iwlwifi: mvm: fix version check for GEO_TX_POWER_LIMIT support
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blob1bcb7242ad79a099880e055cb378df1ee695e9d9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/mm_types.h>
21 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
22 #include <asm/traps.h> /* dotraplinkage, ... */
23 #include <asm/pgalloc.h> /* pgd_*(), ... */
24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
25 #include <asm/vsyscall.h> /* emulate_vsyscall */
26 #include <asm/vm86.h> /* struct vm86 */
27 #include <asm/mmu_context.h> /* vma_pkey() */
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
36 static nokprobe_inline int
37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs, addr) == 1)
41 return -1;
42 return 0;
45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
47 int ret = 0;
49 /* kprobe_running() needs smp_processor_id() */
50 if (kprobes_built_in() && !user_mode(regs)) {
51 preempt_disable();
52 if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 ret = 1;
54 preempt_enable();
57 return ret;
61 * Prefetch quirks:
63 * 32-bit mode:
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
68 * 64-bit mode:
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
73 * Opcode checker based on code by Richard Brunner.
75 static inline int
76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 unsigned char opcode, int *prefetch)
79 unsigned char instr_hi = opcode & 0xf0;
80 unsigned char instr_lo = opcode & 0x0f;
82 switch (instr_hi) {
83 case 0x20:
84 case 0x30:
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
91 return ((instr_lo & 7) == 0x6);
92 #ifdef CONFIG_X86_64
93 case 0x40:
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
101 return (!user_mode(regs) || user_64bit_mode(regs));
102 #endif
103 case 0x60:
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo & 0xC) == 0x4;
106 case 0xF0:
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo || (instr_lo>>1) == 1;
109 case 0x00:
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr, opcode))
112 return 0;
114 *prefetch = (instr_lo == 0xF) &&
115 (opcode == 0x0D || opcode == 0x18);
116 return 0;
117 default:
118 return 0;
122 static int
123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125 unsigned char *max_instr;
126 unsigned char *instr;
127 int prefetch = 0;
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
133 if (error_code & X86_PF_INSTR)
134 return 0;
136 instr = (void *)convert_ip_to_linear(current, regs);
137 max_instr = instr + 15;
139 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
140 return 0;
142 while (instr < max_instr) {
143 unsigned char opcode;
145 if (probe_kernel_address(instr, opcode))
146 break;
148 instr++;
150 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
151 break;
153 return prefetch;
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
161 * on the PTE.
163 * If we get here, we know that the hardware signaled a X86_PF_PK
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
170 * 3. T1 : faults...
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
176 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
177 u32 *pkey)
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE))
181 return;
183 /* Fault not from Protection Keys: nothing to do */
184 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
185 return;
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
189 * do not. The X86_PF_PK handing happens after we have a
190 * valid VMA, so we should never reach this without a
191 * valid VMA.
193 if (!pkey) {
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
195 info->si_pkey = 0;
196 return;
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
203 info->si_pkey = *pkey;
206 static void
207 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
208 struct task_struct *tsk, u32 *pkey, int fault)
210 unsigned lsb = 0;
211 siginfo_t info;
213 clear_siginfo(&info);
214 info.si_signo = si_signo;
215 info.si_errno = 0;
216 info.si_code = si_code;
217 info.si_addr = (void __user *)address;
218 if (fault & VM_FAULT_HWPOISON_LARGE)
219 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
220 if (fault & VM_FAULT_HWPOISON)
221 lsb = PAGE_SHIFT;
222 info.si_addr_lsb = lsb;
224 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
226 force_sig_info(si_signo, &info, tsk);
229 DEFINE_SPINLOCK(pgd_lock);
230 LIST_HEAD(pgd_list);
232 #ifdef CONFIG_X86_32
233 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
235 unsigned index = pgd_index(address);
236 pgd_t *pgd_k;
237 p4d_t *p4d, *p4d_k;
238 pud_t *pud, *pud_k;
239 pmd_t *pmd, *pmd_k;
241 pgd += index;
242 pgd_k = init_mm.pgd + index;
244 if (!pgd_present(*pgd_k))
245 return NULL;
248 * set_pgd(pgd, *pgd_k); here would be useless on PAE
249 * and redundant with the set_pmd() on non-PAE. As would
250 * set_p4d/set_pud.
252 p4d = p4d_offset(pgd, address);
253 p4d_k = p4d_offset(pgd_k, address);
254 if (!p4d_present(*p4d_k))
255 return NULL;
257 pud = pud_offset(p4d, address);
258 pud_k = pud_offset(p4d_k, address);
259 if (!pud_present(*pud_k))
260 return NULL;
262 pmd = pmd_offset(pud, address);
263 pmd_k = pmd_offset(pud_k, address);
265 if (pmd_present(*pmd) != pmd_present(*pmd_k))
266 set_pmd(pmd, *pmd_k);
268 if (!pmd_present(*pmd_k))
269 return NULL;
270 else
271 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
273 return pmd_k;
276 void vmalloc_sync_all(void)
278 unsigned long address;
280 if (SHARED_KERNEL_PMD)
281 return;
283 for (address = VMALLOC_START & PMD_MASK;
284 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
285 address += PMD_SIZE) {
286 struct page *page;
288 spin_lock(&pgd_lock);
289 list_for_each_entry(page, &pgd_list, lru) {
290 spinlock_t *pgt_lock;
292 /* the pgt_lock only for Xen */
293 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
295 spin_lock(pgt_lock);
296 vmalloc_sync_one(page_address(page), address);
297 spin_unlock(pgt_lock);
299 spin_unlock(&pgd_lock);
304 * 32-bit:
306 * Handle a fault on the vmalloc or module mapping area
308 static noinline int vmalloc_fault(unsigned long address)
310 unsigned long pgd_paddr;
311 pmd_t *pmd_k;
312 pte_t *pte_k;
314 /* Make sure we are in vmalloc area: */
315 if (!(address >= VMALLOC_START && address < VMALLOC_END))
316 return -1;
319 * Synchronize this task's top level page-table
320 * with the 'reference' page table.
322 * Do _not_ use "current" here. We might be inside
323 * an interrupt in the middle of a task switch..
325 pgd_paddr = read_cr3_pa();
326 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
327 if (!pmd_k)
328 return -1;
330 if (pmd_large(*pmd_k))
331 return 0;
333 pte_k = pte_offset_kernel(pmd_k, address);
334 if (!pte_present(*pte_k))
335 return -1;
337 return 0;
339 NOKPROBE_SYMBOL(vmalloc_fault);
342 * Did it hit the DOS screen memory VA from vm86 mode?
344 static inline void
345 check_v8086_mode(struct pt_regs *regs, unsigned long address,
346 struct task_struct *tsk)
348 #ifdef CONFIG_VM86
349 unsigned long bit;
351 if (!v8086_mode(regs) || !tsk->thread.vm86)
352 return;
354 bit = (address - 0xA0000) >> PAGE_SHIFT;
355 if (bit < 32)
356 tsk->thread.vm86->screen_bitmap |= 1 << bit;
357 #endif
360 static bool low_pfn(unsigned long pfn)
362 return pfn < max_low_pfn;
365 static void dump_pagetable(unsigned long address)
367 pgd_t *base = __va(read_cr3_pa());
368 pgd_t *pgd = &base[pgd_index(address)];
369 p4d_t *p4d;
370 pud_t *pud;
371 pmd_t *pmd;
372 pte_t *pte;
374 #ifdef CONFIG_X86_PAE
375 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
376 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
377 goto out;
378 #define pr_pde pr_cont
379 #else
380 #define pr_pde pr_info
381 #endif
382 p4d = p4d_offset(pgd, address);
383 pud = pud_offset(p4d, address);
384 pmd = pmd_offset(pud, address);
385 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
386 #undef pr_pde
389 * We must not directly access the pte in the highpte
390 * case if the page table is located in highmem.
391 * And let's rather not kmap-atomic the pte, just in case
392 * it's allocated already:
394 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
395 goto out;
397 pte = pte_offset_kernel(pmd, address);
398 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
399 out:
400 pr_cont("\n");
403 #else /* CONFIG_X86_64: */
405 void vmalloc_sync_all(void)
407 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411 * 64-bit:
413 * Handle a fault on the vmalloc area
415 static noinline int vmalloc_fault(unsigned long address)
417 pgd_t *pgd, *pgd_k;
418 p4d_t *p4d, *p4d_k;
419 pud_t *pud;
420 pmd_t *pmd;
421 pte_t *pte;
423 /* Make sure we are in vmalloc area: */
424 if (!(address >= VMALLOC_START && address < VMALLOC_END))
425 return -1;
428 * Copy kernel mappings over when needed. This can also
429 * happen within a race in page table update. In the later
430 * case just flush:
432 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
433 pgd_k = pgd_offset_k(address);
434 if (pgd_none(*pgd_k))
435 return -1;
437 if (pgtable_l5_enabled()) {
438 if (pgd_none(*pgd)) {
439 set_pgd(pgd, *pgd_k);
440 arch_flush_lazy_mmu_mode();
441 } else {
442 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
446 /* With 4-level paging, copying happens on the p4d level. */
447 p4d = p4d_offset(pgd, address);
448 p4d_k = p4d_offset(pgd_k, address);
449 if (p4d_none(*p4d_k))
450 return -1;
452 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
453 set_p4d(p4d, *p4d_k);
454 arch_flush_lazy_mmu_mode();
455 } else {
456 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
459 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
461 pud = pud_offset(p4d, address);
462 if (pud_none(*pud))
463 return -1;
465 if (pud_large(*pud))
466 return 0;
468 pmd = pmd_offset(pud, address);
469 if (pmd_none(*pmd))
470 return -1;
472 if (pmd_large(*pmd))
473 return 0;
475 pte = pte_offset_kernel(pmd, address);
476 if (!pte_present(*pte))
477 return -1;
479 return 0;
481 NOKPROBE_SYMBOL(vmalloc_fault);
483 #ifdef CONFIG_CPU_SUP_AMD
484 static const char errata93_warning[] =
485 KERN_ERR
486 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
487 "******* Working around it, but it may cause SEGVs or burn power.\n"
488 "******* Please consider a BIOS update.\n"
489 "******* Disabling USB legacy in the BIOS may also help.\n";
490 #endif
493 * No vm86 mode in 64-bit mode:
495 static inline void
496 check_v8086_mode(struct pt_regs *regs, unsigned long address,
497 struct task_struct *tsk)
501 static int bad_address(void *p)
503 unsigned long dummy;
505 return probe_kernel_address((unsigned long *)p, dummy);
508 static void dump_pagetable(unsigned long address)
510 pgd_t *base = __va(read_cr3_pa());
511 pgd_t *pgd = base + pgd_index(address);
512 p4d_t *p4d;
513 pud_t *pud;
514 pmd_t *pmd;
515 pte_t *pte;
517 if (bad_address(pgd))
518 goto bad;
520 pr_info("PGD %lx ", pgd_val(*pgd));
522 if (!pgd_present(*pgd))
523 goto out;
525 p4d = p4d_offset(pgd, address);
526 if (bad_address(p4d))
527 goto bad;
529 pr_cont("P4D %lx ", p4d_val(*p4d));
530 if (!p4d_present(*p4d) || p4d_large(*p4d))
531 goto out;
533 pud = pud_offset(p4d, address);
534 if (bad_address(pud))
535 goto bad;
537 pr_cont("PUD %lx ", pud_val(*pud));
538 if (!pud_present(*pud) || pud_large(*pud))
539 goto out;
541 pmd = pmd_offset(pud, address);
542 if (bad_address(pmd))
543 goto bad;
545 pr_cont("PMD %lx ", pmd_val(*pmd));
546 if (!pmd_present(*pmd) || pmd_large(*pmd))
547 goto out;
549 pte = pte_offset_kernel(pmd, address);
550 if (bad_address(pte))
551 goto bad;
553 pr_cont("PTE %lx", pte_val(*pte));
554 out:
555 pr_cont("\n");
556 return;
557 bad:
558 pr_info("BAD\n");
561 #endif /* CONFIG_X86_64 */
564 * Workaround for K8 erratum #93 & buggy BIOS.
566 * BIOS SMM functions are required to use a specific workaround
567 * to avoid corruption of the 64bit RIP register on C stepping K8.
569 * A lot of BIOS that didn't get tested properly miss this.
571 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
572 * Try to work around it here.
574 * Note we only handle faults in kernel here.
575 * Does nothing on 32-bit.
577 static int is_errata93(struct pt_regs *regs, unsigned long address)
579 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
580 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
581 || boot_cpu_data.x86 != 0xf)
582 return 0;
584 if (address != regs->ip)
585 return 0;
587 if ((address >> 32) != 0)
588 return 0;
590 address |= 0xffffffffUL << 32;
591 if ((address >= (u64)_stext && address <= (u64)_etext) ||
592 (address >= MODULES_VADDR && address <= MODULES_END)) {
593 printk_once(errata93_warning);
594 regs->ip = address;
595 return 1;
597 #endif
598 return 0;
602 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
603 * to illegal addresses >4GB.
605 * We catch this in the page fault handler because these addresses
606 * are not reachable. Just detect this case and return. Any code
607 * segment in LDT is compatibility mode.
609 static int is_errata100(struct pt_regs *regs, unsigned long address)
611 #ifdef CONFIG_X86_64
612 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
613 return 1;
614 #endif
615 return 0;
618 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
620 #ifdef CONFIG_X86_F00F_BUG
621 unsigned long nr;
624 * Pentium F0 0F C7 C8 bug workaround:
626 if (boot_cpu_has_bug(X86_BUG_F00F)) {
627 nr = (address - idt_descr.address) >> 3;
629 if (nr == 6) {
630 do_invalid_op(regs, 0);
631 return 1;
634 #endif
635 return 0;
638 static void
639 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
640 unsigned long address)
642 if (!oops_may_print())
643 return;
645 if (error_code & X86_PF_INSTR) {
646 unsigned int level;
647 pgd_t *pgd;
648 pte_t *pte;
650 pgd = __va(read_cr3_pa());
651 pgd += pgd_index(address);
653 pte = lookup_address_in_pgd(pgd, address, &level);
655 if (pte && pte_present(*pte) && !pte_exec(*pte))
656 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
657 from_kuid(&init_user_ns, current_uid()));
658 if (pte && pte_present(*pte) && pte_exec(*pte) &&
659 (pgd_flags(*pgd) & _PAGE_USER) &&
660 (__read_cr4() & X86_CR4_SMEP))
661 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
662 from_kuid(&init_user_ns, current_uid()));
665 pr_alert("BUG: unable to handle kernel %s at %px\n",
666 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
667 (void *)address);
669 dump_pagetable(address);
672 static noinline void
673 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
674 unsigned long address)
676 struct task_struct *tsk;
677 unsigned long flags;
678 int sig;
680 flags = oops_begin();
681 tsk = current;
682 sig = SIGKILL;
684 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
685 tsk->comm, address);
686 dump_pagetable(address);
688 tsk->thread.cr2 = address;
689 tsk->thread.trap_nr = X86_TRAP_PF;
690 tsk->thread.error_code = error_code;
692 if (__die("Bad pagetable", regs, error_code))
693 sig = 0;
695 oops_end(flags, regs, sig);
698 static noinline void
699 no_context(struct pt_regs *regs, unsigned long error_code,
700 unsigned long address, int signal, int si_code)
702 struct task_struct *tsk = current;
703 unsigned long flags;
704 int sig;
706 /* Are we prepared to handle this kernel fault? */
707 if (fixup_exception(regs, X86_TRAP_PF)) {
709 * Any interrupt that takes a fault gets the fixup. This makes
710 * the below recursive fault logic only apply to a faults from
711 * task context.
713 if (in_interrupt())
714 return;
717 * Per the above we're !in_interrupt(), aka. task context.
719 * In this case we need to make sure we're not recursively
720 * faulting through the emulate_vsyscall() logic.
722 if (current->thread.sig_on_uaccess_err && signal) {
723 tsk->thread.trap_nr = X86_TRAP_PF;
724 tsk->thread.error_code = error_code | X86_PF_USER;
725 tsk->thread.cr2 = address;
727 /* XXX: hwpoison faults will set the wrong code. */
728 force_sig_info_fault(signal, si_code, address,
729 tsk, NULL, 0);
733 * Barring that, we can do the fixup and be happy.
735 return;
738 #ifdef CONFIG_VMAP_STACK
740 * Stack overflow? During boot, we can fault near the initial
741 * stack in the direct map, but that's not an overflow -- check
742 * that we're in vmalloc space to avoid this.
744 if (is_vmalloc_addr((void *)address) &&
745 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
746 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
747 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
749 * We're likely to be running with very little stack space
750 * left. It's plausible that we'd hit this condition but
751 * double-fault even before we get this far, in which case
752 * we're fine: the double-fault handler will deal with it.
754 * We don't want to make it all the way into the oops code
755 * and then double-fault, though, because we're likely to
756 * break the console driver and lose most of the stack dump.
758 asm volatile ("movq %[stack], %%rsp\n\t"
759 "call handle_stack_overflow\n\t"
760 "1: jmp 1b"
761 : ASM_CALL_CONSTRAINT
762 : "D" ("kernel stack overflow (page fault)"),
763 "S" (regs), "d" (address),
764 [stack] "rm" (stack));
765 unreachable();
767 #endif
770 * 32-bit:
772 * Valid to do another page fault here, because if this fault
773 * had been triggered by is_prefetch fixup_exception would have
774 * handled it.
776 * 64-bit:
778 * Hall of shame of CPU/BIOS bugs.
780 if (is_prefetch(regs, error_code, address))
781 return;
783 if (is_errata93(regs, address))
784 return;
787 * Oops. The kernel tried to access some bad page. We'll have to
788 * terminate things with extreme prejudice:
790 flags = oops_begin();
792 show_fault_oops(regs, error_code, address);
794 if (task_stack_end_corrupted(tsk))
795 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
797 tsk->thread.cr2 = address;
798 tsk->thread.trap_nr = X86_TRAP_PF;
799 tsk->thread.error_code = error_code;
801 sig = SIGKILL;
802 if (__die("Oops", regs, error_code))
803 sig = 0;
805 /* Executive summary in case the body of the oops scrolled away */
806 printk(KERN_DEFAULT "CR2: %016lx\n", address);
808 oops_end(flags, regs, sig);
812 * Print out info about fatal segfaults, if the show_unhandled_signals
813 * sysctl is set:
815 static inline void
816 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
817 unsigned long address, struct task_struct *tsk)
819 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
821 if (!unhandled_signal(tsk, SIGSEGV))
822 return;
824 if (!printk_ratelimit())
825 return;
827 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
828 loglvl, tsk->comm, task_pid_nr(tsk), address,
829 (void *)regs->ip, (void *)regs->sp, error_code);
831 print_vma_addr(KERN_CONT " in ", regs->ip);
833 printk(KERN_CONT "\n");
835 show_opcodes(regs, loglvl);
838 static void
839 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
840 unsigned long address, u32 *pkey, int si_code)
842 struct task_struct *tsk = current;
844 /* User mode accesses just cause a SIGSEGV */
845 if (error_code & X86_PF_USER) {
847 * It's possible to have interrupts off here:
849 local_irq_enable();
852 * Valid to do another page fault here because this one came
853 * from user space:
855 if (is_prefetch(regs, error_code, address))
856 return;
858 if (is_errata100(regs, address))
859 return;
861 #ifdef CONFIG_X86_64
863 * Instruction fetch faults in the vsyscall page might need
864 * emulation.
866 if (unlikely((error_code & X86_PF_INSTR) &&
867 ((address & ~0xfff) == VSYSCALL_ADDR))) {
868 if (emulate_vsyscall(regs, address))
869 return;
871 #endif
874 * To avoid leaking information about the kernel page table
875 * layout, pretend that user-mode accesses to kernel addresses
876 * are always protection faults.
878 if (address >= TASK_SIZE_MAX)
879 error_code |= X86_PF_PROT;
881 if (likely(show_unhandled_signals))
882 show_signal_msg(regs, error_code, address, tsk);
884 tsk->thread.cr2 = address;
885 tsk->thread.error_code = error_code;
886 tsk->thread.trap_nr = X86_TRAP_PF;
888 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
890 return;
893 if (is_f00f_bug(regs, address))
894 return;
896 no_context(regs, error_code, address, SIGSEGV, si_code);
899 static noinline void
900 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
901 unsigned long address, u32 *pkey)
903 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
906 static void
907 __bad_area(struct pt_regs *regs, unsigned long error_code,
908 unsigned long address, struct vm_area_struct *vma, int si_code)
910 struct mm_struct *mm = current->mm;
911 u32 pkey;
913 if (vma)
914 pkey = vma_pkey(vma);
917 * Something tried to access memory that isn't in our memory map..
918 * Fix it, but check if it's kernel or user first..
920 up_read(&mm->mmap_sem);
922 __bad_area_nosemaphore(regs, error_code, address,
923 (vma) ? &pkey : NULL, si_code);
926 static noinline void
927 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
929 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
932 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
933 struct vm_area_struct *vma)
935 /* This code is always called on the current mm */
936 bool foreign = false;
938 if (!boot_cpu_has(X86_FEATURE_OSPKE))
939 return false;
940 if (error_code & X86_PF_PK)
941 return true;
942 /* this checks permission keys on the VMA: */
943 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
944 (error_code & X86_PF_INSTR), foreign))
945 return true;
946 return false;
949 static noinline void
950 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
951 unsigned long address, struct vm_area_struct *vma)
954 * This OSPKE check is not strictly necessary at runtime.
955 * But, doing it this way allows compiler optimizations
956 * if pkeys are compiled out.
958 if (bad_area_access_from_pkeys(error_code, vma))
959 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
960 else
961 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
964 static void
965 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
966 u32 *pkey, unsigned int fault)
968 struct task_struct *tsk = current;
969 int code = BUS_ADRERR;
971 /* Kernel mode? Handle exceptions or die: */
972 if (!(error_code & X86_PF_USER)) {
973 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
974 return;
977 /* User-space => ok to do another page fault: */
978 if (is_prefetch(regs, error_code, address))
979 return;
981 tsk->thread.cr2 = address;
982 tsk->thread.error_code = error_code;
983 tsk->thread.trap_nr = X86_TRAP_PF;
985 #ifdef CONFIG_MEMORY_FAILURE
986 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
987 printk(KERN_ERR
988 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
989 tsk->comm, tsk->pid, address);
990 code = BUS_MCEERR_AR;
992 #endif
993 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
996 static noinline void
997 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
998 unsigned long address, u32 *pkey, vm_fault_t fault)
1000 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1001 no_context(regs, error_code, address, 0, 0);
1002 return;
1005 if (fault & VM_FAULT_OOM) {
1006 /* Kernel mode? Handle exceptions or die: */
1007 if (!(error_code & X86_PF_USER)) {
1008 no_context(regs, error_code, address,
1009 SIGSEGV, SEGV_MAPERR);
1010 return;
1014 * We ran out of memory, call the OOM killer, and return the
1015 * userspace (which will retry the fault, or kill us if we got
1016 * oom-killed):
1018 pagefault_out_of_memory();
1019 } else {
1020 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1021 VM_FAULT_HWPOISON_LARGE))
1022 do_sigbus(regs, error_code, address, pkey, fault);
1023 else if (fault & VM_FAULT_SIGSEGV)
1024 bad_area_nosemaphore(regs, error_code, address, pkey);
1025 else
1026 BUG();
1030 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1032 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1033 return 0;
1035 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1036 return 0;
1038 * Note: We do not do lazy flushing on protection key
1039 * changes, so no spurious fault will ever set X86_PF_PK.
1041 if ((error_code & X86_PF_PK))
1042 return 1;
1044 return 1;
1048 * Handle a spurious fault caused by a stale TLB entry.
1050 * This allows us to lazily refresh the TLB when increasing the
1051 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1052 * eagerly is very expensive since that implies doing a full
1053 * cross-processor TLB flush, even if no stale TLB entries exist
1054 * on other processors.
1056 * Spurious faults may only occur if the TLB contains an entry with
1057 * fewer permission than the page table entry. Non-present (P = 0)
1058 * and reserved bit (R = 1) faults are never spurious.
1060 * There are no security implications to leaving a stale TLB when
1061 * increasing the permissions on a page.
1063 * Returns non-zero if a spurious fault was handled, zero otherwise.
1065 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1066 * (Optional Invalidation).
1068 static noinline int
1069 spurious_fault(unsigned long error_code, unsigned long address)
1071 pgd_t *pgd;
1072 p4d_t *p4d;
1073 pud_t *pud;
1074 pmd_t *pmd;
1075 pte_t *pte;
1076 int ret;
1079 * Only writes to RO or instruction fetches from NX may cause
1080 * spurious faults.
1082 * These could be from user or supervisor accesses but the TLB
1083 * is only lazily flushed after a kernel mapping protection
1084 * change, so user accesses are not expected to cause spurious
1085 * faults.
1087 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1088 error_code != (X86_PF_INSTR | X86_PF_PROT))
1089 return 0;
1091 pgd = init_mm.pgd + pgd_index(address);
1092 if (!pgd_present(*pgd))
1093 return 0;
1095 p4d = p4d_offset(pgd, address);
1096 if (!p4d_present(*p4d))
1097 return 0;
1099 if (p4d_large(*p4d))
1100 return spurious_fault_check(error_code, (pte_t *) p4d);
1102 pud = pud_offset(p4d, address);
1103 if (!pud_present(*pud))
1104 return 0;
1106 if (pud_large(*pud))
1107 return spurious_fault_check(error_code, (pte_t *) pud);
1109 pmd = pmd_offset(pud, address);
1110 if (!pmd_present(*pmd))
1111 return 0;
1113 if (pmd_large(*pmd))
1114 return spurious_fault_check(error_code, (pte_t *) pmd);
1116 pte = pte_offset_kernel(pmd, address);
1117 if (!pte_present(*pte))
1118 return 0;
1120 ret = spurious_fault_check(error_code, pte);
1121 if (!ret)
1122 return 0;
1125 * Make sure we have permissions in PMD.
1126 * If not, then there's a bug in the page tables:
1128 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1129 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1131 return ret;
1133 NOKPROBE_SYMBOL(spurious_fault);
1135 int show_unhandled_signals = 1;
1137 static inline int
1138 access_error(unsigned long error_code, struct vm_area_struct *vma)
1140 /* This is only called for the current mm, so: */
1141 bool foreign = false;
1144 * Read or write was blocked by protection keys. This is
1145 * always an unconditional error and can never result in
1146 * a follow-up action to resolve the fault, like a COW.
1148 if (error_code & X86_PF_PK)
1149 return 1;
1152 * Make sure to check the VMA so that we do not perform
1153 * faults just to hit a X86_PF_PK as soon as we fill in a
1154 * page.
1156 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1157 (error_code & X86_PF_INSTR), foreign))
1158 return 1;
1160 if (error_code & X86_PF_WRITE) {
1161 /* write, present and write, not present: */
1162 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1163 return 1;
1164 return 0;
1167 /* read, present: */
1168 if (unlikely(error_code & X86_PF_PROT))
1169 return 1;
1171 /* read, not present: */
1172 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1173 return 1;
1175 return 0;
1178 static int fault_in_kernel_space(unsigned long address)
1180 return address >= TASK_SIZE_MAX;
1183 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1185 if (!IS_ENABLED(CONFIG_X86_SMAP))
1186 return false;
1188 if (!static_cpu_has(X86_FEATURE_SMAP))
1189 return false;
1191 if (error_code & X86_PF_USER)
1192 return false;
1194 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1195 return false;
1197 return true;
1201 * This routine handles page faults. It determines the address,
1202 * and the problem, and then passes it off to one of the appropriate
1203 * routines.
1205 static noinline void
1206 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1207 unsigned long address)
1209 struct vm_area_struct *vma;
1210 struct task_struct *tsk;
1211 struct mm_struct *mm;
1212 vm_fault_t fault, major = 0;
1213 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1214 u32 pkey;
1216 tsk = current;
1217 mm = tsk->mm;
1219 prefetchw(&mm->mmap_sem);
1221 if (unlikely(kmmio_fault(regs, address)))
1222 return;
1225 * We fault-in kernel-space virtual memory on-demand. The
1226 * 'reference' page table is init_mm.pgd.
1228 * NOTE! We MUST NOT take any locks for this case. We may
1229 * be in an interrupt or a critical region, and should
1230 * only copy the information from the master page table,
1231 * nothing more.
1233 * This verifies that the fault happens in kernel space
1234 * (error_code & 4) == 0, and that the fault was not a
1235 * protection error (error_code & 9) == 0.
1237 if (unlikely(fault_in_kernel_space(address))) {
1238 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1239 if (vmalloc_fault(address) >= 0)
1240 return;
1243 /* Can handle a stale RO->RW TLB: */
1244 if (spurious_fault(error_code, address))
1245 return;
1247 /* kprobes don't want to hook the spurious faults: */
1248 if (kprobes_fault(regs))
1249 return;
1251 * Don't take the mm semaphore here. If we fixup a prefetch
1252 * fault we could otherwise deadlock:
1254 bad_area_nosemaphore(regs, error_code, address, NULL);
1256 return;
1259 /* kprobes don't want to hook the spurious faults: */
1260 if (unlikely(kprobes_fault(regs)))
1261 return;
1263 if (unlikely(error_code & X86_PF_RSVD))
1264 pgtable_bad(regs, error_code, address);
1266 if (unlikely(smap_violation(error_code, regs))) {
1267 bad_area_nosemaphore(regs, error_code, address, NULL);
1268 return;
1272 * If we're in an interrupt, have no user context or are running
1273 * in a region with pagefaults disabled then we must not take the fault
1275 if (unlikely(faulthandler_disabled() || !mm)) {
1276 bad_area_nosemaphore(regs, error_code, address, NULL);
1277 return;
1281 * It's safe to allow irq's after cr2 has been saved and the
1282 * vmalloc fault has been handled.
1284 * User-mode registers count as a user access even for any
1285 * potential system fault or CPU buglet:
1287 if (user_mode(regs)) {
1288 local_irq_enable();
1289 error_code |= X86_PF_USER;
1290 flags |= FAULT_FLAG_USER;
1291 } else {
1292 if (regs->flags & X86_EFLAGS_IF)
1293 local_irq_enable();
1296 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1298 if (error_code & X86_PF_WRITE)
1299 flags |= FAULT_FLAG_WRITE;
1300 if (error_code & X86_PF_INSTR)
1301 flags |= FAULT_FLAG_INSTRUCTION;
1304 * When running in the kernel we expect faults to occur only to
1305 * addresses in user space. All other faults represent errors in
1306 * the kernel and should generate an OOPS. Unfortunately, in the
1307 * case of an erroneous fault occurring in a code path which already
1308 * holds mmap_sem we will deadlock attempting to validate the fault
1309 * against the address space. Luckily the kernel only validly
1310 * references user space from well defined areas of code, which are
1311 * listed in the exceptions table.
1313 * As the vast majority of faults will be valid we will only perform
1314 * the source reference check when there is a possibility of a
1315 * deadlock. Attempt to lock the address space, if we cannot we then
1316 * validate the source. If this is invalid we can skip the address
1317 * space check, thus avoiding the deadlock:
1319 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1320 if (!(error_code & X86_PF_USER) &&
1321 !search_exception_tables(regs->ip)) {
1322 bad_area_nosemaphore(regs, error_code, address, NULL);
1323 return;
1325 retry:
1326 down_read(&mm->mmap_sem);
1327 } else {
1329 * The above down_read_trylock() might have succeeded in
1330 * which case we'll have missed the might_sleep() from
1331 * down_read():
1333 might_sleep();
1336 vma = find_vma(mm, address);
1337 if (unlikely(!vma)) {
1338 bad_area(regs, error_code, address);
1339 return;
1341 if (likely(vma->vm_start <= address))
1342 goto good_area;
1343 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1344 bad_area(regs, error_code, address);
1345 return;
1347 if (error_code & X86_PF_USER) {
1349 * Accessing the stack below %sp is always a bug.
1350 * The large cushion allows instructions like enter
1351 * and pusha to work. ("enter $65535, $31" pushes
1352 * 32 pointers and then decrements %sp by 65535.)
1354 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1355 bad_area(regs, error_code, address);
1356 return;
1359 if (unlikely(expand_stack(vma, address))) {
1360 bad_area(regs, error_code, address);
1361 return;
1365 * Ok, we have a good vm_area for this memory access, so
1366 * we can handle it..
1368 good_area:
1369 if (unlikely(access_error(error_code, vma))) {
1370 bad_area_access_error(regs, error_code, address, vma);
1371 return;
1375 * If for any reason at all we couldn't handle the fault,
1376 * make sure we exit gracefully rather than endlessly redo
1377 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1378 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1380 * Note that handle_userfault() may also release and reacquire mmap_sem
1381 * (and not return with VM_FAULT_RETRY), when returning to userland to
1382 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1383 * (potentially after handling any pending signal during the return to
1384 * userland). The return to userland is identified whenever
1385 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1386 * Thus we have to be careful about not touching vma after handling the
1387 * fault, so we read the pkey beforehand.
1389 pkey = vma_pkey(vma);
1390 fault = handle_mm_fault(vma, address, flags);
1391 major |= fault & VM_FAULT_MAJOR;
1394 * If we need to retry the mmap_sem has already been released,
1395 * and if there is a fatal signal pending there is no guarantee
1396 * that we made any progress. Handle this case first.
1398 if (unlikely(fault & VM_FAULT_RETRY)) {
1399 /* Retry at most once */
1400 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1401 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1402 flags |= FAULT_FLAG_TRIED;
1403 if (!fatal_signal_pending(tsk))
1404 goto retry;
1407 /* User mode? Just return to handle the fatal exception */
1408 if (flags & FAULT_FLAG_USER)
1409 return;
1411 /* Not returning to user mode? Handle exceptions or die: */
1412 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1413 return;
1416 up_read(&mm->mmap_sem);
1417 if (unlikely(fault & VM_FAULT_ERROR)) {
1418 mm_fault_error(regs, error_code, address, &pkey, fault);
1419 return;
1423 * Major/minor page fault accounting. If any of the events
1424 * returned VM_FAULT_MAJOR, we account it as a major fault.
1426 if (major) {
1427 tsk->maj_flt++;
1428 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1429 } else {
1430 tsk->min_flt++;
1431 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1434 check_v8086_mode(regs, address, tsk);
1436 NOKPROBE_SYMBOL(__do_page_fault);
1438 static nokprobe_inline void
1439 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1440 unsigned long error_code)
1442 if (user_mode(regs))
1443 trace_page_fault_user(address, regs, error_code);
1444 else
1445 trace_page_fault_kernel(address, regs, error_code);
1449 * We must have this function blacklisted from kprobes, tagged with notrace
1450 * and call read_cr2() before calling anything else. To avoid calling any
1451 * kind of tracing machinery before we've observed the CR2 value.
1453 * exception_{enter,exit}() contains all sorts of tracepoints.
1455 dotraplinkage void notrace
1456 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1458 unsigned long address = read_cr2(); /* Get the faulting address */
1459 enum ctx_state prev_state;
1461 prev_state = exception_enter();
1462 if (trace_pagefault_enabled())
1463 trace_page_fault_entries(address, regs, error_code);
1465 __do_page_fault(regs, error_code, address);
1466 exception_exit(prev_state);
1468 NOKPROBE_SYMBOL(do_page_fault);