
7574 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
7576 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7577 u32 offset
= exit_qualification
& 0xfff;
7579 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
7580 kvm_apic_write_nodecode(vcpu
, offset
);
7584 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
7586 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7587 unsigned long exit_qualification
;
7588 bool has_error_code
= false;
7591 int reason
, type
, idt_v
, idt_index
;
7593 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
7594 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
7595 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
7597 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7599 reason
= (u32
)exit_qualification
>> 30;
7600 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
7602 case INTR_TYPE_NMI_INTR
:
7603 vcpu
->arch
.nmi_injected
= false;
7604 vmx_set_nmi_mask(vcpu
, true);
7606 case INTR_TYPE_EXT_INTR
:
7607 case INTR_TYPE_SOFT_INTR
:
7608 kvm_clear_interrupt_queue(vcpu
);
7610 case INTR_TYPE_HARD_EXCEPTION
:
7611 if (vmx
->idt_vectoring_info
&
7612 VECTORING_INFO_DELIVER_CODE_MASK
) {
7613 has_error_code
= true;
7615 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
7618 case INTR_TYPE_SOFT_EXCEPTION
:
7619 kvm_clear_exception_queue(vcpu
);
7625 tss_selector
= exit_qualification
;
7627 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
7628 type
!= INTR_TYPE_EXT_INTR
&&
7629 type
!= INTR_TYPE_NMI_INTR
))
7630 skip_emulated_instruction(vcpu
);
7632 if (kvm_task_switch(vcpu
, tss_selector
,
7633 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
7634 has_error_code
, error_code
) == EMULATE_FAIL
) {
7635 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
7636 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
7637 vcpu
->run
->internal
.ndata
= 0;
7642 * TODO: What about debug traps on tss switch?
7643 * Are we supposed to inject them and update dr6?
7649 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
7651 unsigned long exit_qualification
;
7655 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7658 * EPT violation happened while executing iret from NMI,
7659 * "blocked by NMI" bit has to be set before next VM entry.
7660 * There are errata that may cause this bit to not be set:
7663 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7665 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
7666 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
7668 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
7669 trace_kvm_page_fault(gpa
, exit_qualification
);
7671 /* Is it a read fault? */
7672 error_code
= (exit_qualification
& EPT_VIOLATION_ACC_READ
)
7673 ? PFERR_USER_MASK
: 0;
7674 /* Is it a write fault? */
7675 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_WRITE
)
7676 ? PFERR_WRITE_MASK
: 0;
7677 /* Is it a fetch fault? */
7678 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_INSTR
)
7679 ? PFERR_FETCH_MASK
: 0;
7680 /* ept page table entry is present? */
7681 error_code
|= (exit_qualification
&
7682 (EPT_VIOLATION_READABLE
| EPT_VIOLATION_WRITABLE
|
7683 EPT_VIOLATION_EXECUTABLE
))
7684 ? PFERR_PRESENT_MASK
: 0;
7686 error_code
|= (exit_qualification
& 0x100) != 0 ?
7687 PFERR_GUEST_FINAL_MASK
: PFERR_GUEST_PAGE_MASK
;
7689 vcpu
->arch
.exit_qualification
= exit_qualification
;
7690 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
7693 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
7698 * A nested guest cannot optimize MMIO vmexits, because we have an
7699 * nGPA here instead of the required GPA.
7701 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
7702 if (!is_guest_mode(vcpu
) &&
7703 !kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
7704 trace_kvm_fast_mmio(gpa
);
7706 * Doing kvm_skip_emulated_instruction() depends on undefined
7707 * behavior: Intel's manual doesn't mandate
7708 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
7709 * occurs and while on real hardware it was observed to be set,
7710 * other hypervisors (namely Hyper-V) don't set it, we end up
7711 * advancing IP with some random value. Disable fast mmio when
7712 * running nested and keep it for real hardware in hope that
7713 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
7715 if (!static_cpu_has(X86_FEATURE_HYPERVISOR
))
7716 return kvm_skip_emulated_instruction(vcpu
);
7718 return kvm_emulate_instruction(vcpu
, EMULTYPE_SKIP
) ==
7722 return kvm_mmu_page_fault(vcpu
, gpa
, PFERR_RSVD_MASK
, NULL
, 0);
7725 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
7727 WARN_ON_ONCE(!enable_vnmi
);
7728 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
7729 CPU_BASED_VIRTUAL_NMI_PENDING
);
7730 ++vcpu
->stat
.nmi_window_exits
;
7731 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7736 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
7738 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7739 enum emulation_result err
= EMULATE_DONE
;
7742 bool intr_window_requested
;
7743 unsigned count
= 130;
7746 * We should never reach the point where we are emulating L2
7747 * due to invalid guest state as that means we incorrectly
7748 * allowed a nested VMEntry with an invalid vmcs12.
7750 WARN_ON_ONCE(vmx
->emulation_required
&& vmx
->nested
.nested_run_pending
);
7752 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
7753 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
7755 while (vmx
->emulation_required
&& count
-- != 0) {
7756 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
7757 return handle_interrupt_window(&vmx
->vcpu
);
7759 if (kvm_test_request(KVM_REQ_EVENT
, vcpu
))
7762 err
= kvm_emulate_instruction(vcpu
, 0);
7764 if (err
== EMULATE_USER_EXIT
) {
7765 ++vcpu
->stat
.mmio_exits
;
7770 if (err
!= EMULATE_DONE
)
7771 goto emulation_error
;
7773 if (vmx
->emulation_required
&& !vmx
->rmode
.vm86_active
&&
7774 vcpu
->arch
.exception
.pending
)
7775 goto emulation_error
;
7777 if (vcpu
->arch
.halt_request
) {
7778 vcpu
->arch
.halt_request
= 0;
7779 ret
= kvm_vcpu_halt(vcpu
);
7783 if (signal_pending(current
))
7793 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
7794 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
7795 vcpu
->run
->internal
.ndata
= 0;
7799 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
7801 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7802 int old
= vmx
->ple_window
;
7804 vmx
->ple_window
= __grow_ple_window(old
, ple_window
,
7808 if (vmx
->ple_window
!= old
)
7809 vmx
->ple_window_dirty
= true;
7811 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
7814 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
7816 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7817 int old
= vmx
->ple_window
;
7819 vmx
->ple_window
= __shrink_ple_window(old
, ple_window
,
7823 if (vmx
->ple_window
!= old
)
7824 vmx
->ple_window_dirty
= true;
7826 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
7830 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7832 static void wakeup_handler(void)
7834 struct kvm_vcpu
*vcpu
;
7835 int cpu
= smp_processor_id();
7837 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
7838 list_for_each_entry(vcpu
, &per_cpu(blocked_vcpu_on_cpu
, cpu
),
7839 blocked_vcpu_list
) {
7840 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
7842 if (pi_test_on(pi_desc
) == 1)
7843 kvm_vcpu_kick(vcpu
);
7845 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
7848 static void vmx_enable_tdp(void)
7850 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK
,
7851 enable_ept_ad_bits
? VMX_EPT_ACCESS_BIT
: 0ull,
7852 enable_ept_ad_bits
? VMX_EPT_DIRTY_BIT
: 0ull,
7853 0ull, VMX_EPT_EXECUTABLE_MASK
,
7854 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK
,
7855 VMX_EPT_RWX_MASK
, 0ull);
7857 ept_set_mmio_spte_mask();
7861 static __init
int hardware_setup(void)
7863 unsigned long host_bndcfgs
;
7866 rdmsrl_safe(MSR_EFER
, &host_efer
);
7868 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
7869 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
7871 for (i
= 0; i
< VMX_BITMAP_NR
; i
++) {
7872 vmx_bitmap
[i
] = (unsigned long *)__get_free_page(GFP_KERNEL
);
7877 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
7878 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
7880 if (setup_vmcs_config(&vmcs_config
) < 0) {
7885 if (boot_cpu_has(X86_FEATURE_NX
))
7886 kvm_enable_efer_bits(EFER_NX
);
7888 if (boot_cpu_has(X86_FEATURE_MPX
)) {
7889 rdmsrl(MSR_IA32_BNDCFGS
, host_bndcfgs
);
7890 WARN_ONCE(host_bndcfgs
, "KVM: BNDCFGS in host will be lost");
7893 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7894 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7897 if (!cpu_has_vmx_ept() ||
7898 !cpu_has_vmx_ept_4levels() ||
7899 !cpu_has_vmx_ept_mt_wb() ||
7900 !cpu_has_vmx_invept_global())
7903 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept
)
7904 enable_ept_ad_bits
= 0;
7906 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept
)
7907 enable_unrestricted_guest
= 0;
7909 if (!cpu_has_vmx_flexpriority())
7910 flexpriority_enabled
= 0;
7912 if (!cpu_has_virtual_nmis())
7916 * set_apic_access_page_addr() is used to reload apic access
7917 * page upon invalidation. No need to do anything if not
7918 * using the APIC_ACCESS_ADDR VMCS field.
7920 if (!flexpriority_enabled
)
7921 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
7923 if (!cpu_has_vmx_tpr_shadow())
7924 kvm_x86_ops
->update_cr8_intercept
= NULL
;
7926 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
7927 kvm_disable_largepages();
7929 #if IS_ENABLED(CONFIG_HYPERV)
7930 if (ms_hyperv
.nested_features
& HV_X64_NESTED_GUEST_MAPPING_FLUSH
7932 kvm_x86_ops
->tlb_remote_flush
= vmx_hv_remote_flush_tlb
;
7935 if (!cpu_has_vmx_ple()) {
7938 ple_window_grow
= 0;
7940 ple_window_shrink
= 0;
7943 if (!cpu_has_vmx_apicv()) {
7945 kvm_x86_ops
->sync_pir_to_irr
= NULL
;
7948 if (cpu_has_vmx_tsc_scaling()) {
7949 kvm_has_tsc_control
= true;
7950 kvm_max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
7951 kvm_tsc_scaling_ratio_frac_bits
= 48;
7954 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
7962 kvm_x86_ops
->get_nested_state
= NULL
;
7963 kvm_x86_ops
->set_nested_state
= NULL
;
7967 * Only enable PML when hardware supports PML feature, and both EPT
7968 * and EPT A/D bit features are enabled -- PML depends on them to work.
7970 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
7974 kvm_x86_ops
->slot_enable_log_dirty
= NULL
;
7975 kvm_x86_ops
->slot_disable_log_dirty
= NULL
;
7976 kvm_x86_ops
->flush_log_dirty
= NULL
;
7977 kvm_x86_ops
->enable_log_dirty_pt_masked
= NULL
;
7980 if (!cpu_has_vmx_preemption_timer())
7981 kvm_x86_ops
->request_immediate_exit
= __kvm_request_immediate_exit
;
7983 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer
) {
7986 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
7987 cpu_preemption_timer_multi
=
7988 vmx_msr
& VMX_MISC_PREEMPTION_TIMER_RATE_MASK
;
7990 kvm_x86_ops
->set_hv_timer
= NULL
;
7991 kvm_x86_ops
->cancel_hv_timer
= NULL
;
7994 if (!cpu_has_vmx_shadow_vmcs())
7995 enable_shadow_vmcs
= 0;
7996 if (enable_shadow_vmcs
)
7997 init_vmcs_shadow_fields();
7999 kvm_set_posted_intr_wakeup_handler(wakeup_handler
);
8000 nested_vmx_setup_ctls_msrs(&vmcs_config
.nested
, enable_apicv
);
8002 kvm_mce_cap_supported
|= MCG_LMCE_P
;
8004 r
= alloc_kvm_area();
8010 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
8011 free_page((unsigned long)vmx_bitmap
[i
]);
8016 static __exit
void hardware_unsetup(void)
8020 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
8021 free_page((unsigned long)vmx_bitmap
[i
]);
8027 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
8028 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
8030 static int handle_pause(struct kvm_vcpu
*vcpu
)
8032 if (!kvm_pause_in_guest(vcpu
->kvm
))
8033 grow_ple_window(vcpu
);
8036 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
8037 * VM-execution control is ignored if CPL > 0. OTOH, KVM
8038 * never set PAUSE_EXITING and just set PLE if supported,
8039 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
8041 kvm_vcpu_on_spin(vcpu
, true);
8042 return kvm_skip_emulated_instruction(vcpu
);
8045 static int handle_nop(struct kvm_vcpu
*vcpu
)
8047 return kvm_skip_emulated_instruction(vcpu
);
8050 static int handle_mwait(struct kvm_vcpu
*vcpu
)
8052 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
8053 return handle_nop(vcpu
);
8056 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
8058 kvm_queue_exception(vcpu
, UD_VECTOR
);
8062 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
8067 static int handle_monitor(struct kvm_vcpu
*vcpu
)
8069 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
8070 return handle_nop(vcpu
);
8074 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
8075 * set the success or error code of an emulated VMX instruction, as specified
8076 * by Vol 2B, VMX Instruction Reference, "Conventions".
8078 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
8080 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
8081 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
8082 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
8085 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
8087 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
8088 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
8089 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
8093 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
8094 u32 vm_instruction_error
)
8096 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
8098 * failValid writes the error number to the current VMCS, which
8099 * can't be done there isn't a current VMCS.
8101 nested_vmx_failInvalid(vcpu
);
8104 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
8105 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
8106 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
8108 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
8110 * We don't need to force a shadow sync because
8111 * VM_INSTRUCTION_ERROR is not shadowed
8115 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
8117 /* TODO: not to reset guest simply here. */
8118 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
8119 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator
);
8122 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
8124 struct vcpu_vmx
*vmx
=
8125 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
8127 vmx
->nested
.preemption_timer_expired
= true;
8128 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
8129 kvm_vcpu_kick(&vmx
->vcpu
);
8131 return HRTIMER_NORESTART
;
8135 * Decode the memory-address operand of a vmx instruction, as recorded on an
8136 * exit caused by such an instruction (run by a guest hypervisor).
8137 * On success, returns 0. When the operand is invalid, returns 1 and throws
8140 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
8141 unsigned long exit_qualification
,
8142 u32 vmx_instruction_info
, bool wr
, gva_t
*ret
)
8146 struct kvm_segment s
;
8149 * According to Vol. 3B, "Information for VM Exits Due to Instruction
8150 * Execution", on an exit, vmx_instruction_info holds most of the
8151 * addressing components of the operand. Only the displacement part
8152 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
8153 * For how an actual address is calculated from all these components,
8154 * refer to Vol. 1, "Operand Addressing".
8156 int scaling
= vmx_instruction_info
& 3;
8157 int addr_size
= (vmx_instruction_info
>> 7) & 7;
8158 bool is_reg
= vmx_instruction_info
& (1u << 10);
8159 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
8160 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
8161 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
8162 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
8163 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
8166 kvm_queue_exception(vcpu
, UD_VECTOR
);
8170 /* Addr = segment_base + offset */
8171 /* offset = base + [index * scale] + displacement */
8172 off
= exit_qualification
; /* holds the displacement */
8174 off
= (gva_t
)sign_extend64(off
, 31);
8175 else if (addr_size
== 0)
8176 off
= (gva_t
)sign_extend64(off
, 15);
8178 off
+= kvm_register_read(vcpu
, base_reg
);
8180 off
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
8181 vmx_get_segment(vcpu
, &s
, seg_reg
);
8184 * The effective address, i.e. @off, of a memory operand is truncated
8185 * based on the address size of the instruction. Note that this is
8186 * the *effective address*, i.e. the address prior to accounting for
8187 * the segment's base.
8189 if (addr_size
== 1) /* 32 bit */
8191 else if (addr_size
== 0) /* 16 bit */
8194 /* Checks for #GP/#SS exceptions. */
8196 if (is_long_mode(vcpu
)) {
8198 * The virtual/linear address is never truncated in 64-bit
8199 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
8200 * address when using FS/GS with a non-zero base.
8202 *ret
= s
.base
+ off
;
8204 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
8205 * non-canonical form. This is the only check on the memory
8206 * destination for long mode!
8208 exn
= is_noncanonical_address(*ret
, vcpu
);
8209 } else if (is_protmode(vcpu
)) {
8211 * When not in long mode, the virtual/linear address is
8212 * unconditionally truncated to 32 bits regardless of the
8215 *ret
= (s
.base
+ off
) & 0xffffffff;
8217 /* Protected mode: apply checks for segment validity in the
8219 * - segment type check (#GP(0) may be thrown)
8220 * - usability check (#GP(0)/#SS(0))
8221 * - limit check (#GP(0)/#SS(0))
8224 /* #GP(0) if the destination operand is located in a
8225 * read-only data segment or any code segment.
8227 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
8229 /* #GP(0) if the source operand is located in an
8230 * execute-only code segment
8232 exn
= ((s
.type
& 0xa) == 8);
8234 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
8237 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
8239 exn
= (s
.unusable
!= 0);
8242 * Protected mode: #GP(0)/#SS(0) if the memory operand is
8243 * outside the segment limit. All CPUs that support VMX ignore
8244 * limit checks for flat segments, i.e. segments with base==0,
8245 * limit==0xffffffff and of type expand-up data or code.
8247 if (!(s
.base
== 0 && s
.limit
== 0xffffffff &&
8248 ((s
.type
& 8) || !(s
.type
& 4))))
8249 exn
= exn
|| (off
+ sizeof(u64
) > s
.limit
);
8252 kvm_queue_exception_e(vcpu
,
8253 seg_reg
== VCPU_SREG_SS
?
8254 SS_VECTOR
: GP_VECTOR
,
8262 static int nested_vmx_get_vmptr(struct kvm_vcpu
*vcpu
, gpa_t
*vmpointer
)
8265 struct x86_exception e
;
8267 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
8268 vmcs_read32(VMX_INSTRUCTION_INFO
), false, &gva
))
8271 if (kvm_read_guest_virt(vcpu
, gva
, vmpointer
, sizeof(*vmpointer
), &e
)) {
8272 kvm_inject_page_fault(vcpu
, &e
);
8280 * Allocate a shadow VMCS and associate it with the currently loaded
8281 * VMCS, unless such a shadow VMCS already exists. The newly allocated
8282 * VMCS is also VMCLEARed, so that it is ready for use.
8284 static struct vmcs
*alloc_shadow_vmcs(struct kvm_vcpu
*vcpu
)
8286 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8287 struct loaded_vmcs
*loaded_vmcs
= vmx
->loaded_vmcs
;
8290 * We should allocate a shadow vmcs for vmcs01 only when L1
8291 * executes VMXON and free it when L1 executes VMXOFF.
8292 * As it is invalid to execute VMXON twice, we shouldn't reach
8293 * here when vmcs01 already have an allocated shadow vmcs.
8295 WARN_ON(loaded_vmcs
== &vmx
->vmcs01
&& loaded_vmcs
->shadow_vmcs
);
8297 if (!loaded_vmcs
->shadow_vmcs
) {
8298 loaded_vmcs
->shadow_vmcs
= alloc_vmcs(true);
8299 if (loaded_vmcs
->shadow_vmcs
)
8300 vmcs_clear(loaded_vmcs
->shadow_vmcs
);
8302 return loaded_vmcs
->shadow_vmcs
;
8305 static int enter_vmx_operation(struct kvm_vcpu
*vcpu
)
8307 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8310 r
= alloc_loaded_vmcs(&vmx
->nested
.vmcs02
);
8314 vmx
->nested
.cached_vmcs12
= kzalloc(VMCS12_SIZE
, GFP_KERNEL
);
8315 if (!vmx
->nested
.cached_vmcs12
)
8316 goto out_cached_vmcs12
;
8318 vmx
->nested
.cached_shadow_vmcs12
= kzalloc(VMCS12_SIZE
, GFP_KERNEL
);
8319 if (!vmx
->nested
.cached_shadow_vmcs12
)
8320 goto out_cached_shadow_vmcs12
;
8322 if (enable_shadow_vmcs
&& !alloc_shadow_vmcs(vcpu
))
8323 goto out_shadow_vmcs
;
8325 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
8326 HRTIMER_MODE_REL_PINNED
);
8327 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
8329 vmx
->nested
.vpid02
= allocate_vpid();
8331 vmx
->nested
.vmxon
= true;
8335 kfree(vmx
->nested
.cached_shadow_vmcs12
);
8337 out_cached_shadow_vmcs12
:
8338 kfree(vmx
->nested
.cached_vmcs12
);
8341 free_loaded_vmcs(&vmx
->nested
.vmcs02
);
8348 * Emulate the VMXON instruction.
8349 * Currently, we just remember that VMX is active, and do not save or even
8350 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
8351 * do not currently need to store anything in that guest-allocated memory
8352 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
8353 * argument is different from the VMXON pointer (which the spec says they do).
8355 static int handle_vmon(struct kvm_vcpu
*vcpu
)
8360 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8361 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
8362 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
8365 * The Intel VMX Instruction Reference lists a bunch of bits that are
8366 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
8367 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
8368 * Otherwise, we should fail with #UD. But most faulting conditions
8369 * have already been checked by hardware, prior to the VM-exit for
8370 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
8371 * that bit set to 1 in non-root mode.
8373 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
)) {
8374 kvm_queue_exception(vcpu
, UD_VECTOR
);
8378 /* CPL=0 must be checked manually. */
8379 if (vmx_get_cpl(vcpu
)) {
8380 kvm_inject_gp(vcpu
, 0);
8384 if (vmx
->nested
.vmxon
) {
8385 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
8386 return kvm_skip_emulated_instruction(vcpu
);
8389 if ((vmx
->msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
8390 != VMXON_NEEDED_FEATURES
) {
8391 kvm_inject_gp(vcpu
, 0);
8395 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
8400 * The first 4 bytes of VMXON region contain the supported
8401 * VMCS revision identifier
8403 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
8404 * which replaces physical address width with 32
8406 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
8407 nested_vmx_failInvalid(vcpu
);
8408 return kvm_skip_emulated_instruction(vcpu
);
8411 page
= kvm_vcpu_gpa_to_page(vcpu
, vmptr
);
8412 if (is_error_page(page
)) {
8413 nested_vmx_failInvalid(vcpu
);
8414 return kvm_skip_emulated_instruction(vcpu
);
8416 if (*(u32
*)kmap(page
) != VMCS12_REVISION
) {
8418 kvm_release_page_clean(page
);
8419 nested_vmx_failInvalid(vcpu
);
8420 return kvm_skip_emulated_instruction(vcpu
);
8423 kvm_release_page_clean(page
);
8425 vmx
->nested
.vmxon_ptr
= vmptr
;
8426 ret
= enter_vmx_operation(vcpu
);
8430 nested_vmx_succeed(vcpu
);
8431 return kvm_skip_emulated_instruction(vcpu
);
8435 * Intel's VMX Instruction Reference specifies a common set of prerequisites
8436 * for running VMX instructions (except VMXON, whose prerequisites are
8437 * slightly different). It also specifies what exception to inject otherwise.
8438 * Note that many of these exceptions have priority over VM exits, so they
8439 * don't have to be checked again here.
8441 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
8443 if (!to_vmx(vcpu
)->nested
.vmxon
) {
8444 kvm_queue_exception(vcpu
, UD_VECTOR
);
8448 if (vmx_get_cpl(vcpu
)) {
8449 kvm_inject_gp(vcpu
, 0);
8456 static void vmx_disable_shadow_vmcs(struct vcpu_vmx
*vmx
)
8458 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
, SECONDARY_EXEC_SHADOW_VMCS
);
8459 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
8460 vmx
->nested
.sync_shadow_vmcs
= false;
8463 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
8465 if (vmx
->nested
.current_vmptr
== -1ull)
8468 if (enable_shadow_vmcs
) {
8469 /* copy to memory all shadowed fields in case
8470 they were modified */
8471 copy_shadow_to_vmcs12(vmx
);
8472 vmx_disable_shadow_vmcs(vmx
);
8474 vmx
->nested
.posted_intr_nv
= -1;
8476 /* Flush VMCS12 to guest memory */
8477 kvm_vcpu_write_guest_page(&vmx
->vcpu
,
8478 vmx
->nested
.current_vmptr
>> PAGE_SHIFT
,
8479 vmx
->nested
.cached_vmcs12
, 0, VMCS12_SIZE
);
8481 vmx
->nested
.current_vmptr
= -1ull;
8485 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
8486 * just stops using VMX.
8488 static void free_nested(struct vcpu_vmx
*vmx
)
8490 if (!vmx
->nested
.vmxon
&& !vmx
->nested
.smm
.vmxon
)
8493 kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES
, &vmx
->vcpu
);
8495 hrtimer_cancel(&vmx
->nested
.preemption_timer
);
8496 vmx
->nested
.vmxon
= false;
8497 vmx
->nested
.smm
.vmxon
= false;
8498 free_vpid(vmx
->nested
.vpid02
);
8499 vmx
->nested
.posted_intr_nv
= -1;
8500 vmx
->nested
.current_vmptr
= -1ull;
8501 if (enable_shadow_vmcs
) {
8502 vmx_disable_shadow_vmcs(vmx
);
8503 vmcs_clear(vmx
->vmcs01
.shadow_vmcs
);
8504 free_vmcs(vmx
->vmcs01
.shadow_vmcs
);
8505 vmx
->vmcs01
.shadow_vmcs
= NULL
;
8507 kfree(vmx
->nested
.cached_vmcs12
);
8508 kfree(vmx
->nested
.cached_shadow_vmcs12
);
8509 /* Unpin physical memory we referred to in the vmcs02 */
8510 if (vmx
->nested
.apic_access_page
) {
8511 kvm_release_page_dirty(vmx
->nested
.apic_access_page
);
8512 vmx
->nested
.apic_access_page
= NULL
;
8514 if (vmx
->nested
.virtual_apic_page
) {
8515 kvm_release_page_dirty(vmx
->nested
.virtual_apic_page
);
8516 vmx
->nested
.virtual_apic_page
= NULL
;
8518 if (vmx
->nested
.pi_desc_page
) {
8519 kunmap(vmx
->nested
.pi_desc_page
);
8520 kvm_release_page_dirty(vmx
->nested
.pi_desc_page
);
8521 vmx
->nested
.pi_desc_page
= NULL
;
8522 vmx
->nested
.pi_desc
= NULL
;
8525 free_loaded_vmcs(&vmx
->nested
.vmcs02
);
8528 /* Emulate the VMXOFF instruction */
8529 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
8531 if (!nested_vmx_check_permission(vcpu
))
8533 free_nested(to_vmx(vcpu
));
8534 nested_vmx_succeed(vcpu
);
8535 return kvm_skip_emulated_instruction(vcpu
);
8538 /* Emulate the VMCLEAR instruction */
8539 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
8541 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8545 if (!nested_vmx_check_permission(vcpu
))
8548 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
8551 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
8552 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
8553 return kvm_skip_emulated_instruction(vcpu
);
8556 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
8557 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_VMXON_POINTER
);
8558 return kvm_skip_emulated_instruction(vcpu
);
8561 if (vmptr
== vmx
->nested
.current_vmptr
)
8562 nested_release_vmcs12(vmx
);
8564 kvm_vcpu_write_guest(vcpu
,
8565 vmptr
+ offsetof(struct vmcs12
, launch_state
),
8566 &zero
, sizeof(zero
));
8568 nested_vmx_succeed(vcpu
);
8569 return kvm_skip_emulated_instruction(vcpu
);
8572 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
8574 /* Emulate the VMLAUNCH instruction */
8575 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
8577 return nested_vmx_run(vcpu
, true);
8580 /* Emulate the VMRESUME instruction */
8581 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
8584 return nested_vmx_run(vcpu
, false);
8588 * Read a vmcs12 field. Since these can have varying lengths and we return
8589 * one type, we chose the biggest type (u64) and zero-extend the return value
8590 * to that size. Note that the caller, handle_vmread, might need to use only
8591 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
8592 * 64-bit fields are to be returned).
8594 static inline int vmcs12_read_any(struct vmcs12
*vmcs12
,
8595 unsigned long field
, u64
*ret
)
8597 short offset
= vmcs_field_to_offset(field
);
8603 p
= (char *)vmcs12
+ offset
;
8605 switch (vmcs_field_width(field
)) {
8606 case VMCS_FIELD_WIDTH_NATURAL_WIDTH
:
8607 *ret
= *((natural_width
*)p
);
8609 case VMCS_FIELD_WIDTH_U16
:
8612 case VMCS_FIELD_WIDTH_U32
:
8615 case VMCS_FIELD_WIDTH_U64
:
8625 static inline int vmcs12_write_any(struct vmcs12
*vmcs12
,
8626 unsigned long field
, u64 field_value
){
8627 short offset
= vmcs_field_to_offset(field
);
8628 char *p
= (char *)vmcs12
+ offset
;
8632 switch (vmcs_field_width(field
)) {
8633 case VMCS_FIELD_WIDTH_U16
:
8634 *(u16
*)p
= field_value
;
8636 case VMCS_FIELD_WIDTH_U32
:
8637 *(u32
*)p
= field_value
;
8639 case VMCS_FIELD_WIDTH_U64
:
8640 *(u64
*)p
= field_value
;
8642 case VMCS_FIELD_WIDTH_NATURAL_WIDTH
:
8643 *(natural_width
*)p
= field_value
;
8653 * Copy the writable VMCS shadow fields back to the VMCS12, in case
8654 * they have been modified by the L1 guest. Note that the "read-only"
8655 * VM-exit information fields are actually writable if the vCPU is
8656 * configured to support "VMWRITE to any supported field in the VMCS."
8658 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
8660 const u16
*fields
[] = {
8661 shadow_read_write_fields
,
8662 shadow_read_only_fields
8664 const int max_fields
[] = {
8665 max_shadow_read_write_fields
,
8666 max_shadow_read_only_fields
8669 unsigned long field
;
8671 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
8673 if (WARN_ON(!shadow_vmcs
))
8678 vmcs_load(shadow_vmcs
);
8680 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
8681 for (i
= 0; i
< max_fields
[q
]; i
++) {
8682 field
= fields
[q
][i
];
8683 field_value
= __vmcs_readl(field
);
8684 vmcs12_write_any(get_vmcs12(&vmx
->vcpu
), field
, field_value
);
8687 * Skip the VM-exit information fields if they are read-only.
8689 if (!nested_cpu_has_vmwrite_any_field(&vmx
->vcpu
))
8693 vmcs_clear(shadow_vmcs
);
8694 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
8699 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
8701 const u16
*fields
[] = {
8702 shadow_read_write_fields
,
8703 shadow_read_only_fields
8705 const int max_fields
[] = {
8706 max_shadow_read_write_fields
,
8707 max_shadow_read_only_fields
8710 unsigned long field
;
8711 u64 field_value
= 0;
8712 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
8714 if (WARN_ON(!shadow_vmcs
))
8717 vmcs_load(shadow_vmcs
);
8719 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
8720 for (i
= 0; i
< max_fields
[q
]; i
++) {
8721 field
= fields
[q
][i
];
8722 vmcs12_read_any(get_vmcs12(&vmx
->vcpu
), field
, &field_value
);
8723 __vmcs_writel(field
, field_value
);
8727 vmcs_clear(shadow_vmcs
);
8728 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
8732 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
8733 * used before) all generate the same failure when it is missing.
8735 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
8737 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8738 if (vmx
->nested
.current_vmptr
== -1ull) {
8739 nested_vmx_failInvalid(vcpu
);
8745 static int handle_vmread(struct kvm_vcpu
*vcpu
)
8747 unsigned long field
;
8749 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8750 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
8752 struct vmcs12
*vmcs12
;
8754 if (!nested_vmx_check_permission(vcpu
))
8757 if (!nested_vmx_check_vmcs12(vcpu
))
8758 return kvm_skip_emulated_instruction(vcpu
);
8760 if (!is_guest_mode(vcpu
))
8761 vmcs12
= get_vmcs12(vcpu
);
8764 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
8765 * to shadowed-field sets the ALU flags for VMfailInvalid.
8767 if (get_vmcs12(vcpu
)->vmcs_link_pointer
== -1ull) {
8768 nested_vmx_failInvalid(vcpu
);
8769 return kvm_skip_emulated_instruction(vcpu
);
8771 vmcs12
= get_shadow_vmcs12(vcpu
);
8774 /* Decode instruction info and find the field to read */
8775 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
8776 /* Read the field, zero-extended to a u64 field_value */
8777 if (vmcs12_read_any(vmcs12
, field
, &field_value
) < 0) {
8778 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
8779 return kvm_skip_emulated_instruction(vcpu
);
8782 * Now copy part of this value to register or memory, as requested.
8783 * Note that the number of bits actually copied is 32 or 64 depending
8784 * on the guest's mode (32 or 64 bit), not on the given field's length.
8786 if (vmx_instruction_info
& (1u << 10)) {
8787 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
8790 if (get_vmx_mem_address(vcpu
, exit_qualification
,
8791 vmx_instruction_info
, true, &gva
))
8793 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
8794 kvm_write_guest_virt_system(vcpu
, gva
, &field_value
,
8795 (is_long_mode(vcpu
) ? 8 : 4), NULL
);
8798 nested_vmx_succeed(vcpu
);
8799 return kvm_skip_emulated_instruction(vcpu
);
8803 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
8805 unsigned long field
;
8807 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8808 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8809 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
8811 /* The value to write might be 32 or 64 bits, depending on L1's long
8812 * mode, and eventually we need to write that into a field of several
8813 * possible lengths. The code below first zero-extends the value to 64
8814 * bit (field_value), and then copies only the appropriate number of
8815 * bits into the vmcs12 field.
8817 u64 field_value
= 0;
8818 struct x86_exception e
;
8819 struct vmcs12
*vmcs12
;
8821 if (!nested_vmx_check_permission(vcpu
))
8824 if (!nested_vmx_check_vmcs12(vcpu
))
8825 return kvm_skip_emulated_instruction(vcpu
);
8827 if (vmx_instruction_info
& (1u << 10))
8828 field_value
= kvm_register_readl(vcpu
,
8829 (((vmx_instruction_info
) >> 3) & 0xf));
8831 if (get_vmx_mem_address(vcpu
, exit_qualification
,
8832 vmx_instruction_info
, false, &gva
))
8834 if (kvm_read_guest_virt(vcpu
, gva
, &field_value
,
8835 (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
8836 kvm_inject_page_fault(vcpu
, &e
);
8842 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
8844 * If the vCPU supports "VMWRITE to any supported field in the
8845 * VMCS," then the "read-only" fields are actually read/write.
8847 if (vmcs_field_readonly(field
) &&
8848 !nested_cpu_has_vmwrite_any_field(vcpu
)) {
8849 nested_vmx_failValid(vcpu
,
8850 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
8851 return kvm_skip_emulated_instruction(vcpu
);
8854 if (!is_guest_mode(vcpu
))
8855 vmcs12
= get_vmcs12(vcpu
);
8858 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
8859 * to shadowed-field sets the ALU flags for VMfailInvalid.
8861 if (get_vmcs12(vcpu
)->vmcs_link_pointer
== -1ull) {
8862 nested_vmx_failInvalid(vcpu
);
8863 return kvm_skip_emulated_instruction(vcpu
);
8865 vmcs12
= get_shadow_vmcs12(vcpu
);
8869 if (vmcs12_write_any(vmcs12
, field
, field_value
) < 0) {
8870 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
8871 return kvm_skip_emulated_instruction(vcpu
);
8875 * Do not track vmcs12 dirty-state if in guest-mode
8876 * as we actually dirty shadow vmcs12 instead of vmcs12.
8878 if (!is_guest_mode(vcpu
)) {
8880 #define SHADOW_FIELD_RW(x) case x:
8881 #include "vmx_shadow_fields.h"
8883 * The fields that can be updated by L1 without a vmexit are
8884 * always updated in the vmcs02, the others go down the slow
8885 * path of prepare_vmcs02.
8889 vmx
->nested
.dirty_vmcs12
= true;
8894 nested_vmx_succeed(vcpu
);
8895 return kvm_skip_emulated_instruction(vcpu
);
8898 static void set_current_vmptr(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
8900 vmx
->nested
.current_vmptr
= vmptr
;
8901 if (enable_shadow_vmcs
) {
8902 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
8903 SECONDARY_EXEC_SHADOW_VMCS
);
8904 vmcs_write64(VMCS_LINK_POINTER
,
8905 __pa(vmx
->vmcs01
.shadow_vmcs
));
8906 vmx
->nested
.sync_shadow_vmcs
= true;
8908 vmx
->nested
.dirty_vmcs12
= true;
8911 /* Emulate the VMPTRLD instruction */
8912 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
8914 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8917 if (!nested_vmx_check_permission(vcpu
))
8920 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
8923 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
8924 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
8925 return kvm_skip_emulated_instruction(vcpu
);
8928 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
8929 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_VMXON_POINTER
);
8930 return kvm_skip_emulated_instruction(vcpu
);
8933 if (vmx
->nested
.current_vmptr
!= vmptr
) {
8934 struct vmcs12
*new_vmcs12
;
8936 page
= kvm_vcpu_gpa_to_page(vcpu
, vmptr
);
8937 if (is_error_page(page
)) {
8938 nested_vmx_failInvalid(vcpu
);
8939 return kvm_skip_emulated_instruction(vcpu
);
8941 new_vmcs12
= kmap(page
);
8942 if (new_vmcs12
->hdr
.revision_id
!= VMCS12_REVISION
||
8943 (new_vmcs12
->hdr
.shadow_vmcs
&&
8944 !nested_cpu_has_vmx_shadow_vmcs(vcpu
))) {
8946 kvm_release_page_clean(page
);
8947 nested_vmx_failValid(vcpu
,
8948 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
8949 return kvm_skip_emulated_instruction(vcpu
);
8952 nested_release_vmcs12(vmx
);
8954 * Load VMCS12 from guest memory since it is not already
8957 memcpy(vmx
->nested
.cached_vmcs12
, new_vmcs12
, VMCS12_SIZE
);
8959 kvm_release_page_clean(page
);
8961 set_current_vmptr(vmx
, vmptr
);
8964 nested_vmx_succeed(vcpu
);
8965 return kvm_skip_emulated_instruction(vcpu
);
8968 /* Emulate the VMPTRST instruction */
8969 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
8971 unsigned long exit_qual
= vmcs_readl(EXIT_QUALIFICATION
);
8972 u32 instr_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
8973 gpa_t current_vmptr
= to_vmx(vcpu
)->nested
.current_vmptr
;
8974 struct x86_exception e
;
8977 if (!nested_vmx_check_permission(vcpu
))
8980 if (get_vmx_mem_address(vcpu
, exit_qual
, instr_info
, true, &gva
))
8982 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
8983 if (kvm_write_guest_virt_system(vcpu
, gva
, (void *)¤t_vmptr
,
8984 sizeof(gpa_t
), &e
)) {
8985 kvm_inject_page_fault(vcpu
, &e
);
8988 nested_vmx_succeed(vcpu
);
8989 return kvm_skip_emulated_instruction(vcpu
);
8992 /* Emulate the INVEPT instruction */
8993 static int handle_invept(struct kvm_vcpu
*vcpu
)
8995 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8996 u32 vmx_instruction_info
, types
;
8999 struct x86_exception e
;
9004 if (!(vmx
->nested
.msrs
.secondary_ctls_high
&
9005 SECONDARY_EXEC_ENABLE_EPT
) ||
9006 !(vmx
->nested
.msrs
.ept_caps
& VMX_EPT_INVEPT_BIT
)) {
9007 kvm_queue_exception(vcpu
, UD_VECTOR
);
9011 if (!nested_vmx_check_permission(vcpu
))
9014 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
9015 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
9017 types
= (vmx
->nested
.msrs
.ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
9019 if (type
>= 32 || !(types
& (1 << type
))) {
9020 nested_vmx_failValid(vcpu
,
9021 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
9022 return kvm_skip_emulated_instruction(vcpu
);
9025 /* According to the Intel VMX instruction reference, the memory
9026 * operand is read even if it isn't needed (e.g., for type==global)
9028 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
9029 vmx_instruction_info
, false, &gva
))
9031 if (kvm_read_guest_virt(vcpu
, gva
, &operand
, sizeof(operand
), &e
)) {
9032 kvm_inject_page_fault(vcpu
, &e
);
9037 case VMX_EPT_EXTENT_GLOBAL
:
9039 * TODO: track mappings and invalidate
9040 * single context requests appropriately
9042 case VMX_EPT_EXTENT_CONTEXT
:
9043 kvm_mmu_sync_roots(vcpu
);
9044 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
9045 nested_vmx_succeed(vcpu
);
9052 return kvm_skip_emulated_instruction(vcpu
);
9055 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
9057 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9058 u32 vmx_instruction_info
;
9059 unsigned long type
, types
;
9061 struct x86_exception e
;
9067 if (!(vmx
->nested
.msrs
.secondary_ctls_high
&
9068 SECONDARY_EXEC_ENABLE_VPID
) ||
9069 !(vmx
->nested
.msrs
.vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
9070 kvm_queue_exception(vcpu
, UD_VECTOR
);
9074 if (!nested_vmx_check_permission(vcpu
))
9077 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
9078 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
9080 types
= (vmx
->nested
.msrs
.vpid_caps
&
9081 VMX_VPID_EXTENT_SUPPORTED_MASK
) >> 8;
9083 if (type
>= 32 || !(types
& (1 << type
))) {
9084 nested_vmx_failValid(vcpu
,
9085 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
9086 return kvm_skip_emulated_instruction(vcpu
);
9089 /* according to the intel vmx instruction reference, the memory
9090 * operand is read even if it isn't needed (e.g., for type==global)
9092 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
9093 vmx_instruction_info
, false, &gva
))
9095 if (kvm_read_guest_virt(vcpu
, gva
, &operand
, sizeof(operand
), &e
)) {
9096 kvm_inject_page_fault(vcpu
, &e
);
9099 if (operand
.vpid
>> 16) {
9100 nested_vmx_failValid(vcpu
,
9101 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
9102 return kvm_skip_emulated_instruction(vcpu
);
9106 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR
:
9107 if (!operand
.vpid
||
9108 is_noncanonical_address(operand
.gla
, vcpu
)) {
9109 nested_vmx_failValid(vcpu
,
9110 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
9111 return kvm_skip_emulated_instruction(vcpu
);
9113 if (cpu_has_vmx_invvpid_individual_addr() &&
9114 vmx
->nested
.vpid02
) {
9115 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR
,
9116 vmx
->nested
.vpid02
, operand
.gla
);
9118 __vmx_flush_tlb(vcpu
, vmx
->nested
.vpid02
, true);
9120 case VMX_VPID_EXTENT_SINGLE_CONTEXT
:
9121 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL
:
9122 if (!operand
.vpid
) {
9123 nested_vmx_failValid(vcpu
,
9124 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
9125 return kvm_skip_emulated_instruction(vcpu
);
9127 __vmx_flush_tlb(vcpu
, vmx
->nested
.vpid02
, true);
9129 case VMX_VPID_EXTENT_ALL_CONTEXT
:
9130 __vmx_flush_tlb(vcpu
, vmx
->nested
.vpid02
, true);
9134 return kvm_skip_emulated_instruction(vcpu
);
9137 nested_vmx_succeed(vcpu
);
9139 return kvm_skip_emulated_instruction(vcpu
);
9142 static int handle_invpcid(struct kvm_vcpu
*vcpu
)
9144 u32 vmx_instruction_info
;
9148 struct x86_exception e
;
9150 unsigned long roots_to_free
= 0;
9156 if (!guest_cpuid_has(vcpu
, X86_FEATURE_INVPCID
)) {
9157 kvm_queue_exception(vcpu
, UD_VECTOR
);
9161 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
9162 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
9165 kvm_inject_gp(vcpu
, 0);
9169 /* According to the Intel instruction reference, the memory operand
9170 * is read even if it isn't needed (e.g., for type==all)
9172 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
9173 vmx_instruction_info
, false, &gva
))
9176 if (kvm_read_guest_virt(vcpu
, gva
, &operand
, sizeof(operand
), &e
)) {
9177 kvm_inject_page_fault(vcpu
, &e
);
9181 if (operand
.pcid
>> 12 != 0) {
9182 kvm_inject_gp(vcpu
, 0);
9186 pcid_enabled
= kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
);
9189 case INVPCID_TYPE_INDIV_ADDR
:
9190 if ((!pcid_enabled
&& (operand
.pcid
!= 0)) ||
9191 is_noncanonical_address(operand
.gla
, vcpu
)) {
9192 kvm_inject_gp(vcpu
, 0);
9195 kvm_mmu_invpcid_gva(vcpu
, operand
.gla
, operand
.pcid
);
9196 return kvm_skip_emulated_instruction(vcpu
);
9198 case INVPCID_TYPE_SINGLE_CTXT
:
9199 if (!pcid_enabled
&& (operand
.pcid
!= 0)) {
9200 kvm_inject_gp(vcpu
, 0);
9204 if (kvm_get_active_pcid(vcpu
) == operand
.pcid
) {
9205 kvm_mmu_sync_roots(vcpu
);
9206 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
9209 for (i
= 0; i
< KVM_MMU_NUM_PREV_ROOTS
; i
++)
9210 if (kvm_get_pcid(vcpu
, vcpu
->arch
.mmu
.prev_roots
[i
].cr3
)
9212 roots_to_free
|= KVM_MMU_ROOT_PREVIOUS(i
);
9214 kvm_mmu_free_roots(vcpu
, roots_to_free
);
9216 * If neither the current cr3 nor any of the prev_roots use the
9217 * given PCID, then nothing needs to be done here because a
9218 * resync will happen anyway before switching to any other CR3.
9221 return kvm_skip_emulated_instruction(vcpu
);
9223 case INVPCID_TYPE_ALL_NON_GLOBAL
:
9225 * Currently, KVM doesn't mark global entries in the shadow
9226 * page tables, so a non-global flush just degenerates to a
9227 * global flush. If needed, we could optimize this later by
9228 * keeping track of global entries in shadow page tables.
9232 case INVPCID_TYPE_ALL_INCL_GLOBAL
:
9233 kvm_mmu_unload(vcpu
);
9234 return kvm_skip_emulated_instruction(vcpu
);
9237 BUG(); /* We have already checked above that type <= 3 */
9241 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
9243 unsigned long exit_qualification
;
9245 trace_kvm_pml_full(vcpu
->vcpu_id
);
9247 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
9250 * PML buffer FULL happened while executing iret from NMI,
9251 * "blocked by NMI" bit has to be set before next VM entry.
9253 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
9255 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
9256 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
9257 GUEST_INTR_STATE_NMI
);
9260 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
9261 * here.., and there's no userspace involvement needed for PML.
9266 static int handle_preemption_timer(struct kvm_vcpu
*vcpu
)
9268 if (!to_vmx(vcpu
)->req_immediate_exit
)
9269 kvm_lapic_expired_hv_timer(vcpu
);
9273 static bool valid_ept_address(struct kvm_vcpu
*vcpu
, u64 address
)
9275 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9276 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9278 /* Check for memory type validity */
9279 switch (address
& VMX_EPTP_MT_MASK
) {
9280 case VMX_EPTP_MT_UC
:
9281 if (!(vmx
->nested
.msrs
.ept_caps
& VMX_EPTP_UC_BIT
))
9284 case VMX_EPTP_MT_WB
:
9285 if (!(vmx
->nested
.msrs
.ept_caps
& VMX_EPTP_WB_BIT
))
9292 /* only 4 levels page-walk length are valid */
9293 if ((address
& VMX_EPTP_PWL_MASK
) != VMX_EPTP_PWL_4
)
9296 /* Reserved bits should not be set */
9297 if (address
>> maxphyaddr
|| ((address
>> 7) & 0x1f))
9300 /* AD, if set, should be supported */
9301 if (address
& VMX_EPTP_AD_ENABLE_BIT
) {
9302 if (!(vmx
->nested
.msrs
.ept_caps
& VMX_EPT_AD_BIT
))
9309 static int nested_vmx_eptp_switching(struct kvm_vcpu
*vcpu
,
9310 struct vmcs12
*vmcs12
)
9312 u32 index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
9314 bool accessed_dirty
;
9315 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
9317 if (!nested_cpu_has_eptp_switching(vmcs12
) ||
9318 !nested_cpu_has_ept(vmcs12
))
9321 if (index
>= VMFUNC_EPTP_ENTRIES
)
9325 if (kvm_vcpu_read_guest_page(vcpu
, vmcs12
->eptp_list_address
>> PAGE_SHIFT
,
9326 &address
, index
* 8, 8))
9329 accessed_dirty
= !!(address
& VMX_EPTP_AD_ENABLE_BIT
);
9332 * If the (L2) guest does a vmfunc to the currently
9333 * active ept pointer, we don't have to do anything else
9335 if (vmcs12
->ept_pointer
!= address
) {
9336 if (!valid_ept_address(vcpu
, address
))
9339 kvm_mmu_unload(vcpu
);
9340 mmu
->ept_ad
= accessed_dirty
;
9341 mmu
->base_role
.ad_disabled
= !accessed_dirty
;
9342 vmcs12
->ept_pointer
= address
;
9344 * TODO: Check what's the correct approach in case
9345 * mmu reload fails. Currently, we just let the next
9346 * reload potentially fail
9348 kvm_mmu_reload(vcpu
);
9354 static int handle_vmfunc(struct kvm_vcpu
*vcpu
)
9356 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9357 struct vmcs12
*vmcs12
;
9358 u32 function
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
9361 * VMFUNC is only supported for nested guests, but we always enable the
9362 * secondary control for simplicity; for non-nested mode, fake that we
9363 * didn't by injecting #UD.
9365 if (!is_guest_mode(vcpu
)) {
9366 kvm_queue_exception(vcpu
, UD_VECTOR
);
9370 vmcs12
= get_vmcs12(vcpu
);
9371 if ((vmcs12
->vm_function_control
& (1 << function
)) == 0)
9376 if (nested_vmx_eptp_switching(vcpu
, vmcs12
))
9382 return kvm_skip_emulated_instruction(vcpu
);
9385 nested_vmx_vmexit(vcpu
, vmx
->exit_reason
,
9386 vmcs_read32(VM_EXIT_INTR_INFO
),
9387 vmcs_readl(EXIT_QUALIFICATION
));
9391 static int handle_encls(struct kvm_vcpu
*vcpu
)
9394 * SGX virtualization is not yet supported. There is no software
9395 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
9396 * to prevent the guest from executing ENCLS.
9398 kvm_queue_exception(vcpu
, UD_VECTOR
);
9403 * The exit handlers return 1 if the exit was handled fully and guest execution
9404 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
9405 * to be done to userspace and return 0.
9407 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
9408 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
9409 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
9410 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
9411 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
9412 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
9413 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
9414 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
9415 [EXIT_REASON_CPUID
] = handle_cpuid
,
9416 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
9417 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
9418 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
9419 [EXIT_REASON_HLT
] = handle_halt
,
9420 [EXIT_REASON_INVD
] = handle_invd
,
9421 [EXIT_REASON_INVLPG
] = handle_invlpg
,
9422 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
9423 [EXIT_REASON_VMCALL
] = handle_vmcall
,
9424 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
9425 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
9426 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
9427 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
9428 [EXIT_REASON_VMREAD
] = handle_vmread
,
9429 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
9430 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
9431 [EXIT_REASON_VMOFF
] = handle_vmoff
,
9432 [EXIT_REASON_VMON
] = handle_vmon
,
9433 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
9434 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
9435 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
9436 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
9437 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
9438 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
9439 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
9440 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
9441 [EXIT_REASON_GDTR_IDTR
] = handle_desc
,
9442 [EXIT_REASON_LDTR_TR
] = handle_desc
,
9443 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
9444 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
9445 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
9446 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
9447 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
9448 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
9449 [EXIT_REASON_INVEPT
] = handle_invept
,
9450 [EXIT_REASON_INVVPID
] = handle_invvpid
,
9451 [EXIT_REASON_RDRAND
] = handle_invalid_op
,
9452 [EXIT_REASON_RDSEED
] = handle_invalid_op
,
9453 [EXIT_REASON_XSAVES
] = handle_xsaves
,
9454 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
9455 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
9456 [EXIT_REASON_INVPCID
] = handle_invpcid
,
9457 [EXIT_REASON_VMFUNC
] = handle_vmfunc
,
9458 [EXIT_REASON_PREEMPTION_TIMER
] = handle_preemption_timer
,
9459 [EXIT_REASON_ENCLS
] = handle_encls
,
9462 static const int kvm_vmx_max_exit_handlers
=
9463 ARRAY_SIZE(kvm_vmx_exit_handlers
);
9465 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
9466 struct vmcs12
*vmcs12
)
9468 unsigned long exit_qualification
;
9469 gpa_t bitmap
, last_bitmap
;
9474 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
9475 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
9477 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
9479 port
= exit_qualification
>> 16;
9480 size
= (exit_qualification
& 7) + 1;
9482 last_bitmap
= (gpa_t
)-1;
9487 bitmap
= vmcs12
->io_bitmap_a
;
9488 else if (port
< 0x10000)
9489 bitmap
= vmcs12
->io_bitmap_b
;
9492 bitmap
+= (port
& 0x7fff) / 8;
9494 if (last_bitmap
!= bitmap
)
9495 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
9497 if (b
& (1 << (port
& 7)))
9502 last_bitmap
= bitmap
;
9509 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
9510 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
9511 * disinterest in the current event (read or write a specific MSR) by using an
9512 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
9514 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
9515 struct vmcs12
*vmcs12
, u32 exit_reason
)
9517 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
9520 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
9524 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
9525 * for the four combinations of read/write and low/high MSR numbers.
9526 * First we need to figure out which of the four to use:
9528 bitmap
= vmcs12
->msr_bitmap
;
9529 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
9531 if (msr_index
>= 0xc0000000) {
9532 msr_index
-= 0xc0000000;
9536 /* Then read the msr_index'th bit from this bitmap: */
9537 if (msr_index
< 1024*8) {
9539 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
9541 return 1 & (b
>> (msr_index
& 7));
9543 return true; /* let L1 handle the wrong parameter */
9547 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
9548 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
9549 * intercept (via guest_host_mask etc.) the current event.
9551 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
9552 struct vmcs12
*vmcs12
)
9554 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
9555 int cr
= exit_qualification
& 15;
9559 switch ((exit_qualification
>> 4) & 3) {
9560 case 0: /* mov to cr */
9561 reg
= (exit_qualification
>> 8) & 15;
9562 val
= kvm_register_readl(vcpu
, reg
);
9565 if (vmcs12
->cr0_guest_host_mask
&
9566 (val
^ vmcs12
->cr0_read_shadow
))
9570 if ((vmcs12
->cr3_target_count
>= 1 &&
9571 vmcs12
->cr3_target_value0
== val
) ||
9572 (vmcs12
->cr3_target_count
>= 2 &&
9573 vmcs12
->cr3_target_value1
== val
) ||
9574 (vmcs12
->cr3_target_count
>= 3 &&
9575 vmcs12
->cr3_target_value2
== val
) ||
9576 (vmcs12
->cr3_target_count
>= 4 &&
9577 vmcs12
->cr3_target_value3
== val
))
9579 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
9583 if (vmcs12
->cr4_guest_host_mask
&
9584 (vmcs12
->cr4_read_shadow
^ val
))
9588 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
9594 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
9595 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
9598 case 1: /* mov from cr */
9601 if (vmcs12
->cpu_based_vm_exec_control
&
9602 CPU_BASED_CR3_STORE_EXITING
)
9606 if (vmcs12
->cpu_based_vm_exec_control
&
9607 CPU_BASED_CR8_STORE_EXITING
)
9614 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
9615 * cr0. Other attempted changes are ignored, with no exit.
9617 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
9618 if (vmcs12
->cr0_guest_host_mask
& 0xe &
9619 (val
^ vmcs12
->cr0_read_shadow
))
9621 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
9622 !(vmcs12
->cr0_read_shadow
& 0x1) &&
9630 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu
*vcpu
,
9631 struct vmcs12
*vmcs12
, gpa_t bitmap
)
9633 u32 vmx_instruction_info
;
9634 unsigned long field
;
9637 if (!nested_cpu_has_shadow_vmcs(vmcs12
))
9640 /* Decode instruction info and find the field to access */
9641 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
9642 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
9644 /* Out-of-range fields always cause a VM exit from L2 to L1 */
9648 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ field
/8, &b
, 1))
9651 return 1 & (b
>> (field
& 7));
9655 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
9656 * should handle it ourselves in L0 (and then continue L2). Only call this
9657 * when in is_guest_mode (L2).
9659 static bool nested_vmx_exit_reflected(struct kvm_vcpu
*vcpu
, u32 exit_reason
)
9661 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
9662 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9663 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9665 if (vmx
->nested
.nested_run_pending
)
9668 if (unlikely(vmx
->fail
)) {
9669 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
9670 vmcs_read32(VM_INSTRUCTION_ERROR
));
9675 * The host physical addresses of some pages of guest memory
9676 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
9677 * Page). The CPU may write to these pages via their host
9678 * physical address while L2 is running, bypassing any
9679 * address-translation-based dirty tracking (e.g. EPT write
9682 * Mark them dirty on every exit from L2 to prevent them from
9683 * getting out of sync with dirty tracking.
9685 nested_mark_vmcs12_pages_dirty(vcpu
);
9687 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
9688 vmcs_readl(EXIT_QUALIFICATION
),
9689 vmx
->idt_vectoring_info
,
9691 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
9694 switch (exit_reason
) {
9695 case EXIT_REASON_EXCEPTION_NMI
:
9696 if (is_nmi(intr_info
))
9698 else if (is_page_fault(intr_info
))
9699 return !vmx
->vcpu
.arch
.apf
.host_apf_reason
&& enable_ept
;
9700 else if (is_no_device(intr_info
) &&
9701 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
9703 else if (is_debug(intr_info
) &&
9705 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
9707 else if (is_breakpoint(intr_info
) &&
9708 vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
9710 return vmcs12
->exception_bitmap
&
9711 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
9712 case EXIT_REASON_EXTERNAL_INTERRUPT
:
9714 case EXIT_REASON_TRIPLE_FAULT
:
9716 case EXIT_REASON_PENDING_INTERRUPT
:
9717 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
9718 case EXIT_REASON_NMI_WINDOW
:
9719 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
9720 case EXIT_REASON_TASK_SWITCH
:
9722 case EXIT_REASON_CPUID
:
9724 case EXIT_REASON_HLT
:
9725 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
9726 case EXIT_REASON_INVD
:
9728 case EXIT_REASON_INVLPG
:
9729 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
9730 case EXIT_REASON_RDPMC
:
9731 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
9732 case EXIT_REASON_RDRAND
:
9733 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDRAND_EXITING
);
9734 case EXIT_REASON_RDSEED
:
9735 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDSEED_EXITING
);
9736 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
9737 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
9738 case EXIT_REASON_VMREAD
:
9739 return nested_vmx_exit_handled_vmcs_access(vcpu
, vmcs12
,
9740 vmcs12
->vmread_bitmap
);
9741 case EXIT_REASON_VMWRITE
:
9742 return nested_vmx_exit_handled_vmcs_access(vcpu
, vmcs12
,
9743 vmcs12
->vmwrite_bitmap
);
9744 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
9745 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
9746 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMRESUME
:
9747 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
9748 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
9750 * VMX instructions trap unconditionally. This allows L1 to
9751 * emulate them for its L2 guest, i.e., allows 3-level nesting!
9754 case EXIT_REASON_CR_ACCESS
:
9755 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
9756 case EXIT_REASON_DR_ACCESS
:
9757 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
9758 case EXIT_REASON_IO_INSTRUCTION
:
9759 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
9760 case EXIT_REASON_GDTR_IDTR
: case EXIT_REASON_LDTR_TR
:
9761 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_DESC
);
9762 case EXIT_REASON_MSR_READ
:
9763 case EXIT_REASON_MSR_WRITE
:
9764 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
9765 case EXIT_REASON_INVALID_STATE
:
9767 case EXIT_REASON_MWAIT_INSTRUCTION
:
9768 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
9769 case EXIT_REASON_MONITOR_TRAP_FLAG
:
9770 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_TRAP_FLAG
);
9771 case EXIT_REASON_MONITOR_INSTRUCTION
:
9772 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
9773 case EXIT_REASON_PAUSE_INSTRUCTION
:
9774 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
9775 nested_cpu_has2(vmcs12
,
9776 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
9777 case EXIT_REASON_MCE_DURING_VMENTRY
:
9779 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
9780 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
9781 case EXIT_REASON_APIC_ACCESS
:
9782 case EXIT_REASON_APIC_WRITE
:
9783 case EXIT_REASON_EOI_INDUCED
:
9785 * The controls for "virtualize APIC accesses," "APIC-
9786 * register virtualization," and "virtual-interrupt
9787 * delivery" only come from vmcs12.
9790 case EXIT_REASON_EPT_VIOLATION
:
9792 * L0 always deals with the EPT violation. If nested EPT is
9793 * used, and the nested mmu code discovers that the address is
9794 * missing in the guest EPT table (EPT12), the EPT violation
9795 * will be injected with nested_ept_inject_page_fault()
9798 case EXIT_REASON_EPT_MISCONFIG
:
9800 * L2 never uses directly L1's EPT, but rather L0's own EPT
9801 * table (shadow on EPT) or a merged EPT table that L0 built
9802 * (EPT on EPT). So any problems with the structure of the
9803 * table is L0's fault.
9806 case EXIT_REASON_INVPCID
:
9808 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_INVPCID
) &&
9809 nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
9810 case EXIT_REASON_WBINVD
:
9811 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
9812 case EXIT_REASON_XSETBV
:
9814 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
9816 * This should never happen, since it is not possible to
9817 * set XSS to a non-zero value---neither in L1 nor in L2.
9818 * If if it were, XSS would have to be checked against
9819 * the XSS exit bitmap in vmcs12.
9821 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
9822 case EXIT_REASON_PREEMPTION_TIMER
:
9824 case EXIT_REASON_PML_FULL
:
9825 /* We emulate PML support to L1. */
9827 case EXIT_REASON_VMFUNC
:
9828 /* VM functions are emulated through L2->L0 vmexits. */
9830 case EXIT_REASON_ENCLS
:
9831 /* SGX is never exposed to L1 */
9838 static int nested_vmx_reflect_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
)
9840 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
9843 * At this point, the exit interruption info in exit_intr_info
9844 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
9845 * we need to query the in-kernel LAPIC.
9847 WARN_ON(exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
);
9848 if ((exit_intr_info
&
9849 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
9850 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) {
9851 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9852 vmcs12
->vm_exit_intr_error_code
=
9853 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
9856 nested_vmx_vmexit(vcpu
, exit_reason
, exit_intr_info
,
9857 vmcs_readl(EXIT_QUALIFICATION
));
9861 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
9863 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
9864 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
9867 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
9870 __free_page(vmx
->pml_pg
);
9875 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
9877 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9881 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
9883 /* Do nothing if PML buffer is empty */
9884 if (pml_idx
== (PML_ENTITY_NUM
- 1))
9887 /* PML index always points to next available PML buffer entity */
9888 if (pml_idx
>= PML_ENTITY_NUM
)
9893 pml_buf
= page_address(vmx
->pml_pg
);
9894 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
9897 gpa
= pml_buf
[pml_idx
];
9898 WARN_ON(gpa
& (PAGE_SIZE
- 1));
9899 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
9902 /* reset PML index */
9903 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
9907 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
9908 * Called before reporting dirty_bitmap to userspace.
9910 static void kvm_flush_pml_buffers(struct kvm
*kvm
)
9913 struct kvm_vcpu
*vcpu
;
9915 * We only need to kick vcpu out of guest mode here, as PML buffer
9916 * is flushed at beginning of all VMEXITs, and it's obvious that only
9917 * vcpus running in guest are possible to have unflushed GPAs in PML
9920 kvm_for_each_vcpu(i
, vcpu
, kvm
)
9921 kvm_vcpu_kick(vcpu
);
9924 static void vmx_dump_sel(char *name
, uint32_t sel
)
9926 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
9927 name
, vmcs_read16(sel
),
9928 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
9929 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
9930 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
9933 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
9935 pr_err("%s limit=0x%08x, base=0x%016lx\n",
9936 name
, vmcs_read32(limit
),
9937 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
9940 static void dump_vmcs(void)
9942 u32 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
9943 u32 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
9944 u32 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
9945 u32 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
9946 u32 secondary_exec_control
= 0;
9947 unsigned long cr4
= vmcs_readl(GUEST_CR4
);
9948 u64 efer
= vmcs_read64(GUEST_IA32_EFER
);
9951 if (cpu_has_secondary_exec_ctrls())
9952 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
9954 pr_err("*** Guest State ***\n");
9955 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9956 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
9957 vmcs_readl(CR0_GUEST_HOST_MASK
));
9958 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9959 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
9960 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
9961 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
9962 (cr4
& X86_CR4_PAE
) && !(efer
& EFER_LMA
))
9964 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
9965 vmcs_read64(GUEST_PDPTR0
), vmcs_read64(GUEST_PDPTR1
));
9966 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
9967 vmcs_read64(GUEST_PDPTR2
), vmcs_read64(GUEST_PDPTR3
));
9969 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
9970 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
9971 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
9972 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
9973 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9974 vmcs_readl(GUEST_SYSENTER_ESP
),
9975 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
9976 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
9977 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
9978 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
9979 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
9980 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
9981 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
9982 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
9983 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
9984 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
9985 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
9986 if ((vmexit_ctl
& (VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
)) ||
9987 (vmentry_ctl
& (VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_IA32_EFER
)))
9988 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9989 efer
, vmcs_read64(GUEST_IA32_PAT
));
9990 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
9991 vmcs_read64(GUEST_IA32_DEBUGCTL
),
9992 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
9993 if (cpu_has_load_perf_global_ctrl
&&
9994 vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
9995 pr_err("PerfGlobCtl = 0x%016llx\n",
9996 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL
));
9997 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
9998 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS
));
9999 pr_err("Interruptibility = %08x ActivityState = %08x\n",
10000 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
10001 vmcs_read32(GUEST_ACTIVITY_STATE
));
10002 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
10003 pr_err("InterruptStatus = %04x\n",
10004 vmcs_read16(GUEST_INTR_STATUS
));
10006 pr_err("*** Host State ***\n");
10007 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
10008 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
10009 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
10010 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
10011 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
10012 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
10013 vmcs_read16(HOST_TR_SELECTOR
));
10014 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
10015 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
10016 vmcs_readl(HOST_TR_BASE
));
10017 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
10018 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
10019 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
10020 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
10021 vmcs_readl(HOST_CR4
));
10022 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
10023 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
10024 vmcs_read32(HOST_IA32_SYSENTER_CS
),
10025 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
10026 if (vmexit_ctl
& (VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_LOAD_IA32_EFER
))
10027 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
10028 vmcs_read64(HOST_IA32_EFER
),
10029 vmcs_read64(HOST_IA32_PAT
));
10030 if (cpu_has_load_perf_global_ctrl
&&
10031 vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
10032 pr_err("PerfGlobCtl = 0x%016llx\n",
10033 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL
));
10035 pr_err("*** Control State ***\n");
10036 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
10037 pin_based_exec_ctrl
, cpu_based_exec_ctrl
, secondary_exec_control
);
10038 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl
, vmexit_ctl
);
10039 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
10040 vmcs_read32(EXCEPTION_BITMAP
),
10041 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
10042 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
10043 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
10044 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
10045 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
10046 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
10047 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
10048 vmcs_read32(VM_EXIT_INTR_INFO
),
10049 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
10050 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
10051 pr_err(" reason=%08x qualification=%016lx\n",
10052 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
10053 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
10054 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
10055 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
10056 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET
));
10057 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
10058 pr_err("TSC Multiplier = 0x%016llx\n",
10059 vmcs_read64(TSC_MULTIPLIER
));
10060 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
)
10061 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
10062 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
10063 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
10064 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
10065 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER
));
10066 n
= vmcs_read32(CR3_TARGET_COUNT
);
10067 for (i
= 0; i
+ 1 < n
; i
+= 4)
10068 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
10069 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2),
10070 i
+ 1, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2 + 2));
10072 pr_err("CR3 target%u=%016lx\n",
10073 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2));
10074 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
10075 pr_err("PLE Gap=%08x Window=%08x\n",
10076 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
10077 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
10078 pr_err("Virtual processor ID = 0x%04x\n",
10079 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
10083 * The guest has exited. See if we can fix it or if we need userspace
10086 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
10088 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10089 u32 exit_reason
= vmx
->exit_reason
;
10090 u32 vectoring_info
= vmx
->idt_vectoring_info
;
10092 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
10095 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
10096 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
10097 * querying dirty_bitmap, we only need to kick all vcpus out of guest
10098 * mode as if vcpus is in root mode, the PML buffer must has been
10102 vmx_flush_pml_buffer(vcpu
);
10104 /* If guest state is invalid, start emulating */
10105 if (vmx
->emulation_required
)
10106 return handle_invalid_guest_state(vcpu
);
10108 if (is_guest_mode(vcpu
) && nested_vmx_exit_reflected(vcpu
, exit_reason
))
10109 return nested_vmx_reflect_vmexit(vcpu
, exit_reason
);
10111 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
10113 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
10114 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
10119 if (unlikely(vmx
->fail
)) {
10120 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
10121 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
10122 = vmcs_read32(VM_INSTRUCTION_ERROR
);
10128 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
10129 * delivery event since it indicates guest is accessing MMIO.
10130 * The vm-exit can be triggered again after return to guest that
10131 * will cause infinite loop.
10133 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
10134 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
10135 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
10136 exit_reason
!= EXIT_REASON_PML_FULL
&&
10137 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
10138 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
10139 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
10140 vcpu
->run
->internal
.ndata
= 3;
10141 vcpu
->run
->internal
.data
[0] = vectoring_info
;
10142 vcpu
->run
->internal
.data
[1] = exit_reason
;
10143 vcpu
->run
->internal
.data
[2] = vcpu
->arch
.exit_qualification
;
10144 if (exit_reason
== EXIT_REASON_EPT_MISCONFIG
) {
10145 vcpu
->run
->internal
.ndata
++;
10146 vcpu
->run
->internal
.data
[3] =
10147 vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
10152 if (unlikely(!enable_vnmi
&&
10153 vmx
->loaded_vmcs
->soft_vnmi_blocked
)) {
10154 if (vmx_interrupt_allowed(vcpu
)) {
10155 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 0;
10156 } else if (vmx
->loaded_vmcs
->vnmi_blocked_time
> 1000000000LL &&
10157 vcpu
->arch
.nmi_pending
) {
10159 * This CPU don't support us in finding the end of an
10160 * NMI-blocked window if the guest runs with IRQs
10161 * disabled. So we pull the trigger after 1 s of
10162 * futile waiting, but inform the user about this.
10164 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
10165 "state on VCPU %d after 1 s timeout\n",
10166 __func__
, vcpu
->vcpu_id
);
10167 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 0;
10171 if (exit_reason
< kvm_vmx_max_exit_handlers
10172 && kvm_vmx_exit_handlers
[exit_reason
])
10173 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
10175 vcpu_unimpl(vcpu
, "vmx: unexpected exit reason 0x%x\n",
10177 kvm_queue_exception(vcpu
, UD_VECTOR
);
10183 * Software based L1D cache flush which is used when microcode providing
10184 * the cache control MSR is not loaded.
10186 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
10187 * flush it is required to read in 64 KiB because the replacement algorithm
10188 * is not exactly LRU. This could be sized at runtime via topology
10189 * information but as all relevant affected CPUs have 32KiB L1D cache size
10190 * there is no point in doing so.
10192 static void vmx_l1d_flush(struct kvm_vcpu
*vcpu
)
10194 int size
= PAGE_SIZE
<< L1D_CACHE_ORDER
;
10197 * This code is only executed when the the flush mode is 'cond' or
10200 if (static_branch_likely(&vmx_l1d_flush_cond
)) {
10204 * Clear the per-vcpu flush bit, it gets set again
10205 * either from vcpu_run() or from one of the unsafe
10208 flush_l1d
= vcpu
->arch
.l1tf_flush_l1d
;
10209 vcpu
->arch
.l1tf_flush_l1d
= false;
10212 * Clear the per-cpu flush bit, it gets set again from
10213 * the interrupt handlers.
10215 flush_l1d
|= kvm_get_cpu_l1tf_flush_l1d();
10216 kvm_clear_cpu_l1tf_flush_l1d();
10222 vcpu
->stat
.l1d_flush
++;
10224 if (static_cpu_has(X86_FEATURE_FLUSH_L1D
)) {
10225 wrmsrl(MSR_IA32_FLUSH_CMD
, L1D_FLUSH
);
10230 /* First ensure the pages are in the TLB */
10231 "xorl %%eax, %%eax\n"
10232 ".Lpopulate_tlb:\n\t"
10233 "movzbl (%[flush_pages], %%" _ASM_AX
"), %%ecx\n\t"
10234 "addl $4096, %%eax\n\t"
10235 "cmpl %%eax, %[size]\n\t"
10236 "jne .Lpopulate_tlb\n\t"
10237 "xorl %%eax, %%eax\n\t"
10239 /* Now fill the cache */
10240 "xorl %%eax, %%eax\n"
10242 "movzbl (%[flush_pages], %%" _ASM_AX
"), %%ecx\n\t"
10243 "addl $64, %%eax\n\t"
10244 "cmpl %%eax, %[size]\n\t"
10245 "jne .Lfill_cache\n\t"
10247 :: [flush_pages
] "r" (vmx_l1d_flush_pages
),
10249 : "eax", "ebx", "ecx", "edx");
10252 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
10254 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
10256 if (is_guest_mode(vcpu
) &&
10257 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
10260 if (irr
== -1 || tpr
< irr
) {
10261 vmcs_write32(TPR_THRESHOLD
, 0);
10265 vmcs_write32(TPR_THRESHOLD
, irr
);
10268 static void vmx_set_virtual_apic_mode(struct kvm_vcpu
*vcpu
)
10270 u32 sec_exec_control
;
10272 if (!lapic_in_kernel(vcpu
))
10275 if (!flexpriority_enabled
&&
10276 !cpu_has_vmx_virtualize_x2apic_mode())
10279 /* Postpone execution until vmcs01 is the current VMCS. */
10280 if (is_guest_mode(vcpu
)) {
10281 to_vmx(vcpu
)->nested
.change_vmcs01_virtual_apic_mode
= true;
10285 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
10286 sec_exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
10287 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
10289 switch (kvm_get_apic_mode(vcpu
)) {
10290 case LAPIC_MODE_INVALID
:
10291 WARN_ONCE(true, "Invalid local APIC state");
10292 case LAPIC_MODE_DISABLED
:
10294 case LAPIC_MODE_XAPIC
:
10295 if (flexpriority_enabled
) {
10296 sec_exec_control
|=
10297 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
10298 vmx_flush_tlb(vcpu
, true);
10301 case LAPIC_MODE_X2APIC
:
10302 if (cpu_has_vmx_virtualize_x2apic_mode())
10303 sec_exec_control
|=
10304 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
10307 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
10309 vmx_update_msr_bitmap(vcpu
);
10312 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
10314 if (!is_guest_mode(vcpu
)) {
10315 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
10316 vmx_flush_tlb(vcpu
, true);
10320 static void vmx_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
10328 status
= vmcs_read16(GUEST_INTR_STATUS
);
10330 if (max_isr
!= old
) {
10332 status
|= max_isr
<< 8;
10333 vmcs_write16(GUEST_INTR_STATUS
, status
);
10337 static void vmx_set_rvi(int vector
)
10345 status
= vmcs_read16(GUEST_INTR_STATUS
);
10346 old
= (u8
)status
& 0xff;
10347 if ((u8
)vector
!= old
) {
10349 status
|= (u8
)vector
;
10350 vmcs_write16(GUEST_INTR_STATUS
, status
);
10354 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
10357 * When running L2, updating RVI is only relevant when
10358 * vmcs12 virtual-interrupt-delivery enabled.
10359 * However, it can be enabled only when L1 also
10360 * intercepts external-interrupts and in that case
10361 * we should not update vmcs02 RVI but instead intercept
10362 * interrupt. Therefore, do nothing when running L2.
10364 if (!is_guest_mode(vcpu
))
10365 vmx_set_rvi(max_irr
);
10368 static int vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
10370 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10372 bool max_irr_updated
;
10374 WARN_ON(!vcpu
->arch
.apicv_active
);
10375 if (pi_test_on(&vmx
->pi_desc
)) {
10376 pi_clear_on(&vmx
->pi_desc
);
10378 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
10379 * But on x86 this is just a compiler barrier anyway.
10381 smp_mb__after_atomic();
10383 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
, &max_irr
);
10386 * If we are running L2 and L1 has a new pending interrupt
10387 * which can be injected, we should re-evaluate
10388 * what should be done with this new L1 interrupt.
10389 * If L1 intercepts external-interrupts, we should
10390 * exit from L2 to L1. Otherwise, interrupt should be
10391 * delivered directly to L2.
10393 if (is_guest_mode(vcpu
) && max_irr_updated
) {
10394 if (nested_exit_on_intr(vcpu
))
10395 kvm_vcpu_exiting_guest_mode(vcpu
);
10397 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
10400 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
10402 vmx_hwapic_irr_update(vcpu
, max_irr
);
10406 static u8
vmx_has_apicv_interrupt(struct kvm_vcpu
*vcpu
)
10408 u8 rvi
= vmx_get_rvi();
10409 u8 vppr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_PROCPRI
);
10411 return ((rvi
& 0xf0) > (vppr
& 0xf0));
10414 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu
*vcpu
)
10416 return pi_test_on(vcpu_to_pi_desc(vcpu
));
10419 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
10421 if (!kvm_vcpu_apicv_active(vcpu
))
10424 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
10425 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
10426 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
10427 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
10430 static void vmx_apicv_post_state_restore(struct kvm_vcpu
*vcpu
)
10432 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10434 pi_clear_on(&vmx
->pi_desc
);
10435 memset(vmx
->pi_desc
.pir
, 0, sizeof(vmx
->pi_desc
.pir
));
10438 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
10440 u32 exit_intr_info
= 0;
10441 u16 basic_exit_reason
= (u16
)vmx
->exit_reason
;
10443 if (!(basic_exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
10444 || basic_exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
10447 if (!(vmx
->exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
10448 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
10449 vmx
->exit_intr_info
= exit_intr_info
;
10451 /* if exit due to PF check for async PF */
10452 if (is_page_fault(exit_intr_info
))
10453 vmx
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
10455 /* Handle machine checks before interrupts are enabled */
10456 if (basic_exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
||
10457 is_machine_check(exit_intr_info
))
10458 kvm_machine_check();
10460 /* We need to handle NMIs before interrupts are enabled */
10461 if (is_nmi(exit_intr_info
)) {
10462 kvm_before_interrupt(&vmx
->vcpu
);
10464 kvm_after_interrupt(&vmx
->vcpu
);
10468 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
10470 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
10472 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
10473 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
10474 unsigned int vector
;
10475 unsigned long entry
;
10477 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10478 #ifdef CONFIG_X86_64
10482 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
10483 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
10484 entry
= gate_offset(desc
);
10486 #ifdef CONFIG_X86_64
10487 "mov %%" _ASM_SP
", %[sp]\n\t"
10488 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
10493 __ASM_SIZE(push
) " $%c[cs]\n\t"
10496 #ifdef CONFIG_X86_64
10499 ASM_CALL_CONSTRAINT
10501 THUNK_TARGET(entry
),
10502 [ss
]"i"(__KERNEL_DS
),
10503 [cs
]"i"(__KERNEL_CS
)
10507 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr
);
10509 static bool vmx_has_emulated_msr(int index
)
10512 case MSR_IA32_SMBASE
:
10514 * We cannot do SMM unless we can run the guest in big
10517 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
10518 case MSR_AMD64_VIRT_SPEC_CTRL
:
10519 /* This is AMD only. */
10526 static bool vmx_mpx_supported(void)
10528 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
10529 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
10532 static bool vmx_xsaves_supported(void)
10534 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
10535 SECONDARY_EXEC_XSAVES
;
10538 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
10540 u32 exit_intr_info
;
10543 bool idtv_info_valid
;
10545 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
10548 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
10551 * Can't use vmx->exit_intr_info since we're not sure what
10552 * the exit reason is.
10554 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
10555 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
10556 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
10558 * SDM 3: 27.7.1.2 (September 2008)
10559 * Re-set bit "block by NMI" before VM entry if vmexit caused by
10560 * a guest IRET fault.
10561 * SDM 3: 23.2.2 (September 2008)
10562 * Bit 12 is undefined in any of the following cases:
10563 * If the VM exit sets the valid bit in the IDT-vectoring
10564 * information field.
10565 * If the VM exit is due to a double fault.
10567 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
10568 vector
!= DF_VECTOR
&& !idtv_info_valid
)
10569 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
10570 GUEST_INTR_STATE_NMI
);
10572 vmx
->loaded_vmcs
->nmi_known_unmasked
=
10573 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
10574 & GUEST_INTR_STATE_NMI
);
10575 } else if (unlikely(vmx
->loaded_vmcs
->soft_vnmi_blocked
))
10576 vmx
->loaded_vmcs
->vnmi_blocked_time
+=
10577 ktime_to_ns(ktime_sub(ktime_get(),
10578 vmx
->loaded_vmcs
->entry_time
));
10581 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
10582 u32 idt_vectoring_info
,
10583 int instr_len_field
,
10584 int error_code_field
)
10588 bool idtv_info_valid
;
10590 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
10592 vcpu
->arch
.nmi_injected
= false;
10593 kvm_clear_exception_queue(vcpu
);
10594 kvm_clear_interrupt_queue(vcpu
);
10596 if (!idtv_info_valid
)
10599 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
10601 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
10602 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
10605 case INTR_TYPE_NMI_INTR
:
10606 vcpu
->arch
.nmi_injected
= true;
10608 * SDM 3: 27.7.1.2 (September 2008)
10609 * Clear bit "block by NMI" before VM entry if a NMI
10610 * delivery faulted.
10612 vmx_set_nmi_mask(vcpu
, false);
10614 case INTR_TYPE_SOFT_EXCEPTION
:
10615 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
10617 case INTR_TYPE_HARD_EXCEPTION
:
10618 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
10619 u32 err
= vmcs_read32(error_code_field
);
10620 kvm_requeue_exception_e(vcpu
, vector
, err
);
10622 kvm_requeue_exception(vcpu
, vector
);
10624 case INTR_TYPE_SOFT_INTR
:
10625 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
10627 case INTR_TYPE_EXT_INTR
:
10628 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
10635 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
10637 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
10638 VM_EXIT_INSTRUCTION_LEN
,
10639 IDT_VECTORING_ERROR_CODE
);
10642 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
10644 __vmx_complete_interrupts(vcpu
,
10645 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
10646 VM_ENTRY_INSTRUCTION_LEN
,
10647 VM_ENTRY_EXCEPTION_ERROR_CODE
);
10649 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
10652 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
10655 struct perf_guest_switch_msr
*msrs
;
10657 msrs
= perf_guest_get_msrs(&nr_msrs
);
10662 for (i
= 0; i
< nr_msrs
; i
++)
10663 if (msrs
[i
].host
== msrs
[i
].guest
)
10664 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
10666 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
10667 msrs
[i
].host
, false);
10670 static void vmx_arm_hv_timer(struct vcpu_vmx
*vmx
, u32 val
)
10672 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, val
);
10673 if (!vmx
->loaded_vmcs
->hv_timer_armed
)
10674 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
10675 PIN_BASED_VMX_PREEMPTION_TIMER
);
10676 vmx
->loaded_vmcs
->hv_timer_armed
= true;
10679 static void vmx_update_hv_timer(struct kvm_vcpu
*vcpu
)
10681 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10685 if (vmx
->req_immediate_exit
) {
10686 vmx_arm_hv_timer(vmx
, 0);
10690 if (vmx
->hv_deadline_tsc
!= -1) {
10692 if (vmx
->hv_deadline_tsc
> tscl
)
10693 /* set_hv_timer ensures the delta fits in 32-bits */
10694 delta_tsc
= (u32
)((vmx
->hv_deadline_tsc
- tscl
) >>
10695 cpu_preemption_timer_multi
);
10699 vmx_arm_hv_timer(vmx
, delta_tsc
);
10703 if (vmx
->loaded_vmcs
->hv_timer_armed
)
10704 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
10705 PIN_BASED_VMX_PREEMPTION_TIMER
);
10706 vmx
->loaded_vmcs
->hv_timer_armed
= false;
10709 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
10711 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10712 unsigned long cr3
, cr4
, evmcs_rsp
;
10714 /* Record the guest's net vcpu time for enforced NMI injections. */
10715 if (unlikely(!enable_vnmi
&&
10716 vmx
->loaded_vmcs
->soft_vnmi_blocked
))
10717 vmx
->loaded_vmcs
->entry_time
= ktime_get();
10719 /* Don't enter VMX if guest state is invalid, let the exit handler
10720 start emulation until we arrive back to a valid state */
10721 if (vmx
->emulation_required
)
10724 if (vmx
->ple_window_dirty
) {
10725 vmx
->ple_window_dirty
= false;
10726 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
10729 if (vmx
->nested
.sync_shadow_vmcs
) {
10730 copy_vmcs12_to_shadow(vmx
);
10731 vmx
->nested
.sync_shadow_vmcs
= false;
10734 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
10735 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
10736 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
10737 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
10739 cr3
= __get_current_cr3_fast();
10740 if (unlikely(cr3
!= vmx
->loaded_vmcs
->host_state
.cr3
)) {
10741 vmcs_writel(HOST_CR3
, cr3
);
10742 vmx
->loaded_vmcs
->host_state
.cr3
= cr3
;
10745 cr4
= cr4_read_shadow();
10746 if (unlikely(cr4
!= vmx
->loaded_vmcs
->host_state
.cr4
)) {
10747 vmcs_writel(HOST_CR4
, cr4
);
10748 vmx
->loaded_vmcs
->host_state
.cr4
= cr4
;
10751 /* When single-stepping over STI and MOV SS, we must clear the
10752 * corresponding interruptibility bits in the guest state. Otherwise
10753 * vmentry fails as it then expects bit 14 (BS) in pending debug
10754 * exceptions being set, but that's not correct for the guest debugging
10756 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
10757 vmx_set_interrupt_shadow(vcpu
, 0);
10759 if (static_cpu_has(X86_FEATURE_PKU
) &&
10760 kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
) &&
10761 vcpu
->arch
.pkru
!= vmx
->host_pkru
)
10762 __write_pkru(vcpu
->arch
.pkru
);
10764 atomic_switch_perf_msrs(vmx
);
10766 vmx_update_hv_timer(vcpu
);
10769 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
10770 * it's non-zero. Since vmentry is serialising on affected CPUs, there
10771 * is no need to worry about the conditional branch over the wrmsr
10772 * being speculatively taken.
10774 x86_spec_ctrl_set_guest(vmx
->spec_ctrl
, 0);
10776 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
10778 evmcs_rsp
= static_branch_unlikely(&enable_evmcs
) ?
10779 (unsigned long)¤t_evmcs
->host_rsp
: 0;
10781 /* L1D Flush includes CPU buffer clear to mitigate MDS */
10782 if (static_branch_unlikely(&vmx_l1d_should_flush
))
10783 vmx_l1d_flush(vcpu
);
10784 else if (static_branch_unlikely(&mds_user_clear
))
10785 mds_clear_cpu_buffers();
10788 /* Store host registers */
10789 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
10790 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
10791 "push %%" _ASM_CX
" \n\t"
10792 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
10794 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
10795 /* Avoid VMWRITE when Enlightened VMCS is in use */
10796 "test %%" _ASM_SI
", %%" _ASM_SI
" \n\t"
10798 "mov %%" _ASM_SP
", (%%" _ASM_SI
") \n\t"
10801 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
10803 /* Reload cr2 if changed */
10804 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
10805 "mov %%cr2, %%" _ASM_DX
" \n\t"
10806 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
10808 "mov %%" _ASM_AX
", %%cr2 \n\t"
10810 /* Check if vmlaunch of vmresume is needed */
10811 "cmpl $0, %c[launched](%0) \n\t"
10812 /* Load guest registers. Don't clobber flags. */
10813 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
10814 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
10815 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
10816 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
10817 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
10818 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
10819 #ifdef CONFIG_X86_64
10820 "mov %c[r8](%0), %%r8 \n\t"
10821 "mov %c[r9](%0), %%r9 \n\t"
10822 "mov %c[r10](%0), %%r10 \n\t"
10823 "mov %c[r11](%0), %%r11 \n\t"
10824 "mov %c[r12](%0), %%r12 \n\t"
10825 "mov %c[r13](%0), %%r13 \n\t"
10826 "mov %c[r14](%0), %%r14 \n\t"
10827 "mov %c[r15](%0), %%r15 \n\t"
10829 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
10831 /* Enter guest mode */
10833 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
10835 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
10837 /* Save guest registers, load host registers, keep flags */
10838 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
10840 "setbe %c[fail](%0)\n\t"
10841 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
10842 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
10843 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
10844 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
10845 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
10846 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
10847 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
10848 #ifdef CONFIG_X86_64
10849 "mov %%r8, %c[r8](%0) \n\t"
10850 "mov %%r9, %c[r9](%0) \n\t"
10851 "mov %%r10, %c[r10](%0) \n\t"
10852 "mov %%r11, %c[r11](%0) \n\t"
10853 "mov %%r12, %c[r12](%0) \n\t"
10854 "mov %%r13, %c[r13](%0) \n\t"
10855 "mov %%r14, %c[r14](%0) \n\t"
10856 "mov %%r15, %c[r15](%0) \n\t"
10857 "xor %%r8d, %%r8d \n\t"
10858 "xor %%r9d, %%r9d \n\t"
10859 "xor %%r10d, %%r10d \n\t"
10860 "xor %%r11d, %%r11d \n\t"
10861 "xor %%r12d, %%r12d \n\t"
10862 "xor %%r13d, %%r13d \n\t"
10863 "xor %%r14d, %%r14d \n\t"
10864 "xor %%r15d, %%r15d \n\t"
10866 "mov %%cr2, %%" _ASM_AX
" \n\t"
10867 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
10869 "xor %%eax, %%eax \n\t"
10870 "xor %%ebx, %%ebx \n\t"
10871 "xor %%esi, %%esi \n\t"
10872 "xor %%edi, %%edi \n\t"
10873 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
10874 ".pushsection .rodata \n\t"
10875 ".global vmx_return \n\t"
10876 "vmx_return: " _ASM_PTR
" 2b \n\t"
10878 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
), "S"(evmcs_rsp
),
10879 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
10880 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
10881 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
10882 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
10883 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
10884 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
10885 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
10886 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
10887 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
10888 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
10889 #ifdef CONFIG_X86_64
10890 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
10891 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
10892 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
10893 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
10894 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
10895 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
10896 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
10897 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
10899 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
10900 [wordsize
]"i"(sizeof(ulong
))
10902 #ifdef CONFIG_X86_64
10903 , "rax", "rbx", "rdi"
10904 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
10906 , "eax", "ebx", "edi"
10911 * We do not use IBRS in the kernel. If this vCPU has used the
10912 * SPEC_CTRL MSR it may have left it on; save the value and
10913 * turn it off. This is much more efficient than blindly adding
10914 * it to the atomic save/restore list. Especially as the former
10915 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
10917 * For non-nested case:
10918 * If the L01 MSR bitmap does not intercept the MSR, then we need to
10922 * If the L02 MSR bitmap does not intercept the MSR, then we need to
10925 if (unlikely(!msr_write_intercepted(vcpu
, MSR_IA32_SPEC_CTRL
)))
10926 vmx
->spec_ctrl
= native_read_msr(MSR_IA32_SPEC_CTRL
);
10928 x86_spec_ctrl_restore_host(vmx
->spec_ctrl
, 0);
10930 /* Eliminate branch target predictions from guest mode */
10933 /* All fields are clean at this point */
10934 if (static_branch_unlikely(&enable_evmcs
))
10935 current_evmcs
->hv_clean_fields
|=
10936 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL
;
10938 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
10939 if (vmx
->host_debugctlmsr
)
10940 update_debugctlmsr(vmx
->host_debugctlmsr
);
10942 #ifndef CONFIG_X86_64
10944 * The sysexit path does not restore ds/es, so we must set them to
10945 * a reasonable value ourselves.
10947 * We can't defer this to vmx_prepare_switch_to_host() since that
10948 * function may be executed in interrupt context, which saves and
10949 * restore segments around it, nullifying its effect.
10951 loadsegment(ds
, __USER_DS
);
10952 loadsegment(es
, __USER_DS
);
10955 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
10956 | (1 << VCPU_EXREG_RFLAGS
)
10957 | (1 << VCPU_EXREG_PDPTR
)
10958 | (1 << VCPU_EXREG_SEGMENTS
)
10959 | (1 << VCPU_EXREG_CR3
));
10960 vcpu
->arch
.regs_dirty
= 0;
10963 * eager fpu is enabled if PKEY is supported and CR4 is switched
10964 * back on host, so it is safe to read guest PKRU from current
10967 if (static_cpu_has(X86_FEATURE_PKU
) &&
10968 kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
)) {
10969 vcpu
->arch
.pkru
= __read_pkru();
10970 if (vcpu
->arch
.pkru
!= vmx
->host_pkru
)
10971 __write_pkru(vmx
->host_pkru
);
10974 vmx
->nested
.nested_run_pending
= 0;
10975 vmx
->idt_vectoring_info
= 0;
10977 vmx
->exit_reason
= vmx
->fail
? 0xdead : vmcs_read32(VM_EXIT_REASON
);
10978 if (vmx
->fail
|| (vmx
->exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
10981 vmx
->loaded_vmcs
->launched
= 1;
10982 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
10984 vmx_complete_atomic_exit(vmx
);
10985 vmx_recover_nmi_blocking(vmx
);
10986 vmx_complete_interrupts(vmx
);
10988 STACK_FRAME_NON_STANDARD(vmx_vcpu_run
);
10990 static struct kvm
*vmx_vm_alloc(void)
10992 struct kvm_vmx
*kvm_vmx
= vzalloc(sizeof(struct kvm_vmx
));
10993 return &kvm_vmx
->kvm
;
10996 static void vmx_vm_free(struct kvm
*kvm
)
10998 vfree(to_kvm_vmx(kvm
));
11001 static void vmx_switch_vmcs(struct kvm_vcpu
*vcpu
, struct loaded_vmcs
*vmcs
)
11003 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11006 if (vmx
->loaded_vmcs
== vmcs
)
11010 vmx_vcpu_put(vcpu
);
11011 vmx
->loaded_vmcs
= vmcs
;
11012 vmx_vcpu_load(vcpu
, cpu
);
11017 * Ensure that the current vmcs of the logical processor is the
11018 * vmcs01 of the vcpu before calling free_nested().
11020 static void vmx_free_vcpu_nested(struct kvm_vcpu
*vcpu
)
11022 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11025 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
11030 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
11032 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11035 vmx_destroy_pml_buffer(vmx
);
11036 free_vpid(vmx
->vpid
);
11037 leave_guest_mode(vcpu
);
11038 vmx_free_vcpu_nested(vcpu
);
11039 free_loaded_vmcs(vmx
->loaded_vmcs
);
11040 kfree(vmx
->guest_msrs
);
11041 kvm_vcpu_uninit(vcpu
);
11042 kmem_cache_free(kvm_vcpu_cache
, vmx
);
11045 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
11048 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
11049 unsigned long *msr_bitmap
;
11053 return ERR_PTR(-ENOMEM
);
11055 vmx
->vpid
= allocate_vpid();
11057 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
11064 * If PML is turned on, failure on enabling PML just results in failure
11065 * of creating the vcpu, therefore we can simplify PML logic (by
11066 * avoiding dealing with cases, such as enabling PML partially on vcpus
11067 * for the guest, etc.
11070 vmx
->pml_pg
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
11075 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
11076 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
11079 if (!vmx
->guest_msrs
)
11082 err
= alloc_loaded_vmcs(&vmx
->vmcs01
);
11086 msr_bitmap
= vmx
->vmcs01
.msr_bitmap
;
11087 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_FS_BASE
, MSR_TYPE_RW
);
11088 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_GS_BASE
, MSR_TYPE_RW
);
11089 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_KERNEL_GS_BASE
, MSR_TYPE_RW
);
11090 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_IA32_SYSENTER_CS
, MSR_TYPE_RW
);
11091 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_IA32_SYSENTER_ESP
, MSR_TYPE_RW
);
11092 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_IA32_SYSENTER_EIP
, MSR_TYPE_RW
);
11093 vmx
->msr_bitmap_mode
= 0;
11095 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
11097 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
11098 vmx
->vcpu
.cpu
= cpu
;
11099 vmx_vcpu_setup(vmx
);
11100 vmx_vcpu_put(&vmx
->vcpu
);
11102 if (cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
11103 err
= alloc_apic_access_page(kvm
);
11108 if (enable_ept
&& !enable_unrestricted_guest
) {
11109 err
= init_rmode_identity_map(kvm
);
11115 nested_vmx_setup_ctls_msrs(&vmx
->nested
.msrs
,
11116 kvm_vcpu_apicv_active(&vmx
->vcpu
));
11118 vmx
->nested
.posted_intr_nv
= -1;
11119 vmx
->nested
.current_vmptr
= -1ull;
11121 vmx
->msr_ia32_feature_control_valid_bits
= FEATURE_CONTROL_LOCKED
;
11124 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
11125 * or POSTED_INTR_WAKEUP_VECTOR.
11127 vmx
->pi_desc
.nv
= POSTED_INTR_VECTOR
;
11128 vmx
->pi_desc
.sn
= 1;
11133 free_loaded_vmcs(vmx
->loaded_vmcs
);
11135 kfree(vmx
->guest_msrs
);
11137 vmx_destroy_pml_buffer(vmx
);
11139 kvm_vcpu_uninit(&vmx
->vcpu
);
11141 free_vpid(vmx
->vpid
);
11142 kmem_cache_free(kvm_vcpu_cache
, vmx
);
11143 return ERR_PTR(err
);
11146 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
11147 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
11149 static int vmx_vm_init(struct kvm
*kvm
)
11151 spin_lock_init(&to_kvm_vmx(kvm
)->ept_pointer_lock
);
11154 kvm
->arch
.pause_in_guest
= true;
11156 if (boot_cpu_has(X86_BUG_L1TF
) && enable_ept
) {
11157 switch (l1tf_mitigation
) {
11158 case L1TF_MITIGATION_OFF
:
11159 case L1TF_MITIGATION_FLUSH_NOWARN
:
11160 /* 'I explicitly don't care' is set */
11162 case L1TF_MITIGATION_FLUSH
:
11163 case L1TF_MITIGATION_FLUSH_NOSMT
:
11164 case L1TF_MITIGATION_FULL
:
11166 * Warn upon starting the first VM in a potentially
11167 * insecure environment.
11169 if (sched_smt_active())
11170 pr_warn_once(L1TF_MSG_SMT
);
11171 if (l1tf_vmx_mitigation
== VMENTER_L1D_FLUSH_NEVER
)
11172 pr_warn_once(L1TF_MSG_L1D
);
11174 case L1TF_MITIGATION_FULL_FORCE
:
11175 /* Flush is enforced */
11182 static void __init
vmx_check_processor_compat(void *rtn
)
11184 struct vmcs_config vmcs_conf
;
11187 if (setup_vmcs_config(&vmcs_conf
) < 0)
11188 *(int *)rtn
= -EIO
;
11189 nested_vmx_setup_ctls_msrs(&vmcs_conf
.nested
, enable_apicv
);
11190 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
11191 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
11192 smp_processor_id());
11193 *(int *)rtn
= -EIO
;
11197 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
11202 /* For VT-d and EPT combination
11203 * 1. MMIO: always map as UC
11204 * 2. EPT with VT-d:
11205 * a. VT-d without snooping control feature: can't guarantee the
11206 * result, try to trust guest.
11207 * b. VT-d with snooping control feature: snooping control feature of
11208 * VT-d engine can guarantee the cache correctness. Just set it
11209 * to WB to keep consistent with host. So the same as item 3.
11210 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
11211 * consistent with host MTRR
11214 cache
= MTRR_TYPE_UNCACHABLE
;
11218 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
)) {
11219 ipat
= VMX_EPT_IPAT_BIT
;
11220 cache
= MTRR_TYPE_WRBACK
;
11224 if (kvm_read_cr0(vcpu
) & X86_CR0_CD
) {
11225 ipat
= VMX_EPT_IPAT_BIT
;
11226 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
11227 cache
= MTRR_TYPE_WRBACK
;
11229 cache
= MTRR_TYPE_UNCACHABLE
;
11233 cache
= kvm_mtrr_get_guest_memory_type(vcpu
, gfn
);
11236 return (cache
<< VMX_EPT_MT_EPTE_SHIFT
) | ipat
;
11239 static int vmx_get_lpage_level(void)
11241 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
11242 return PT_DIRECTORY_LEVEL
;
11244 /* For shadow and EPT supported 1GB page */
11245 return PT_PDPE_LEVEL
;
11248 static void vmcs_set_secondary_exec_control(u32 new_ctl
)
11251 * These bits in the secondary execution controls field
11252 * are dynamic, the others are mostly based on the hypervisor
11253 * architecture and the guest's CPUID. Do not touch the
11257 SECONDARY_EXEC_SHADOW_VMCS
|
11258 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
11259 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
11260 SECONDARY_EXEC_DESC
;
11262 u32 cur_ctl
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
11264 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
11265 (new_ctl
& ~mask
) | (cur_ctl
& mask
));
11269 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
11270 * (indicating "allowed-1") if they are supported in the guest's CPUID.
11272 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu
*vcpu
)
11274 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11275 struct kvm_cpuid_entry2
*entry
;
11277 vmx
->nested
.msrs
.cr0_fixed1
= 0xffffffff;
11278 vmx
->nested
.msrs
.cr4_fixed1
= X86_CR4_PCE
;
11280 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
11281 if (entry && (entry->_reg & (_cpuid_mask))) \
11282 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
11285 entry
= kvm_find_cpuid_entry(vcpu
, 0x1, 0);
11286 cr4_fixed1_update(X86_CR4_VME
, edx
, bit(X86_FEATURE_VME
));
11287 cr4_fixed1_update(X86_CR4_PVI
, edx
, bit(X86_FEATURE_VME
));
11288 cr4_fixed1_update(X86_CR4_TSD
, edx
, bit(X86_FEATURE_TSC
));
11289 cr4_fixed1_update(X86_CR4_DE
, edx
, bit(X86_FEATURE_DE
));
11290 cr4_fixed1_update(X86_CR4_PSE
, edx
, bit(X86_FEATURE_PSE
));
11291 cr4_fixed1_update(X86_CR4_PAE
, edx
, bit(X86_FEATURE_PAE
));
11292 cr4_fixed1_update(X86_CR4_MCE
, edx
, bit(X86_FEATURE_MCE
));
11293 cr4_fixed1_update(X86_CR4_PGE
, edx
, bit(X86_FEATURE_PGE
));
11294 cr4_fixed1_update(X86_CR4_OSFXSR
, edx
, bit(X86_FEATURE_FXSR
));
11295 cr4_fixed1_update(X86_CR4_OSXMMEXCPT
, edx
, bit(X86_FEATURE_XMM
));
11296 cr4_fixed1_update(X86_CR4_VMXE
, ecx
, bit(X86_FEATURE_VMX
));
11297 cr4_fixed1_update(X86_CR4_SMXE
, ecx
, bit(X86_FEATURE_SMX
));
11298 cr4_fixed1_update(X86_CR4_PCIDE
, ecx
, bit(X86_FEATURE_PCID
));
11299 cr4_fixed1_update(X86_CR4_OSXSAVE
, ecx
, bit(X86_FEATURE_XSAVE
));
11301 entry
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
11302 cr4_fixed1_update(X86_CR4_FSGSBASE
, ebx
, bit(X86_FEATURE_FSGSBASE
));
11303 cr4_fixed1_update(X86_CR4_SMEP
, ebx
, bit(X86_FEATURE_SMEP
));
11304 cr4_fixed1_update(X86_CR4_SMAP
, ebx
, bit(X86_FEATURE_SMAP
));
11305 cr4_fixed1_update(X86_CR4_PKE
, ecx
, bit(X86_FEATURE_PKU
));
11306 cr4_fixed1_update(X86_CR4_UMIP
, ecx
, bit(X86_FEATURE_UMIP
));
11308 #undef cr4_fixed1_update
11311 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu
*vcpu
)
11313 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11315 if (kvm_mpx_supported()) {
11316 bool mpx_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_MPX
);
11319 vmx
->nested
.msrs
.entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
11320 vmx
->nested
.msrs
.exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
11322 vmx
->nested
.msrs
.entry_ctls_high
&= ~VM_ENTRY_LOAD_BNDCFGS
;
11323 vmx
->nested
.msrs
.exit_ctls_high
&= ~VM_EXIT_CLEAR_BNDCFGS
;
11328 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
11330 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11332 if (cpu_has_secondary_exec_ctrls()) {
11333 vmx_compute_secondary_exec_control(vmx
);
11334 vmcs_set_secondary_exec_control(vmx
->secondary_exec_control
);
11337 if (nested_vmx_allowed(vcpu
))
11338 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
11339 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
11341 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
11342 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
11344 if (nested_vmx_allowed(vcpu
)) {
11345 nested_vmx_cr_fixed1_bits_update(vcpu
);
11346 nested_vmx_entry_exit_ctls_update(vcpu
);
11350 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
11352 if (func
== 1 && nested
)
11353 entry
->ecx
|= bit(X86_FEATURE_VMX
);
11356 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
11357 struct x86_exception
*fault
)
11359 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11360 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11362 unsigned long exit_qualification
= vcpu
->arch
.exit_qualification
;
11364 if (vmx
->nested
.pml_full
) {
11365 exit_reason
= EXIT_REASON_PML_FULL
;
11366 vmx
->nested
.pml_full
= false;
11367 exit_qualification
&= INTR_INFO_UNBLOCK_NMI
;
11368 } else if (fault
->error_code
& PFERR_RSVD_MASK
)
11369 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
11371 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
11373 nested_vmx_vmexit(vcpu
, exit_reason
, 0, exit_qualification
);
11374 vmcs12
->guest_physical_address
= fault
->address
;
11377 static bool nested_ept_ad_enabled(struct kvm_vcpu
*vcpu
)
11379 return nested_ept_get_cr3(vcpu
) & VMX_EPTP_AD_ENABLE_BIT
;
11382 /* Callbacks for nested_ept_init_mmu_context: */
11384 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
11386 /* return the page table to be shadowed - in our case, EPT12 */
11387 return get_vmcs12(vcpu
)->ept_pointer
;
11390 static int nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
11392 WARN_ON(mmu_is_nested(vcpu
));
11393 if (!valid_ept_address(vcpu
, nested_ept_get_cr3(vcpu
)))
11396 kvm_init_shadow_ept_mmu(vcpu
,
11397 to_vmx(vcpu
)->nested
.msrs
.ept_caps
&
11398 VMX_EPT_EXECUTE_ONLY_BIT
,
11399 nested_ept_ad_enabled(vcpu
),
11400 nested_ept_get_cr3(vcpu
));
11401 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
11402 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
11403 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
11405 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
11409 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
11411 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
11414 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
11417 bool inequality
, bit
;
11419 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
11421 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
11422 vmcs12
->page_fault_error_code_match
;
11423 return inequality
^ bit
;
11426 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
11427 struct x86_exception
*fault
)
11429 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11431 WARN_ON(!is_guest_mode(vcpu
));
11433 if (nested_vmx_is_page_fault_vmexit(vmcs12
, fault
->error_code
) &&
11434 !to_vmx(vcpu
)->nested
.nested_run_pending
) {
11435 vmcs12
->vm_exit_intr_error_code
= fault
->error_code
;
11436 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
11437 PF_VECTOR
| INTR_TYPE_HARD_EXCEPTION
|
11438 INTR_INFO_DELIVER_CODE_MASK
| INTR_INFO_VALID_MASK
,
11441 kvm_inject_page_fault(vcpu
, fault
);
11445 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu
*vcpu
,
11446 struct vmcs12
*vmcs12
);
11448 static void nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
)
11450 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11451 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11455 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
11457 * Translate L1 physical address to host physical
11458 * address for vmcs02. Keep the page pinned, so this
11459 * physical address remains valid. We keep a reference
11460 * to it so we can release it later.
11462 if (vmx
->nested
.apic_access_page
) { /* shouldn't happen */
11463 kvm_release_page_dirty(vmx
->nested
.apic_access_page
);
11464 vmx
->nested
.apic_access_page
= NULL
;
11466 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->apic_access_addr
);
11468 * If translation failed, no matter: This feature asks
11469 * to exit when accessing the given address, and if it
11470 * can never be accessed, this feature won't do
11473 if (!is_error_page(page
)) {
11474 vmx
->nested
.apic_access_page
= page
;
11475 hpa
= page_to_phys(vmx
->nested
.apic_access_page
);
11476 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
11478 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
11479 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
11483 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
11484 if (vmx
->nested
.virtual_apic_page
) { /* shouldn't happen */
11485 kvm_release_page_dirty(vmx
->nested
.virtual_apic_page
);
11486 vmx
->nested
.virtual_apic_page
= NULL
;
11488 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
11491 * If translation failed, VM entry will fail because
11492 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
11493 * Failing the vm entry is _not_ what the processor
11494 * does but it's basically the only possibility we
11495 * have. We could still enter the guest if CR8 load
11496 * exits are enabled, CR8 store exits are enabled, and
11497 * virtualize APIC access is disabled; in this case
11498 * the processor would never use the TPR shadow and we
11499 * could simply clear the bit from the execution
11500 * control. But such a configuration is useless, so
11501 * let's keep the code simple.
11503 if (!is_error_page(page
)) {
11504 vmx
->nested
.virtual_apic_page
= page
;
11505 hpa
= page_to_phys(vmx
->nested
.virtual_apic_page
);
11506 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, hpa
);
11510 if (nested_cpu_has_posted_intr(vmcs12
)) {
11511 if (vmx
->nested
.pi_desc_page
) { /* shouldn't happen */
11512 kunmap(vmx
->nested
.pi_desc_page
);
11513 kvm_release_page_dirty(vmx
->nested
.pi_desc_page
);
11514 vmx
->nested
.pi_desc_page
= NULL
;
11515 vmx
->nested
.pi_desc
= NULL
;
11516 vmcs_write64(POSTED_INTR_DESC_ADDR
, -1ull);
11518 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->posted_intr_desc_addr
);
11519 if (is_error_page(page
))
11521 vmx
->nested
.pi_desc_page
= page
;
11522 vmx
->nested
.pi_desc
= kmap(vmx
->nested
.pi_desc_page
);
11523 vmx
->nested
.pi_desc
=
11524 (struct pi_desc
*)((void *)vmx
->nested
.pi_desc
+
11525 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
11527 vmcs_write64(POSTED_INTR_DESC_ADDR
,
11528 page_to_phys(vmx
->nested
.pi_desc_page
) +
11529 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
11532 if (nested_vmx_prepare_msr_bitmap(vcpu
, vmcs12
))
11533 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
11534 CPU_BASED_USE_MSR_BITMAPS
);
11536 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
11537 CPU_BASED_USE_MSR_BITMAPS
);
11540 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
11542 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
11543 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11546 * A timer value of zero is architecturally guaranteed to cause
11547 * a VMExit prior to executing any instructions in the guest.
11549 if (preemption_timeout
== 0) {
11550 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
11554 if (vcpu
->arch
.virtual_tsc_khz
== 0)
11557 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
11558 preemption_timeout
*= 1000000;
11559 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
11560 hrtimer_start(&vmx
->nested
.preemption_timer
,
11561 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
11564 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu
*vcpu
,
11565 struct vmcs12
*vmcs12
)
11567 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
11570 if (!page_address_valid(vcpu
, vmcs12
->io_bitmap_a
) ||
11571 !page_address_valid(vcpu
, vmcs12
->io_bitmap_b
))
11577 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
11578 struct vmcs12
*vmcs12
)
11580 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
11583 if (!page_address_valid(vcpu
, vmcs12
->msr_bitmap
))
11589 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu
*vcpu
,
11590 struct vmcs12
*vmcs12
)
11592 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
11595 if (!page_address_valid(vcpu
, vmcs12
->virtual_apic_page_addr
))
11601 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap
) {
11604 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
11605 unsigned word
= msr
/ BITS_PER_LONG
;
11607 msr_bitmap
[word
] = ~0;
11608 msr_bitmap
[word
+ (0x800 / sizeof(long))] = ~0;
11613 * Merge L0's and L1's MSR bitmap, return false to indicate that
11614 * we do not use the hardware.
11616 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu
*vcpu
,
11617 struct vmcs12
*vmcs12
)
11621 unsigned long *msr_bitmap_l1
;
11622 unsigned long *msr_bitmap_l0
= to_vmx(vcpu
)->nested
.vmcs02
.msr_bitmap
;
11624 * pred_cmd & spec_ctrl are trying to verify two things:
11626 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
11627 * ensures that we do not accidentally generate an L02 MSR bitmap
11628 * from the L12 MSR bitmap that is too permissive.
11629 * 2. That L1 or L2s have actually used the MSR. This avoids
11630 * unnecessarily merging of the bitmap if the MSR is unused. This
11631 * works properly because we only update the L01 MSR bitmap lazily.
11632 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
11633 * updated to reflect this when L1 (or its L2s) actually write to
11636 bool pred_cmd
= !msr_write_intercepted_l01(vcpu
, MSR_IA32_PRED_CMD
);
11637 bool spec_ctrl
= !msr_write_intercepted_l01(vcpu
, MSR_IA32_SPEC_CTRL
);
11639 /* Nothing to do if the MSR bitmap is not in use. */
11640 if (!cpu_has_vmx_msr_bitmap() ||
11641 !nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
11644 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
11645 !pred_cmd
&& !spec_ctrl
)
11648 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->msr_bitmap
);
11649 if (is_error_page(page
))
11652 msr_bitmap_l1
= (unsigned long *)kmap(page
);
11655 * To keep the control flow simple, pay eight 8-byte writes (sixteen
11656 * 4-byte writes on 32-bit systems) up front to enable intercepts for
11657 * the x2APIC MSR range and selectively disable them below.
11659 enable_x2apic_msr_intercepts(msr_bitmap_l0
);
11661 if (nested_cpu_has_virt_x2apic_mode(vmcs12
)) {
11662 if (nested_cpu_has_apic_reg_virt(vmcs12
)) {
11664 * L0 need not intercept reads for MSRs between 0x800
11665 * and 0x8ff, it just lets the processor take the value
11666 * from the virtual-APIC page; take those 256 bits
11667 * directly from the L1 bitmap.
11669 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
11670 unsigned word
= msr
/ BITS_PER_LONG
;
11672 msr_bitmap_l0
[word
] = msr_bitmap_l1
[word
];
11676 nested_vmx_disable_intercept_for_msr(
11677 msr_bitmap_l1
, msr_bitmap_l0
,
11678 X2APIC_MSR(APIC_TASKPRI
),
11679 MSR_TYPE_R
| MSR_TYPE_W
);
11681 if (nested_cpu_has_vid(vmcs12
)) {
11682 nested_vmx_disable_intercept_for_msr(
11683 msr_bitmap_l1
, msr_bitmap_l0
,
11684 X2APIC_MSR(APIC_EOI
),
11686 nested_vmx_disable_intercept_for_msr(
11687 msr_bitmap_l1
, msr_bitmap_l0
,
11688 X2APIC_MSR(APIC_SELF_IPI
),
11694 nested_vmx_disable_intercept_for_msr(
11695 msr_bitmap_l1
, msr_bitmap_l0
,
11696 MSR_IA32_SPEC_CTRL
,
11697 MSR_TYPE_R
| MSR_TYPE_W
);
11700 nested_vmx_disable_intercept_for_msr(
11701 msr_bitmap_l1
, msr_bitmap_l0
,
11706 kvm_release_page_clean(page
);
11711 static void nested_cache_shadow_vmcs12(struct kvm_vcpu
*vcpu
,
11712 struct vmcs12
*vmcs12
)
11714 struct vmcs12
*shadow
;
11717 if (!nested_cpu_has_shadow_vmcs(vmcs12
) ||
11718 vmcs12
->vmcs_link_pointer
== -1ull)
11721 shadow
= get_shadow_vmcs12(vcpu
);
11722 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->vmcs_link_pointer
);
11724 memcpy(shadow
, kmap(page
), VMCS12_SIZE
);
11727 kvm_release_page_clean(page
);
11730 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu
*vcpu
,
11731 struct vmcs12
*vmcs12
)
11733 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11735 if (!nested_cpu_has_shadow_vmcs(vmcs12
) ||
11736 vmcs12
->vmcs_link_pointer
== -1ull)
11739 kvm_write_guest(vmx
->vcpu
.kvm
, vmcs12
->vmcs_link_pointer
,
11740 get_shadow_vmcs12(vcpu
), VMCS12_SIZE
);
11743 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu
*vcpu
,
11744 struct vmcs12
*vmcs12
)
11746 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) &&
11747 !page_address_valid(vcpu
, vmcs12
->apic_access_addr
))
11753 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
11754 struct vmcs12
*vmcs12
)
11756 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
11757 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
11758 !nested_cpu_has_vid(vmcs12
) &&
11759 !nested_cpu_has_posted_intr(vmcs12
))
11763 * If virtualize x2apic mode is enabled,
11764 * virtualize apic access must be disabled.
11766 if (nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
11767 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
11771 * If virtual interrupt delivery is enabled,
11772 * we must exit on external interrupts.
11774 if (nested_cpu_has_vid(vmcs12
) &&
11775 !nested_exit_on_intr(vcpu
))
11779 * bits 15:8 should be zero in posted_intr_nv,
11780 * the descriptor address has been already checked
11781 * in nested_get_vmcs12_pages.
11783 * bits 5:0 of posted_intr_desc_addr should be zero.
11785 if (nested_cpu_has_posted_intr(vmcs12
) &&
11786 (!nested_cpu_has_vid(vmcs12
) ||
11787 !nested_exit_intr_ack_set(vcpu
) ||
11788 (vmcs12
->posted_intr_nv
& 0xff00) ||
11789 (vmcs12
->posted_intr_desc_addr
& 0x3f) ||
11790 (vmcs12
->posted_intr_desc_addr
>> cpuid_maxphyaddr(vcpu
))))
11793 /* tpr shadow is needed by all apicv features. */
11794 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
11800 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
11801 unsigned long count_field
,
11802 unsigned long addr_field
)
11804 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11808 if (vmcs12_read_any(vmcs12
, count_field
, &count
) ||
11809 vmcs12_read_any(vmcs12
, addr_field
, &addr
)) {
11815 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
11816 if (!IS_ALIGNED(addr
, 16) || addr
>> maxphyaddr
||
11817 (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1) >> maxphyaddr
) {
11818 pr_debug_ratelimited(
11819 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
11820 addr_field
, maxphyaddr
, count
, addr
);
11826 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu
*vcpu
,
11827 struct vmcs12
*vmcs12
)
11829 if (vmcs12
->vm_exit_msr_load_count
== 0 &&
11830 vmcs12
->vm_exit_msr_store_count
== 0 &&
11831 vmcs12
->vm_entry_msr_load_count
== 0)
11832 return 0; /* Fast path */
11833 if (nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_LOAD_COUNT
,
11834 VM_EXIT_MSR_LOAD_ADDR
) ||
11835 nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_STORE_COUNT
,
11836 VM_EXIT_MSR_STORE_ADDR
) ||
11837 nested_vmx_check_msr_switch(vcpu
, VM_ENTRY_MSR_LOAD_COUNT
,
11838 VM_ENTRY_MSR_LOAD_ADDR
))
11843 static int nested_vmx_check_pml_controls(struct kvm_vcpu
*vcpu
,
11844 struct vmcs12
*vmcs12
)
11846 u64 address
= vmcs12
->pml_address
;
11847 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
11849 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_PML
)) {
11850 if (!nested_cpu_has_ept(vmcs12
) ||
11851 !IS_ALIGNED(address
, 4096) ||
11852 address
>> maxphyaddr
)
11859 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu
*vcpu
,
11860 struct vmcs12
*vmcs12
)
11862 if (!nested_cpu_has_shadow_vmcs(vmcs12
))
11865 if (!page_address_valid(vcpu
, vmcs12
->vmread_bitmap
) ||
11866 !page_address_valid(vcpu
, vmcs12
->vmwrite_bitmap
))
11872 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
11873 struct vmx_msr_entry
*e
)
11875 /* x2APIC MSR accesses are not allowed */
11876 if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8)
11878 if (e
->index
== MSR_IA32_UCODE_WRITE
|| /* SDM Table 35-2 */
11879 e
->index
== MSR_IA32_UCODE_REV
)
11881 if (e
->reserved
!= 0)
11886 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
11887 struct vmx_msr_entry
*e
)
11889 if (e
->index
== MSR_FS_BASE
||
11890 e
->index
== MSR_GS_BASE
||
11891 e
->index
== MSR_IA32_SMM_MONITOR_CTL
|| /* SMM is not supported */
11892 nested_vmx_msr_check_common(vcpu
, e
))
11897 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
11898 struct vmx_msr_entry
*e
)
11900 if (e
->index
== MSR_IA32_SMBASE
|| /* SMM is not supported */
11901 nested_vmx_msr_check_common(vcpu
, e
))
11907 * Load guest's/host's msr at nested entry/exit.
11908 * return 0 for success, entry index for failure.
11910 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
11913 struct vmx_msr_entry e
;
11914 struct msr_data msr
;
11916 msr
.host_initiated
= false;
11917 for (i
= 0; i
< count
; i
++) {
11918 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
11920 pr_debug_ratelimited(
11921 "%s cannot read MSR entry (%u, 0x%08llx)\n",
11922 __func__
, i
, gpa
+ i
* sizeof(e
));
11925 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
11926 pr_debug_ratelimited(
11927 "%s check failed (%u, 0x%x, 0x%x)\n",
11928 __func__
, i
, e
.index
, e
.reserved
);
11931 msr
.index
= e
.index
;
11932 msr
.data
= e
.value
;
11933 if (kvm_set_msr(vcpu
, &msr
)) {
11934 pr_debug_ratelimited(
11935 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11936 __func__
, i
, e
.index
, e
.value
);
11945 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
11948 struct vmx_msr_entry e
;
11950 for (i
= 0; i
< count
; i
++) {
11951 struct msr_data msr_info
;
11952 if (kvm_vcpu_read_guest(vcpu
,
11953 gpa
+ i
* sizeof(e
),
11954 &e
, 2 * sizeof(u32
))) {
11955 pr_debug_ratelimited(
11956 "%s cannot read MSR entry (%u, 0x%08llx)\n",
11957 __func__
, i
, gpa
+ i
* sizeof(e
));
11960 if (nested_vmx_store_msr_check(vcpu
, &e
)) {
11961 pr_debug_ratelimited(
11962 "%s check failed (%u, 0x%x, 0x%x)\n",
11963 __func__
, i
, e
.index
, e
.reserved
);
11966 msr_info
.host_initiated
= false;
11967 msr_info
.index
= e
.index
;
11968 if (kvm_get_msr(vcpu
, &msr_info
)) {
11969 pr_debug_ratelimited(
11970 "%s cannot read MSR (%u, 0x%x)\n",
11971 __func__
, i
, e
.index
);
11974 if (kvm_vcpu_write_guest(vcpu
,
11975 gpa
+ i
* sizeof(e
) +
11976 offsetof(struct vmx_msr_entry
, value
),
11977 &msr_info
.data
, sizeof(msr_info
.data
))) {
11978 pr_debug_ratelimited(
11979 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11980 __func__
, i
, e
.index
, msr_info
.data
);
11987 static bool nested_cr3_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
11989 unsigned long invalid_mask
;
11991 invalid_mask
= (~0ULL) << cpuid_maxphyaddr(vcpu
);
11992 return (val
& invalid_mask
) == 0;
11996 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
11997 * emulating VM entry into a guest with EPT enabled.
11998 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
11999 * is assigned to entry_failure_code on failure.
12001 static int nested_vmx_load_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
, bool nested_ept
,
12002 u32
*entry_failure_code
)
12004 if (cr3
!= kvm_read_cr3(vcpu
) || (!nested_ept
&& pdptrs_changed(vcpu
))) {
12005 if (!nested_cr3_valid(vcpu
, cr3
)) {
12006 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
12011 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
12012 * must not be dereferenced.
12014 if (!is_long_mode(vcpu
) && is_pae(vcpu
) && is_paging(vcpu
) &&
12016 if (!load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
)) {
12017 *entry_failure_code
= ENTRY_FAIL_PDPTE
;
12024 kvm_mmu_new_cr3(vcpu
, cr3
, false);
12026 vcpu
->arch
.cr3
= cr3
;
12027 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
12029 kvm_init_mmu(vcpu
, false);
12034 static void prepare_vmcs02_full(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
12036 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12038 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
12039 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
12040 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
12041 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
12042 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
12043 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
12044 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
12045 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
12046 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
12047 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
12048 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
12049 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
12050 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
12051 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
12052 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
12053 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
12054 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
12055 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
12056 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
12057 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
12058 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
12059 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
12060 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
12061 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
12062 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
12063 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
12064 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
12065 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
12066 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
12067 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
12068 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
12070 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
12071 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
12072 vmcs12
->guest_pending_dbg_exceptions
);
12073 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
12074 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
12076 if (nested_cpu_has_xsaves(vmcs12
))
12077 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
12078 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
12080 if (cpu_has_vmx_posted_intr())
12081 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_NESTED_VECTOR
);
12084 * Whether page-faults are trapped is determined by a combination of
12085 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
12086 * If enable_ept, L0 doesn't care about page faults and we should
12087 * set all of these to L1's desires. However, if !enable_ept, L0 does
12088 * care about (at least some) page faults, and because it is not easy
12089 * (if at all possible?) to merge L0 and L1's desires, we simply ask
12090 * to exit on each and every L2 page fault. This is done by setting
12091 * MASK=MATCH=0 and (see below) EB.PF=1.
12092 * Note that below we don't need special code to set EB.PF beyond the
12093 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
12094 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
12095 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
12097 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
12098 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
12099 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
12100 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
12102 /* All VMFUNCs are currently emulated through L0 vmexits. */
12103 if (cpu_has_vmx_vmfunc())
12104 vmcs_write64(VM_FUNCTION_CONTROL
, 0);
12106 if (cpu_has_vmx_apicv()) {
12107 vmcs_write64(EOI_EXIT_BITMAP0
, vmcs12
->eoi_exit_bitmap0
);
12108 vmcs_write64(EOI_EXIT_BITMAP1
, vmcs12
->eoi_exit_bitmap1
);
12109 vmcs_write64(EOI_EXIT_BITMAP2
, vmcs12
->eoi_exit_bitmap2
);
12110 vmcs_write64(EOI_EXIT_BITMAP3
, vmcs12
->eoi_exit_bitmap3
);
12114 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
12115 * Some constant fields are set here by vmx_set_constant_host_state().
12116 * Other fields are different per CPU, and will be set later when
12117 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
12120 vmx_set_constant_host_state(vmx
);
12123 * Set the MSR load/store lists to match L0's settings.
12125 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
12126 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.host
.nr
);
12127 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
.val
));
12128 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.guest
.nr
);
12129 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
.val
));
12131 set_cr4_guest_host_mask(vmx
);
12133 if (kvm_mpx_supported()) {
12134 if (vmx
->nested
.nested_run_pending
&&
12135 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
))
12136 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
12138 vmcs_write64(GUEST_BNDCFGS
, vmx
->nested
.vmcs01_guest_bndcfgs
);
12142 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
)
12143 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
12145 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
12149 * L1 may access the L2's PDPTR, so save them to construct vmcs12
12152 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
12153 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
12154 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
12155 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
12158 if (cpu_has_vmx_msr_bitmap())
12159 vmcs_write64(MSR_BITMAP
, __pa(vmx
->nested
.vmcs02
.msr_bitmap
));
12163 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
12164 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
12165 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
12166 * guest in a way that will both be appropriate to L1's requests, and our
12167 * needs. In addition to modifying the active vmcs (which is vmcs02), this
12168 * function also has additional necessary side-effects, like setting various
12169 * vcpu->arch fields.
12170 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
12171 * is assigned to entry_failure_code on failure.
12173 static int prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
12174 u32
*entry_failure_code
)
12176 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12177 u32 exec_control
, vmcs12_exec_ctrl
;
12179 if (vmx
->nested
.dirty_vmcs12
) {
12180 prepare_vmcs02_full(vcpu
, vmcs12
);
12181 vmx
->nested
.dirty_vmcs12
= false;
12185 * First, the fields that are shadowed. This must be kept in sync
12186 * with vmx_shadow_fields.h.
12189 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
12190 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
12191 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
12192 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
12193 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
12195 if (vmx
->nested
.nested_run_pending
&&
12196 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
)) {
12197 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
12198 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
12200 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
12201 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
12203 if (vmx
->nested
.nested_run_pending
) {
12204 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
12205 vmcs12
->vm_entry_intr_info_field
);
12206 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
12207 vmcs12
->vm_entry_exception_error_code
);
12208 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
12209 vmcs12
->vm_entry_instruction_len
);
12210 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
12211 vmcs12
->guest_interruptibility_info
);
12212 vmx
->loaded_vmcs
->nmi_known_unmasked
=
12213 !(vmcs12
->guest_interruptibility_info
& GUEST_INTR_STATE_NMI
);
12215 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
12217 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
12219 exec_control
= vmcs12
->pin_based_vm_exec_control
;
12221 /* Preemption timer setting is computed directly in vmx_vcpu_run. */
12222 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
12223 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
12224 vmx
->loaded_vmcs
->hv_timer_armed
= false;
12226 /* Posted interrupts setting is only taken from vmcs12. */
12227 if (nested_cpu_has_posted_intr(vmcs12
)) {
12228 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
12229 vmx
->nested
.pi_pending
= false;
12231 exec_control
&= ~PIN_BASED_POSTED_INTR
;
12234 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
12236 vmx
->nested
.preemption_timer_expired
= false;
12237 if (nested_cpu_has_preemption_timer(vmcs12
))
12238 vmx_start_preemption_timer(vcpu
);
12240 if (cpu_has_secondary_exec_ctrls()) {
12241 exec_control
= vmx
->secondary_exec_control
;
12243 /* Take the following fields only from vmcs12 */
12244 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
12245 SECONDARY_EXEC_ENABLE_INVPCID
|
12246 SECONDARY_EXEC_RDTSCP
|
12247 SECONDARY_EXEC_XSAVES
|
12248 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
12249 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
12250 SECONDARY_EXEC_ENABLE_VMFUNC
);
12251 if (nested_cpu_has(vmcs12
,
12252 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
)) {
12253 vmcs12_exec_ctrl
= vmcs12
->secondary_vm_exec_control
&
12254 ~SECONDARY_EXEC_ENABLE_PML
;
12255 exec_control
|= vmcs12_exec_ctrl
;
12258 /* VMCS shadowing for L2 is emulated for now */
12259 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
12261 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
12262 vmcs_write16(GUEST_INTR_STATUS
,
12263 vmcs12
->guest_intr_status
);
12266 * Write an illegal value to APIC_ACCESS_ADDR. Later,
12267 * nested_get_vmcs12_pages will either fix it up or
12268 * remove the VM execution control.
12270 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)
12271 vmcs_write64(APIC_ACCESS_ADDR
, -1ull);
12273 if (exec_control
& SECONDARY_EXEC_ENCLS_EXITING
)
12274 vmcs_write64(ENCLS_EXITING_BITMAP
, -1ull);
12276 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
12280 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
12281 * entry, but only if the current (host) sp changed from the value
12282 * we wrote last (vmx->host_rsp). This cache is no longer relevant
12283 * if we switch vmcs, and rather than hold a separate cache per vmcs,
12284 * here we just force the write to happen on entry.
12288 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
12289 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
12290 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
12291 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
12292 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
12295 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
12296 * nested_get_vmcs12_pages can't fix it up, the illegal value
12297 * will result in a VM entry failure.
12299 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
12300 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, -1ull);
12301 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
12303 #ifdef CONFIG_X86_64
12304 exec_control
|= CPU_BASED_CR8_LOAD_EXITING
|
12305 CPU_BASED_CR8_STORE_EXITING
;
12310 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
12311 * for I/O port accesses.
12313 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
12314 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
12316 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
12318 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
12319 * bitwise-or of what L1 wants to trap for L2, and what we want to
12320 * trap. Note that CR0.TS also needs updating - we do this later.
12322 update_exception_bitmap(vcpu
);
12323 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
12324 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
12326 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
12327 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
12328 * bits are further modified by vmx_set_efer() below.
12330 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
12332 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
12333 * emulated by vmx_set_efer(), below.
12335 vm_entry_controls_init(vmx
,
12336 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
12337 ~VM_ENTRY_IA32E_MODE
) |
12338 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
12340 if (vmx
->nested
.nested_run_pending
&&
12341 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
)) {
12342 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
12343 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
12344 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
12345 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
12348 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
12350 if (kvm_has_tsc_control
)
12351 decache_tsc_multiplier(vmx
);
12355 * There is no direct mapping between vpid02 and vpid12, the
12356 * vpid02 is per-vCPU for L0 and reused while the value of
12357 * vpid12 is changed w/ one invvpid during nested vmentry.
12358 * The vpid12 is allocated by L1 for L2, so it will not
12359 * influence global bitmap(for vpid01 and vpid02 allocation)
12360 * even if spawn a lot of nested vCPUs.
12362 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
) {
12363 if (vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
12364 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
12365 __vmx_flush_tlb(vcpu
, vmx
->nested
.vpid02
, true);
12368 vmx_flush_tlb(vcpu
, true);
12374 * Conceptually we want to copy the PML address and index from
12375 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
12376 * since we always flush the log on each vmexit, this happens
12377 * to be equivalent to simply resetting the fields in vmcs02.
12379 ASSERT(vmx
->pml_pg
);
12380 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
12381 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
12384 if (nested_cpu_has_ept(vmcs12
)) {
12385 if (nested_ept_init_mmu_context(vcpu
)) {
12386 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
12389 } else if (nested_cpu_has2(vmcs12
,
12390 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
12391 vmx_flush_tlb(vcpu
, true);
12395 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
12396 * bits which we consider mandatory enabled.
12397 * The CR0_READ_SHADOW is what L2 should have expected to read given
12398 * the specifications by L1; It's not enough to take
12399 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
12400 * have more bits than L1 expected.
12402 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
12403 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
12405 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
12406 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
12408 if (vmx
->nested
.nested_run_pending
&&
12409 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
))
12410 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
12411 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
12412 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
12414 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
12415 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
12416 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
12419 * Guest state is invalid and unrestricted guest is disabled,
12420 * which means L1 attempted VMEntry to L2 with invalid state.
12421 * Fail the VMEntry.
12423 if (vmx
->emulation_required
) {
12424 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
12428 /* Shadow page tables on either EPT or shadow page tables. */
12429 if (nested_vmx_load_cr3(vcpu
, vmcs12
->guest_cr3
, nested_cpu_has_ept(vmcs12
),
12430 entry_failure_code
))
12434 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
12436 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
12437 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
12441 static int nested_vmx_check_nmi_controls(struct vmcs12
*vmcs12
)
12443 if (!nested_cpu_has_nmi_exiting(vmcs12
) &&
12444 nested_cpu_has_virtual_nmis(vmcs12
))
12447 if (!nested_cpu_has_virtual_nmis(vmcs12
) &&
12448 nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
))
12454 static int check_vmentry_prereqs(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
12456 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12458 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
12459 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
)
12460 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12462 if (nested_cpu_has_vpid(vmcs12
) && !vmcs12
->virtual_processor_id
)
12463 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12465 if (nested_vmx_check_io_bitmap_controls(vcpu
, vmcs12
))
12466 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12468 if (nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
))
12469 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12471 if (nested_vmx_check_apic_access_controls(vcpu
, vmcs12
))
12472 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12474 if (nested_vmx_check_tpr_shadow_controls(vcpu
, vmcs12
))
12475 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12477 if (nested_vmx_check_apicv_controls(vcpu
, vmcs12
))
12478 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12480 if (nested_vmx_check_msr_switch_controls(vcpu
, vmcs12
))
12481 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12483 if (nested_vmx_check_pml_controls(vcpu
, vmcs12
))
12484 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12486 if (nested_vmx_check_shadow_vmcs_controls(vcpu
, vmcs12
))
12487 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12489 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
12490 vmx
->nested
.msrs
.procbased_ctls_low
,
12491 vmx
->nested
.msrs
.procbased_ctls_high
) ||
12492 (nested_cpu_has(vmcs12
, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
12493 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
12494 vmx
->nested
.msrs
.secondary_ctls_low
,
12495 vmx
->nested
.msrs
.secondary_ctls_high
)) ||
12496 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
12497 vmx
->nested
.msrs
.pinbased_ctls_low
,
12498 vmx
->nested
.msrs
.pinbased_ctls_high
) ||
12499 !vmx_control_verify(vmcs12
->vm_exit_controls
,
12500 vmx
->nested
.msrs
.exit_ctls_low
,
12501 vmx
->nested
.msrs
.exit_ctls_high
) ||
12502 !vmx_control_verify(vmcs12
->vm_entry_controls
,
12503 vmx
->nested
.msrs
.entry_ctls_low
,
12504 vmx
->nested
.msrs
.entry_ctls_high
))
12505 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12507 if (nested_vmx_check_nmi_controls(vmcs12
))
12508 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12510 if (nested_cpu_has_vmfunc(vmcs12
)) {
12511 if (vmcs12
->vm_function_control
&
12512 ~vmx
->nested
.msrs
.vmfunc_controls
)
12513 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12515 if (nested_cpu_has_eptp_switching(vmcs12
)) {
12516 if (!nested_cpu_has_ept(vmcs12
) ||
12517 !page_address_valid(vcpu
, vmcs12
->eptp_list_address
))
12518 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12522 if (vmcs12
->cr3_target_count
> nested_cpu_vmx_misc_cr3_count(vcpu
))
12523 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12525 if (!nested_host_cr0_valid(vcpu
, vmcs12
->host_cr0
) ||
12526 !nested_host_cr4_valid(vcpu
, vmcs12
->host_cr4
) ||
12527 !nested_cr3_valid(vcpu
, vmcs12
->host_cr3
))
12528 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
;
12531 * From the Intel SDM, volume 3:
12532 * Fields relevant to VM-entry event injection must be set properly.
12533 * These fields are the VM-entry interruption-information field, the
12534 * VM-entry exception error code, and the VM-entry instruction length.
12536 if (vmcs12
->vm_entry_intr_info_field
& INTR_INFO_VALID_MASK
) {
12537 u32 intr_info
= vmcs12
->vm_entry_intr_info_field
;
12538 u8 vector
= intr_info
& INTR_INFO_VECTOR_MASK
;
12539 u32 intr_type
= intr_info
& INTR_INFO_INTR_TYPE_MASK
;
12540 bool has_error_code
= intr_info
& INTR_INFO_DELIVER_CODE_MASK
;
12541 bool should_have_error_code
;
12542 bool urg
= nested_cpu_has2(vmcs12
,
12543 SECONDARY_EXEC_UNRESTRICTED_GUEST
);
12544 bool prot_mode
= !urg
|| vmcs12
->guest_cr0
& X86_CR0_PE
;
12546 /* VM-entry interruption-info field: interruption type */
12547 if (intr_type
== INTR_TYPE_RESERVED
||
12548 (intr_type
== INTR_TYPE_OTHER_EVENT
&&
12549 !nested_cpu_supports_monitor_trap_flag(vcpu
)))
12550 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12552 /* VM-entry interruption-info field: vector */
12553 if ((intr_type
== INTR_TYPE_NMI_INTR
&& vector
!= NMI_VECTOR
) ||
12554 (intr_type
== INTR_TYPE_HARD_EXCEPTION
&& vector
> 31) ||
12555 (intr_type
== INTR_TYPE_OTHER_EVENT
&& vector
!= 0))
12556 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12558 /* VM-entry interruption-info field: deliver error code */
12559 should_have_error_code
=
12560 intr_type
== INTR_TYPE_HARD_EXCEPTION
&& prot_mode
&&
12561 x86_exception_has_error_code(vector
);
12562 if (has_error_code
!= should_have_error_code
)
12563 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12565 /* VM-entry exception error code */
12566 if (has_error_code
&&
12567 vmcs12
->vm_entry_exception_error_code
& GENMASK(31, 15))
12568 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12570 /* VM-entry interruption-info field: reserved bits */
12571 if (intr_info
& INTR_INFO_RESVD_BITS_MASK
)
12572 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12574 /* VM-entry instruction length */
12575 switch (intr_type
) {
12576 case INTR_TYPE_SOFT_EXCEPTION
:
12577 case INTR_TYPE_SOFT_INTR
:
12578 case INTR_TYPE_PRIV_SW_EXCEPTION
:
12579 if ((vmcs12
->vm_entry_instruction_len
> 15) ||
12580 (vmcs12
->vm_entry_instruction_len
== 0 &&
12581 !nested_cpu_has_zero_length_injection(vcpu
)))
12582 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
12589 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu
*vcpu
,
12590 struct vmcs12
*vmcs12
)
12594 struct vmcs12
*shadow
;
12596 if (vmcs12
->vmcs_link_pointer
== -1ull)
12599 if (!page_address_valid(vcpu
, vmcs12
->vmcs_link_pointer
))
12602 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->vmcs_link_pointer
);
12603 if (is_error_page(page
))
12607 shadow
= kmap(page
);
12608 if (shadow
->hdr
.revision_id
!= VMCS12_REVISION
||
12609 shadow
->hdr
.shadow_vmcs
!= nested_cpu_has_shadow_vmcs(vmcs12
))
12612 kvm_release_page_clean(page
);
12616 static int check_vmentry_postreqs(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
12621 *exit_qual
= ENTRY_FAIL_DEFAULT
;
12623 if (!nested_guest_cr0_valid(vcpu
, vmcs12
->guest_cr0
) ||
12624 !nested_guest_cr4_valid(vcpu
, vmcs12
->guest_cr4
))
12627 if (nested_vmx_check_vmcs_link_ptr(vcpu
, vmcs12
)) {
12628 *exit_qual
= ENTRY_FAIL_VMCS_LINK_PTR
;
12633 * If the load IA32_EFER VM-entry control is 1, the following checks
12634 * are performed on the field for the IA32_EFER MSR:
12635 * - Bits reserved in the IA32_EFER MSR must be 0.
12636 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
12637 * the IA-32e mode guest VM-exit control. It must also be identical
12638 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
12641 if (to_vmx(vcpu
)->nested
.nested_run_pending
&&
12642 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)) {
12643 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
12644 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
12645 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
12646 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
12647 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
)))
12652 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
12653 * IA32_EFER MSR must be 0 in the field for that register. In addition,
12654 * the values of the LMA and LME bits in the field must each be that of
12655 * the host address-space size VM-exit control.
12657 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
12658 ia32e
= (vmcs12
->vm_exit_controls
&
12659 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
12660 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
12661 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
12662 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
))
12666 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
) &&
12667 (is_noncanonical_address(vmcs12
->guest_bndcfgs
& PAGE_MASK
, vcpu
) ||
12668 (vmcs12
->guest_bndcfgs
& MSR_IA32_BNDCFGS_RSVD
)))
12675 * If exit_qual is NULL, this is being called from state restore (either RSM
12676 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
12678 static int enter_vmx_non_root_mode(struct kvm_vcpu
*vcpu
, u32
*exit_qual
)
12680 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12681 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
12682 bool from_vmentry
= !!exit_qual
;
12683 u32 dummy_exit_qual
;
12684 bool evaluate_pending_interrupts
;
12687 evaluate_pending_interrupts
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
12688 (CPU_BASED_VIRTUAL_INTR_PENDING
| CPU_BASED_VIRTUAL_NMI_PENDING
);
12689 if (likely(!evaluate_pending_interrupts
) && kvm_vcpu_apicv_active(vcpu
))
12690 evaluate_pending_interrupts
|= vmx_has_apicv_interrupt(vcpu
);
12692 enter_guest_mode(vcpu
);
12694 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
12695 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
12696 if (kvm_mpx_supported() &&
12697 !(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
))
12698 vmx
->nested
.vmcs01_guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
12700 vmx_switch_vmcs(vcpu
, &vmx
->nested
.vmcs02
);
12701 vmx_segment_cache_clear(vmx
);
12703 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
12704 vcpu
->arch
.tsc_offset
+= vmcs12
->tsc_offset
;
12706 r
= EXIT_REASON_INVALID_STATE
;
12707 if (prepare_vmcs02(vcpu
, vmcs12
, from_vmentry
? exit_qual
: &dummy_exit_qual
))
12710 if (from_vmentry
) {
12711 nested_get_vmcs12_pages(vcpu
);
12713 r
= EXIT_REASON_MSR_LOAD_FAIL
;
12714 *exit_qual
= nested_vmx_load_msr(vcpu
,
12715 vmcs12
->vm_entry_msr_load_addr
,
12716 vmcs12
->vm_entry_msr_load_count
);
12721 * The MMU is not initialized to point at the right entities yet and
12722 * "get pages" would need to read data from the guest (i.e. we will
12723 * need to perform gpa to hpa translation). Request a call
12724 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
12725 * have already been set at vmentry time and should not be reset.
12727 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES
, vcpu
);
12731 * If L1 had a pending IRQ/NMI until it executed
12732 * VMLAUNCH/VMRESUME which wasn't delivered because it was
12733 * disallowed (e.g. interrupts disabled), L0 needs to
12734 * evaluate if this pending event should cause an exit from L2
12735 * to L1 or delivered directly to L2 (e.g. In case L1 don't
12736 * intercept EXTERNAL_INTERRUPT).
12738 * Usually this would be handled by the processor noticing an
12739 * IRQ/NMI window request, or checking RVI during evaluation of
12740 * pending virtual interrupts. However, this setting was done
12741 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
12742 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
12744 if (unlikely(evaluate_pending_interrupts
))
12745 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
12748 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
12749 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
12750 * returned as far as L1 is concerned. It will only return (and set
12751 * the success flag) when L2 exits (see nested_vmx_vmexit()).
12756 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
12757 vcpu
->arch
.tsc_offset
-= vmcs12
->tsc_offset
;
12758 leave_guest_mode(vcpu
);
12759 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
12764 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
12765 * for running an L2 nested guest.
12767 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
12769 struct vmcs12
*vmcs12
;
12770 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12771 u32 interrupt_shadow
= vmx_get_interrupt_shadow(vcpu
);
12775 if (!nested_vmx_check_permission(vcpu
))
12778 if (!nested_vmx_check_vmcs12(vcpu
))
12781 vmcs12
= get_vmcs12(vcpu
);
12784 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
12785 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
12786 * rather than RFLAGS.ZF, and no error number is stored to the
12787 * VM-instruction error field.
12789 if (vmcs12
->hdr
.shadow_vmcs
) {
12790 nested_vmx_failInvalid(vcpu
);
12794 if (enable_shadow_vmcs
)
12795 copy_shadow_to_vmcs12(vmx
);
12798 * The nested entry process starts with enforcing various prerequisites
12799 * on vmcs12 as required by the Intel SDM, and act appropriately when
12800 * they fail: As the SDM explains, some conditions should cause the
12801 * instruction to fail, while others will cause the instruction to seem
12802 * to succeed, but return an EXIT_REASON_INVALID_STATE.
12803 * To speed up the normal (success) code path, we should avoid checking
12804 * for misconfigurations which will anyway be caught by the processor
12805 * when using the merged vmcs02.
12807 if (interrupt_shadow
& KVM_X86_SHADOW_INT_MOV_SS
) {
12808 nested_vmx_failValid(vcpu
,
12809 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS
);
12813 if (vmcs12
->launch_state
== launch
) {
12814 nested_vmx_failValid(vcpu
,
12815 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
12816 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
12820 ret
= check_vmentry_prereqs(vcpu
, vmcs12
);
12822 nested_vmx_failValid(vcpu
, ret
);
12827 * After this point, the trap flag no longer triggers a singlestep trap
12828 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
12829 * This is not 100% correct; for performance reasons, we delegate most
12830 * of the checks on host state to the processor. If those fail,
12831 * the singlestep trap is missed.
12833 skip_emulated_instruction(vcpu
);
12835 ret
= check_vmentry_postreqs(vcpu
, vmcs12
, &exit_qual
);
12837 nested_vmx_entry_failure(vcpu
, vmcs12
,
12838 EXIT_REASON_INVALID_STATE
, exit_qual
);
12843 * We're finally done with prerequisite checking, and can start with
12844 * the nested entry.
12847 vmx
->nested
.nested_run_pending
= 1;
12848 ret
= enter_vmx_non_root_mode(vcpu
, &exit_qual
);
12850 nested_vmx_entry_failure(vcpu
, vmcs12
, ret
, exit_qual
);
12851 vmx
->nested
.nested_run_pending
= 0;
12855 /* Hide L1D cache contents from the nested guest. */
12856 vmx
->vcpu
.arch
.l1tf_flush_l1d
= true;
12859 * Must happen outside of enter_vmx_non_root_mode() as it will
12860 * also be used as part of restoring nVMX state for
12861 * snapshot restore (migration).
12863 * In this flow, it is assumed that vmcs12 cache was
12864 * trasferred as part of captured nVMX state and should
12865 * therefore not be read from guest memory (which may not
12866 * exist on destination host yet).
12868 nested_cache_shadow_vmcs12(vcpu
, vmcs12
);
12871 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
12872 * awakened by event injection or by an NMI-window VM-exit or
12873 * by an interrupt-window VM-exit, halt the vcpu.
12875 if ((vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
) &&
12876 !(vmcs12
->vm_entry_intr_info_field
& INTR_INFO_VALID_MASK
) &&
12877 !(vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_VIRTUAL_NMI_PENDING
) &&
12878 !((vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_VIRTUAL_INTR_PENDING
) &&
12879 (vmcs12
->guest_rflags
& X86_EFLAGS_IF
))) {
12880 vmx
->nested
.nested_run_pending
= 0;
12881 return kvm_vcpu_halt(vcpu
);
12886 return kvm_skip_emulated_instruction(vcpu
);
12890 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
12891 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
12892 * This function returns the new value we should put in vmcs12.guest_cr0.
12893 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
12894 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
12895 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
12896 * didn't trap the bit, because if L1 did, so would L0).
12897 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
12898 * been modified by L2, and L1 knows it. So just leave the old value of
12899 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
12900 * isn't relevant, because if L0 traps this bit it can set it to anything.
12901 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
12902 * changed these bits, and therefore they need to be updated, but L0
12903 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
12904 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
12906 static inline unsigned long
12907 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
12910 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
12911 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
12912 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
12913 vcpu
->arch
.cr0_guest_owned_bits
));
12916 static inline unsigned long
12917 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
12920 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
12921 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
12922 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
12923 vcpu
->arch
.cr4_guest_owned_bits
));
12926 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
12927 struct vmcs12
*vmcs12
)
12932 if (vcpu
->arch
.exception
.injected
) {
12933 nr
= vcpu
->arch
.exception
.nr
;
12934 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
12936 if (kvm_exception_is_soft(nr
)) {
12937 vmcs12
->vm_exit_instruction_len
=
12938 vcpu
->arch
.event_exit_inst_len
;
12939 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
12941 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
12943 if (vcpu
->arch
.exception
.has_error_code
) {
12944 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
12945 vmcs12
->idt_vectoring_error_code
=
12946 vcpu
->arch
.exception
.error_code
;
12949 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
12950 } else if (vcpu
->arch
.nmi_injected
) {
12951 vmcs12
->idt_vectoring_info_field
=
12952 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
12953 } else if (vcpu
->arch
.interrupt
.injected
) {
12954 nr
= vcpu
->arch
.interrupt
.nr
;
12955 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
12957 if (vcpu
->arch
.interrupt
.soft
) {
12958 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
12959 vmcs12
->vm_entry_instruction_len
=
12960 vcpu
->arch
.event_exit_inst_len
;
12962 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
12964 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
12968 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
12970 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12971 unsigned long exit_qual
;
12972 bool block_nested_events
=
12973 vmx
->nested
.nested_run_pending
|| kvm_event_needs_reinjection(vcpu
);
12975 if (vcpu
->arch
.exception
.pending
&&
12976 nested_vmx_check_exception(vcpu
, &exit_qual
)) {
12977 if (block_nested_events
)
12979 nested_vmx_inject_exception_vmexit(vcpu
, exit_qual
);
12983 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
12984 vmx
->nested
.preemption_timer_expired
) {
12985 if (block_nested_events
)
12987 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
12991 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
12992 if (block_nested_events
)
12994 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
12995 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
12996 INTR_INFO_VALID_MASK
, 0);
12998 * The NMI-triggered VM exit counts as injection:
12999 * clear this one and block further NMIs.
13001 vcpu
->arch
.nmi_pending
= 0;
13002 vmx_set_nmi_mask(vcpu
, true);
13006 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
13007 nested_exit_on_intr(vcpu
)) {
13008 if (block_nested_events
)
13010 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
13014 vmx_complete_nested_posted_interrupt(vcpu
);
13018 static void vmx_request_immediate_exit(struct kvm_vcpu
*vcpu
)
13020 to_vmx(vcpu
)->req_immediate_exit
= true;
13023 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
13025 ktime_t remaining
=
13026 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
13029 if (ktime_to_ns(remaining
) <= 0)
13032 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
13033 do_div(value
, 1000000);
13034 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
13038 * Update the guest state fields of vmcs12 to reflect changes that
13039 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
13040 * VM-entry controls is also updated, since this is really a guest
13043 static void sync_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
13045 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
13046 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
13048 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
13049 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
13050 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
13052 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
13053 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
13054 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
13055 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
13056 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
13057 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
13058 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
13059 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
13060 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
13061 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
13062 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
13063 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
13064 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
13065 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
13066 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
13067 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
13068 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
13069 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
13070 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
13071 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
13072 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
13073 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
13074 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
13075 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
13076 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
13077 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
13078 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
13079 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
13080 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
13081 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
13082 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
13083 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
13084 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
13085 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
13086 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
13087 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
13089 vmcs12
->guest_interruptibility_info
=
13090 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
13091 vmcs12
->guest_pending_dbg_exceptions
=
13092 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
13093 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
13094 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
13096 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
13098 if (nested_cpu_has_preemption_timer(vmcs12
)) {
13099 if (vmcs12
->vm_exit_controls
&
13100 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
13101 vmcs12
->vmx_preemption_timer_value
=
13102 vmx_get_preemption_timer_value(vcpu
);
13103 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
13107 * In some cases (usually, nested EPT), L2 is allowed to change its
13108 * own CR3 without exiting. If it has changed it, we must keep it.
13109 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
13110 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
13112 * Additionally, restore L2's PDPTR to vmcs12.
13115 vmcs12
->guest_cr3
= vmcs_readl(GUEST_CR3
);
13116 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
13117 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
13118 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
13119 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
13122 vmcs12
->guest_linear_address
= vmcs_readl(GUEST_LINEAR_ADDRESS
);
13124 if (nested_cpu_has_vid(vmcs12
))
13125 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
13127 vmcs12
->vm_entry_controls
=
13128 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
13129 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
13131 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
13132 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
13133 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
13136 /* TODO: These cannot have changed unless we have MSR bitmaps and
13137 * the relevant bit asks not to trap the change */
13138 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
13139 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
13140 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
13141 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
13142 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
13143 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
13144 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
13145 if (kvm_mpx_supported())
13146 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
13150 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
13151 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
13152 * and this function updates it to reflect the changes to the guest state while
13153 * L2 was running (and perhaps made some exits which were handled directly by L0
13154 * without going back to L1), and to reflect the exit reason.
13155 * Note that we do not have to copy here all VMCS fields, just those that
13156 * could have changed by the L2 guest or the exit - i.e., the guest-state and
13157 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
13158 * which already writes to vmcs12 directly.
13160 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
13161 u32 exit_reason
, u32 exit_intr_info
,
13162 unsigned long exit_qualification
)
13164 /* update guest state fields: */
13165 sync_vmcs12(vcpu
, vmcs12
);
13167 /* update exit information fields: */
13169 vmcs12
->vm_exit_reason
= exit_reason
;
13170 vmcs12
->exit_qualification
= exit_qualification
;
13171 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
13173 vmcs12
->idt_vectoring_info_field
= 0;
13174 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
13175 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
13177 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
13178 vmcs12
->launch_state
= 1;
13180 /* vm_entry_intr_info_field is cleared on exit. Emulate this
13181 * instead of reading the real value. */
13182 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
13185 * Transfer the event that L0 or L1 may wanted to inject into
13186 * L2 to IDT_VECTORING_INFO_FIELD.
13188 vmcs12_save_pending_event(vcpu
, vmcs12
);
13192 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
13193 * preserved above and would only end up incorrectly in L1.
13195 vcpu
->arch
.nmi_injected
= false;
13196 kvm_clear_exception_queue(vcpu
);
13197 kvm_clear_interrupt_queue(vcpu
);
13201 * A part of what we need to when the nested L2 guest exits and we want to
13202 * run its L1 parent, is to reset L1's guest state to the host state specified
13204 * This function is to be called not only on normal nested exit, but also on
13205 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
13206 * Failures During or After Loading Guest State").
13207 * This function should be called when the active VMCS is L1's (vmcs01).
13209 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
13210 struct vmcs12
*vmcs12
)
13212 struct kvm_segment seg
;
13213 u32 entry_failure_code
;
13215 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
13216 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
13217 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
13218 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
13220 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
13221 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
13223 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
13224 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
13225 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
13227 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
13228 * actually changed, because vmx_set_cr0 refers to efer set above.
13230 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
13231 * (KVM doesn't change it);
13233 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
13234 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
13236 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
13237 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
13238 vmx_set_cr4(vcpu
, vmcs12
->host_cr4
);
13240 nested_ept_uninit_mmu_context(vcpu
);
13243 * Only PDPTE load can fail as the value of cr3 was checked on entry and
13244 * couldn't have changed.
13246 if (nested_vmx_load_cr3(vcpu
, vmcs12
->host_cr3
, false, &entry_failure_code
))
13247 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_PDPTE_FAIL
);
13250 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
13253 * If vmcs01 don't use VPID, CPU flushes TLB on every
13254 * VMEntry/VMExit. Thus, no need to flush TLB.
13256 * If vmcs12 uses VPID, TLB entries populated by L2 are
13257 * tagged with vmx->nested.vpid02 while L1 entries are tagged
13258 * with vmx->vpid. Thus, no need to flush TLB.
13260 * Therefore, flush TLB only in case vmcs01 uses VPID and
13261 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
13262 * are both tagged with vmx->vpid.
13265 !(nested_cpu_has_vpid(vmcs12
) && to_vmx(vcpu
)->nested
.vpid02
)) {
13266 vmx_flush_tlb(vcpu
, true);
13269 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
13270 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
13271 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
13272 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
13273 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
13274 vmcs_write32(GUEST_IDTR_LIMIT
, 0xFFFF);
13275 vmcs_write32(GUEST_GDTR_LIMIT
, 0xFFFF);
13277 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
13278 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
13279 vmcs_write64(GUEST_BNDCFGS
, 0);
13281 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
13282 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
13283 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
13285 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
13286 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
13287 vmcs12
->host_ia32_perf_global_ctrl
);
13289 /* Set L1 segment info according to Intel SDM
13290 27.5.2 Loading Host Segment and Descriptor-Table Registers */
13291 seg
= (struct kvm_segment
) {
13293 .limit
= 0xFFFFFFFF,
13294 .selector
= vmcs12
->host_cs_selector
,
13300 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
13304 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
13305 seg
= (struct kvm_segment
) {
13307 .limit
= 0xFFFFFFFF,
13314 seg
.selector
= vmcs12
->host_ds_selector
;
13315 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
13316 seg
.selector
= vmcs12
->host_es_selector
;
13317 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
13318 seg
.selector
= vmcs12
->host_ss_selector
;
13319 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
13320 seg
.selector
= vmcs12
->host_fs_selector
;
13321 seg
.base
= vmcs12
->host_fs_base
;
13322 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
13323 seg
.selector
= vmcs12
->host_gs_selector
;
13324 seg
.base
= vmcs12
->host_gs_base
;
13325 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
13326 seg
= (struct kvm_segment
) {
13327 .base
= vmcs12
->host_tr_base
,
13329 .selector
= vmcs12
->host_tr_selector
,
13333 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
13335 kvm_set_dr(vcpu
, 7, 0x400);
13336 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
13338 if (cpu_has_vmx_msr_bitmap())
13339 vmx_update_msr_bitmap(vcpu
);
13341 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
13342 vmcs12
->vm_exit_msr_load_count
))
13343 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
13346 static inline u64
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx
*vmx
)
13348 struct shared_msr_entry
*efer_msr
;
13351 if (vm_entry_controls_get(vmx
) & VM_ENTRY_LOAD_IA32_EFER
)
13352 return vmcs_read64(GUEST_IA32_EFER
);
13354 if (cpu_has_load_ia32_efer
)
13357 for (i
= 0; i
< vmx
->msr_autoload
.guest
.nr
; ++i
) {
13358 if (vmx
->msr_autoload
.guest
.val
[i
].index
== MSR_EFER
)
13359 return vmx
->msr_autoload
.guest
.val
[i
].value
;
13362 efer_msr
= find_msr_entry(vmx
, MSR_EFER
);
13364 return efer_msr
->data
;
13369 static void nested_vmx_restore_host_state(struct kvm_vcpu
*vcpu
)
13371 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
13372 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
13373 struct vmx_msr_entry g
, h
;
13374 struct msr_data msr
;
13378 vcpu
->arch
.pat
= vmcs_read64(GUEST_IA32_PAT
);
13380 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
13382 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
13383 * as vmcs01.GUEST_DR7 contains a userspace defined value
13384 * and vcpu->arch.dr7 is not squirreled away before the
13385 * nested VMENTER (not worth adding a variable in nested_vmx).
13387 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
13388 kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
13390 WARN_ON(kvm_set_dr(vcpu
, 7, vmcs_readl(GUEST_DR7
)));
13394 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
13395 * handle a variety of side effects to KVM's software model.
13397 vmx_set_efer(vcpu
, nested_vmx_get_vmcs01_guest_efer(vmx
));
13399 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
13400 vmx_set_cr0(vcpu
, vmcs_readl(CR0_READ_SHADOW
));
13402 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
13403 vmx_set_cr4(vcpu
, vmcs_readl(CR4_READ_SHADOW
));
13405 nested_ept_uninit_mmu_context(vcpu
);
13406 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
13407 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
13410 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
13411 * from vmcs01 (if necessary). The PDPTRs are not loaded on
13412 * VMFail, like everything else we just need to ensure our
13413 * software model is up-to-date.
13415 ept_save_pdptrs(vcpu
);
13417 kvm_mmu_reset_context(vcpu
);
13419 if (cpu_has_vmx_msr_bitmap())
13420 vmx_update_msr_bitmap(vcpu
);
13423 * This nasty bit of open coding is a compromise between blindly
13424 * loading L1's MSRs using the exit load lists (incorrect emulation
13425 * of VMFail), leaving the nested VM's MSRs in the software model
13426 * (incorrect behavior) and snapshotting the modified MSRs (too
13427 * expensive since the lists are unbound by hardware). For each
13428 * MSR that was (prematurely) loaded from the nested VMEntry load
13429 * list, reload it from the exit load list if it exists and differs
13430 * from the guest value. The intent is to stuff host state as
13431 * silently as possible, not to fully process the exit load list.
13433 msr
.host_initiated
= false;
13434 for (i
= 0; i
< vmcs12
->vm_entry_msr_load_count
; i
++) {
13435 gpa
= vmcs12
->vm_entry_msr_load_addr
+ (i
* sizeof(g
));
13436 if (kvm_vcpu_read_guest(vcpu
, gpa
, &g
, sizeof(g
))) {
13437 pr_debug_ratelimited(
13438 "%s read MSR index failed (%u, 0x%08llx)\n",
13443 for (j
= 0; j
< vmcs12
->vm_exit_msr_load_count
; j
++) {
13444 gpa
= vmcs12
->vm_exit_msr_load_addr
+ (j
* sizeof(h
));
13445 if (kvm_vcpu_read_guest(vcpu
, gpa
, &h
, sizeof(h
))) {
13446 pr_debug_ratelimited(
13447 "%s read MSR failed (%u, 0x%08llx)\n",
13451 if (h
.index
!= g
.index
)
13453 if (h
.value
== g
.value
)
13456 if (nested_vmx_load_msr_check(vcpu
, &h
)) {
13457 pr_debug_ratelimited(
13458 "%s check failed (%u, 0x%x, 0x%x)\n",
13459 __func__
, j
, h
.index
, h
.reserved
);
13463 msr
.index
= h
.index
;
13464 msr
.data
= h
.value
;
13465 if (kvm_set_msr(vcpu
, &msr
)) {
13466 pr_debug_ratelimited(
13467 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
13468 __func__
, j
, h
.index
, h
.value
);
13477 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
13481 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
13482 * and modify vmcs12 to make it see what it would expect to see there if
13483 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
13485 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
13486 u32 exit_intr_info
,
13487 unsigned long exit_qualification
)
13489 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
13490 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
13492 /* trying to cancel vmlaunch/vmresume is a bug */
13493 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
13496 * The only expected VM-instruction error is "VM entry with
13497 * invalid control field(s)." Anything else indicates a
13500 WARN_ON_ONCE(vmx
->fail
&& (vmcs_read32(VM_INSTRUCTION_ERROR
) !=
13501 VMXERR_ENTRY_INVALID_CONTROL_FIELD
));
13503 leave_guest_mode(vcpu
);
13505 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
13506 vcpu
->arch
.tsc_offset
-= vmcs12
->tsc_offset
;
13508 if (likely(!vmx
->fail
)) {
13509 if (exit_reason
== -1)
13510 sync_vmcs12(vcpu
, vmcs12
);
13512 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
13513 exit_qualification
);
13516 * Must happen outside of sync_vmcs12() as it will
13517 * also be used to capture vmcs12 cache as part of
13518 * capturing nVMX state for snapshot (migration).
13520 * Otherwise, this flush will dirty guest memory at a
13521 * point it is already assumed by user-space to be
13524 nested_flush_cached_shadow_vmcs12(vcpu
, vmcs12
);
13526 if (nested_vmx_store_msr(vcpu
, vmcs12
->vm_exit_msr_store_addr
,
13527 vmcs12
->vm_exit_msr_store_count
))
13528 nested_vmx_abort(vcpu
, VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
13531 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
13532 vm_entry_controls_reset_shadow(vmx
);
13533 vm_exit_controls_reset_shadow(vmx
);
13534 vmx_segment_cache_clear(vmx
);
13536 /* Update any VMCS fields that might have changed while L2 ran */
13537 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.host
.nr
);
13538 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.guest
.nr
);
13539 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
13541 if (kvm_has_tsc_control
)
13542 decache_tsc_multiplier(vmx
);
13544 if (vmx
->nested
.change_vmcs01_virtual_apic_mode
) {
13545 vmx
->nested
.change_vmcs01_virtual_apic_mode
= false;
13546 vmx_set_virtual_apic_mode(vcpu
);
13547 } else if (!nested_cpu_has_ept(vmcs12
) &&
13548 nested_cpu_has2(vmcs12
,
13549 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
13550 vmx_flush_tlb(vcpu
, true);
13553 /* This is needed for same reason as it was needed in prepare_vmcs02 */
13556 /* Unpin physical memory we referred to in vmcs02 */
13557 if (vmx
->nested
.apic_access_page
) {
13558 kvm_release_page_dirty(vmx
->nested
.apic_access_page
);
13559 vmx
->nested
.apic_access_page
= NULL
;
13561 if (vmx
->nested
.virtual_apic_page
) {
13562 kvm_release_page_dirty(vmx
->nested
.virtual_apic_page
);
13563 vmx
->nested
.virtual_apic_page
= NULL
;
13565 if (vmx
->nested
.pi_desc_page
) {
13566 kunmap(vmx
->nested
.pi_desc_page
);
13567 kvm_release_page_dirty(vmx
->nested
.pi_desc_page
);
13568 vmx
->nested
.pi_desc_page
= NULL
;
13569 vmx
->nested
.pi_desc
= NULL
;
13573 * We are now running in L2, mmu_notifier will force to reload the
13574 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
13576 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
13578 if (enable_shadow_vmcs
&& exit_reason
!= -1)
13579 vmx
->nested
.sync_shadow_vmcs
= true;
13581 /* in case we halted in L2 */
13582 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
13584 if (likely(!vmx
->fail
)) {
13586 * TODO: SDM says that with acknowledge interrupt on
13587 * exit, bit 31 of the VM-exit interrupt information
13588 * (valid interrupt) is always set to 1 on
13589 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
13590 * need kvm_cpu_has_interrupt(). See the commit
13591 * message for details.
13593 if (nested_exit_intr_ack_set(vcpu
) &&
13594 exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
&&
13595 kvm_cpu_has_interrupt(vcpu
)) {
13596 int irq
= kvm_cpu_get_interrupt(vcpu
);
13598 vmcs12
->vm_exit_intr_info
= irq
|
13599 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
13602 if (exit_reason
!= -1)
13603 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
13604 vmcs12
->exit_qualification
,
13605 vmcs12
->idt_vectoring_info_field
,
13606 vmcs12
->vm_exit_intr_info
,
13607 vmcs12
->vm_exit_intr_error_code
,
13610 load_vmcs12_host_state(vcpu
, vmcs12
);
13616 * After an early L2 VM-entry failure, we're now back
13617 * in L1 which thinks it just finished a VMLAUNCH or
13618 * VMRESUME instruction, so we need to set the failure
13619 * flag and the VM-instruction error field of the VMCS
13622 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
13625 * Restore L1's host state to KVM's software model. We're here
13626 * because a consistency check was caught by hardware, which
13627 * means some amount of guest state has been propagated to KVM's
13628 * model and needs to be unwound to the host's state.
13630 nested_vmx_restore_host_state(vcpu
);
13633 * The emulated instruction was already skipped in
13634 * nested_vmx_run, but the updated RIP was never
13635 * written back to the vmcs01.
13637 skip_emulated_instruction(vcpu
);
13642 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
13644 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
13646 if (is_guest_mode(vcpu
)) {
13647 to_vmx(vcpu
)->nested
.nested_run_pending
= 0;
13648 nested_vmx_vmexit(vcpu
, -1, 0, 0);
13650 free_nested(to_vmx(vcpu
));
13654 * L1's failure to enter L2 is a subset of a normal exit, as explained in
13655 * 23.7 "VM-entry failures during or after loading guest state" (this also
13656 * lists the acceptable exit-reason and exit-qualification parameters).
13657 * It should only be called before L2 actually succeeded to run, and when
13658 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
13660 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
13661 struct vmcs12
*vmcs12
,
13662 u32 reason
, unsigned long qualification
)
13664 load_vmcs12_host_state(vcpu
, vmcs12
);
13665 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
13666 vmcs12
->exit_qualification
= qualification
;
13667 nested_vmx_succeed(vcpu
);
13668 if (enable_shadow_vmcs
)
13669 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
13672 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
13673 struct x86_instruction_info
*info
,
13674 enum x86_intercept_stage stage
)
13676 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
13677 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
13680 * RDPID causes #UD if disabled through secondary execution controls.
13681 * Because it is marked as EmulateOnUD, we need to intercept it here.
13683 if (info
->intercept
== x86_intercept_rdtscp
&&
13684 !nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDTSCP
)) {
13685 ctxt
->exception
.vector
= UD_VECTOR
;
13686 ctxt
->exception
.error_code_valid
= false;
13687 return X86EMUL_PROPAGATE_FAULT
;
13690 /* TODO: check more intercepts... */
13691 return X86EMUL_CONTINUE
;
13694 #ifdef CONFIG_X86_64
13695 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
13696 static inline int u64_shl_div_u64(u64 a
, unsigned int shift
,
13697 u64 divisor
, u64
*result
)
13699 u64 low
= a
<< shift
, high
= a
>> (64 - shift
);
13701 /* To avoid the overflow on divq */
13702 if (high
>= divisor
)
13705 /* Low hold the result, high hold rem which is discarded */
13706 asm("divq %2\n\t" : "=a" (low
), "=d" (high
) :
13707 "rm" (divisor
), "0" (low
), "1" (high
));
13713 static int vmx_set_hv_timer(struct kvm_vcpu
*vcpu
, u64 guest_deadline_tsc
)
13715 struct vcpu_vmx
*vmx
;
13716 u64 tscl
, guest_tscl
, delta_tsc
, lapic_timer_advance_cycles
;
13718 if (kvm_mwait_in_guest(vcpu
->kvm
))
13719 return -EOPNOTSUPP
;
13721 vmx
= to_vmx(vcpu
);
13723 guest_tscl
= kvm_read_l1_tsc(vcpu
, tscl
);
13724 delta_tsc
= max(guest_deadline_tsc
, guest_tscl
) - guest_tscl
;
13725 lapic_timer_advance_cycles
= nsec_to_cycles(vcpu
, lapic_timer_advance_ns
);
13727 if (delta_tsc
> lapic_timer_advance_cycles
)
13728 delta_tsc
-= lapic_timer_advance_cycles
;
13732 /* Convert to host delta tsc if tsc scaling is enabled */
13733 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
&&
13734 u64_shl_div_u64(delta_tsc
,
13735 kvm_tsc_scaling_ratio_frac_bits
,
13736 vcpu
->arch
.tsc_scaling_ratio
,
13741 * If the delta tsc can't fit in the 32 bit after the multi shift,
13742 * we can't use the preemption timer.
13743 * It's possible that it fits on later vmentries, but checking
13744 * on every vmentry is costly so we just use an hrtimer.
13746 if (delta_tsc
>> (cpu_preemption_timer_multi
+ 32))
13749 vmx
->hv_deadline_tsc
= tscl
+ delta_tsc
;
13750 return delta_tsc
== 0;
13753 static void vmx_cancel_hv_timer(struct kvm_vcpu
*vcpu
)
13755 to_vmx(vcpu
)->hv_deadline_tsc
= -1;
13759 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
13761 if (!kvm_pause_in_guest(vcpu
->kvm
))
13762 shrink_ple_window(vcpu
);
13765 static void vmx_slot_enable_log_dirty(struct kvm
*kvm
,
13766 struct kvm_memory_slot
*slot
)
13768 kvm_mmu_slot_leaf_clear_dirty(kvm
, slot
);
13769 kvm_mmu_slot_largepage_remove_write_access(kvm
, slot
);
13772 static void vmx_slot_disable_log_dirty(struct kvm
*kvm
,
13773 struct kvm_memory_slot
*slot
)
13775 kvm_mmu_slot_set_dirty(kvm
, slot
);
13778 static void vmx_flush_log_dirty(struct kvm
*kvm
)
13780 kvm_flush_pml_buffers(kvm
);
13783 static int vmx_write_pml_buffer(struct kvm_vcpu
*vcpu
)
13785 struct vmcs12
*vmcs12
;
13786 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
13788 struct page
*page
= NULL
;
13791 if (is_guest_mode(vcpu
)) {
13792 WARN_ON_ONCE(vmx
->nested
.pml_full
);
13795 * Check if PML is enabled for the nested guest.
13796 * Whether eptp bit 6 is set is already checked
13797 * as part of A/D emulation.
13799 vmcs12
= get_vmcs12(vcpu
);
13800 if (!nested_cpu_has_pml(vmcs12
))
13803 if (vmcs12
->guest_pml_index
>= PML_ENTITY_NUM
) {
13804 vmx
->nested
.pml_full
= true;
13808 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
) & ~0xFFFull
;
13810 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->pml_address
);
13811 if (is_error_page(page
))
13814 pml_address
= kmap(page
);
13815 pml_address
[vmcs12
->guest_pml_index
--] = gpa
;
13817 kvm_release_page_clean(page
);
13823 static void vmx_enable_log_dirty_pt_masked(struct kvm
*kvm
,
13824 struct kvm_memory_slot
*memslot
,
13825 gfn_t offset
, unsigned long mask
)
13827 kvm_mmu_clear_dirty_pt_masked(kvm
, memslot
, offset
, mask
);
13830 static void __pi_post_block(struct kvm_vcpu
*vcpu
)
13832 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
13833 struct pi_desc old
, new;
13837 old
.control
= new.control
= pi_desc
->control
;
13838 WARN(old
.nv
!= POSTED_INTR_WAKEUP_VECTOR
,
13839 "Wakeup handler not enabled while the VCPU is blocked\n");
13841 dest
= cpu_physical_id(vcpu
->cpu
);
13843 if (x2apic_enabled())
13846 new.ndst
= (dest
<< 8) & 0xFF00;
13848 /* set 'NV' to 'notification vector' */
13849 new.nv
= POSTED_INTR_VECTOR
;
13850 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
13851 new.control
) != old
.control
);
13853 if (!WARN_ON_ONCE(vcpu
->pre_pcpu
== -1)) {
13854 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
13855 list_del(&vcpu
->blocked_vcpu_list
);
13856 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
13857 vcpu
->pre_pcpu
= -1;
13862 * This routine does the following things for vCPU which is going
13863 * to be blocked if VT-d PI is enabled.
13864 * - Store the vCPU to the wakeup list, so when interrupts happen
13865 * we can find the right vCPU to wake up.
13866 * - Change the Posted-interrupt descriptor as below:
13867 * 'NDST' <-- vcpu->pre_pcpu
13868 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
13869 * - If 'ON' is set during this process, which means at least one
13870 * interrupt is posted for this vCPU, we cannot block it, in
13871 * this case, return 1, otherwise, return 0.
13874 static int pi_pre_block(struct kvm_vcpu
*vcpu
)
13877 struct pi_desc old
, new;
13878 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
13880 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
13881 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
13882 !kvm_vcpu_apicv_active(vcpu
))
13885 WARN_ON(irqs_disabled());
13886 local_irq_disable();
13887 if (!WARN_ON_ONCE(vcpu
->pre_pcpu
!= -1)) {
13888 vcpu
->pre_pcpu
= vcpu
->cpu
;
13889 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
13890 list_add_tail(&vcpu
->blocked_vcpu_list
,
13891 &per_cpu(blocked_vcpu_on_cpu
,
13893 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
13897 old
.control
= new.control
= pi_desc
->control
;
13899 WARN((pi_desc
->sn
== 1),
13900 "Warning: SN field of posted-interrupts "
13901 "is set before blocking\n");
13904 * Since vCPU can be preempted during this process,
13905 * vcpu->cpu could be different with pre_pcpu, we
13906 * need to set pre_pcpu as the destination of wakeup
13907 * notification event, then we can find the right vCPU
13908 * to wakeup in wakeup handler if interrupts happen
13909 * when the vCPU is in blocked state.
13911 dest
= cpu_physical_id(vcpu
->pre_pcpu
);
13913 if (x2apic_enabled())
13916 new.ndst
= (dest
<< 8) & 0xFF00;
13918 /* set 'NV' to 'wakeup vector' */
13919 new.nv
= POSTED_INTR_WAKEUP_VECTOR
;
13920 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
13921 new.control
) != old
.control
);
13923 /* We should not block the vCPU if an interrupt is posted for it. */
13924 if (pi_test_on(pi_desc
) == 1)
13925 __pi_post_block(vcpu
);
13927 local_irq_enable();
13928 return (vcpu
->pre_pcpu
== -1);
13931 static int vmx_pre_block(struct kvm_vcpu
*vcpu
)
13933 if (pi_pre_block(vcpu
))
13936 if (kvm_lapic_hv_timer_in_use(vcpu
))
13937 kvm_lapic_switch_to_sw_timer(vcpu
);
13942 static void pi_post_block(struct kvm_vcpu
*vcpu
)
13944 if (vcpu
->pre_pcpu
== -1)
13947 WARN_ON(irqs_disabled());
13948 local_irq_disable();
13949 __pi_post_block(vcpu
);
13950 local_irq_enable();
13953 static void vmx_post_block(struct kvm_vcpu
*vcpu
)
13955 if (kvm_x86_ops
->set_hv_timer
)
13956 kvm_lapic_switch_to_hv_timer(vcpu
);
13958 pi_post_block(vcpu
);
13962 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
13965 * @host_irq: host irq of the interrupt
13966 * @guest_irq: gsi of the interrupt
13967 * @set: set or unset PI
13968 * returns 0 on success, < 0 on failure
13970 static int vmx_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
13971 uint32_t guest_irq
, bool set
)
13973 struct kvm_kernel_irq_routing_entry
*e
;
13974 struct kvm_irq_routing_table
*irq_rt
;
13975 struct kvm_lapic_irq irq
;
13976 struct kvm_vcpu
*vcpu
;
13977 struct vcpu_data vcpu_info
;
13980 if (!kvm_arch_has_assigned_device(kvm
) ||
13981 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
13982 !kvm_vcpu_apicv_active(kvm
->vcpus
[0]))
13985 idx
= srcu_read_lock(&kvm
->irq_srcu
);
13986 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
13987 if (guest_irq
>= irq_rt
->nr_rt_entries
||
13988 hlist_empty(&irq_rt
->map
[guest_irq
])) {
13989 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
13990 guest_irq
, irq_rt
->nr_rt_entries
);
13994 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
13995 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
13998 * VT-d PI cannot support posting multicast/broadcast
13999 * interrupts to a vCPU, we still use interrupt remapping
14000 * for these kind of interrupts.
14002 * For lowest-priority interrupts, we only support
14003 * those with single CPU as the destination, e.g. user
14004 * configures the interrupts via /proc/irq or uses
14005 * irqbalance to make the interrupts single-CPU.
14007 * We will support full lowest-priority interrupt later.
14010 kvm_set_msi_irq(kvm
, e
, &irq
);
14011 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
14013 * Make sure the IRTE is in remapped mode if
14014 * we don't handle it in posted mode.
14016 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
14019 "failed to back to remapped mode, irq: %u\n",
14027 vcpu_info
.pi_desc_addr
= __pa(vcpu_to_pi_desc(vcpu
));
14028 vcpu_info
.vector
= irq
.vector
;
14030 trace_kvm_pi_irte_update(host_irq
, vcpu
->vcpu_id
, e
->gsi
,
14031 vcpu_info
.vector
, vcpu_info
.pi_desc_addr
, set
);
14034 ret
= irq_set_vcpu_affinity(host_irq
, &vcpu_info
);
14036 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
14039 printk(KERN_INFO
"%s: failed to update PI IRTE\n",
14047 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
14051 static void vmx_setup_mce(struct kvm_vcpu
*vcpu
)
14053 if (vcpu
->arch
.mcg_cap
& MCG_LMCE_P
)
14054 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
14055 FEATURE_CONTROL_LMCE
;
14057 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
14058 ~FEATURE_CONTROL_LMCE
;
14061 static int vmx_smi_allowed(struct kvm_vcpu
*vcpu
)
14063 /* we need a nested vmexit to enter SMM, postpone if run is pending */
14064 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
14069 static int vmx_pre_enter_smm(struct kvm_vcpu
*vcpu
, char *smstate
)
14071 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
14073 vmx
->nested
.smm
.guest_mode
= is_guest_mode(vcpu
);
14074 if (vmx
->nested
.smm
.guest_mode
)
14075 nested_vmx_vmexit(vcpu
, -1, 0, 0);
14077 vmx
->nested
.smm
.vmxon
= vmx
->nested
.vmxon
;
14078 vmx
->nested
.vmxon
= false;
14079 vmx_clear_hlt(vcpu
);
14083 static int vmx_pre_leave_smm(struct kvm_vcpu
*vcpu
, u64 smbase
)
14085 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
14088 if (vmx
->nested
.smm
.vmxon
) {
14089 vmx
->nested
.vmxon
= true;
14090 vmx
->nested
.smm
.vmxon
= false;
14093 if (vmx
->nested
.smm
.guest_mode
) {
14094 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
14095 ret
= enter_vmx_non_root_mode(vcpu
, NULL
);
14096 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
14100 vmx
->nested
.smm
.guest_mode
= false;
14105 static int enable_smi_window(struct kvm_vcpu
*vcpu
)
14110 static int vmx_get_nested_state(struct kvm_vcpu
*vcpu
,
14111 struct kvm_nested_state __user
*user_kvm_nested_state
,
14112 u32 user_data_size
)
14114 struct vcpu_vmx
*vmx
;
14115 struct vmcs12
*vmcs12
;
14116 struct kvm_nested_state kvm_state
= {
14119 .size
= sizeof(kvm_state
),
14120 .vmx
.vmxon_pa
= -1ull,
14121 .vmx
.vmcs_pa
= -1ull,
14125 return kvm_state
.size
+ 2 * VMCS12_SIZE
;
14127 vmx
= to_vmx(vcpu
);
14128 vmcs12
= get_vmcs12(vcpu
);
14129 if (nested_vmx_allowed(vcpu
) &&
14130 (vmx
->nested
.vmxon
|| vmx
->nested
.smm
.vmxon
)) {
14131 kvm_state
.vmx
.vmxon_pa
= vmx
->nested
.vmxon_ptr
;
14132 kvm_state
.vmx
.vmcs_pa
= vmx
->nested
.current_vmptr
;
14134 if (vmx
->nested
.current_vmptr
!= -1ull) {
14135 kvm_state
.size
+= VMCS12_SIZE
;
14137 if (is_guest_mode(vcpu
) &&
14138 nested_cpu_has_shadow_vmcs(vmcs12
) &&
14139 vmcs12
->vmcs_link_pointer
!= -1ull)
14140 kvm_state
.size
+= VMCS12_SIZE
;
14143 if (vmx
->nested
.smm
.vmxon
)
14144 kvm_state
.vmx
.smm
.flags
|= KVM_STATE_NESTED_SMM_VMXON
;
14146 if (vmx
->nested
.smm
.guest_mode
)
14147 kvm_state
.vmx
.smm
.flags
|= KVM_STATE_NESTED_SMM_GUEST_MODE
;
14149 if (is_guest_mode(vcpu
)) {
14150 kvm_state
.flags
|= KVM_STATE_NESTED_GUEST_MODE
;
14152 if (vmx
->nested
.nested_run_pending
)
14153 kvm_state
.flags
|= KVM_STATE_NESTED_RUN_PENDING
;
14157 if (user_data_size
< kvm_state
.size
)
14160 if (copy_to_user(user_kvm_nested_state
, &kvm_state
, sizeof(kvm_state
)))
14163 if (vmx
->nested
.current_vmptr
== -1ull)
14167 * When running L2, the authoritative vmcs12 state is in the
14168 * vmcs02. When running L1, the authoritative vmcs12 state is
14169 * in the shadow vmcs linked to vmcs01, unless
14170 * sync_shadow_vmcs is set, in which case, the authoritative
14171 * vmcs12 state is in the vmcs12 already.
14173 if (is_guest_mode(vcpu
))
14174 sync_vmcs12(vcpu
, vmcs12
);
14175 else if (enable_shadow_vmcs
&& !vmx
->nested
.sync_shadow_vmcs
)
14176 copy_shadow_to_vmcs12(vmx
);
14179 * Copy over the full allocated size of vmcs12 rather than just the size
14182 if (copy_to_user(user_kvm_nested_state
->data
, vmcs12
, VMCS12_SIZE
))
14185 if (nested_cpu_has_shadow_vmcs(vmcs12
) &&
14186 vmcs12
->vmcs_link_pointer
!= -1ull) {
14187 if (copy_to_user(user_kvm_nested_state
->data
+ VMCS12_SIZE
,
14188 get_shadow_vmcs12(vcpu
), VMCS12_SIZE
))
14193 return kvm_state
.size
;
14196 static int vmx_set_nested_state(struct kvm_vcpu
*vcpu
,
14197 struct kvm_nested_state __user
*user_kvm_nested_state
,
14198 struct kvm_nested_state
*kvm_state
)
14200 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
14201 struct vmcs12
*vmcs12
;
14205 if (kvm_state
->format
!= 0)
14208 if (!nested_vmx_allowed(vcpu
))
14209 return kvm_state
->vmx
.vmxon_pa
== -1ull ? 0 : -EINVAL
;
14211 if (kvm_state
->vmx
.vmxon_pa
== -1ull) {
14212 if (kvm_state
->vmx
.smm
.flags
)
14215 if (kvm_state
->vmx
.vmcs_pa
!= -1ull)
14218 vmx_leave_nested(vcpu
);
14222 if (!page_address_valid(vcpu
, kvm_state
->vmx
.vmxon_pa
))
14225 if ((kvm_state
->vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_GUEST_MODE
) &&
14226 (kvm_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
))
14229 if (kvm_state
->vmx
.smm
.flags
&
14230 ~(KVM_STATE_NESTED_SMM_GUEST_MODE
| KVM_STATE_NESTED_SMM_VMXON
))
14234 * SMM temporarily disables VMX, so we cannot be in guest mode,
14235 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
14238 if (is_smm(vcpu
) ? kvm_state
->flags
: kvm_state
->vmx
.smm
.flags
)
14241 if ((kvm_state
->vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_GUEST_MODE
) &&
14242 !(kvm_state
->vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_VMXON
))
14245 vmx_leave_nested(vcpu
);
14246 if (kvm_state
->vmx
.vmxon_pa
== -1ull)
14249 vmx
->nested
.vmxon_ptr
= kvm_state
->vmx
.vmxon_pa
;
14250 ret
= enter_vmx_operation(vcpu
);
14254 /* Empty 'VMXON' state is permitted */
14255 if (kvm_state
->size
< sizeof(*kvm_state
) + sizeof(*vmcs12
))
14258 if (kvm_state
->vmx
.vmcs_pa
== kvm_state
->vmx
.vmxon_pa
||
14259 !page_address_valid(vcpu
, kvm_state
->vmx
.vmcs_pa
))
14262 set_current_vmptr(vmx
, kvm_state
->vmx
.vmcs_pa
);
14264 if (kvm_state
->vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_VMXON
) {
14265 vmx
->nested
.smm
.vmxon
= true;
14266 vmx
->nested
.vmxon
= false;
14268 if (kvm_state
->vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_GUEST_MODE
)
14269 vmx
->nested
.smm
.guest_mode
= true;
14272 vmcs12
= get_vmcs12(vcpu
);
14273 if (copy_from_user(vmcs12
, user_kvm_nested_state
->data
, sizeof(*vmcs12
)))
14276 if (vmcs12
->hdr
.revision_id
!= VMCS12_REVISION
)
14279 if (!(kvm_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
))
14282 vmx
->nested
.nested_run_pending
=
14283 !!(kvm_state
->flags
& KVM_STATE_NESTED_RUN_PENDING
);
14285 if (nested_cpu_has_shadow_vmcs(vmcs12
) &&
14286 vmcs12
->vmcs_link_pointer
!= -1ull) {
14287 struct vmcs12
*shadow_vmcs12
= get_shadow_vmcs12(vcpu
);
14288 if (kvm_state
->size
< sizeof(*kvm_state
) + 2 * sizeof(*vmcs12
))
14291 if (copy_from_user(shadow_vmcs12
,
14292 user_kvm_nested_state
->data
+ VMCS12_SIZE
,
14296 if (shadow_vmcs12
->hdr
.revision_id
!= VMCS12_REVISION
||
14297 !shadow_vmcs12
->hdr
.shadow_vmcs
)
14301 if (check_vmentry_prereqs(vcpu
, vmcs12
) ||
14302 check_vmentry_postreqs(vcpu
, vmcs12
, &exit_qual
))
14305 vmx
->nested
.dirty_vmcs12
= true;
14306 ret
= enter_vmx_non_root_mode(vcpu
, NULL
);
14313 static struct kvm_x86_ops vmx_x86_ops __ro_after_init
= {
14314 .cpu_has_kvm_support
= cpu_has_kvm_support
,
14315 .disabled_by_bios
= vmx_disabled_by_bios
,
14316 .hardware_setup
= hardware_setup
,
14317 .hardware_unsetup
= hardware_unsetup
,
14318 .check_processor_compatibility
= vmx_check_processor_compat
,
14319 .hardware_enable
= hardware_enable
,
14320 .hardware_disable
= hardware_disable
,
14321 .cpu_has_accelerated_tpr
= report_flexpriority
,
14322 .has_emulated_msr
= vmx_has_emulated_msr
,
14324 .vm_init
= vmx_vm_init
,
14325 .vm_alloc
= vmx_vm_alloc
,
14326 .vm_free
= vmx_vm_free
,
14328 .vcpu_create
= vmx_create_vcpu
,
14329 .vcpu_free
= vmx_free_vcpu
,
14330 .vcpu_reset
= vmx_vcpu_reset
,
14332 .prepare_guest_switch
= vmx_prepare_switch_to_guest
,
14333 .vcpu_load
= vmx_vcpu_load
,
14334 .vcpu_put
= vmx_vcpu_put
,
14336 .update_bp_intercept
= update_exception_bitmap
,
14337 .get_msr_feature
= vmx_get_msr_feature
,
14338 .get_msr
= vmx_get_msr
,
14339 .set_msr
= vmx_set_msr
,
14340 .get_segment_base
= vmx_get_segment_base
,
14341 .get_segment
= vmx_get_segment
,
14342 .set_segment
= vmx_set_segment
,
14343 .get_cpl
= vmx_get_cpl
,
14344 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
14345 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
14346 .decache_cr3
= vmx_decache_cr3
,
14347 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
14348 .set_cr0
= vmx_set_cr0
,
14349 .set_cr3
= vmx_set_cr3
,
14350 .set_cr4
= vmx_set_cr4
,
14351 .set_efer
= vmx_set_efer
,
14352 .get_idt
= vmx_get_idt
,
14353 .set_idt
= vmx_set_idt
,
14354 .get_gdt
= vmx_get_gdt
,
14355 .set_gdt
= vmx_set_gdt
,
14356 .get_dr6
= vmx_get_dr6
,
14357 .set_dr6
= vmx_set_dr6
,
14358 .set_dr7
= vmx_set_dr7
,
14359 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
14360 .cache_reg
= vmx_cache_reg
,
14361 .get_rflags
= vmx_get_rflags
,
14362 .set_rflags
= vmx_set_rflags
,
14364 .tlb_flush
= vmx_flush_tlb
,
14365 .tlb_flush_gva
= vmx_flush_tlb_gva
,
14367 .run
= vmx_vcpu_run
,
14368 .handle_exit
= vmx_handle_exit
,
14369 .skip_emulated_instruction
= skip_emulated_instruction
,
14370 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
14371 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
14372 .patch_hypercall
= vmx_patch_hypercall
,
14373 .set_irq
= vmx_inject_irq
,
14374 .set_nmi
= vmx_inject_nmi
,
14375 .queue_exception
= vmx_queue_exception
,
14376 .cancel_injection
= vmx_cancel_injection
,
14377 .interrupt_allowed
= vmx_interrupt_allowed
,
14378 .nmi_allowed
= vmx_nmi_allowed
,
14379 .get_nmi_mask
= vmx_get_nmi_mask
,
14380 .set_nmi_mask
= vmx_set_nmi_mask
,
14381 .enable_nmi_window
= enable_nmi_window
,
14382 .enable_irq_window
= enable_irq_window
,
14383 .update_cr8_intercept
= update_cr8_intercept
,
14384 .set_virtual_apic_mode
= vmx_set_virtual_apic_mode
,
14385 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
14386 .get_enable_apicv
= vmx_get_enable_apicv
,
14387 .refresh_apicv_exec_ctrl
= vmx_refresh_apicv_exec_ctrl
,
14388 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
14389 .apicv_post_state_restore
= vmx_apicv_post_state_restore
,
14390 .hwapic_irr_update
= vmx_hwapic_irr_update
,
14391 .hwapic_isr_update
= vmx_hwapic_isr_update
,
14392 .guest_apic_has_interrupt
= vmx_guest_apic_has_interrupt
,
14393 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
14394 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
14395 .dy_apicv_has_pending_interrupt
= vmx_dy_apicv_has_pending_interrupt
,
14397 .set_tss_addr
= vmx_set_tss_addr
,
14398 .set_identity_map_addr
= vmx_set_identity_map_addr
,
14399 .get_tdp_level
= get_ept_level
,
14400 .get_mt_mask
= vmx_get_mt_mask
,
14402 .get_exit_info
= vmx_get_exit_info
,
14404 .get_lpage_level
= vmx_get_lpage_level
,
14406 .cpuid_update
= vmx_cpuid_update
,
14408 .rdtscp_supported
= vmx_rdtscp_supported
,
14409 .invpcid_supported
= vmx_invpcid_supported
,
14411 .set_supported_cpuid
= vmx_set_supported_cpuid
,
14413 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
14415 .read_l1_tsc_offset
= vmx_read_l1_tsc_offset
,
14416 .write_l1_tsc_offset
= vmx_write_l1_tsc_offset
,
14418 .set_tdp_cr3
= vmx_set_cr3
,
14420 .check_intercept
= vmx_check_intercept
,
14421 .handle_external_intr
= vmx_handle_external_intr
,
14422 .mpx_supported
= vmx_mpx_supported
,
14423 .xsaves_supported
= vmx_xsaves_supported
,
14424 .umip_emulated
= vmx_umip_emulated
,
14426 .check_nested_events
= vmx_check_nested_events
,
14427 .request_immediate_exit
= vmx_request_immediate_exit
,
14429 .sched_in
= vmx_sched_in
,
14431 .slot_enable_log_dirty
= vmx_slot_enable_log_dirty
,
14432 .slot_disable_log_dirty
= vmx_slot_disable_log_dirty
,
14433 .flush_log_dirty
= vmx_flush_log_dirty
,
14434 .enable_log_dirty_pt_masked
= vmx_enable_log_dirty_pt_masked
,
14435 .write_log_dirty
= vmx_write_pml_buffer
,
14437 .pre_block
= vmx_pre_block
,
14438 .post_block
= vmx_post_block
,
14440 .pmu_ops
= &intel_pmu_ops
,
14442 .update_pi_irte
= vmx_update_pi_irte
,
14444 #ifdef CONFIG_X86_64
14445 .set_hv_timer
= vmx_set_hv_timer
,
14446 .cancel_hv_timer
= vmx_cancel_hv_timer
,
14449 .setup_mce
= vmx_setup_mce
,
14451 .get_nested_state
= vmx_get_nested_state
,
14452 .set_nested_state
= vmx_set_nested_state
,
14453 .get_vmcs12_pages
= nested_get_vmcs12_pages
,
14455 .smi_allowed
= vmx_smi_allowed
,
14456 .pre_enter_smm
= vmx_pre_enter_smm
,
14457 .pre_leave_smm
= vmx_pre_leave_smm
,
14458 .enable_smi_window
= enable_smi_window
,
14461 static void vmx_cleanup_l1d_flush(void)
14463 if (vmx_l1d_flush_pages
) {
14464 free_pages((unsigned long)vmx_l1d_flush_pages
, L1D_CACHE_ORDER
);
14465 vmx_l1d_flush_pages
= NULL
;
14467 /* Restore state so sysfs ignores VMX */
14468 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_AUTO
;
14471 static void vmx_exit(void)
14473 #ifdef CONFIG_KEXEC_CORE
14474 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
14480 #if IS_ENABLED(CONFIG_HYPERV)
14481 if (static_branch_unlikely(&enable_evmcs
)) {
14483 struct hv_vp_assist_page
*vp_ap
;
14485 * Reset everything to support using non-enlightened VMCS
14486 * access later (e.g. when we reload the module with
14487 * enlightened_vmcs=0)
14489 for_each_online_cpu(cpu
) {
14490 vp_ap
= hv_get_vp_assist_page(cpu
);
14495 vp_ap
->current_nested_vmcs
= 0;
14496 vp_ap
->enlighten_vmentry
= 0;
14499 static_branch_disable(&enable_evmcs
);
14502 vmx_cleanup_l1d_flush();
14504 module_exit(vmx_exit
);
14506 static int __init
vmx_init(void)
14510 #if IS_ENABLED(CONFIG_HYPERV)
14512 * Enlightened VMCS usage should be recommended and the host needs
14513 * to support eVMCS v1 or above. We can also disable eVMCS support
14514 * with module parameter.
14516 if (enlightened_vmcs
&&
14517 ms_hyperv
.hints
& HV_X64_ENLIGHTENED_VMCS_RECOMMENDED
&&
14518 (ms_hyperv
.nested_features
& HV_X64_ENLIGHTENED_VMCS_VERSION
) >=
14519 KVM_EVMCS_VERSION
) {
14522 /* Check that we have assist pages on all online CPUs */
14523 for_each_online_cpu(cpu
) {
14524 if (!hv_get_vp_assist_page(cpu
)) {
14525 enlightened_vmcs
= false;
14530 if (enlightened_vmcs
) {
14531 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
14532 static_branch_enable(&enable_evmcs
);
14535 enlightened_vmcs
= false;
14539 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
14540 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
14545 * Must be called after kvm_init() so enable_ept is properly set
14546 * up. Hand the parameter mitigation value in which was stored in
14547 * the pre module init parser. If no parameter was given, it will
14548 * contain 'auto' which will be turned into the default 'cond'
14551 if (boot_cpu_has(X86_BUG_L1TF
)) {
14552 r
= vmx_setup_l1d_flush(vmentry_l1d_flush_param
);
14559 #ifdef CONFIG_KEXEC_CORE
14560 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
14561 crash_vmclear_local_loaded_vmcss
);
14563 vmx_check_vmcs12_offsets();
14567 module_init(vmx_init
);