1 #define pr_fmt(fmt) "efi: " fmt
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
15 #include <asm/e820/api.h>
17 #include <asm/uv/uv.h>
18 #include <asm/cpu_device_id.h>
20 #define EFI_MIN_RESERVE 5120
22 #define EFI_DUMMY_GUID \
23 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
25 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */
26 #define QUARK_SECURITY_HEADER_SIZE 0x400
29 * Header prepended to the standard EFI capsule on Quark systems the are based
30 * on Intel firmware BSP.
31 * @csh_signature: Unique identifier to sanity check signed module
33 * @version: Current version of CSH used. Should be one for Quark A0.
34 * @modulesize: Size of the entire module including the module header
36 * @security_version_number_index: Index of SVN to use for validation of signed
38 * @security_version_number: Used to prevent against roll back of modules.
39 * @rsvd_module_id: Currently unused for Clanton (Quark).
40 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is
42 * @rsvd_date: BCD representation of build date as yyyymmdd, where
43 * yyyy=4 digit year, mm=1-12, dd=1-31.
44 * @headersize: Total length of the header including including any
45 * padding optionally added by the signing tool.
46 * @hash_algo: What Hash is used in the module signing.
47 * @cryp_algo: What Crypto is used in the module signing.
48 * @keysize: Total length of the key data including including any
49 * padding optionally added by the signing tool.
50 * @signaturesize: Total length of the signature including including any
51 * padding optionally added by the signing tool.
52 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the
53 * chain, if there is a next header.
54 * @rsvd: Reserved, padding structure to required size.
56 * See also QuartSecurityHeader_t in
57 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
58 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
60 struct quark_security_header
{
64 u32 security_version_number_index
;
65 u32 security_version_number
;
67 u32 rsvd_module_vendor
;
78 static const efi_char16_t efi_dummy_name
[] = L
"DUMMY";
80 static bool efi_no_storage_paranoia
;
83 * Some firmware implementations refuse to boot if there's insufficient
84 * space in the variable store. The implementation of garbage collection
85 * in some FW versions causes stale (deleted) variables to take up space
86 * longer than intended and space is only freed once the store becomes
87 * almost completely full.
89 * Enabling this option disables the space checks in
90 * efi_query_variable_store() and forces garbage collection.
92 * Only enable this option if deleting EFI variables does not free up
93 * space in your variable store, e.g. if despite deleting variables
94 * you're unable to create new ones.
96 static int __init
setup_storage_paranoia(char *arg
)
98 efi_no_storage_paranoia
= true;
101 early_param("efi_no_storage_paranoia", setup_storage_paranoia
);
104 * Deleting the dummy variable which kicks off garbage collection
106 void efi_delete_dummy_variable(void)
108 efi
.set_variable_nonblocking((efi_char16_t
*)efi_dummy_name
,
110 EFI_VARIABLE_NON_VOLATILE
|
111 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
112 EFI_VARIABLE_RUNTIME_ACCESS
, 0, NULL
);
116 * In the nonblocking case we do not attempt to perform garbage
117 * collection if we do not have enough free space. Rather, we do the
118 * bare minimum check and give up immediately if the available space
119 * is below EFI_MIN_RESERVE.
121 * This function is intended to be small and simple because it is
122 * invoked from crash handler paths.
125 query_variable_store_nonblocking(u32 attributes
, unsigned long size
)
128 u64 storage_size
, remaining_size
, max_size
;
130 status
= efi
.query_variable_info_nonblocking(attributes
, &storage_size
,
133 if (status
!= EFI_SUCCESS
)
136 if (remaining_size
- size
< EFI_MIN_RESERVE
)
137 return EFI_OUT_OF_RESOURCES
;
143 * Some firmware implementations refuse to boot if there's insufficient space
144 * in the variable store. Ensure that we never use more than a safe limit.
146 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
149 efi_status_t
efi_query_variable_store(u32 attributes
, unsigned long size
,
153 u64 storage_size
, remaining_size
, max_size
;
155 if (!(attributes
& EFI_VARIABLE_NON_VOLATILE
))
159 return query_variable_store_nonblocking(attributes
, size
);
161 status
= efi
.query_variable_info(attributes
, &storage_size
,
162 &remaining_size
, &max_size
);
163 if (status
!= EFI_SUCCESS
)
167 * We account for that by refusing the write if permitting it would
168 * reduce the available space to under 5KB. This figure was provided by
169 * Samsung, so should be safe.
171 if ((remaining_size
- size
< EFI_MIN_RESERVE
) &&
172 !efi_no_storage_paranoia
) {
175 * Triggering garbage collection may require that the firmware
176 * generate a real EFI_OUT_OF_RESOURCES error. We can force
177 * that by attempting to use more space than is available.
179 unsigned long dummy_size
= remaining_size
+ 1024;
180 void *dummy
= kzalloc(dummy_size
, GFP_KERNEL
);
183 return EFI_OUT_OF_RESOURCES
;
185 status
= efi
.set_variable((efi_char16_t
*)efi_dummy_name
,
187 EFI_VARIABLE_NON_VOLATILE
|
188 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
189 EFI_VARIABLE_RUNTIME_ACCESS
,
192 if (status
== EFI_SUCCESS
) {
194 * This should have failed, so if it didn't make sure
195 * that we delete it...
197 efi_delete_dummy_variable();
203 * The runtime code may now have triggered a garbage collection
204 * run, so check the variable info again
206 status
= efi
.query_variable_info(attributes
, &storage_size
,
207 &remaining_size
, &max_size
);
209 if (status
!= EFI_SUCCESS
)
213 * There still isn't enough room, so return an error
215 if (remaining_size
- size
< EFI_MIN_RESERVE
)
216 return EFI_OUT_OF_RESOURCES
;
221 EXPORT_SYMBOL_GPL(efi_query_variable_store
);
224 * The UEFI specification makes it clear that the operating system is
225 * free to do whatever it wants with boot services code after
226 * ExitBootServices() has been called. Ignoring this recommendation a
227 * significant bunch of EFI implementations continue calling into boot
228 * services code (SetVirtualAddressMap). In order to work around such
229 * buggy implementations we reserve boot services region during EFI
230 * init and make sure it stays executable. Then, after
231 * SetVirtualAddressMap(), it is discarded.
233 * However, some boot services regions contain data that is required
234 * by drivers, so we need to track which memory ranges can never be
235 * freed. This is done by tagging those regions with the
236 * EFI_MEMORY_RUNTIME attribute.
238 * Any driver that wants to mark a region as reserved must use
239 * efi_mem_reserve() which will insert a new EFI memory descriptor
240 * into efi.memmap (splitting existing regions if necessary) and tag
241 * it with EFI_MEMORY_RUNTIME.
243 void __init
efi_arch_mem_reserve(phys_addr_t addr
, u64 size
)
245 phys_addr_t new_phys
, new_size
;
246 struct efi_mem_range mr
;
247 efi_memory_desc_t md
;
251 if (efi_mem_desc_lookup(addr
, &md
) ||
252 md
.type
!= EFI_BOOT_SERVICES_DATA
) {
253 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr
);
257 if (addr
+ size
> md
.phys_addr
+ (md
.num_pages
<< EFI_PAGE_SHIFT
)) {
258 pr_err("Region spans EFI memory descriptors, %pa\n", &addr
);
262 /* No need to reserve regions that will never be freed. */
263 if (md
.attribute
& EFI_MEMORY_RUNTIME
)
266 size
+= addr
% EFI_PAGE_SIZE
;
267 size
= round_up(size
, EFI_PAGE_SIZE
);
268 addr
= round_down(addr
, EFI_PAGE_SIZE
);
270 mr
.range
.start
= addr
;
271 mr
.range
.end
= addr
+ size
- 1;
272 mr
.attribute
= md
.attribute
| EFI_MEMORY_RUNTIME
;
274 num_entries
= efi_memmap_split_count(&md
, &mr
.range
);
275 num_entries
+= efi
.memmap
.nr_map
;
277 new_size
= efi
.memmap
.desc_size
* num_entries
;
279 new_phys
= efi_memmap_alloc(num_entries
);
281 pr_err("Could not allocate boot services memmap\n");
285 new = early_memremap(new_phys
, new_size
);
287 pr_err("Failed to map new boot services memmap\n");
291 efi_memmap_insert(&efi
.memmap
, new, &mr
);
292 early_memunmap(new, new_size
);
294 efi_memmap_install(new_phys
, num_entries
);
298 * Helper function for efi_reserve_boot_services() to figure out if we
299 * can free regions in efi_free_boot_services().
301 * Use this function to ensure we do not free regions owned by somebody
302 * else. We must only reserve (and then free) regions:
304 * - Not within any part of the kernel
305 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
307 static bool can_free_region(u64 start
, u64 size
)
309 if (start
+ size
> __pa_symbol(_text
) && start
<= __pa_symbol(_end
))
312 if (!e820__mapped_all(start
, start
+size
, E820_TYPE_RAM
))
318 void __init
efi_reserve_boot_services(void)
320 efi_memory_desc_t
*md
;
322 for_each_efi_memory_desc(md
) {
323 u64 start
= md
->phys_addr
;
324 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
325 bool already_reserved
;
327 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
328 md
->type
!= EFI_BOOT_SERVICES_DATA
)
331 already_reserved
= memblock_is_region_reserved(start
, size
);
334 * Because the following memblock_reserve() is paired
335 * with free_bootmem_late() for this region in
336 * efi_free_boot_services(), we must be extremely
337 * careful not to reserve, and subsequently free,
338 * critical regions of memory (like the kernel image) or
339 * those regions that somebody else has already
342 * A good example of a critical region that must not be
343 * freed is page zero (first 4Kb of memory), which may
344 * contain boot services code/data but is marked
345 * E820_TYPE_RESERVED by trim_bios_range().
347 if (!already_reserved
) {
348 memblock_reserve(start
, size
);
351 * If we are the first to reserve the region, no
352 * one else cares about it. We own it and can
355 if (can_free_region(start
, size
))
360 * We don't own the region. We must not free it.
362 * Setting this bit for a boot services region really
363 * doesn't make sense as far as the firmware is
364 * concerned, but it does provide us with a way to tag
365 * those regions that must not be paired with
366 * free_bootmem_late().
368 md
->attribute
|= EFI_MEMORY_RUNTIME
;
372 void __init
efi_free_boot_services(void)
374 phys_addr_t new_phys
, new_size
;
375 efi_memory_desc_t
*md
;
379 for_each_efi_memory_desc(md
) {
380 unsigned long long start
= md
->phys_addr
;
381 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
384 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
385 md
->type
!= EFI_BOOT_SERVICES_DATA
) {
390 /* Do not free, someone else owns it: */
391 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
397 * Nasty quirk: if all sub-1MB memory is used for boot
398 * services, we can get here without having allocated the
399 * real mode trampoline. It's too late to hand boot services
400 * memory back to the memblock allocator, so instead
401 * try to manually allocate the trampoline if needed.
403 * I've seen this on a Dell XPS 13 9350 with firmware
404 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
405 * grub2-efi on a hard disk. (And no, I don't know why
406 * this happened, but Linux should still try to boot rather
409 rm_size
= real_mode_size_needed();
410 if (rm_size
&& (start
+ rm_size
) < (1<<20) && size
>= rm_size
) {
411 set_real_mode_mem(start
, rm_size
);
416 free_bootmem_late(start
, size
);
422 new_size
= efi
.memmap
.desc_size
* num_entries
;
423 new_phys
= efi_memmap_alloc(num_entries
);
425 pr_err("Failed to allocate new EFI memmap\n");
429 new = memremap(new_phys
, new_size
, MEMREMAP_WB
);
431 pr_err("Failed to map new EFI memmap\n");
436 * Build a new EFI memmap that excludes any boot services
437 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
438 * regions have now been freed.
441 for_each_efi_memory_desc(md
) {
442 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
443 (md
->type
== EFI_BOOT_SERVICES_CODE
||
444 md
->type
== EFI_BOOT_SERVICES_DATA
))
447 memcpy(new_md
, md
, efi
.memmap
.desc_size
);
448 new_md
+= efi
.memmap
.desc_size
;
453 if (efi_memmap_install(new_phys
, num_entries
)) {
454 pr_err("Could not install new EFI memmap\n");
460 * A number of config table entries get remapped to virtual addresses
461 * after entering EFI virtual mode. However, the kexec kernel requires
462 * their physical addresses therefore we pass them via setup_data and
463 * correct those entries to their respective physical addresses here.
465 * Currently only handles smbios which is necessary for some firmware
468 int __init
efi_reuse_config(u64 tables
, int nr_tables
)
472 struct efi_setup_data
*data
;
477 if (!efi_enabled(EFI_64BIT
))
480 data
= early_memremap(efi_setup
, sizeof(*data
));
489 sz
= sizeof(efi_config_table_64_t
);
491 p
= tablep
= early_memremap(tables
, nr_tables
* sz
);
493 pr_err("Could not map Configuration table!\n");
498 for (i
= 0; i
< efi
.systab
->nr_tables
; i
++) {
501 guid
= ((efi_config_table_64_t
*)p
)->guid
;
503 if (!efi_guidcmp(guid
, SMBIOS_TABLE_GUID
))
504 ((efi_config_table_64_t
*)p
)->table
= data
->smbios
;
507 early_memunmap(tablep
, nr_tables
* sz
);
510 early_memunmap(data
, sizeof(*data
));
515 static const struct dmi_system_id sgi_uv1_dmi
[] = {
517 { DMI_MATCH(DMI_PRODUCT_NAME
, "Stoutland Platform"),
518 DMI_MATCH(DMI_PRODUCT_VERSION
, "1.0"),
519 DMI_MATCH(DMI_BIOS_VENDOR
, "SGI.COM"),
522 { } /* NULL entry stops DMI scanning */
525 void __init
efi_apply_memmap_quirks(void)
528 * Once setup is done earlier, unmap the EFI memory map on mismatched
529 * firmware/kernel architectures since there is no support for runtime
532 if (!efi_runtime_supported()) {
533 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
537 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
538 if (dmi_check_system(sgi_uv1_dmi
))
539 set_bit(EFI_OLD_MEMMAP
, &efi
.flags
);
543 * For most modern platforms the preferred method of powering off is via
544 * ACPI. However, there are some that are known to require the use of
545 * EFI runtime services and for which ACPI does not work at all.
547 * Using EFI is a last resort, to be used only if no other option
550 bool efi_reboot_required(void)
552 if (!acpi_gbl_reduced_hardware
)
555 efi_reboot_quirk_mode
= EFI_RESET_WARM
;
559 bool efi_poweroff_required(void)
561 return acpi_gbl_reduced_hardware
|| acpi_no_s5
;
564 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
566 static int qrk_capsule_setup_info(struct capsule_info
*cap_info
, void **pkbuff
,
569 struct quark_security_header
*csh
= *pkbuff
;
571 /* Only process data block that is larger than the security header */
572 if (hdr_bytes
< sizeof(struct quark_security_header
))
575 if (csh
->csh_signature
!= QUARK_CSH_SIGNATURE
||
576 csh
->headersize
!= QUARK_SECURITY_HEADER_SIZE
)
579 /* Only process data block if EFI header is included */
580 if (hdr_bytes
< QUARK_SECURITY_HEADER_SIZE
+
581 sizeof(efi_capsule_header_t
))
584 pr_debug("Quark security header detected\n");
586 if (csh
->rsvd_next_header
!= 0) {
587 pr_err("multiple Quark security headers not supported\n");
591 *pkbuff
+= csh
->headersize
;
592 cap_info
->total_size
= csh
->headersize
;
595 * Update the first page pointer to skip over the CSH header.
597 cap_info
->phys
[0] += csh
->headersize
;
600 * cap_info->capsule should point at a virtual mapping of the entire
601 * capsule, starting at the capsule header. Our image has the Quark
602 * security header prepended, so we cannot rely on the default vmap()
603 * mapping created by the generic capsule code.
604 * Given that the Quark firmware does not appear to care about the
605 * virtual mapping, let's just point cap_info->capsule at our copy
606 * of the capsule header.
608 cap_info
->capsule
= &cap_info
->header
;
613 #define ICPU(family, model, quirk_handler) \
614 { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
615 (unsigned long)&quirk_handler }
617 static const struct x86_cpu_id efi_capsule_quirk_ids
[] = {
618 ICPU(5, 9, qrk_capsule_setup_info
), /* Intel Quark X1000 */
622 int efi_capsule_setup_info(struct capsule_info
*cap_info
, void *kbuff
,
625 int (*quirk_handler
)(struct capsule_info
*, void **, size_t);
626 const struct x86_cpu_id
*id
;
629 if (hdr_bytes
< sizeof(efi_capsule_header_t
))
632 cap_info
->total_size
= 0;
634 id
= x86_match_cpu(efi_capsule_quirk_ids
);
637 * The quirk handler is supposed to return
638 * - a value > 0 if the setup should continue, after advancing
640 * - 0 if not enough hdr_bytes are available yet
641 * - a negative error code otherwise
643 quirk_handler
= (typeof(quirk_handler
))id
->driver_data
;
644 ret
= quirk_handler(cap_info
, &kbuff
, hdr_bytes
);
649 memcpy(&cap_info
->header
, kbuff
, sizeof(cap_info
->header
));
651 cap_info
->total_size
+= cap_info
->header
.imagesize
;
653 return __efi_capsule_setup_info(cap_info
);